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Abstract
With the significant development of high-intensity hadron (proton and heavy
ion) accelerator facilities, the space charge effect has become a major limiting
factor for increasing beam intensity because it can drive particle resonance,
forming beam halos and causing beam quality degradation or even beam loss.
In studies on space charge, the particle-core model (PCM) has been widely
adopted to describe halo particle formation. In this paper, we generalize the
conventional PCM to include dispersion to investigate the physical mechanism of
the beam halo in high-intensity synchrotrons. In particular, a “1:1 parametric
resonance” driven by the combined effects of space charge and dispersion is
identified. A large dispersion is proven to have a damping effect on the 2:1
parametric resonance. The analysis based on the generalized PCM agrees with
particle-in-cell simulations. A beam halo with large mismatch oscillations is also
discussed.
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With the significant development of high-intensity hadron (proton and heavy
ion) accelerator facilities worldwide, the space charge effect has emerged as a
major limiting factor for increasing beam intensity. Space charge can drive
particle resonances, leading to beam halo formation and causing beam qual-
ity degradation or even beam loss. In studies of space charge dynamics, the
particle-core model (PCM) has been widely adopted to describe halo particle
formation. In this paper, we generalize the conventional PCM to include disper-
sion effects, enabling investigation of the physical mechanisms underlying beam
halo formation in high-intensity synchrotrons. In particular, we identify a novel
“1:1 parametric resonance” driven by the combined effects of space charge and
dispersion. We also demonstrate that large dispersion has a damping effect on
the 2:1 parametric resonance. Our analytical results based on the generalized
PCM show excellent agreement with particle-in-cell simulations. Additionally,
we discuss beam halo formation in the presence of large mismatch oscillations.

Keywords: Particle-core model, Space charge, Beam halo

Introduction
In recent years, an increasing number of high-intensity proton and heavy-ion
accelerators have been proposed, are under construction, or have begun opera-
tion worldwide for various scientific and industrial applications. For such high-
intensity machines, understanding the mechanisms of intense beam dynamics
and controlling beam losses are crucial for both machine design and operation.
One of the most important contributors to beam quality degradation is the for-
mation of beam halos driven by space charge effects [?]. The primary driving
mechanism for beam halo formation is parametric resonance, which can cause se-
vere beam losses [?]. Uncontrolled beam losses can lead to serious consequences,
including residual activation of beam pipes, quenching of superconducting mag-
nets, vacuum degradation, and radiation damage to insulation materials [?].

Among the various approaches for studying beam halos, the particle-core model
(PCM) has been one of the most widely employed analytical tools [?]. Com-
pared with particle-in-cell (PIC) simulations, the PCM provides an analytical
framework for investigating beam dynamics, particularly the mechanisms of
halo formation, without requiring extensive particle tracking that can be com-
putationally expensive. In this model, the dynamic behavior of an intense beam
core is described by the evolution of beam envelopes [?, ?], while the motion
of individual test particles is influenced by the space charge fields generated by
beam-core mismatch oscillations [?]. The situation becomes more complex in
high-intensity hadron synchrotrons, where the combined effects of space charge
and dispersion influence the motion of circulating beams [?, ?, ?, ?]. To properly
analyze beam halo formation in circular machines, the conventional PCM must
be generalized to include dispersion effects.

In this paper, we investigate the dynamics of halo particles under both moder-
ate and strong space charge conditions, where 2:1 and higher-order resonances,
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or even chaotic behavior, can exist. Building upon the generalization of the
conventional PCM to include dispersion effects for high-intensity synchrotrons,
we identify a novel “1:1 parametric resonance” driven by the dispersion mode.
We also explain the damping effect observed by Ikegami et al. [?] from the
perspective of oscillation modes. Furthermore, for beams with large mismatch
oscillations, we discuss both high-order and low-order resonances driven by cor-
responding beam-core oscillation modes.

The remainder of this paper is organized as follows. Following this introduction,
we briefly review the fundamentals of the PCM method in Sec. II. Section III
investigates single-particle dynamics for round and elliptical beams. In Sec.
IV, we generalize the PCM to include dispersion and discuss in detail the 1:1
parametric resonance driven by the dispersion mode. Section V presents an
analysis of high-order modes in large beam mismatch oscillations. Finally, Sec.
VI provides a summary of our findings.

II. Fundamentals
A. Beam-Core Oscillations

In the PCM, beams are assumed to have uniform spatial density in the trans-
verse plane (KV distribution) because the dynamics of individual particles are
insensitive to the detailed distribution of the beam core. An envelope approach
is employed to describe mismatch oscillations of the beam core, with beam halo
formation driven by space-charge interactions between collective envelope oscil-
lation modes and single particles.

We begin with a coasting beam propagating through a uniformly focusing
structure, which can describe the average dynamic behavior of beams in an
alternating-gradient focusing channel [?] (the smooth approximation method).
For simplicity, we neglect impedance effects from the beam pipe and all chro-
matic terms. We adopt 𝑥 and 𝑦 to represent the transverse degrees of freedom
in the horizontal and vertical directions, respectively, and 𝑠 as the longitudinal
coordinate. The “pseudo” Hamiltonian for beam envelope oscillations in such
a transport system is:

𝐻env = 𝑝2
𝑥 + 𝑝2

𝑦 + 𝜅2
𝑥,0𝜎2

𝑥 + 𝜅2
𝑦,0𝜎2

𝑦 + 𝐾sc
𝜎𝑥 + 𝜎𝑦

+ 𝜀2
𝑥

𝜎2𝑥
+ 𝜀2

𝑦
𝜎2𝑦

where 𝜎𝑥,𝑦 represents the RMS transverse beam size (for KV beams, the total
transverse beam size is 2𝜎𝑥,𝑦). The derivatives 𝜎𝑝𝑥,𝑦

are conjugate variables
defined by 𝑑𝜎𝑥,𝑦/𝑑𝑠 = 𝜎𝑝𝑥,𝑦

. The parameters 𝜅𝑥,0 and 𝜅𝑦,0 are the external
transverse focusing gradients in 𝑥 and 𝑦, respectively, while 𝜀𝑥 and 𝜀𝑦 are the
transverse RMS emittances. The space charge perveance 𝐾sc is defined as 𝐾sc =
2𝑁𝐿𝑟𝑐/(𝛽2𝛾3), where 𝑁𝐿 is the number of particles per unit length, 𝑟𝑐 is the
classical proton radius, and 𝛽 and 𝛾 are relativistic factors.
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The RMS envelope equations derived from this Hamiltonian are:

𝑑2𝜎𝑥
𝑑𝑠2 + 𝜅2

𝑥,0𝜎𝑥 − 𝐾sc
𝜎𝑥 + 𝜎𝑦

− 𝜀2
𝑥

𝜎3𝑥
= 0

𝑑2𝜎𝑦
𝑑𝑠2 + 𝜅2

𝑦,0𝜎𝑦 − 𝐾sc
𝜎𝑥 + 𝜎𝑦

− 𝜀2
𝑦

𝜎3𝑦
= 0

Under constant focusing, the matched RMS beam sizes 𝜎𝑥,𝑚 and 𝜎𝑦,𝑚 can be
obtained straightforwardly from the corresponding algebraic equations:

𝜅2
𝑥,0𝜎𝑥,𝑚 − 𝐾sc

𝜎𝑥,𝑚 + 𝜎𝑦,𝑚
− 𝜀2

𝑥
𝜎3𝑥,𝑚

= 0

𝜅2
𝑦,0𝜎𝑦,𝑚 − 𝐾sc

𝜎𝑥,𝑚 + 𝜎𝑦,𝑚
− 𝜀2

𝑦
𝜎3𝑦,𝑚

= 0

Here, the subscript “m” denotes the matched case.

These envelope equations can be converted into dimensionless form using the
following variables and parameters:

𝜎̂𝑥 = 𝜎𝑥/𝜎𝑥,𝑚, 𝜎̂𝑦 = 𝜎𝑦/𝜎𝑥,𝑚, 𝜎̂𝑝𝑥
= 𝜎𝑝𝑥

/(𝜅𝑥,0𝜎𝑥,𝑚), 𝜎̂𝑝𝑦
= 𝜎𝑝𝑦

/(𝜅𝑥,0𝜎𝑥,𝑚), 𝜏 = 𝜅𝑥,0𝑠

𝜇𝑥 = Δ𝜅2
𝑥

𝜅2
𝑥,0

, 𝑟 = 𝜎𝑦,𝑚
𝜎𝑥,𝑚

, 𝜂 = 𝜅𝑦,0
𝜅𝑥,0

, 𝜀𝑟 = 𝜀𝑦
𝜀𝑥

where Δ𝜅2
𝑥 = 𝐾sc/[2𝜎𝑥,𝑚(𝜎𝑥,𝑚 + 𝜎𝑦,𝑚)] represents the space-charge tune de-

pression in the matched case. For constant focusing, the dimensionless matched
beam sizes are 𝜎̂𝑥,𝑚 = 1 and 𝜎̂𝑦,𝑚 = 𝑟.

The dimensionless Hamiltonian and envelope equations become:

𝐻̂env = ̂𝑝2
𝑥 + ̂𝑝2

𝑦 + 𝜎̂2
𝑥 + 𝜂2𝜎̂2

𝑦 − 𝜇𝑥(1 + 𝑟) ln(𝜎̂𝑥 + 𝜎̂𝑦) + 1 − 𝜇𝑥
2𝜎̂2𝑥

+ 𝑟(1 − 𝜇𝑥)
2𝜎̂2𝑦

𝑑2𝜎̂𝑥
𝑑𝜏2 + 𝜎̂𝑥 − 𝜇𝑥(1 + 𝑟)

𝜎̂𝑥 + 𝜎̂𝑦
− 1 − 𝜇𝑥

𝜎̂3𝑥
= 0

𝑑2𝜎̂𝑦
𝑑𝜏2 + 𝜂2𝜎̂𝑦 − 𝜇𝑥(1 + 𝑟)

𝜎̂𝑥 + 𝜎̂𝑦
− 𝑟(1 − 𝜇𝑥)

𝜎̂3𝑦
= 0
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In practice, beams are never perfectly matched due to magnetic errors or mis-
alignment of lattice elements. Consequently, {𝜎̂𝑥, 𝜎̂𝑦} differs slightly from the
matched solution {𝜎̂𝑥,𝑚, 𝜎̂𝑦,𝑚}, a condition referred to as beam-coherent mis-
match oscillation. In the PCM, such mismatch oscillations provide the mecha-
nism for energy transfer from the beam core to single particles via space charge,
forming halo particles when resonance occurs.

A mismatched beam in a constant-focusing channel can be expressed as small
perturbations (𝜉, 𝜁, 𝜉𝑝, 𝜁𝑝) on the matched solutions:

𝜎̂𝑥 = 𝜎̂𝑥,𝑚+𝜉 = 1+𝜉, 𝜎̂𝑦 = 𝜎̂𝑦,𝑚+𝜁 = 𝑟+𝜁, 𝜎̂𝑝𝑥
= 𝜎̂𝑝𝑥,𝑚+𝜉𝑝, 𝜎̂𝑝𝑦

= 𝜎̂𝑝𝑦,𝑚+𝜁𝑝

Substituting these into the Hamiltonian yields the Hamiltonian for envelope
perturbations:

𝐻̂per = (𝜎̂𝑝𝑥,𝑚+𝜉𝑝)2+(𝜎̂𝑝𝑦,𝑚+𝜁𝑝)2+(1+𝜉)2+𝜂2(𝑟+𝜁)2−𝜇𝑥(1+𝑟) ln(1+𝑟+𝜉+𝜁)+ 1 − 𝜇𝑥
2(1 + 𝜉)2 +𝑟(1 − 𝜇𝑥)

2(𝑟 + 𝜁)2

By performing a Taylor expansion and keeping linear terms, we obtain the
equations of motion for envelope perturbations in matrix form (discussed further
in Appendix A):

𝑑2

𝑑𝜏2 (𝜉
𝜁) + (𝑎0 𝑎1

𝑎1 𝑎2
) (𝜉

𝜁) = 0

with coefficients:

𝑎0 = 4(1 − 𝜇𝑥) + 𝑟 + 2
𝑟 + 1, 𝑎1 = − 1

𝑟 + 1, 𝑎2 = 4 (𝜂2 − 2𝑟 + 1
𝑟 + 1 )

B. Single-Particle Motion with Space Charge

The motion of a single test particle under the influence of the beam core’s space
charge is governed by:

𝑑2𝑥
𝑑𝑠2 + 𝜅2

𝑥,0𝑥 = 2𝐾sc𝑥
𝜎𝑥(𝜎𝑥 + 𝜎𝑦) for |𝑥| < 2𝜎𝑥

𝑑2𝑥
𝑑𝑠2 + 𝜅2

𝑥,0𝑥 = 2𝐾sc𝑥
√𝑥2 + 4(𝜎2𝑦 − 𝜎2𝑥)(√𝑥2 + 4(𝜎2𝑦 − 𝜎2𝑥) + 2𝜎𝑥)

for |𝑥| > 2𝜎𝑥
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where 𝑥 is the horizontal displacement from the beam core center. Using the
dimensionless parameters defined previously, these equations become:

𝑑2 ̂𝑥
𝑑𝜏2 + ̂𝑥 = 𝜇𝑥(1 + 𝑟) ̂𝑥

𝜎̂𝑥(𝜎̂𝑥 + 𝜎̂𝑦) for | ̂𝑥| < 𝜎̂𝑥

𝑑2 ̂𝑥
𝑑𝜏2 + ̂𝑥 = 𝜇𝑥(1 + 𝑟) ̂𝑥

√ ̂𝑥2 + (𝜎̂2𝑦 − 𝜎̂2𝑥)(√ ̂𝑥2 + (𝜎̂2𝑦 − 𝜎̂2𝑥) + 𝜎̂𝑥)
for | ̂𝑥| > 𝜎̂𝑥

where the dimensionless horizontal displacement is defined as ̂𝑥 = 𝑥/(2𝜎𝑥,𝑚).
These equations show that a test particle experiences different wavenumbers
when traveling inside versus outside the beam core due to varying space charge
strength.

For particles inside the beam core, the wavenumber reaches its minimum:

𝑘𝑝,min = √1 − 𝜇𝑥

Substituting the perturbation expressions into the particle motion equation
yields:

𝑑2 ̂𝑥
𝑑𝜏2 + (1 − 𝜇𝑥) ̂𝑥 = 𝑓(𝜏)

where 𝑓(𝜏) describes the oscillation of the beam core:

𝑓(𝜏) = − 𝜇𝑥
1 + 𝑟 {[(2 + 𝑟)𝐶11 + 𝐶21] cos(𝑘𝑏𝜏) + [(2 + 𝑟)𝐶12 + 𝐶22] cos(𝑘𝑞𝜏)}

The coefficient matrix in the envelope perturbation equations is symmetric and
can be decomposed as 𝐴 = 𝑈 ⋅ diag{𝑘2

𝑏 , 𝑘2
𝑞} ⋅ 𝑈𝑇 , where 𝑈 is the eigenvector

matrix. Here, 𝑘𝑏 and 𝑘𝑞 represent the wavenumbers of the “breathing mode”
and “quadrupole mode,” respectively. The general solutions are:

𝜉(𝜏) = 𝐶11 cos(𝑘𝑏𝜏) + 𝐶12 cos(𝑘𝑞𝜏)

𝜁(𝜏) = 𝐶21 cos(𝑘𝑏𝜏) + 𝐶22 cos(𝑘𝑞𝜏)

with coefficients 𝐶𝑖𝑗 = ∑2
𝑘=1 𝑈𝑖𝑗𝑈𝑇

𝑗𝑘𝛼𝑘, where 𝛼1 = 𝜉(0) and 𝛼2 = 𝜁(0). We
use 𝜏 as the independent variable and consider mismatch without initial mo-
mentum perturbations (𝜉𝑝(0) = 𝜁𝑝(0) = 0), so the solutions contain only cosine
terms. The envelope oscillation patterns depend on initial conditions: a pure
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breathing mode occurs when 𝜁(0) = −(𝑈21/𝑈22)𝜉(0), while a pure quadrupole
mode occurs when 𝜁(0) = −(𝑈11/𝑈12)𝜉(0). Generally, beam-core oscillations
are characterized by a superposition of these two modes.

When the wavenumbers of a test particle and the beam core satisfy the resonance
condition 𝑘𝑝 = 𝑘𝑏/2 or 𝑘𝑝 = 𝑘𝑞/2, a 2:1 parametric resonance occurs, leading to
beam halo formation [?]. To illustrate this, we plot wavenumbers as functions of
beam current (in units of normalized space-charge tune depression 𝜇𝑥) for two
representative cases: round and elliptical beams [Figure 1: see original paper].

For round beams in a symmetric focusing channel with initial equal mismatch
perturbations (𝜉(0) = 𝜁(0) = 0.05), only the breathing mode is excited. We
select four test particles with different initial dimensionless horizontal displace-
ments ̂𝑥1 < 1.0 < ̂𝑥2 < ̂𝑥3 < ̂𝑥4 (with zero momentum) and numerically solve
the equations of motion. The resulting Poincaré maps for moderate (𝜇𝑥 = 0.1)
and strong (𝜇𝑥 = 0.8) space charge are shown in [Figure 2: see original paper].

For 𝜇𝑥 = 0.1, particles with initial positions ̂𝑥1 and ̂𝑥2 exhibit regular elliptical
motion, while the third particle with initial position ̂𝑥3 shows large excursions,
indicating resonance. The “lock” of the particle’s wavenumber at 𝑘 = 𝑘𝑏/2 is
characteristic of parametric resonance. PIC simulations using PyORBIT with
16 equal cells confirm these numerical results .

For 𝜇𝑥 = 0.8, the dynamics become more complex. In addition to the 2:1
resonance island, three smaller islands appear, corresponding to a 3:1 parametric
resonance where the wavenumber locks at 𝑘 = (1/3)𝑘𝑏. The 3:1 resonance is
much weaker than the 2:1 resonance, as evidenced by the smaller island areas.
The condition 𝑘𝑝,min < 𝑘𝑏/3 < 3𝑘𝑏/8 < 𝑘𝑝,max supports the existence of both
3:1 and 8:3 resonance islands, while 𝑘𝑏/4 < 𝑘𝑝,min shows that 4:1 or higher
resonances cannot be excited [Figure 3: see original paper].

For elliptical beams (𝑟 ≠ 1), the wavenumber analysis reveals that for
𝜇𝑥 > 0.39, both breathing and quadrupole modes can drive 2:1 resonance. For
𝜇𝑥 < 0.39, only the quadrupole mode can drive resonance since 𝑘𝑏/2 > 𝑘𝑝,max
[FIGURE:1(b)]. When both modes are present simultaneously (mixed modes),
chaotic behavior appears in addition to the resonance islands [Figure 4: see
original paper].

III. Resonance and Chaos in the Beam Halo
In the presence of space charge, particle motion around the beam core is periodic.
When resonance occurs, particles can absorb energy from the beam core and
develop much larger amplitudes, forming halo particles. Furthermore, under
strong space charge, particles exhibit chaotic behavior due to the superposition
of different modes. This section investigates 2:1 and higher-order parametric
resonances and chaos in beam halo formation in detail.

For round beams with mixed modes (𝜉(0) ≠ 𝜁(0)), both breathing and
quadrupole modes can drive 2:1 parametric resonance when the test particle
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wavenumber satisfies 𝑘 = 𝑘𝑞/2 or 𝑘 = 𝑘𝑏/2 [Figure 4: see original paper].
Chaotic phenomena appear in the mixed-mode case, characterized by random
particle wavenumbers, in contrast to the “lock” characteristic of parametric
resonance. PIC simulations for moderate space charge (𝜇𝑥 = 0.1) show good
agreement with numerical calculations, while some discrepancy appears for
strong space charge (𝜇𝑥 = 0.8) due to disturbances of the uniform particle
distribution during self-consistent tracking.

For elliptical beams, moderate space charge (𝜇𝑥 = 0.1) allows only the
quadrupole mode to induce 2:1 resonance. As space charge increases
(𝜇𝑥 ≥ 0.5), both quadrupole and breathing modes can drive resonance, with
the two resonance islands approaching each other. For strong space charge
(𝜇𝑥 = 0.8), the proximity of the two resonance islands causes chaotic phenomena
around them [Figure 5: see original paper]. PIC simulations using parameters
from confirm the numerical calculations.

IV. Beam Halo Formation in High-Intensity Synchrotrons
This section investigates beam halo formation driven by resonant interactions
between single particles and the beam core in high-intensity synchrotrons, where
the combined effects of space charge and dispersion must be considered [?, ?,
?, ?]. We generalize the conventional PCM to include dispersion, noting that
the mechanism discussed here differs from space-charge structural resonances
driven by high-order terms in the space-charge potential [?].

A. Generalized PCM with Dispersion

For beams traveling in a constant-focusing bending channel, the transverse beam
dynamics can be described by envelope equations including the dispersion func-
tion [?, ?]:

𝑑2𝜎𝑥
𝑑𝑠2 + 𝜅2

𝑥,0𝜎𝑥 − 𝐾sc
2𝑋(𝑋 + 𝑌 ) − 𝜀2

𝑥
𝜎3𝑥

= 0

𝑑2𝜎𝑦
𝑑𝑠2 + 𝜅2

𝑦,0𝜎𝑦 − 𝐾sc
2𝑌 (𝑋 + 𝑌 ) − 𝜀2

𝑦
𝜎3𝑦

= 0

𝑑2𝐷𝛿
𝑑𝑠2 + 𝜅2

𝑥,0𝐷𝛿 − 𝐾sc
2𝑋(𝑋 + 𝑌 ) = 0

where 𝑋 = √𝜎2𝑥 + 𝐷2
𝛿 is the total RMS horizontal beam size, 𝜎𝑥 is the betatron

beam size, and 𝐷𝛿 ≡ 𝐷𝑥𝜎𝑝 is the “dispersion beam size.” The subscript “d”
denotes the case with dispersion.

These equations can be derived from the dispersion-modified envelope Hamilto-
nian:
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𝐻env,𝑑 = 𝑝2
𝜎𝑥

+ 𝑝2
𝜎𝑦

+ 𝑝2
𝐷𝛿

+ 𝑉env,𝑑(𝜎𝑥, 𝜎𝑦, 𝐷𝛿)

with

𝑉env,𝑑 = 𝜅2
𝑥,0𝜎2

𝑥 + 𝜅2
𝑦,0𝜎2

𝑦 + 𝜅2
𝑥,0𝐷2

𝛿 − 𝐾sc ln(𝑋 + 𝑌 ) + 𝜀2
𝑥

𝜎2𝑥
+ 𝜀2

𝑦
𝜎2𝑦

The matched equations with dispersion are:

𝜅2
𝑥,0𝜎𝑥,𝑚 − 𝐾sc

2𝑋𝑚(𝑋𝑚 + 𝑌𝑚) − 𝜀2
𝑥

𝜎3𝑥,𝑚
= 0

𝜅2
𝑦,0𝜎𝑦,𝑚 − 𝐾sc

2𝑌𝑚(𝑋𝑚 + 𝑌𝑚) − 𝜀2
𝑦

𝜎3𝑦,𝑚
= 0

𝜅2
𝑥,0𝐷𝛿,𝑚 − 𝐾sc

2𝑋𝑚(𝑋𝑚 + 𝑌𝑚) = 0

where 𝑋𝑚, 𝑌𝑚, and 𝐷𝛿,𝑚 are the matched solutions.

Using the dimensionless parameters from Eq. (4), the Hamiltonian can be
rewritten as:

𝐻̂𝑑,env = ̂𝑝2
𝑥+ ̂𝑝2

𝑦+ ̂𝑝2
𝐷𝛿

+𝜎̂2
𝑥+𝜂2𝜎̂2

𝑦+𝐷̂2
𝛿−𝜇𝑥,𝑑(1+𝑅) ln(𝑋̂+ ̂𝑌 )+1 − 𝜇𝑥,𝑑

2𝜎̂2𝑥
+𝑟𝑑(1 − 𝜇𝑥,𝑑)

2𝜎̂2𝑦
+(1 − 𝜇𝑥,𝑑) cos2 𝜃

2 sin2 𝜃

The dimensionless variables related to dispersion are defined as:

𝑋̂ = 𝑋/𝜎𝑥,𝑚, ̂𝑌 = 𝑌 /𝜎𝑥,𝑚, 𝐷̂𝛿 = 𝐷𝛿/𝜎𝑥,𝑚

sin 𝜃 = 𝜎𝑥,𝑚/𝑋𝑚, cos 𝜃 = 𝐷𝛿,𝑚/𝑋𝑚, 𝑅 = 𝑌𝑚/𝑋𝑚

𝜀𝑟,𝑑 = 𝜀𝑑𝑦/𝜀𝑑𝑥, 𝜇𝑥,𝑑 = Δ𝜅2
𝑥,𝑑/𝜅2

𝑥,0

where sin 𝜃 is the betatron ratio, cos 𝜃 is the dispersion ratio, and Δ𝜅2
𝑥,𝑑 =

𝐾sc/[2𝑋𝑚(𝑋𝑚 +𝜎𝑦,𝑚)] represents the space-charge tune depression with disper-
sion.

We introduce the “dispersion strength” Λ ≡ 𝐷(0)
𝛿,𝑚/𝜎(0)

𝑥,𝑚 to characterize the ratio
of dispersion motion to betatron motion in the zero-current case. For typical
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synchrotrons such as the CSNS RCS [?, ?], where energy spread is typically less
than 1%, we have 0 < Λ < 1.0.

The dimensionless dispersion-modified envelope equations are:

𝑑2𝜎̂𝑥
𝑑𝜏2 + 𝜎̂𝑥 − 𝜇𝑥,𝑑(1 + 𝑅)𝜎̂𝑥

𝑋̂(𝑋̂ + ̂𝑌 ) sin2 𝜃
− 1 − 𝜇𝑥,𝑑

𝜎̂3𝑥
= 0

𝑑2𝜎̂𝑦
𝑑𝜏2 + 𝜂2𝜎̂𝑦 − 𝜇𝑥,𝑑(1 + 𝑅)𝜎̂𝑦

̂𝑌 (𝑋̂ + ̂𝑌 )
− 𝑟𝑑(1 − 𝜇𝑥,𝑑)

𝜎̂3𝑦
= 0

𝑑2𝐷̂𝛿
𝑑𝜏2 + 𝐷̂𝛿 − 𝜇𝑥,𝑑(1 + 𝑅)𝐷̂𝛿

𝑋̂(𝑋̂ + ̂𝑌 ) sin2 𝜃
− (1 − 𝜇𝑥,𝑑) cos 𝜃

sin 𝜃 = 0

The matched beam sizes are 𝜎̂𝑥,𝑚 = 1, 𝜎̂𝑦,𝑚 = 𝑟, 𝐷̂𝛿,𝑚 = cot 𝜃, and 𝑋̂𝑚 = csc 𝜃.
Substituting mismatch perturbations 𝜎̂𝑥 = 1 + 𝜉, 𝜎̂𝑦 = 𝑟 + 𝜁, and 𝐷̂𝛿 = cot 𝜃 + 𝑑
into these equations yields the perturbation equations (detailed in Appendix
B):

𝑑2

𝑑𝜏2
⎛⎜
⎝

𝜉
𝜁
𝑑
⎞⎟
⎠

+ ⎛⎜
⎝

𝑏0 𝑏1 𝑏2
𝑏1 𝑏3 𝑏4
𝑏2 𝑏4 𝑏5

⎞⎟
⎠

⎛⎜
⎝

𝜉
𝜁
𝑑
⎞⎟
⎠

= 0

The symmetric coefficient matrix 𝐵 = {𝑏𝑖𝑗} can be decomposed as 𝐵 = 𝑈𝑑 ⋅
diag{𝑘2

𝑏 , 𝑘2
𝑞 , 𝑘2

𝑑} ⋅ 𝑈𝑇
𝑑 , where the dispersion mode 𝑘𝑑 can be identified. The

general solution is:

𝜉 = 𝐷11 cos(𝑘𝑏𝜏) + 𝐷12 cos(𝑘𝑞𝜏) + 𝐷13 cos(𝑘𝑑𝜏)

𝜁 = 𝐷21 cos(𝑘𝑏𝜏) + 𝐷22 cos(𝑘𝑞𝜏) + 𝐷23 cos(𝑘𝑑𝜏)

𝑑 = 𝐷31 cos(𝑘𝑏𝜏) + 𝐷32 cos(𝑘𝑞𝜏) + 𝐷33 cos(𝑘𝑑𝜏)

where 𝐷𝑖𝑗 = ∑3
𝑘=1 𝑈𝑑,𝑖𝑗𝑈𝑇

𝑑,𝑗𝑘𝛼𝑘 with 𝛼1 = 𝜉(0), 𝛼2 = 𝜁(0), and 𝛼3 = 𝑑(0).
In the presence of space charge and dispersion, single-particle motion is governed
by:

𝑑2 ̂𝑥𝑑
𝑑𝜏2 + ̂𝑥𝑑 = 𝜇𝑑,𝑥(1 + 𝑅) sin2 𝜃 ̂𝑥𝑑

𝑋̂(𝑋̂ + ̂𝑌 )
for | ̂𝑥𝑑| < 𝑋̂ sin 𝜃
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𝑑2 ̂𝑥𝑑
𝑑𝜏2 + ̂𝑥𝑑 = 𝜇𝑑,𝑥(1 + 𝑅) ̂𝑥𝑑

√ ̂𝑥2
𝑑 + ( ̂𝑌 2 − 𝑋̂2) sin2 𝜃(√ ̂𝑥2

𝑑 + ( ̂𝑌 2 − 𝑋̂2) sin2 𝜃 + 𝑋̂)
for | ̂𝑥𝑑| > 𝑋̂ sin 𝜃

where ̂𝑥𝑑 = 𝑥/(2𝑋𝑚) and ̂𝛿 = 𝛿/𝜎𝑝 is the momentum spread ratio. For 𝜎𝑝 = 0
(Λ = 0, sin 𝜃 = 1, 𝑅 = 𝑟), these equations reduce to the dispersion-free case.

B. Dispersion-Induced 1:1 Parametric Resonance

An important question is whether the dispersion mode can excite 2:1 parametric
resonance and induce beam halo, similar to the envelope modes. Analysis shows
that the half-wavenumber of the dispersion mode is always below the lower limit
of test particle wavenumbers, indicating that the dispersion mode cannot induce
2:1 resonance [Figure 6: see original paper]. However, since 𝑘𝑝,min < 𝑘𝑑 <
𝑘𝑝,max, the dispersion mode can generate a “1:1” parametric resonance.

For pure modes (only one oscillation mode present), parametric resonances can
be analyzed using the dispersion-modified PCM. Two resonance islands appear
for breathing and quadrupole modes (2:1 resonance), while a “crescent moon”
island appears for the dispersion mode, identified as 1:1 resonance [Figure 7:
see original paper]. In mixed-mode cases, both 2:1 resonances from envelope
modes and 1:1 resonance from the dispersion mode coexist, with chaos observed
around the islands.

The 1:1 resonance is clearly demonstrated in [Figure 8: see original paper],
where the particle wavenumber locks to the dispersion mode wavenumber within
the crescent moon island. PIC simulations using parameters from confirm the
numerical calculations.

C. Alleviation of Beam Halo Using Strong Dispersion

1. Motion of Single Particles with Zero Momentum Deviation For
synchronous particles ( ̂𝛿 = 0) in high-intensity synchrotrons, strong dispersion
(Λ = 1.0) can suppress resonance. For 𝜇𝑥 < 0.66, the quadrupole mode cannot
excite 2:1 resonance because 𝑘𝑞/2 < 𝑘𝑝,min, while the breathing mode still can.
The areas of 2:1 resonance islands decrease with increasing dispersion strength,
and for Λ = 1.0, the quadrupole-driven resonance disappears entirely [Figure 9:
see original paper]. The dispersion mode itself cannot induce 2:1 resonance.

For mixed modes, chaos weakens as dispersion strength increases [Figure 10: see
original paper]. PIC simulations for Λ = 0.2 and Λ = 1.0 show good agreement
with PCM calculations.

2. Motion of Single Particles with Large Momentum Deviation For
particles with large momentum deviation, the stable fixed point (SFP) can move
outside the beam core due to dispersion effects. As shown in [Figure 11: see
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original paper], for sufficiently large ̂𝛿, the SFPs are located outside the beam
core. Scanning the maximum excursion of “edge particles” (initially at ̂𝑥𝑑(0) =
1) reveals that for particles with outer SFPs ( ̂𝑥max > 1), we obtain 𝑘𝑝,min >
1 − 𝜇𝑥. For large enough ̂𝛿, 𝑘𝑝,min > 𝑘𝑏/2, meaning the 2:1 resonance cannot
be driven by the breathing mode. Thus, large off-momentum deviations can
dampen the 2:1 resonance.

For ̂𝛿 = 3.0 and Λ = 1.0, only the 1:1 resonance driven by the dispersion mode
is observed, while breathing and quadrupole mode resonances are suppressed
[Figure 13: see original paper]. PIC simulations confirm these numerical results.

V. High-Order Mode in Large Mismatch Oscillations
Previous analyses were based on perturbation theory with small-amplitude os-
cillations, neglecting high-order terms. This section investigates single-particle
motion driven by large-amplitude beam-core mismatch oscillations, where high-
order modes become significant. We distinguish these from high-order reso-
nances of low-order modes (e.g., the 8:3 resonance in [Figure 2: see original
paper] is an eighth-order resonance driven by the low-order breathing mode).

For a round beam in a symmetric focusing channel, the envelope equation can
be written as:

𝑑2𝜎̂
𝑑𝜏2 + 𝜎̂ − 1 − 𝜇

𝜎̂3 = 0

The solution can be expressed as a Fourier series:

𝜎̂ = 1 + 𝑎1 cos(2Ω𝜏) + 𝑎2 cos(4Ω𝜏) + ⋯ + 𝑎𝑛 cos(2𝑛Ω𝜏)

where 2Ω is the breathing mode wavenumber (replacing 𝑘𝑏 for convenience) and
2𝑛Ω (𝑛 > 1) represents high-order modes.

The single-particle equations of motion can be approximated by a cubic term
[?]:

𝑑2 ̂𝑥
𝑑𝜏2 + ̂𝑥 − 𝜇 ( ̂𝑥

𝜎̂2 − ̂𝑥3

𝜎̂4 ) = 0

Substituting the series solution yields the Hamiltonian:

𝐻̂𝐿 = 1
2 (𝑃 2 + 𝜔2 ̂𝑥2) +

𝑛
∑
𝑖=1

ℎ𝑖 cos(2𝑖Ω𝜏) ̂𝑥2 + 𝛼 ̂𝑥4

with parameters 𝜔2 = 1 − 𝜇, ℎ𝑖 = −2𝜇𝑎𝑖/(1 − 𝜇), and 𝛼 = 𝜇/4.
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Using a canonical transformation, the Hamiltonian becomes 𝐻̂𝐿 = 𝐻̂𝐿,0+𝐻̂𝐿,1+
⋯ + 𝐻̂𝐿,𝑛, where 𝐻̂𝐿,0 and 𝐻̂𝐿,𝑛 (𝑛 > 0) represent the lowest-order (breathing)
and high-order modes, respectively. Averaging over one oscillation period 𝑇 =
2𝜋/Ω gives ⟨𝐻̂𝐿,𝑛⟩ = 0 for 𝑛 > 0 (detailed in Appendix C), indicating that
high-order modes do not contribute to the 2:1 resonance.

Numerical solution of the envelope equation with 40% mismatch (𝜎̂(0) = 0.6)
confirms the presence of high-order modes up to sixth order, with frequencies
that are multiples of the fundamental mode and amplitudes that decrease with
increasing order [Figure 14: see original paper]. The Poincaré section for single
particles under 40% mismatch shows 2:1 resonance islands driven by the lowest-
order mode (𝑘 = 𝑘𝑏/2), with no evidence of resonance driven by high-order
modes [Figure 15: see original paper]. A PIC simulation with 200,000 macro
particles tracked for 500 turns shows a “peanut” shape halo distribution that
agrees with the numerically calculated Poincaré section contour.

Chaos formation can be analyzed by distinguishing two types of particle-core res-
onances: (1) low-order resonances driven by high-order beam oscillation modes
(proven non-existent by Eq. (44)), and (2) high-order resonances driven by low-
order beam oscillation modes. Using perturbation theory with 40% mismatch
while neglecting high-order modes (since they don’t contribute to resonances),
we identify several high-order resonance islands: 3:1, 4:1, skew 4:1, 7:2, and 8:3
[Figure 16: see original paper]. The chaos region can be divided into inner and
outer regions: outer chaos arises from mixing of the 2:1 resonance with higher-
order resonances (3:1 and 8:3), while inner chaos near the beam core is weaker
and caused by mixing of high-order resonances (4:1 and skew 4:1).

VI. Summary
We have analyzed beam halo formation driven by parametric resonance between
single particles and the beam core in high-intensity synchrotrons. In the absence
of dispersion, we observe several high-order resonances in addition to the domi-
nant 2:1 resonance, with chaos arising from the mixture of parametric resonances
that can be weakened by elliptical beam asymmetry. In the presence of com-
bined space charge and dispersion effects, we find that the dispersion mode can
drive a 1:1 parametric resonance and have discussed its physical mechanism in
detail. Additionally, we have demonstrated that strong dispersion can alleviate
beam halo formation.

For large-mismatch oscillations, we proved that while higher-order modes exist,
they are unable to drive 2:1 parametric resonance. We expect that the 1:1 para-
metric resonance will have important implications for the design and operation
of high-intensity synchrotrons. Further investigation of the role of synchrotron
motion in beam halo formation is warranted.
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Appendices
Appendix A: Equations of Motion for Envelope Perturbations

For the Hamiltonian of envelope perturbations in Sec. II:

𝐻̂per = (𝜎̂𝑝𝑥,𝑚+𝜉𝑝)2+(𝜎̂𝑝𝑦,𝑚+𝜁𝑝)2+(1+𝜉)2+𝜂2(𝑟+𝜁)2−𝜇𝑥(1+𝑟) ln(1+𝑟+𝜉+𝜁)+ 1 − 𝜇𝑥
2(1 + 𝜉)2 +𝑟(1 − 𝜇𝑥)

2(𝑟 + 𝜁)2

The equations of motion are derived from Hamilton’s equations. After neglecting
higher-order terms, we obtain the linearized equations that form the basis for
the matrix representation in Eq. (10).

Appendix B: Equations of Motion for Envelope Perturbations with
Dispersion

The Hamiltonian with dispersion from Sec. IV is:

𝐻̂env = ̂𝑝2
𝑥+ ̂𝑝2

𝑦+ ̂𝑝2
𝐷𝛿

+𝜎̂2
𝑥+𝜂2𝜎̂2

𝑦+𝐷̂2
𝛿−𝜇𝑥,𝑑(1+𝑅) ln(𝑋̂+ ̂𝑌 )+1 − 𝜇𝑥,𝑑

2𝜎̂2𝑥
+𝑟𝑑(1 − 𝜇𝑥,𝑑)

2𝜎̂2𝑦
+(1 − 𝜇𝑥,𝑑) cos2 𝜃

2 sin2 𝜃

Substituting perturbation variables and performing Taylor expansion yields the
linearized equations for envelope perturbations with dispersion, resulting in the
matrix equation (33) with coefficients 𝑏0 through 𝑏5 as defined in the main text.

Appendix C: Calculation of Higher-Order Mode Contributions

The Hamiltonian for lowest- and higher-order modes in Eq. (43) is:

𝐻̂𝐿,0 = 1
2 (𝑃 2 + 𝜔2𝑄2) + 𝛼𝑄4 + ℎ1𝑄2 cos(2Ω𝜏)

𝐻̂𝐿,𝑛 = ℎ𝑛+1𝑄2 cos[2(𝑛 + 1)Ω𝜏] (𝑛 > 0)

Averaging 𝐻̂𝐿,0 over one period 𝑇 = 2𝜋/Ω yields the effective Hamiltonian
for the 2:1 resonance. For 𝐻̂𝐿,𝑛 with 𝑛 > 0, the average over one period is
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zero because ⟨cos2(Ω𝜏) cos[2(𝑛 + 1)Ω𝜏]⟩ = 0, ⟨sin2(Ω𝜏) cos[2(𝑛 + 1)Ω𝜏]⟩ = 0,
and ⟨sin(Ω𝜏) cos(Ω𝜏) cos[2(𝑛 + 1)Ω𝜏]⟩ = 0. This proves that high-order modes
cannot excite the 2:1 parametric resonance.
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