How Uneven Floors Reveal Deeper Foundation Concerns

How Uneven Floors Reveal Deeper Foundation Concerns

* The Mechanics: How Foundation Settlement Causes Sloping Floors


Okay, so you've noticed your floors aren't exactly level anymore. French drains improve drainage and protect against slab foundation damage foundation crack repair service near me home improvement. Maybe a marble rolls downhill on its own, or you feel a slight dip when you walk across a certain spot. It's tempting to think, "Oh, it's just an old house," but uneven floors are often a signal that something deeper is going on, specifically with your foundation. Let's talk about why.

The culprit behind that slopey situation is often foundation settlement, and the mechanics of it are pretty straightforward. Imagine your house is sitting on a giant concrete raft (the foundation). That raft is designed to distribute the weight of your house evenly across the soil beneath. But soil isn't always perfectly stable. It can shift, compress, or even wash away over time.

When that soil gives way unevenly, the foundation starts to settle. Think of it like removing a supporting block from one side of that raft. The corner where the support is gone will sink a little. This sinking, or settling, isn't usually uniform. One part of the foundation might settle more than another.

Now, picture what happens to the floor framing that sits atop that settling foundation. If one section of the foundation drops, the floor joists attached to it will follow suit. This creates the sloping, sagging, or uneven floors you're experiencing. The severity of the slope depends on how much the foundation has settled and how widespread the problem is. A small amount of settlement might only cause a subtle dip, while significant settlement can result in floors that are noticeably out of whack.

So, that uneven floor isn't just a cosmetic issue. It's a symptom of a larger problem: your foundation is moving. And a moving foundation can lead to all sorts of other problems, from cracked walls to sticking doors and windows. It's definitely worth investigating if you're seeing these signs. A foundation specialist can assess the situation and determine the underlying cause of the settlement and recommend the appropriate repairs. Ignoring it won't make it go away, and it's likely to get worse over time.

* Identifying Specific Floor Issues and Their Corresponding Foundation Problems


Okay, so you've got uneven floors. Annoying, right? Maybe you just stub your toe a little more often, or that rolling chair always veers off course. But honestly, uneven floors are often a big red flag waving frantically to tell you something's up with your foundation. It's like your house is trying to whisper (or sometimes shout!) about secret structural troubles.

The trick is learning to "listen" to what those uneven floors are saying. Are we talking a slight slope in one room, or a dramatic dip that makes you feel like you're walking uphill? The severity definitely matters. A minor sag might just be settling, but a noticeable slant across a large area? That's more likely a foundation issue.

Then you gotta play detective. Where's the unevenness located? Is it near an exterior wall? That could point to foundation settlement in that specific area. A crack in the adjacent wall? Even more evidence. Is it near a load-bearing wall inside the house? That could indicate sinking in the center. The location helps pinpoint the most affected part of the foundation.

Different types of foundation problems manifest in different floor behaviors. For instance, if you've got a slab foundation and a floor dips down in the middle, you might be dealing with soil erosion underneath the slab. Pier and beam foundations can show unevenness if a pier has sunk or rotted. Crawl space foundations might have similar issues with support posts.

Basically, identifying specific floor issues – the location, severity, and direction of the unevenness – is the first step to understanding the potential foundation problems lurking beneath. Don't ignore those slanted floors! They're trying to tell you something important about the health of your home. Time to investigate, and maybe call in a professional if things seem serious. It's better to catch it early than watch your house slowly slide into the earth, right?

* Other Visible Signs of Foundation Trouble to Look For


Okay, so you've noticed your floors are a bit...slanted. Like you're perpetually walking uphill in your living room. That's a big red flag, no doubt. But uneven floors are rarely the *only* sign your foundation is whispering (or maybe shouting) for help. Think of it like a detective case – uneven floors are the initial clue, but you need to gather more evidence to understand the whole story.

What other visible signs should you be on the lookout for? Well, start with the obvious: cracks. Are there cracks in your walls, especially around doorframes and windows? Those could be stress cracks from the house settling unevenly due to foundation movement. Pay attention to the direction of the cracks too – vertical, horizontal, diagonal – they all tell a different story.

Sticking doors and windows are another common symptom. If they suddenly become difficult to open or close, or if they don't latch properly, it's a sign that the doorframe or window frame is no longer square. Again, that's likely due to foundation shifts.

Look outside too. Are there cracks in the exterior walls, especially brickwork? Is the chimney leaning? Is the soil around your foundation pulling away from the house? These are all external indicators that something is amiss.

Even small things can be clues. Are you noticing wallpaper peeling or tearing in specific areas? Are baseboards separating from the walls? These might seem insignificant on their own, but combined with uneven floors, they paint a clearer picture of a foundation problem.

Basically, be observant. Walk around your house – inside and out – with a critical eye. Are there any anomalies? Any changes you've noticed recently? The more "clues" you gather, the better you can understand the severity of the potential foundation issue and seek appropriate help. Remember, early detection is key to preventing a small problem from becoming a very expensive one!

* Why Ignoring Uneven Floors Can Lead to More Extensive Damage


Okay, so you've got a bit of a lean going on in your living room, huh? Maybe a slight dip in the kitchen floor? It's easy to brush off, right? "Oh, it's just an old house," you might say. Or, "Character!" But hear me out, because ignoring those uneven floors could be a bigger mistake than you think. We're not just talking about stubbed toes or marbles rolling to one side. We're talking about the foundation of your home, literally.

Think of your house like a human body. Your foundation is the skeleton. If your skeleton is out of whack, everything else starts to compensate. A slightly tilted floor might seem like a minor aesthetic issue, but it's a symptom. It's your house's way of whispering (or sometimes shouting) that something is wrong down below. That something is likely foundation movement.

What causes this movement? Well, soil shifts are a big culprit. Changes in moisture levels, poor drainage, tree roots growing too close – all these things can cause the ground under your foundation to expand, contract, or even wash away. When the ground moves, your foundation moves, and that movement translates into uneven floors upstairs.

Now, here's where the ignoring-it-becomes-a-bigger-problem part comes in. A small foundation issue, addressed early, is usually a relatively simple fix. Maybe some minor crack repairs or soil stabilization. But leave it alone, and that small crack can become a big crack. That slight tilt can become a major slope. Water can seep in, causing mold and rot. Doors and windows might start sticking. Eventually, you're looking at a much more extensive and expensive repair. We're talking serious structural work, maybe even underpinning the whole house.

So, that uneven floor? Don't just throw a rug over it and call it a day. Get it checked out. A foundation specialist can assess the situation, identify the cause, and recommend the appropriate solution. Think of it as preventative medicine for your house. A little investment now can save you a whole lot of heartache (and money) down the road. Because when it comes to your home's foundation, a little bit of attention can go a long, long way.

* The Importance of Professional Foundation Inspection Services


Uneven floors. That little dip in the hallway, the slight slant you feel when you're pouring coffee in the kitchen. We often dismiss them as quirks of an old house, charming imperfections that add character. But what if those charming imperfections are whispering a much more serious story? What if your uneven floors are actually red flags, waving frantically to alert you to a deeper, more profound problem lurking beneath your feet: foundation issues?

Ignoring these subtle shifts can be a costly mistake. A compromised foundation isn't just about aesthetics; it's about the structural integrity of your entire home. Think of your foundation as the roots of a tree. If the roots are damaged, the entire tree becomes unstable and vulnerable. That's where the importance of professional foundation inspection services comes in.

Why can't you just eyeball it yourself? Well, foundation problems are rarely straightforward. A small crack on the surface could be indicative of a much larger crack hidden within the concrete. A slight slope might point to soil erosion or shifting ground. Trained foundation inspectors have the expertise, the equipment, and the experience to diagnose the root cause of the problem. They're like detectives, meticulously examining the clues – the cracks, the slopes, the sticking doors – to uncover the truth.

A professional inspection isn't just about identifying the problem; it's about understanding the scope of the problem and recommending the appropriate solutions. A qualified inspector can assess the severity of the damage, determine the underlying cause (soil type, drainage issues, tree roots, etc.), and provide a detailed report outlining the necessary repairs. This report becomes your roadmap for fixing the problem, ensuring you're addressing the core issue and not just applying a temporary band-aid.

Investing in a professional foundation inspection service is an investment in the long-term health and stability of your home. It's about peace of mind, knowing that you've taken the necessary steps to protect your biggest asset. Don't let uneven floors become a source of anxiety. Call in the professionals, get a thorough inspection, and address those deeper foundation concerns before they become a major headache, and a major expense. It's better to be proactive than reactive when it comes to the foundation that literally supports your life.

* Overview of Common Residential Foundation Repair Solutions


Okay, so you've noticed your floors are a little... off. Maybe a slight slope here, a noticeable dip there. Before you start blaming the cat for secret levitation experiments, it's worth considering that uneven floors are often a red flag waving wildly to alert you to potential foundation problems. And those problems, well, they can get expensive if ignored. So, what can be done? Let's take a quick tour of some common residential foundation repair solutions, keeping in mind that a professional assessment is always the best first step.

One of the most frequently used methods involves soil stabilization. Think of it like giving your foundation a firmer base. This can involve techniques like compaction grouting, where grout is injected into the soil to fill voids and increase density, or chemical grouting, which uses special polymers to bind the soil particles together. Both aim to create a more stable environment for the foundation to rest upon.

Then there are underpinning methods. These are a bit more involved and essentially involve extending the foundation deeper into the ground to reach more stable soil. One common type is pier and beam underpinning, where concrete or steel piers are installed beneath the existing foundation. Another is slab jacking, also known as mudjacking or pressure grouting, where a mixture is pumped under the slab to lift it back into place. This is often used for sunken slabs.

For bowing or leaning foundation walls, wall anchors are frequently employed. These anchors are buried in the soil away from the house and connected to the wall with steel rods. By tightening the rods, the anchors pull the wall back into its original position and provide ongoing support. Carbon fiber reinforcement is another option for strengthening walls, applying a strong, lightweight material to the interior to prevent further movement.

Finally, don't underestimate the importance of proper drainage. Water is often the enemy of foundations, so ensuring that water is directed away from the house with proper grading, gutters, and downspouts is crucial. Sometimes, adding a French drain system around the foundation perimeter can be necessary to manage excessive groundwater.

Remember, this is just a brief overview. The best solution for your uneven floors and underlying foundation issues depends entirely on the specific problems, soil conditions, and the construction of your home. Don't try to DIY a foundation repair – call in a qualified professional. They can diagnose the root cause and recommend the most effective and long-lasting solution to get those floors back to being level and your house back on solid ground.



Facebook about us:

Residential Foundation Repair Services

Strong Foundations, Strong Homes


 

Boston's Big Dig presented geotechnical challenges in an urban environment.
Precast concrete retaining wall
A typical cross-section of a slope used in two-dimensional analyzes.

Geotechnical engineering, also known as geotechnics, is the branch of civil engineering concerned with the engineering behavior of earth materials. It uses the principles of soil mechanics and rock mechanics to solve its engineering problems. It also relies on knowledge of geology, hydrology, geophysics, and other related sciences.

Geotechnical engineering has applications in military engineering, mining engineering, petroleum engineering, coastal engineering, and offshore construction. The fields of geotechnical engineering and engineering geology have overlapping knowledge areas. However, while geotechnical engineering is a specialty of civil engineering, engineering geology is a specialty of geology.

History

[edit]

Humans have historically used soil as a material for flood control, irrigation purposes, burial sites, building foundations, and construction materials for buildings. Dykes, dams, and canals dating back to at least 2000 BCE—found in parts of ancient Egypt, ancient Mesopotamia, the Fertile Crescent, and the early settlements of Mohenjo Daro and Harappa in the Indus valley—provide evidence for early activities linked to irrigation and flood control. As cities expanded, structures were erected and supported by formalized foundations. The ancient Greeks notably constructed pad footings and strip-and-raft foundations. Until the 18th century, however, no theoretical basis for soil design had been developed, and the discipline was more of an art than a science, relying on experience.[1]

Several foundation-related engineering problems, such as the Leaning Tower of Pisa, prompted scientists to begin taking a more scientific-based approach to examining the subsurface. The earliest advances occurred in the development of earth pressure theories for the construction of retaining walls. Henri Gautier, a French royal engineer, recognized the "natural slope" of different soils in 1717, an idea later known as the soil's angle of repose. Around the same time, a rudimentary soil classification system was also developed based on a material's unit weight, which is no longer considered a good indication of soil type.[1][2]

The application of the principles of mechanics to soils was documented as early as 1773 when Charles Coulomb, a physicist and engineer, developed improved methods to determine the earth pressures against military ramparts. Coulomb observed that, at failure, a distinct slip plane would form behind a sliding retaining wall and suggested that the maximum shear stress on the slip plane, for design purposes, was the sum of the soil cohesion, , and friction , where is the normal stress on the slip plane and is the friction angle of the soil. By combining Coulomb's theory with Christian Otto Mohr's 2D stress state, the theory became known as Mohr-Coulomb theory. Although it is now recognized that precise determination of cohesion is impossible because is not a fundamental soil property, the Mohr-Coulomb theory is still used in practice today.[3]

In the 19th century, Henry Darcy developed what is now known as Darcy's Law, describing the flow of fluids in a porous media. Joseph Boussinesq, a mathematician and physicist, developed theories of stress distribution in elastic solids that proved useful for estimating stresses at depth in the ground. William Rankine, an engineer and physicist, developed an alternative to Coulomb's earth pressure theory. Albert Atterberg developed the clay consistency indices that are still used today for soil classification.[1][2] In 1885, Osborne Reynolds recognized that shearing causes volumetric dilation of dense materials and contraction of loose granular materials.

Modern geotechnical engineering is said to have begun in 1925 with the publication of Erdbaumechanik by Karl von Terzaghi, a mechanical engineer and geologist. Considered by many to be the father of modern soil mechanics and geotechnical engineering, Terzaghi developed the principle of effective stress, and demonstrated that the shear strength of soil is controlled by effective stress.[4] Terzaghi also developed the framework for theories of bearing capacity of foundations, and the theory for prediction of the rate of settlement of clay layers due to consolidation.[1][3][5] Afterwards, Maurice Biot fully developed the three-dimensional soil consolidation theory, extending the one-dimensional model previously developed by Terzaghi to more general hypotheses and introducing the set of basic equations of Poroelasticity.

In his 1948 book, Donald Taylor recognized that the interlocking and dilation of densely packed particles contributed to the peak strength of the soil. Roscoe, Schofield, and Wroth, with the publication of On the Yielding of Soils in 1958, established the interrelationships between the volume change behavior (dilation, contraction, and consolidation) and shearing behavior with the theory of plasticity using critical state soil mechanics. Critical state soil mechanics is the basis for many contemporary advanced constitutive models describing the behavior of soil.[6]

In 1960, Alec Skempton carried out an extensive review of the available formulations and experimental data in the literature about the effective stress validity in soil, concrete, and rock in order to reject some of these expressions, as well as clarify what expressions were appropriate according to several working hypotheses, such as stress-strain or strength behavior, saturated or non-saturated media, and rock, concrete or soil behavior.

Roles

[edit]

Geotechnical investigation

[edit]

Geotechnical engineers investigate and determine the properties of subsurface conditions and materials. They also design corresponding earthworks and retaining structures, tunnels, and structure foundations, and may supervise and evaluate sites, which may further involve site monitoring as well as the risk assessment and mitigation of natural hazards.[7][8]

Geotechnical engineers and engineering geologists perform geotechnical investigations to obtain information on the physical properties of soil and rock underlying and adjacent to a site to design earthworks and foundations for proposed structures and for the repair of distress to earthworks and structures caused by subsurface conditions. Geotechnical investigations involve surface and subsurface exploration of a site, often including subsurface sampling and laboratory testing of retrieved soil samples. Sometimes, geophysical methods are also used to obtain data, which include measurement of seismic waves (pressure, shear, and Rayleigh waves), surface-wave methods and downhole methods, and electromagnetic surveys (magnetometer, resistivity, and ground-penetrating radar). Electrical tomography can be used to survey soil and rock properties and existing underground infrastructure in construction projects.[9]

Surface exploration can include on-foot surveys, geologic mapping, geophysical methods, and photogrammetry. Geologic mapping and interpretation of geomorphology are typically completed in consultation with a geologist or engineering geologist. Subsurface exploration usually involves in-situ testing (for example, the standard penetration test and cone penetration test). The digging of test pits and trenching (particularly for locating faults and slide planes) may also be used to learn about soil conditions at depth. Large-diameter borings are rarely used due to safety concerns and expense. Still, they are sometimes used to allow a geologist or engineer to be lowered into the borehole for direct visual and manual examination of the soil and rock stratigraphy.

Various soil samplers exist to meet the needs of different engineering projects. The standard penetration test, which uses a thick-walled split spoon sampler, is the most common way to collect disturbed samples. Piston samplers, employing a thin-walled tube, are most commonly used to collect less disturbed samples. More advanced methods, such as the Sherbrooke block sampler, are superior but expensive. Coring frozen ground provides high-quality undisturbed samples from ground conditions, such as fill, sand, moraine, and rock fracture zones.[10]

Geotechnical centrifuge modeling is another method of testing physical-scale models of geotechnical problems. The use of a centrifuge enhances the similarity of the scale model tests involving soil because soil's strength and stiffness are susceptible to the confining pressure. The centrifugal acceleration allows a researcher to obtain large (prototype-scale) stresses in small physical models.

Foundation design

[edit]

The foundation of a structure's infrastructure transmits loads from the structure to the earth. Geotechnical engineers design foundations based on the load characteristics of the structure and the properties of the soils and bedrock at the site. Generally, geotechnical engineers first estimate the magnitude and location of loads to be supported before developing an investigation plan to explore the subsurface and determine the necessary soil parameters through field and lab testing. Following this, they may begin the design of an engineering foundation. The primary considerations for a geotechnical engineer in foundation design are bearing capacity, settlement, and ground movement beneath the foundations.[11]

Earthworks

[edit]
A compactor/roller operated by U.S. Navy Seabees

Geotechnical engineers are also involved in the planning and execution of earthworks, which include ground improvement,[11] slope stabilization, and slope stability analysis.

Ground improvement

[edit]

Various geotechnical engineering methods can be used for ground improvement, including reinforcement geosynthetics such as geocells and geogrids, which disperse loads over a larger area, increasing the soil's load-bearing capacity. Through these methods, geotechnical engineers can reduce direct and long-term costs.[12]

Slope stabilization

[edit]
Simple slope slip section.

Geotechnical engineers can analyze and improve slope stability using engineering methods. Slope stability is determined by the balance of shear stress and shear strength. A previously stable slope may be initially affected by various factors, making it unstable. Nonetheless, geotechnical engineers can design and implement engineered slopes to increase stability.

Slope stability analysis
[edit]

Stability analysis is needed to design engineered slopes and estimate the risk of slope failure in natural or designed slopes by determining the conditions under which the topmost mass of soil will slip relative to the base of soil and lead to slope failure.[13] If the interface between the mass and the base of a slope has a complex geometry, slope stability analysis is difficult and numerical solution methods are required. Typically, the interface's exact geometry is unknown, and a simplified interface geometry is assumed. Finite slopes require three-dimensional models to be analyzed, so most slopes are analyzed assuming that they are infinitely wide and can be represented by two-dimensional models.

Sub-disciplines

[edit]

Geosynthetics

[edit]
A collage of geosynthetic products.

Geosynthetics are a type of plastic polymer products used in geotechnical engineering that improve engineering performance while reducing costs. This includes geotextiles, geogrids, geomembranes, geocells, and geocomposites. The synthetic nature of the products make them suitable for use in the ground where high levels of durability are required. Their main functions include drainage, filtration, reinforcement, separation, and containment.

Geosynthetics are available in a wide range of forms and materials, each to suit a slightly different end-use, although they are frequently used together. Some reinforcement geosynthetics, such as geogrids and more recently, cellular confinement systems, have shown to improve bearing capacity, modulus factors and soil stiffness and strength.[14] These products have a wide range of applications and are currently used in many civil and geotechnical engineering applications including roads, airfields, railroads, embankments, piled embankments, retaining structures, reservoirs, canals, dams, landfills, bank protection and coastal engineering.[15]

Offshore

[edit]
Platforms offshore Mexico.

Offshore (or marine) geotechnical engineering is concerned with foundation design for human-made structures in the sea, away from the coastline (in opposition to onshore or nearshore engineering). Oil platforms, artificial islands and submarine pipelines are examples of such structures.[16]

There are a number of significant differences between onshore and offshore geotechnical engineering.[16][17] Notably, site investigation and ground improvement on the seabed are more expensive; the offshore structures are exposed to a wider range of geohazards; and the environmental and financial consequences are higher in case of failure. Offshore structures are exposed to various environmental loads, notably wind, waves and currents. These phenomena may affect the integrity or the serviceability of the structure and its foundation during its operational lifespan and need to be taken into account in offshore design.

In subsea geotechnical engineering, seabed materials are considered a two-phase material composed of rock or mineral particles and water.[18][19] Structures may be fixed in place in the seabed—as is the case for piers, jetties and fixed-bottom wind turbines—or may comprise a floating structure that remains roughly fixed relative to its geotechnical anchor point. Undersea mooring of human-engineered floating structures include a large number of offshore oil and gas platforms and, since 2008, a few floating wind turbines. Two common types of engineered design for anchoring floating structures include tension-leg and catenary loose mooring systems.[20]

Observational method

[edit]

First proposed by Karl Terzaghi and later discussed in a paper by Ralph B. Peck, the observational method is a managed process of construction control, monitoring, and review, which enables modifications to be incorporated during and after construction. The method aims to achieve a greater overall economy without compromising safety by creating designs based on the most probable conditions rather than the most unfavorable.[21] Using the observational method, gaps in available information are filled by measurements and investigation, which aid in assessing the behavior of the structure during construction, which in turn can be modified per the findings. The method was described by Peck as "learn-as-you-go".[22]

The observational method may be described as follows:[22]

  1. General exploration sufficient to establish the rough nature, pattern, and properties of deposits.
  2. Assessment of the most probable conditions and the most unfavorable conceivable deviations.
  3. Creating the design based on a working hypothesis of behavior anticipated under the most probable conditions.
  4. Selection of quantities to be observed as construction proceeds and calculating their anticipated values based on the working hypothesis under the most unfavorable conditions.
  5. Selection, in advance, of a course of action or design modification for every foreseeable significant deviation of the observational findings from those predicted.
  6. Measurement of quantities and evaluation of actual conditions.
  7. Design modification per actual conditions

The observational method is suitable for construction that has already begun when an unexpected development occurs or when a failure or accident looms or has already happened. It is unsuitable for projects whose design cannot be altered during construction.[22]

See also

[edit]
  • Civil engineering
  • Deep Foundations Institute
  • Earthquake engineering
  • Earth structure
  • Effective stress
  • Engineering geology
  • Geological Engineering
  • Geoprofessions
  • Hydrogeology
  • International Society for Soil Mechanics and Geotechnical Engineering
  • Karl von Terzaghi
  • Land reclamation
  • Landfill
  • Mechanically stabilized earth
  • Offshore geotechnical engineering
  • Rock mass classifications
  • Sediment control
  • Seismology
  • Soil mechanics
  • Soil physics
  • Soil science

 

Notes

[edit]
  1. ^ a b c d Das, Braja (2006). Principles of Geotechnical Engineering. Thomson Learning.
  2. ^ a b Budhu, Muni (2007). Soil Mechanics and Foundations. John Wiley & Sons, Inc. ISBN 978-0-471-43117-6.
  3. ^ a b Disturbed soil properties and geotechnical design, Schofield, Andrew N., Thomas Telford, 2006. ISBN 0-7277-2982-9
  4. ^ Guerriero V., Mazzoli S. (2021). "Theory of Effective Stress in Soil and Rock and Implications for Fracturing Processes: A Review". Geosciences. 11 (3): 119. Bibcode:2021Geosc..11..119G. doi:10.3390/geosciences11030119.
  5. ^ Soil Mechanics, Lambe, T.William and Whitman, Robert V., Massachusetts Institute of Technology, John Wiley & Sons., 1969. ISBN 0-471-51192-7
  6. ^ Soil Behavior and Critical State Soil Mechanics, Wood, David Muir, Cambridge University Press, 1990. ISBN 0-521-33782-8
  7. ^ Terzaghi, K., Peck, R.B. and Mesri, G. (1996), Soil Mechanics in Engineering Practice 3rd Ed., John Wiley & Sons, Inc. ISBN 0-471-08658-4
  8. ^ Holtz, R. and Kovacs, W. (1981), An Introduction to Geotechnical Engineering, Prentice-Hall, Inc. ISBN 0-13-484394-0
  9. ^ Deep Scan Tech (2023): Deep Scan Tech uncovers hidden structures at the site of Denmark's tallest building.
  10. ^ "Geofrost Coring". GEOFROST. Retrieved 20 November 2020.
  11. ^ a b Han, Jie (2015). Principles and Practice of Ground Improvement. Wiley. ISBN 9781118421307.
  12. ^ RAJU, V. R. (2010). Ground Improvement Technologies and Case Histories. Singapore: Research Publishing Services. p. 809. ISBN 978-981-08-3124-0. Ground Improvement – Principles And Applications In Asia.
  13. ^ Pariseau, William G. (2011). Design analysis in rock mechanics. CRC Press.
  14. ^ Hegde, A.M. and Palsule P.S. (2020), Performance of Geosynthetics Reinforced Subgrade Subjected to Repeated Vehicle Loads: Experimental and Numerical Studies. Front. Built Environ. 6:15. https://www.frontiersin.org/articles/10.3389/fbuil.2020.00015/full.
  15. ^ Koerner, Robert M. (2012). Designing with Geosynthetics (6th Edition, Vol. 1 ed.). Xlibris. ISBN 9781462882892.
  16. ^ a b Dean, E.T.R. (2010). Offshore Geotechnical Engineering – Principles and Practice. Thomas Telford, Reston, VA, 520 p.
  17. ^ Randolph, M. and Gourvenec, S., 2011. Offshore geotechnical engineering. Spon Press, N.Y., 550 p.
  18. ^ Das, B.M., 2010. Principles of geotechnical engineering. Cengage Learning, Stamford, 666 p.
  19. ^ Atkinson, J., 2007. The mechanics of soils and foundations. Taylor & Francis, N.Y., 442 p.
  20. ^ Floating Offshore Wind Turbines: Responses in a Sea state – Pareto Optimal Designs and Economic Assessment, P. Sclavounos et al., October 2007.
  21. ^ Nicholson, D, Tse, C and Penny, C. (1999). The Observational Method in ground engineering – principles and applications. Report 185, CIRIA, London.
  22. ^ a b c Peck, R.B (1969). Advantages and limitations of the observational method in applied soil mechanics, Geotechnique, 19, No. 1, pp. 171-187.

References

[edit]
  • Bates and Jackson, 1980, Glossary of Geology: American Geological Institute.
  • Krynine and Judd, 1957, Principles of Engineering Geology and Geotechnics: McGraw-Hill, New York.
  • Ventura, Pierfranco, 2019, Fondazioni, Volume 1, Modellazioni statiche e sismiche, Hoepli, Milano
[edit]
  • Worldwide Geotechnical Literature Database

 

 

Soil with broken rock fragments overlying bedrock, Sandside Bay, Caithness, Scotland
Soil profile with bedrock labeled R

In geology, bedrock is solid rock that lies under loose material (regolith) within the crust of Earth or another terrestrial planet.

Definition

[edit]

Bedrock is the solid rock that underlies looser surface material.[1] An exposed portion of bedrock is often called an outcrop.[2] The various kinds of broken and weathered rock material, such as soil and subsoil, that may overlie the bedrock are known as regolith.[3][4]

Engineering geology

[edit]

The surface of the bedrock beneath the soil cover (regolith) is also known as rockhead in engineering geology,[5][6] and its identification by digging, drilling or geophysical methods is an important task in most civil engineering projects. Superficial deposits can be very thick, such that the bedrock lies hundreds of meters below the surface.[7]

Weathering of bedrock

[edit]

Exposed bedrock experiences weathering, which may be physical or chemical, and which alters the structure of the rock to leave it susceptible to erosion. Bedrock may also experience subsurface weathering at its upper boundary, forming saprolite.[8]

Geologic map

[edit]

A geologic map of an area will usually show the distribution of differing bedrock types, rock that would be exposed at the surface if all soil or other superficial deposits were removed. Where superficial deposits are so thick that the underlying bedrock cannot be reliably mapped, the superficial deposits will be mapped instead (for example, as alluvium).[9]

See also

[edit]
  • icon Geology portal
  • icon Geography portal
  • Maps portal
  • Minerals portal

References

[edit]
  1. ^ Jackson, Julia A., ed. (1997). "Bedrock". Glossary of geology (4th ed.). Alexandria, Virginia: American Geological Institute. ISBN 0922152349.
  2. ^ Jackson 1997, "Outcrop".
  3. ^ Jackson 1997, "Regolith".
  4. ^ Allaby, Michael (2013). "Regolith". A dictionary of geology and earth sciences (4th ed.). Oxford: Oxford University Press. ISBN 9780199653065.
  5. ^ Price, David George (2009). "The Basis of Engineering Geology". In de Freitas, Michael H. (ed.). Engineering Geology: Principles and Practice. Springer. p. 16. ISBN 978-3540292494.
  6. ^ McLean, A.C.; Gribble, C.D. (9 September 1985). Geology for Civil Engineers (Second ed.). CRC Press. p. 113. ISBN 978-0419160007.
  7. ^ Swinford, E. Mac (2004). "What the glaciers left behind  – the drift-thickness map of Ohio" (PDF). Ohio Geology. No. 1. Ohio Department of Natural Resources, Division of Geological Survey. pp. 1, 3–5. Archived (PDF) from the original on 2 October 2012. Retrieved 12 September 2012.
  8. ^ Lidmar-Bergström, Karna; Olsson, Siv; Olvmo, Mats (January 1997). "Palaeosurfaces and associated saprolites in southern Sweden". Geological Society, London, Special Publications. 120 (1): 95–124. Bibcode:1997GSLSP.120...95L. doi:10.1144/GSL.SP.1997.120.01.07. S2CID 129229906. Retrieved 21 April 2010.
  9. ^ "Digital Geology – Bedrock geology theme". British Geological Survey. Archived from the original on 13 December 2009. Retrieved 12 November 2009.

Further reading

[edit]
  • Rafferty, John P. "Bedrock". Encyclopædia Britannica. Archived from the original on 29 July 2019. Retrieved 1 April 2019.
  • Harris, Clay (2013). "Bedrock". In Lerner, K. Lee; Lerner, Brenda Wilmoth (eds.). The Gale Encyclopedia of Science. Vol. 1 (5th ed.). Farmington Hills, MI: Cengage Gale. pp. 515–516.
[edit]
  • Media related to Bedrock at Wikimedia Commons

 

A disaster inspector at work in the United States assessing tornado damage to a house

A home inspection is a limited, non-invasive examination of the condition of a home, often in connection with the sale of that home. Home inspections are usually conducted by a home inspector who has the training and certifications to perform such inspections. The inspector prepares and delivers to the client a written report of findings. In general, home inspectors recommend that potential purchasers join them during their onsite visits to provide context for the comments in their written reports. The client then uses the knowledge gained to make informed decisions about their pending real estate purchase. The home inspector describes the condition of the home at the time of inspection but does not guarantee future condition, efficiency, or life expectancy of systems or components.

Sometimes confused with a real estate appraiser, a home inspector determines the condition of a structure, whereas an appraiser determines the value of a property. In the United States, although not all states or municipalities regulate home inspectors, there are various professional associations for home inspectors that provide education, training, and networking opportunities. A professional home inspection is an examination of the current condition of a house. It is not an inspection to verify compliance with appropriate codes; building inspection is a term often used for building code compliance inspections in the United States. A similar but more complicated inspection of commercial buildings is a property condition assessment. Home inspections identify problems but building diagnostics identifies solutions to the found problems and their predicted outcomes. A property inspection is a detailed visual documentation of a property's structures, design, and fixtures. Property Inspection provides a buyer, renter, or other information consumer with valuable insight into the property's conditions prior to purchase. House-hunting can be a difficult task especially when you can't seem to find one that you like. The best way to get things done is to ensure that there is a property inspection before buying a property.

North America

[edit]

In Canada and the United States, a contract to purchase a house may include a contingency that the contract is not valid until the buyer, through a home inspector or other agents, has had an opportunity to verify the condition of the property. In many states and provinces, home inspectors are required to be licensed, but in some states, the profession is not regulated. Typical requirements for obtaining a license are the completion of an approved training course and/or a successful examination by the state's licensing board. Several states and provinces also require inspectors to periodically obtain continuing education credits in order to renew their licenses.[citation needed] Unless specifically advertised as part of the home inspection, items often needed to satisfy mortgage or tile requirements such as termite ("pest") inspections must be obtained separately from licensed and regulated companies.

In May 2001, Massachusetts became the first state to recognize the potential conflict of interest when real estate agents selling a home also refer or recommend the home inspector to the potential buyer.[citation needed] As a result, the real estate licensing law in Massachusetts was amended[1][non-primary source needed] to prohibit listing real estate agents from directly referring home inspectors. The law also prohibits listing agents from giving out a "short" name list of inspectors. The only list that can be given out is the complete list of all licensed home inspectors in the state.

In September 2018, the California state legislature passed Senate Bill 721 (SB 721),[2] which requires buildings with specific conditions, such as having exterior elevated structures, to undergo inspections by licensed professionals. These inspections must be conducted by qualified individuals, such as structural engineering firms,[3] and a detailed report must be issued. Failure to comply with these requirements can result in penalties for property owners.

Ancillary services such as inspections for wood destroying insects, radon testing, septic tank inspections, water quality, mold, (or excessive moisture which may lead to mold), and private well inspections are sometimes part of home inspector's services if duly qualified.

In many provinces and states, home inspection standards are developed and enforced by professional associations, such as, worldwide, the International Association of Certified Home Inspectors (InterNACHI); in the United States, the American Society of Home Inspectors (ASHI), and the National Association of Home Inspectors (NAHI)(No Longer active 10/2017); and, in Canada, the Canadian Association of Home and Property Inspectors (CAHPI), the Professional Home & Property Inspectors of Canada (PHPIC) and the National Home Inspector Certification Council (NHICC).

Currently, more than thirty U.S. states regulate the home inspection industry in some form.

Canada saw a deviation from this model when in 2016 an association-independent home inspection standard was completed. This was developed in partnership with industry professionals, consumer advocates, and technical experts, by the Canadian Standards Association. The CAN/CSA A770-16 Home Inspection Standard was funded by three provincial governments with the intent to be the unifying standard for home inspections carried out within Canada. It is the only home inspection standard that has been endorsed by the Standards Council of Canada.

In Canada, there are provincial associations which focus on provincial differences that affect their members and consumers. Ontario has the largest population of home inspectors which was estimated in 2013 as part of a government survey at being around 1500.[4]

To date, Ontario Association of Certified Home Inspectors is the only association which has mandated that its members migrate to the CAN/CSA A770-16 Home Inspection Standard, with a date of migration set as February 28, 2020. Other national and provincial associations have set it as an option to be added to other supported standards.

In Canada, only Alberta and British Columbia have implemented government regulation for the home inspection profession. The province of Ontario has proceeded through the process, with the passage of regulatory procedure culminating in the Home Inspection Act, 2017 to license Home Inspectors in that province. It has received royal assent but is still awaiting the development of regulations and proclamation to become law.

In Ontario, there are two provincial Associations, OAHI (the Ontario Association of Home Inspectors) and OntarioACHI (the Ontario Association of Certified Home Inspectors). Both claim to be the largest association in the province. OAHI, formed by a private member's Bill in the Provincial Assembly, has the right in law to award the R.H.I. (Registered Home Inspector) designation to anyone on its membership register. The R.H.I. designation, however, is a reserved designation, overseen by OAHI under the Ontario Association of Home Inspectors Act, 1994. This Act allows OAHI to award members who have passed and maintained strict criteria set out in their membership bylaws and who operate within Ontario. Similarly, OntarioACHI requires equally high standards for the award of their certification, the Canadian-Certified Home Inspector (CCHI) designation. To confuse things, Canadian Association of Home and Property Inspectors (CAHPI) own the copyright to the terms Registered Home Inspector and RHI. Outside of Ontario, OAHI Members cannot use the terms without being qualified by CAHPI.

The proclamation of the Home Inspection Act, 2017, requires the dissolution of the Ontario Association of Home Inspectors Act, 1994, which will remove the right to title in Ontario of the RHI at the same time removing consumer confusion about the criteria for its award across Canada.

United Kingdom

[edit]

A home inspector in the United Kingdom (or more precisely in England and Wales), was an inspector certified to carry out the Home Condition Reports that it was originally anticipated would be included in the Home Information Pack.

Home inspectors were required to complete the ABBE Diploma in Home Inspection to show they met the standards set out for NVQ/VRQ competency-based assessment (Level 4). The government had suggested that between 7,500 and 8,000 qualified and licensed home inspectors would be needed to meet the annual demand of nearly 2,000,000 Home Information Packs. In the event, many more than this entered training, resulting in a massive oversupply of potential inspectors.

With the cancellation of Home Information Packs by the coalition Government in 2010, the role of the home inspector in the United Kingdom became permanently redundant.

Inspections of the home, as part of a real estate transaction, are still generally carried out in the UK in the same manner as they had been for years before the Home Condition Report process. Home Inspections are more detailed than those currently offered in North America. They are generally performed by a chartered member of the Royal Institution of Chartered Surveyors.

India

[edit]

The concept of home inspection in India is in its infancy. There has been a proliferation of companies that have started offering the service, predominantly in Tier-1 cities such as Bangalore, Chennai, Kolkata, Pune, Mumbai, etc. To help bring about a broader understanding among the general public and market the concept, a few home inspection companies have come together and formed the Home Inspection Association of India.[5]

After RERA came into effect, the efficacy and potency of home inspection companies has increased tremendously. The majority of homeowners and potential home buyers do not know what home inspection is or that such a service exists.

The way that home inspection is different in India[6] than in North America or United Kingdom is the lack of a government authorised licensing authority. Apart from the fact that houses in India are predominantly built with kiln baked bricks, concrete blocks or even just concrete walls (predominantly in high rise apartments) this means the tests conducted are vastly different. Most home inspection companies conduct non-destructive testing of the property, in some cases based on customer requirement, tests that require core-cutting are also performed.

The majority of homeowners are not aware of the concept of home inspection in India. The other issue is that the balance of power is highly tilted toward the builder; this means the home buyers are stepping on their proverbial toes, because in most cases, the home is the single most expensive purchase in their lifetime, and the homeowners do not want to come across as antagonising the builders.

Home inspection standards and exclusions

[edit]

Some home inspectors and home inspection regulatory bodies maintain various standards related to the trade. Some inspection companies offer 90-day limited warranties to protect clients from unexpected mechanical and structural failures; otherwise, inspectors are not responsible for future failures.[a] A general inspection standard for buildings other than residential homes can be found at the National Academy of Building Inspection Engineers.

Many inspectors may also offer ancillary services such as inspecting pools, sprinkler systems, checking radon levels, and inspecting for wood-destroying organisms. The CAN/CSA-A770-16 standard allows this (in-fact it demands swimming pool safety inspections as a requirement) and also mandates that the inspector be properly qualified to offer these. Other standards are silent on this.

Types of inspections

[edit]

Home buyers and home sellers inspections

[edit]

Home inspections are often used by prospective purchasers of the house in question, in order to evaluate the condition of the house prior to the purchase. Similarly, a home seller can elect to have an inspection on their property and report the results of that inspection to the prospective buyer.

Foreclosure inspection

[edit]

Recently foreclosed properties may require home inspections.

Four point inspection

[edit]

An inspection of the house's roof, HVAC, and electrical and plumbing systems is often known as a "four-point inspection", which insurance companies may require as a condition for homeowner's insurance.

Disaster inspection

[edit]

Home inspections may occur after a disaster has struck the house. A disaster examination, unlike a standard house inspection, concentrates on damage rather than the quality of everything visible and accessible from the roof to the basement.

Inspectors go to people's homes or work places who have asked for FEMA disaster aid.

Section 8 inspection

[edit]

In the United States, the federal and state governments provide housing subsidies to low-income people through the Section 8 program. The government expects that the housing will be "fit for habitation" so a Section 8 inspection identifies compliance with HUD's Housing Quality Standards (HQS).

Pre-delivery inspection

[edit]

An inspection may occur in a purchased house prior to the deal's closure, in what is known as a "pre-delivery" inspection.

Structural inspection

[edit]

The house's structure may also be inspected. When performing a structural inspection, the inspector will look for a variety of distress indications that may result in repair or further evaluation recommendations.

In the state of New York, only a licensed professional engineer or a registered architect can render professional opinions as to the sufficiency structural elements of a home or building.[11] Municipal building officials can also make this determination, but they are not performing home inspections at the time they are rendering this opinion. Municipal officials are also not required to look out for the best interest of the buyer. Some other states may have similar provisions in their licensing laws. Someone who is not a licensed professional engineer or a registered architect can describe the condition of structural elements (cracked framing, sagged beams/roof, severe rot or insect damage, etc.), but are not permitted to render a professional opinion as to how the condition has affected the structural soundness of the building.

Various systems of the house, including plumbing and HVAC, may also be inspected.[12]

Thermal imaging Inspection

[edit]

A thermal imaging inspection using an infrared camera can provide inspectors with information on home energy loss, heat gain/loss through the exterior walls and roof, moisture leaks, and improper electrical system conditions that are typically not visible to the naked eye. Thermal imaging is not considered part of a General Home Inspection because it exceeds the scope of inspection Standards of Practice.

Pool and spa inspection

[edit]

Inspection of swimming pools and spas is not considered part of a General Home Inspection because their inspection exceeds the scope of inspection Standards of Practice. However, some home inspectors are also certified to inspect pools and spas and offer this as an ancillary service.[13]

Tree health inspection

[edit]

Inspection of trees on the property is not considered part of a General Home Inspection because their inspection exceeds the scope of inspection Standards of Practice. This type of inspection is typically performed by a Certified Arborist and assesses the safety and condition of the trees on a property before the sales agreement is executed.[14]

Property inspection report for immigration

[edit]

The UKVI (United Kingdom Visa and Immigration) issued guidance on the necessity of ensuring that properties must meet guidelines so that visa applicants can be housed in properties which meet environmental and health standards. Part X of the Housing Act 1985 provides the legislative grounding for the reports - primarily to ensure that a property is not currently overcrowded, that the inclusion of further individuals as a result of successful visa applications - whether spouse visa, dependent visa, indefinite leave to remain or visitor visa, can house the applicants without the property becoming overcrowded. Reports are typically prepared by environmental assessors or qualified solicitors in accordance with HHSRS (Housing Health and Safety Rating Scheme). Property inspection reports are typically standard and breakdown the legal requirements.

Pre-Listing Home Inspection

[edit]

A pre-listing inspection focuses on all major systems and components of the house including HVAC, electrical, plumbing, siding, doors, windows, roof and structure. It's a full home inspection for the seller to better understand the condition of their home prior to the buyer's own inspection.

See also

[edit]
  • List of real estate topics
  • Real estate appraisal

Notes

[edit]
  1. ^ A general list of exclusions include but are not limited to: code or zoning violations, permit research, property measurements or surveys, boundaries, easements or right of way, conditions of title, proximity to environmental hazards, noise interference, soil or geological conditions, well water systems or water quality, underground sewer lines, waste disposal systems, buried piping, cisterns, underground water tanks and sprinkler systems. A complete list of standards and procedures for home inspections can be found at NAHI,[7] ASHI,[8] InterNACHI,[9] or IHINA[10] websites.

References

[edit]
  1. ^ "General Laws: CHAPTER 112, Section 87YY1/2". Malegislature.gov. Archived from the original on 2012-04-27. Retrieved 2012-05-29.
  2. ^ "SB 721- CHAPTERED". leginfo.legislature.ca.gov. Retrieved 2025-02-13.
  3. ^ "SB721 Inspection California | DRBalcony". 2024-09-12. Retrieved 2025-02-13.
  4. ^ http://www.ontariocanada.com/registry/showAttachment.do?postingId=14645&attachmentId=22811 Archived 2017-06-27 at the Wayback Machine [bare URL PDF]
  5. ^ "Home Inspection Association of India". Archived from the original on 2019-09-07. Retrieved 2019-08-30.
  6. ^ "End-to-End Expert Property Inspection Services". Archived from the original on 2022-08-26. Retrieved 2022-08-26.
  7. ^ "NAHI". Archived from the original on 1998-01-29. Retrieved 2011-02-05.
  8. ^ "ASHI". Archived from the original on 2008-05-09. Retrieved 2009-12-11.
  9. ^ "InterNACHI". Archived from the original on 2010-08-30. Retrieved 2010-08-27.
  10. ^ "IHINA". Archived from the original on 2012-01-07. Retrieved 2012-02-09.
  11. ^ "NYS Professional Engineering & Land Surveying:Laws, Rules & Regulations:Article 145". www.op.nysed.gov. Archived from the original on 2018-02-27. Retrieved 2018-04-04.
  12. ^ "Material Defects & Useful Remaining Life of Home Systems". Archived from the original on 2019-02-02. Retrieved 2019-02-01.
  13. ^ "InterNACHI's Standards of Practice for Inspecting Pools & Spas - InterNACHI". www.nachi.org. Archived from the original on 2019-03-21. Retrieved 2019-04-09.
  14. ^ "Property Inspection Report | From £80". Property Inspection Report - Immigration & Visa. Archived from the original on 2022-05-19. Retrieved 2022-05-12.

 

Photo
Photo
Photo
Photo

Reviews for


Jeffery James

(5)

Very happy with my experience. They were prompt and followed through, and very helpful in fixing the crack in my foundation.

Sarah McNeily

(5)

USS was excellent. They are honest, straightforward, trustworthy, and conscientious. They thoughtfully removed the flowers and flower bulbs to dig where they needed in the yard, replanted said flowers and spread the extra dirt to fill in an area of the yard. We've had other services from different companies and our yard was really a mess after. They kept the job site meticulously clean. The crew was on time and friendly. I'd recommend them any day! Thanks to Jessie and crew.

Jim de Leon

(5)

It was a pleasure to work with Rick and his crew. From the beginning, Rick listened to my concerns and what I wished to accomplish. Out of the 6 contractors that quoted the project, Rick seemed the MOST willing to accommodate my wishes. His pricing was definitely more than fair as well. I had 10 push piers installed to stabilize and lift an addition of my house. The project commenced at the date that Rick had disclosed initially and it was completed within the same time period expected (based on Rick's original assessment). The crew was well informed, courteous, and hard working. They were not loud (even while equipment was being utilized) and were well spoken. My neighbors were very impressed on how polite they were when they entered / exited my property (saying hello or good morning each day when they crossed paths). You can tell they care about the customer concerns. They ensured that the property would be put back as clean as possible by placing MANY sheets of plywood down prior to excavating. They compacted the dirt back in the holes extremely well to avoid large stock piles of soils. All the while, the main office was calling me to discuss updates and expectations of completion. They provided waivers of lien, certificates of insurance, properly acquired permits, and JULIE locates. From a construction background, I can tell you that I did not see any flaws in the way they operated and this an extremely professional company. The pictures attached show the push piers added to the foundation (pictures 1, 2 & 3), the amount of excavation (picture 4), and the restoration after dirt was placed back in the pits and compacted (pictures 5, 6 & 7). Please notice that they also sealed two large cracks and steel plated these cracks from expanding further (which you can see under my sliding glass door). I, as well as my wife, are extremely happy that we chose United Structural Systems for our contractor. I would happily tell any of my friends and family to use this contractor should the opportunity arise!

Chris Abplanalp

(5)

USS did an amazing job on my underpinning on my house, they were also very courteous to the proximity of my property line next to my neighbor. They kept things in order with all the dirt/mud they had to excavate. They were done exactly in the timeframe they indicated, and the contract was very details oriented with drawings of what would be done. Only thing that would have been nice, is they left my concrete a little muddy with boot prints but again, all-in-all a great job

Dave Kari

(5)

What a fantastic experience! Owner Rick Thomas is a trustworthy professional. Nick and the crew are hard working, knowledgeable and experienced. I interviewed every company in the area, big and small. A homeowner never wants to hear that they have foundation issues. Out of every company, I trusted USS the most, and it paid off in the end. Highly recommend.

View GBP