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Abstract— Recent innovation in highly automated driving in
industrial and scientific domains has created a growing demand
for logical description of statistically meaningful real-world
motion data. On one hand this data supports learning-based
probabilistic methods in software development while on the
other it allows validation and testing.

The AUTOMATUM DATA dataset is a new dataset which is
now available at automatum-data.com, and was generated
initially using 12 characteristic highway-like scenes from 30
hours of drone videos. The processing pipeline for determining
the object trajectories was validated with reference vehicles,
where the relative speed error was less than 0.2 percent. To
generate the dataset described in this study, the objects from the
drone videos were first identified and classified. The detected
objects were then linked to their coordinate system results to
produce valid object trajectories. The presented dataset is freely
available for future research and development-based endeavors
(Creative Commons license model CC BY-ND).

I. INTRODUCTION

The recent technological advances in functional features
of highly automated driving is transforming the fundamen-
tal paradigm of automotive software development from a
fully deterministic system to having a more probabilistic
approach. The probabilistic approach allows more precise
prediction of the probabilities of occurrence of other road
users, their behavior, and allows smoother handling of
complex maneuvers. The validation and development of
such probability-based functions require a significant amount
of representative observation-based data.The quantity and
variance of these probability-based functions are dependant
on extremely elaborate and cost-intensive test campaigns.

Safeguarding these complex vehicle functions requires
testing efforts to be conducted in virtual format [41], [1],
[39]. Cloud approaches support the scaling and scope of
virtual safeguarding. In context of the release of safety-critical
software, situation description validation in the real world
is pertinent. Effective utilization of real driving behavior for
virtual test drives is pertinent for successful commercialization
and launch of the these highly automated driving functions.

Currently the various methods being used to generate the
reference data include: test vehicles with highly accurate
sensors, permanently installed measuring stations or aerial
recordings acquired by drones providing bird’s-eye view (top
view). This study reports reference data generation using
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drones, as it has numerous advantages over the other methods
in context of quality-based criteria.

The object-related motion of traffic can be derived from
top-view images recorded by drones based on the quality
criteria which includes: effective representation of natural
behavior; precise description of scenes and boundary con-
ditions; accurate dynamic object description; efficient data
generation in highly variant traffic situations [5]. In this study,
we developed two additional criteria which aim to improve
the existing uncertainty of accuracy of the world coordinate
system, and improve the static world representation of the
scene.

With this publication, the first reference dataset of
AUTOMATUM DATA has been presented, which was based
on a wide array of top-view drone videos captured in
highway-like traffic situations. In this context, the processing
tool chain was designed in such a way that a continuous
optimizations could be applied to all drone data recorded
up to that point. Thus, new findings in data processing can
potentially retroactively update the database. In this process,
the pipeline of data processing was also used to validate
the trajectory calculation in the world coordinate system
by comparing the extracted object trajectories against the
reference measurement system (inertial measurement unit)
of the test vehicles. This study presents the current state
of development of the tool chain simultaneously providing
access to the most current fully-automated processed data. The
available data consist of 12 characteristic highway-like scenes
from 30 hours of drone videos which will be freely available
to the scientific community and for potential commercial
applications. Therefore, the dataset presented in this study
is being published under the Creative Commons license CC
BY-ND.

II. PREVIOUS WORK AND STATE OF THE ART

An increasing number of deterministic, rule-based vehicle
functions (typical of SAE Level 1 and 2) are being augmented
by probabilistic state models [7], [8], [9]. As the comprehen-
sive understanding of the inner representation of the neural
networks increases [10], more driving-related tasks may be
successfully performed using the learned models.

Recent data generation approaches are based on a variety of
methods which involve use of experimental vehicles equipped
with high-accuracy sensors such as radar, lidar, and 360◦

cameras [17], [14], [16]. These experimental vehicles record
the video from a driver’s perspective, capturing all vehicular



environmental parameters accurately [37], [15]. However,
in this case the biggest problem is overshadowing of the
road users by other vehicles, making them inconspicuous to
the experimental vehicle driver [19]. Also, the test vehicles
equipped with sensors may incite a change in behavior of
the drivers involved, which remains unaccounted for in these
types of studies [2], [35].

Sensors permanently installed in infrastructures are also
an established method of data collection [21]. Although, a
large amount of data can be collected using these sensors,
the data collected by them may be flawed since vehicles may
be masked behind larger vehicles, such as trucks. Moreover,
these sensors collect data from a single location [5]. Therefore,
using a drone is considered to be more accurate since it
provides an aerial view of the roads [2], [45]. These small
flying machines can remain undetected from the driver’s view
since they can be positioned at height of several hundred
meters above the road. Drones are relatively inexpensive and
easy to use, allowing capture of arbitrary road scenes easier
[5], [18], [12].

A number of aerial road view-based datasets exist. The first
dataset is that of the NGSIM Drone [2], which was introduced
in 2011 and till date used as a reference dataset for traffic
flow-based research [3],[4], which involves the use of four
scenes captured using synchronized cameras. The Stanford
dataset [44] primarily captured the movement and dynamics
of pedestrians across the university campus, with very less
cars forming an integral part of the data.

As part of the collaborative Pegasus project [1], the highD
[5] dataset was generated. This captured six different highway
segments and has since been updated inD [12] with data from
road intersections, as well as roundD [11] traffic circles.

Most freely available reference datasets lack information
about the relative changes in environment. The datasets
primarily consist of data from highways, individual inner-
city thoroughfare (traffic circles [15], [11], [13], and road-
intersections [14], [12]). The openDD presents Breuer with
[13] an extensive dataset under Creative Commons CC BY-
ND for roundabout situations.

Recently numerous individual projects are coming up which
are focusing on capturing large, interconnected traffic-based
observations. Two major projects in this category worth
mentioning include the pNEUMA project which aims at
capturing traffic data around the Athens city center using
a swarm of drones to reconstruct object movements [45]. The
I-24 MOTION [21] project involves a deployment of 400
cameras along a U.S. highway which surveys a 4 mile stretch
of road. Some of the generated database has been provided
under different licensing terms. Also, approaches to frame-
work formation [8] show imminent need for standardization
[7]. The existing reference datasets have specific limitations.
For example, the NGSIM dataset is characterized by a number
of highly fluctuating bounding boxes which poses a challenge
in the accurate computation of object-based trajectory [3].

In the highD dataset, the quantification of the generated
trajectories was derived using the pixel resolution of the
acquired image, with had a dimension of 10cm x 10cm with

respect to the altitude of flight of the drone [5].
In this study the AUTOMATUM DATA dataset has been

validated using data from reference sensors placed in test
vehicles. The accuracy of the velocity determination was
found to be 0.2%. The dataset presented in this study is
available freely for potential use in research and commercial
applications. The static world has been represented in the
OpenDRIVE XODR standard. The automated pipeline allows
for a top-down approach providing a broad scaling capacity.
Additionally, the Python package has also been provided
for free access, usage, and visualising of data. The dataset
presented in this study contains representative motorway
situations from 30 hours of video footage captured using
drones at 12 motorway locations based in Germany with a
steady stream of traffic.

III. APPLICATION OF AERIAL VIEW-BASED
DATASETS

The aerial view provides a general perspective of the
relative state of objects above the ground. If this is mapped
to a world coordinate system (Universal Transverse Mercator
- UTM) and considering that the object in question is a point
mass, it may be possible to predict the physics of the motion
dynamics of the object.

Therefore, based on this reference database various other
research fields can be supported as enlisted below.

1) Accurate occupancy mapping and whereabout proba-
bility estimations of road users will assist in dealing with
uncertainty of situations and will increase the efficiency of risk
assessment based on these collision probability calculations
[23].

2) Efficient behavior prediction of individual objects such
as pedestrians [24], and human drivers exiting a highway [25]
or behavior of extreme drivers [27] will allow establishment of
expected value for acceptable acceleration-based behavior [9],
or lead to more accurate traffic-related overload predictions
[28] and let movement probabilities of individual road users
be inferred effectively [26].

3) Advanced models in traffic flow theory and traffic
observation which will interpret the traffic scene and predict
traffic evolution and macroscopic traffic dynamics [29], [30],
[31] providing data of interaction between few road users
[32] and its effect on traffic flow [3], [33], [34];
followed by the development of a more complex mixed traffic
model which integrates data of automobiles and motorcycles,
respectively [31].

4) Higher-level management of transportation infrastructure
can be effectively performed using this type of reference
dataset [35], which includes urban planning and traffic
management, such as congestion detection and establishment
of appropriate speed limits [36] or enforcing appropriate
strategies for emergency vehicles [37].

5) Methods for safety verification of vehicle functions rely-
ing on scenario-based approaches [6]. Reconstructed scenes
have been reported to be used for simulations [38] exemplary
realized with CarMaker, SUMO [39], and CARLA [40].
Increased accuracy of traffic prediction will allow successful



extrapolation of that knowledge over an entire urban area
[34]. As described by Schoener [41], the extensive datasets
of real-world reference scenes necessary for validation cannot
be generated by individual data collection initiatives and may
only be realistically achieved by adopting crowd-sourcing
strategies [41]. Neurohr et al. [7] describes the necessity of
adopting these networked approaches for achieving a proof of
system with the ultimate goal of establishing a homogeneous
and functional safety process and guideline.

IV. PIPELINE IMPLEMENTATION

The calculation and generation of AUTOMATUM DATA
datasets from aerial videos has been presented in figure 1.
The starting point consists of footage captured by arbitrary
drones with reasonable resolution and details of their captured
frame rate, flight altitude, and viewing angle.
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Fig. 1. Process and tooling chain for generating top-view reference datasets.

Each dataset D is defined as a set of images: D =
{I1, ...Ik, ...IK}. Each image IH×W×3

k of a data set thus
belongs to a defined time step tk = k · f−1

sample and has been
acquired with resolution H×W . Based on the recording time
T and the sampling rate fsample (frames per second - sample
rate) of a data set D, k ∈ [0,K]∧k ∈ N with K = T ·fsample
holds.

A. Faster RCNN

In the first step Faster Region Based Convolutional Neural
Networks Faster-RCNN, the position of the objects (in this
case vehicles) in each image Ik of a dataset were detected.
Since the data was processed after capture, there were no
limitations on the computation time allowing application of
computationally intensive yet effective artificial intelligence
(AI)-based methods. According to [22], the Faster-RCNN
network [46] is one of the most powerful networks for such
applications. Thus, for each time step tk, a set of detected
bounding boxes Bk were calculated

Bk = {B1k , ...Bnk
, ...BNk

} = Faster-RCNN(Ik), (1)

where Nk = |Bk| describes the number of detected bounding
boxes in the image Ik. Correspondingly, the indexing of
bounding boxes nk ∈ [0, Nk] ∧ nk ∈ N. A bounding box
Bnk

itself is defined as a tuple of two points (upper left and
lower right corners): Bnk

=
(
[xUL, yUL]

T , [xLR, yLR]
T
)
.

For case specific training of the pre-trained Faster RCNN,
1648 labels were generated in two-thirds of the recorded
scenes. In the first step, the four vehicular classes consisting
of car, truck, carWithTrailer, respectively were distinguished.

Of all the recorded videos 90 % were usable for subsequent
data processing steps. Videos with involuntary drone move-
ment caused by wind or light underexposure at the onset of
dusk were unusable. In case of the dataset presented in this
study a DJI Mavic Mini with 2K camera resolution was used.

B. Bounding-Box Matching

Based on the detected bounding boxes Bk, the processing
step Bounding-Box Matching now determines the trajectories
distributed over time. For this purpose, all detected bounding
boxes Bk belonging to an object i are required to be combined.
From the reconstruction presented in this study, the trajectory
Ti emerged as the set of bounding boxes Bnk

.
Each trajectory Ti has exactly one entry for each time frame

in which the object is in the image, so that |Ti ∩ Bk| ≤ 1
holds (|Ti ∩ Bk| = 0 when the object is no longer in the
image, see Fig. 2.

The computation of Ti is currently performed based on the
criterias of distance and area overlap, respectively. This part
of the calculation is continuously evolving and retroactively
improving the existing datasets. A computer vision based
matching was, due the minor movements of objects within two
frames, not necessary. Finally, this processing step resulted
in I trajectories Ti with i ∈ [0, I] ∧ i ∈ N.

C. Conversion of Trajectory to Universal Transverse Merca-
tor (UTM) System

The conversion of the trajectories Ti from image coordi-
nates to a metric world coordinate system (UTM [43]) was
implemented in the data processing step Convert to UTM-
System. For this purpose, the center image of the dataset was
defined as the reference image Iref = IK/2. This reference
image was based on typically 6 to 12 ground control points
[42], with a homography matrix [48] H3×3 being determined
for the relevant UTM zone of the coordinate system. This
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Fig. 2. All bounding boxes have been merged into trajectories.

homography describes the transformation of the acquired
image into a world coordinate system in the reference image.
Thus, the bounding boxes Bk can be transformed into a
metric coordinate system. This step allows to compensate for
perspective and optical distortions caused by the camera or
position of the drone, see Fig. 3.
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Fig. 3. The perspective distortions are determined by measured ground
control points and compensated by the homography matrix.

D. Image Stabilization

Modern systems allow compensation against drone’s mo-
tion and its flight turbulence, and the camera itself is usually
well-stabilized with a gimbal controller. However, complete
lack of deviations in image acquisition cannot be guaranteed.

Thus, the previously generated homography matrix H3×3

is only valid for the reference image Iref. For each image
Ik a rotation and a translation correction to the reference
image Iref is necessary. These two corrections were mapped
in the matrix E2×3

k and this correction was based on a sparse
feature set [48]. The conversion of point coordinates in an
image (x, y) to metric coordinates in the current UTM zone
results in Eq 2. and Eq. 3.

[ximgStab, yimgStab]
T = Ek · [x, y, 1]T , (2)

PUTM = H · [ximgStab, yimgStab, 1]
T . (3)

The correction and transformation of all trajectories have
been shown in figure 4.

E. Estimation of the Driving Dynamics

The final step involved the Estimation of the Driving
Dynamics. Thereby, the motion of the objects is derived
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Fig. 4. Motion correction results in exact matching of trajectories with
reference image Iref.

from the determined bounding boxes. To remove uncertainties
caused of the fluctuation of the bounding Boxes resulting
from the image recognition process (Faster-RCNN) additional
filtering is applied.

The signal processing method described by Loess and
Jacoby [49] locally-weighted scatterplot smoothing (LOESS)
was adopted for this study. This method implements a filtering
method which corresponds to an iterative, local four-stage
least square filtering method. These non-parametric regression
method weighted the data point with the k-nearest neighbors
[50] . The choice of the weighting window length is based on
the maximum dynamics of the physical quantities position,
velocity and acceleration. In this way, object-related system
dynamics are taken into account. Therefore, it is not necessary
for model-based filtering methods such as Kalman filtering.

This step results in the velocity v, the yaw angle ψ in
the earth coordinate system as well as in the vehicle fixed
accelerations (object coordinate system) in longitudinal ax
and lateral direction ay. In combination with the manually
extracted static world a logical representation of the entire
traffic scene was created.

V. STRUCTURE OF THE DATABASE

Each video corresponds to an independent dataset, which on
one hand consists of a static scene description in OpenDrive
XODR format, while on the other consists of a JSON file with
motion data of all the objects. Additionally, there is metadata,
which contains basic information about the recording.

With the help of the metadata, the dataset can be filtered for
the desired scene, road type, average length of the contained
trajectories, weather, and location, as well as the version of
the pipeline with which the video was processed. The latter
may also be used for future recalculation for improving the
data processing. The dataset can be visualized conveniently
using a local-server-based visualisation as shown in Fig: 5.
For the use and interfacing with the dataset, please refer to
the project website, where the current interface descriptions
have been published. For the most efficient handling of the
dataset a utility library has been provided which consists of
an object-oriented data structure that allows easy and efficient
access to the respective datasets.
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Fig. 5. A graphical Webserver application facilitates the review of data.
The zoom showes the comparison between raw signal and LOESS filtering.

VI. VALIDATION OF DATA PROCESSING

In order to be able to make a statement about the quality
of the data processing, it is pertinent to provide evidence of
valid results being produced by the processing chain. For
example, for the highD [5] dataset, the conversion of the
pixel resolution to the physical distance per pixel of the area
captured was presented.

For the validation of the processing chain presented in
this study, test vehicles of an industrial partner were used to
determine the error between the motion trajectories generated
via the AUTOMATUM DATA tool chain and the reference
measurement system. Figure 6 shows the two reference
vehicles with inertial measurement units which were driving
in column. Three measurements were run between two
roundabouts. The data recording ran permanently in the
vehicles and is therefore shown continuously in the plot. The
vehicles went out of the drone capture zone several times,
which lead to the recorded video capture only fragments of the
test drive. Figure 7 shows the validity of the velocity profiles v

Fig. 6. Validation trajectories of two reference vehicles (red, white).

and the derived rotation of the objects in the world coordinate
system ψ̇, as well as the vehicular fixed accelerations ax, ay .

To quantify the deviation, the cross-correlation between
vehicle reference measurement and drone database of the
three measurement runs were performed (No.1, No.2, No.3):
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Fig. 7. Validation of the motion profiles extracted from the drones with
the speed profile of the corresponding vehicle.

Relative Error No.1 No.2 No.3

v 0.99987 0.99983 0.99996
a 0.97526 0.96958 0.98831
ψ̇ 0.86479 0.89263 0.86300

The largest deviation showed up in the determination of
the yaw rate, since the deviation of longitudinal and lateral
dynamics weighted over the tangent of their ratios. The
relative error was less than 0.2 percent for results representing
the positioning in the world coordinate system and the
velocity-based calculations.

VII. CONCLUSION

The new dataset AUTOMATUM DATA is now available
at automatum-data.com. This dataset includes 12 charac-
teristic highway-like scenes from 30 hours of drone videos.
Compared to previous datasets, a validation of the object
trajectories was performed using a reference vehicle. The
quality of the data processing pipeline presented in this study
is reflected by the low velocity error of less than 0.2 percent
as confirmed by the validation process. The data set was
generated with the greatest care, however, deviations can
possibly occur and the correctness could not be guaranteed.

This data processing pipeline allows generation of data
from a wide range of drone videos for further research and
development of highly automated vehicles. The publication
of further datasets in different situations may be tackled in
the future.
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lateral acceleration behavior limits for prediction tasks in autonomous
vehicles,” in 2019 7. International Conference on Mechatronics
Engineering (ICOM), 2019, pp. 1–6.

[26] P. Zechel, R. Streiter, K. Bogenberger and U. Göhner. “Over-
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