standings
About:
No description has been provided for this set
Parquet Usage
Examples assume you have run the view alias first.- Alias a View
-
CREATE VIEW v_standings AS ( SELECT * FROM read_parquet( 'https://f004.backblazeb2.com/file/sprocket-artifacts/public/data/standings.parquet' ) );
- Select Everything
-
SELECT * FROM v_standings;
CSV Usage
To link a CSV to your Google sheet
=importData("https://f004.backblazeb2.com/file/sprocket-artifacts/public/data/standings.csv")
JSON Usage
- Javascript
-
const standings = await fetch("https://f004.backblazeb2.com/file/sprocket-artifacts/public/data/standings.json").then(r => r.json())
- Python
-
import requests standings = requests.get("https://f004.backblazeb2.com/file/sprocket-artifacts/public/data/standings.json").json()
- C#
-
using (var client = new HttpClient()) { var json = await client.GetStringAsync("https://f004.backblazeb2.com/file/sprocket-artifacts/public/data/standings.json"); var standings = JObject.Parse(json); }
- Ruby
-
require 'net/http' require 'json' uri = URI.parse("https://f004.backblazeb2.com/file/sprocket-artifacts/public/data/standings.json") response = Net::HTTP.get_response(uri) standings = JSON.parse(response.body)
- R
-
library(jsonlite) standings <- fromJSON("https://f004.backblazeb2.com/file/sprocket-artifacts/public/data/standings.json")
- curl
-
curl https://f004.backblazeb2.com/file/sprocket-artifacts/public/data/standings.json | jq
At a glance:
Table Schema:
column_name | column_type | null | key | default | extra |
---|---|---|---|---|---|
as_of | TIMESTAMP WITH TIME ZONE | YES | None | None | None |
ranking | BIGINT | YES | None | None | None |
name | VARCHAR | YES | None | None | None |
division_name | VARCHAR | YES | None | None | None |
conference | VARCHAR | YES | None | None | None |
team_wins | DECIMAL(3,0) | YES | None | None | None |
team_losses | DECIMAL(3,0) | YES | None | None | None |
league | VARCHAR | YES | None | None | None |
mode | VARCHAR | YES | None | None | None |
season | VARCHAR | YES | None | None | None |
Sample Data:
as_of | ranking | name | division_name | conference | team_wins | team_losses | league | mode | season |
---|---|---|---|---|---|---|---|---|---|
2025-04-14 22:03:39.918795+00:00 | 1 | Tyrants | Arctic | BLUE | 17 | 8 | Academy League | Doubles | Season 14 |
2025-04-14 22:03:39.918795+00:00 | 2 | Puffins | Arctic | BLUE | 15 | 10 | Academy League | Doubles | Season 14 |
2025-04-14 22:03:39.918795+00:00 | 3 | Sabres | Arctic | BLUE | 14 | 11 | Academy League | Doubles | Season 14 |
2025-04-14 22:03:39.918795+00:00 | 4 | Foxes | Arctic | BLUE | 13 | 12 | Academy League | Doubles | Season 14 |
2025-04-14 22:03:39.918795+00:00 | 1 | Foxes | Arctic | BLUE | 30 | 20 | Academy League | Doubles | Season 15 |
Table Summary:
column_name | column_type | min | max | approx_unique | avg | std | q25 | q50 | q75 | count | null_percentage |
---|---|---|---|---|---|---|---|---|---|---|---|
as_of | TIMESTAMP WITH TIME ZONE | 2025-04-14 22:03:39.918795+00 | 2025-04-14 22:03:39.918795+00 | 1 | None | None | None | None | None | 10700 | 0.0% |
ranking | BIGINT | 1 | 32 | 32 | 6.6687850467289715 | 7.128008351347835 | 2 | 4 | 9 | 10700 | 0.0% |
name | VARCHAR | Aviators | Wolves | 32 | None | None | None | None | None | 10700 | 0.0% |
division_name | VARCHAR | Arctic | Volcanic | 8 | None | None | None | None | None | 10700 | 50.0% |
conference | VARCHAR | BLUE | ORANGE | 2 | None | None | None | None | None | 10700 | 50.0% |
team_wins | DECIMAL(3,0) | 0 | 257 | 197 | 41.89308411214953 | 42.887844448534075 | 18 | 27 | 50 | 10700 | 0.0% |
team_losses | DECIMAL(3,0) | 1 | 264 | 197 | 41.89308411214953 | 42.866882908238686 | 18 | 27 | 49 | 10700 | 0.0% |
league | VARCHAR | Academy League | Premier League | 5 | None | None | None | None | None | 10700 | 21.27% |
mode | VARCHAR | Doubles | Standard | 2 | None | None | None | None | None | 10700 | 34.17% |
season | VARCHAR | Season 14 | Season 18 | 6 | None | None | None | None | None | 10700 | 0.0% |