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Abstract
The neutron diffusion equation plays a pivotal role in the analysis of nuclear
reactors. Nevertheless, employ#2;ing the Physics-Informed Neural Network
(PINN) method for its solution entails certain limitations. TraditionalPINN
approaches often utilize fully connected network (FCN) architecture, which is
susceptible to overfitting,training instability, and gradient vanishing issues as
the network depth increases. These challenges result in ac#2;curacy bottle-
necks in the solution. In response to these issues, the Residual-based Resam-
ple Physics-InformedNeural Network(R2 -PINN) is proposed, which proposes
an improved PINN architecture that replaces the FCNwith a Convolutional
Neural Network with a shortcut(S-CNN), incorporating skip connections to
facilitate gra#2;dient propagation between network layers. Additionally, the
incorporation of the Residual Adaptive Resampling(RAR) mechanism dynam-
ically increases sampling points, enhancing the spatial representation capabil-
ities andoverall predictive accuracy of the model. The experimental results
illustrate that our approach significantlyimproves the model’s convergence capa-
bility, achieving high-precision predictions of physical fields. In com#2;parison
to traditional FCN-based PINN methods, R2 -PINN effectively overcomes the
limitations inherent incurrent methods, providing more accurate and robust
solutions for neutron diffusion equations.
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China 2Science and Technology on Reactor System Design Technology Labo-
ratory, Nuclear Power Institute of China, Chengdu, 610213, China 3CNNC
Engineering Research Center of Nuclear Energy Software and Digital Reactor,
Chengdu, 610213, China The neutron diffusion equation plays a pivotal role
in nuclear reactor analysis. Nevertheless, employing the physics-informed neu-
ral network (PINN) method for its solution entails certain limitations. Con-
ventional PINN approaches generally utilize a fully connected network (FCN)
architecture that is susceptible to overfitting, training instability, and gradient
vanishing as the network depth increases. These challenges result in accuracy
bottlenecks in the solution. In response to these issues, the residual-based resam-
ple physics-informed neural network (R2-PINN) is proposed. It is an improved
PINN architecture that replaces the FCN with a convolutional neural network
with a shortcut (S-CNN). It incorporates skip connections to facilitate gradi-
ent propagation between network layers. Additionally, the incorporation of
the residual adaptive resampling (RAR) mechanism dynamically increases the
number of sampling points. This, in turn, enhances the spatial representation
capabilities and overall predictive accuracy of the model. The experimental
results illustrate that our approach significantly improves the convergence capa-
bility of the model and achieves high-precision predictions of the physical fields.
Compared with conventional FCN-based PINN methods, R2-PINN effectively
overcomes the limitations inherent in current methods. Thus, it provides more
accurate and robust solutions for neutron diffusion equations.

Keywords: Neutron diffusion equation, Physics-informed neural network, CNN
with shortcut, Residual adaptive resampling

INTRODUCTION
Nuclear reactor core analysis is crucial to ensure the safe operation of nuclear re-
actors. The neutron diffusion equation describes the neutron movement within
a medium and is fundamental to this analysis [1]. Numerical methods have
been widely applied to numerous physical scenarios, with methods such as fi-
nite difference [2] and finite element [3] being continuously developed and im-
proved. Many related works are available in the reactor domain. For example,
Hamada [4] proposed higher-order compact finite-difference schemes to solve
neutron diffusion equations. Yuk [5] utilized the finite element method to solve
a time-dependent neutron diffusion equation. Li [6] designed an algorithm based
on the finite volume method to solve multi-group neutron diffusion equations.
For the same problem, Matheus Gularte Tavares [7] and K. Zhuang [8] used
the source iterative and variational nodal methods, respectively. Additionally,
many researchers have successfully employed CFD software such as COMSOL
[9], ANSYS FLUENT [10], and OpenFOAM [11] to address neutron diffusion
problems.

However, these methods require discretization of the solution domain, which can
be computationally complex and time-consuming when high-precision physics
reconstruction is required [12]. Additionally, considering the complex environ-
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ment in nuclear reactors, which exist in multi-physics fields such as neutron
transport and heat transfer, numerical methods need to simplify and approx-
imate the model to solve the equations. This introduces a certain number of
solution errors. Meanwhile, owing to the development of neural networks (NNs),
interest in machine learning-based approaches has been increasing [13]. Train-
ing an NN enables the prediction of the physical field to be faster than that
with conventional numerical methods. Prior engineering knowledge should then
be incorporated into the network to make the NN predictions more consistent
with physical laws. PINNs were introduced by Raissi [14], which incorporate
partial differential equations (PDEs) as constraints during network training by
increasing the penalties for violating PDE data points. Thus, it yields more
precise and physically consistent solutions. To date, PINNs have been applied
successfully to various scientific computation problems in engineering fields such
as fluids [15, 16], heat transfer [17, 18], flows [19, 20], and solid mechanics [21,
22], and have yielded significant results [23]. The differences between PINNs
and conventional numerical methods are listed in Table 1 . The Monte Carlo
method [24, 25] and CFD [26] can also be used to solve reactor problems in nu-
clear reactor core analysis. In recent years, deep neural networks (DNNs) have
been used increasingly in reactor cores [27, 28]. Dong [29, 30] applied PINNs to
solve multiple neutron-diffusion benchmark equations and demonstrated highly
accurate predictive results. Utilizing FCN to capture the neutron distribution,
they achieved a neutron flux distribution solution with an accuracy of 10−7 and
successfully applied it to the search for critical parameters.

Moreover, FCNs are vulnerable to gradient vanishing and encounter nonconver-
gence during training. When the gradient vanishes, the NN parameters are not
updated, and it is challenging for the network to learn new knowledge [31]. This
may cause the network to have difficulty converging to an optimal solution, miss
a large amount of information, and affect the expressive capability of the model.
In terms of solving the neutron diffusion equation, the error in the predicted
result renders the critical assessment inaccurate. Furthermore, it was observed
that regions with large gradients exhibited insufficient training under uniform
sampling, particularly when the number of sampling points was limited. This
resulted in significant errors in regions with large gradients, thereby limiting
further improvement in network accuracy. When solving the neutron diffusion
equation, the limited accuracy may result in inefficient parameter searches that
significantly increase the search time.

Recent studies proposed adaptive sampling based on gradient information [32]
and assigned adaptive weights to sample points in loss calculations [33, 34].
These enhancements improved the prediction performance of PINNs in regions
with significant gradients and limited sampling points. Furthermore, the prob-
lem of gradient disappearance in FCNs remains unresolved. Researchers have
evaluated the replacement of FCNs with other neural network techniques [35]
such as CNNs [36] and recurrent neural networks (RNNs) [37] to achieve better
performance and more precise results.
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To address this, this study proposed a novel framework called the R2-PINN. It
combines the S-CNN architecture with the RAR method to solve neutron diffu-
sion equations. The proposed model effectively alleviates the gradient vanishing
problem by adding the gradient backpropagation path. Moreover, the network
can balance the loss between regions and achieve higher accuracy by using a re-
sample mechanism. The R2-PINN was evaluated against the FCN to solve the
neutron diffusion equation benchmark problems (introduced in Section II). Ad-
ditionally, it was demonstrated that our method effectively suppressed the loss
function oscillation and achieved high-precision field prediction. In addition,
our method significantly reduced the time required for an eigenvalue search.
This enabled us to obtain an accuracy of 10−5 within 10 min and an accuracy
of 10−4 in 250 s.

The remainder of this paper is organized as follows: Section II introduces the
benchmark problems used in Section IV. Section III introduces the basic ar-
chitectures including the structure of the S-CNN and RAR resample methods
and the overall R2-PINN architecture. Section IV presents the multiple experi-
ments conducted to optimize the hyperparameters and verify the superiority of
the proposed model. In particular, different search algorithms are compared for
the parameter search to reduce the search time. It also presents generalizability
validation experiments using the same model for multiple benchmark problems.
Section V analyzes and discusses the experimental results. Finally, Section VI
concludes the study and discusses future research directions.

II. PROBLEM SETUP
A. One-dimensional reactor diffusion equation for a single energy
group

In this section, a single-group k-eigenvalue problem is introduced for the crit-
icality calculations. The largest value of k (known as the effective neutron
multiplication factor or keff) should be determined. The single-group neutron
diffusion model is given by Eq. 1:

��(r, E, t) =� ・D��(r, E, t)−Σt(r, E)�(r, E, t)+ (cid:90) ∞ S(r, E, t)+ �(E�)Σf (r,
E�)�(r, E�, t)dE�+ (cid:90) ∞ Σs(r, E� → E)�(r, E�, t)dE�

where �(r, E, t) denotes the neutron flux of the energy group E in the r-coordinate
at the instant t, v represents the neutron velocity, D denotes the diffusion coeffi-
cient, � represents the neutrons per fission numbers, �(E) represents the prompt
neutron spectra, Σt represents total macroscopic cross-section, Σs represents the
macroscopic scattering cross-section from group E� to group E, Σf represents the
fission macroscopic cross-section, and S(r, E, t) represents the neutron source.

In the absence of S(r, E, t), the initial neutron flux density is symmetric along
the x-axis. Eq. 1 can be simplified into Eq. 2[1]:

If the composition of the system material (i.e., k∞ and L2) is given, a unique
critical size (denoted by a0) results in keff = 1. The critical size a0 corresponds
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to the critical state of the reactor. For reactor sizes larger than a0, keff >
1, which indicates that the reactor is in a supercritical state. Conversely, for
reactor sizes smaller than a0, keff < 1, which indicates that the reactor is in
a subcritical state [42]. However, if the reactor size is given, it is feasible to
determine a fuel enrichment (material composition) that satisfies Eq. 4 and
ensures that the reactor attains criticality. When the system is in the critical
state, the neutron flux density distribution within the reactor can be described
as follows:

��(r, t) = �2�(r, t) + k∞ − 1 L2 �(r, t)

Here, k∞ represents the infinite multiplication factor, and L denotes the diffu-
sion length. Consider a uniform bare reactor [41] that is shaped as an infinite-
plate bare reactor with dimensions of infinite length and width, and a thickness
(including the extrapolation distance) of a. This is illustrated in Fig. 1 [Fig-
ure 1: see original paper]. The analytical solution for the neutron flux can be
obtained using the separation-of-variables method, as shown in Eq. 3:

�(x) = Acos

B. Two-dimensional reactor diffusion equation for a single energy
group

Based on II A, consider a two-dimensional neutron diffusion equation formulated
as follows:

�(x, t) = (cid:34) (cid:88) (cid:90) a �0(x�)cos (2n − 1)𝜋 (cid:35) x �dx � (2n −
1)𝜋 x e(kn −1)t/ln

��(x, y, t) = �2�(x, y, t) + k∞ − 1 L2 �(x, y, t)

By discretizing Eq. 7 and approximating the Laplace operator and partial
derivatives, the equation can be converted into the following form:

i,j − �n i+1,j − 2�n i,j+1 − 2�n i,j + �n i−1,j i,j + �n i,j−1 k∞ − 1 L2 �n

Fig. 1. Infinite Plate Reactor.

The critical conditions for a bare reactor in the single-group approximation are
given by Eq. 4. keff = 1 + L2B2 = 1 where keff is the effective neutron
multiplication factor. When the system is in a critical state, the neutron flux-
density distribution satisfies the wave equation according to the fundamental
eigen function corresponding to the minimum eigenvalue g. This is given by Eq.
5:

�2�(r) + B2 g �(r) = 0

where �n i,j denotes the value of the neutron flux at the spatial grid point (i, j)
at time n. Δt is the time step. Δx and Δy are the spatial steps in the x- and
y-directions, respectively. D is the diffusion coefficient, and v is the neutron
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velocity. k∞ denotes the infinite multiplication factor, and L is the diffusion
length.

According to Eq. 8, the spatial domain meshes use the finite difference method
to solve for the entire domain flux magnitude, and the numerically solved data
are used as a test set to verify the model accuracy.

C. Two-dimensional rectangular geometry multi-group multi-material
diffusion problem

In a nuclear reactor, the neutron transportation can be described by the multi-
group diffusion theory. In this case, the fast- and hot-group neutron fluxes
satisfy the following diffusion equations:

−D1�2�1(r) + Σt1�1(r) = [Σs1$→1𝜙1(𝑟)+Σ𝑠2→$1�2(r)] + [�Σf1�1(r) + �Σf2�2(r)]

−D2�2�2(r) + Σt2�2(r) = [Σs1$→2𝜙1(𝑟)+Σ𝑠2→$2�2(r)] + [�Σf1�1(r) + �Σf2�2(r)]

where D1 and D2 are the diffusion coefficients of fast- and hot-group neutrons,
respectively. �1 and �2 are the fast- and hot-group neutron flux densities, re-
spectively. �Σf1 and �Σf2 are the neutron production cross sections of the fast-
and hot-group neutrons, respectively. Σs1$→$2 is the fast group to hot group
fission source term.

For pressurized water reactors, the example is divided into two different material
regions, which is shown in Fig. 2 [Figure 2: see original paper]. The material
parameters for each region are listed in Table 2 . Meanwhile, considering that
the boundary energy between the fast- and hot-group is low enough, under such
circumstances, no hot neutrons are directly produced by nuclear fission. As a
result, �1 = 1, �2 = 0, and Σs2$→$1 = 0. Eq. 9 and Eq. 10 can be simplified
to Eq. 11 and Eq. 12.

−D1�2�1(r) + Σr1�1(r) = [�Σf1�1(r)+�Σf2�2(r)]

−D2�2�2(r) + Σa2�2(r) = Σs1$→$2�1(r)

Fig. 2 [Figure 2: see original paper]. Material Distribution [30].

Table 2 . Calculate Area Material Properties.

Material 2 Material 1 Energy Group Dg(cm) Σa (cm−1) �Σf (cm−1) Σs1$→$2
(cm−1) 0.02767 was used as a test set in the experiment to evaluate the model
prediction accuracy.

D. 2D-IAEA benchmark problem

The 2D-IAEA PWR benchmark problem is a two-dimensional static problem
with two neutron groups but without delayed neutron precursors [43]. It is
modeled by the following two-dimensional two-group diffusion equations:

(cid:26) −D1�2�1 +(Σa1 +Σs1$→$2)�1 = 𝜆�1(�Σf1�1 +�Σf2�2) −D2�2�2 +Σa2�2
−Σs1$→$2�1 = 𝜆�2(�Σf1�1 +�Σf2�2)
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The reactor has a two-zone core containing 177 fuel assemblies with a width
of 20 cm. The core is radially reflected by 20 cm of water. Owing to the sym-
metry along the x- and y-axes, this one-quarter reactor domain is denoted by
Ω. It is composed of four sub-regions of different physical properties Ω1,2,3,4.
The reactor is shown in Fig. 3 [Figure 3: see original paper]. Neumann bound-
ary conditions were enforced at the left and bottom boundaries. The group
constants for this problem are listed in Table 3 .

Fig. 3. Geometric Layout of the 2D-IAEA Benchmark Problem [43].

Table 3 . Group constants of the 2D-IAEA benchmark.

Region Group Dg(cm) Σag(cm−1) �Σfg(cm−1) Σ1$→$2(cm−1)

III. METHODS
A. PINN loss formulation

Based on the multi-group diffusion theory, the distribution of the neutron flux
in the core is obtained by iteratively solving the discretized diffusion equation.
The obtained dataset In PINN, considering the general form of a parameterized
and nonlinear PDE, F (u, x, y, t, :) = 0, (x, y) � Ω, t � [0, T ] where u represents
the latent solution and Ω represents the solution domain. This formula can
express PDEs in almost all the fields of mathematical physics.

Nf data points were sampled to measure the physical consistency. This type of
loss is collectively referred to as the PDE loss. It has the following form:

LossPDE = Nf(cid:88) F (u, x, y, t, :); x � Ω

Subsequently, the initial and boundary losses owing to the known initial and
boundary conditions are introduced. Ni and Nb data points are collected to
calculate LossInitial and LossBoundary, respectively. In addition, a few data
points should be used for training.

LossInitial = Ni(cid:88) (�truth −�predict); t = 0, x � Ω

LossBoundary = Nb(cid:88) (�truth −�predict); x � �Ω

LossData = Nd(cid:88) (�truth −�predict)

Incorporating a small amount of labeled data provides information regarding
the correct order of magnitude. This enables the PINN to better calibrate
its predictions and prevent unrealistic or divergent solutions. The inclusion of
such labeled data significantly contributes to the stability and accuracy of the
training process for PINNs. By combining the above losses, networks can be
penalized, and the training process is constrained effectively. This ensures that
the obtained solutions adhere more closely to the fundamental laws of physics.
Therefore, the final network loss formulation is as follows:

LossTotal =LossPDE+ (LossInitial +LossBoundary +LossData) ・w
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The weights of the different loss functions and number of data points used to
calculate these losses significantly affect the convergence speed and accuracy of
the model. The final sampling ratio was determined through multiple experi-
ments. The sampling ratio for the PDE loss, boundary loss, initial loss, and
data loss was approximately 30:10:10:1. Multiple losses can be balanced by ad-
justing the weights w. This prevents the network from prioritizing a single loss,
particularly when significant differences in the magnitude between losses exist.

B. S-CNN architecture

When solving the neutron diffusion equation, the performance of the NN can be
affected significantly by the vanishing gradient problem as the network depth
increases. This problem can straightforwardly result in training failure and
render the results unreliable. Moreover, it significantly limits the increase in
the number of layers, reduces the expressive power of the network, and limits
the prediction accuracy of the network.

Inspired by the effective alleviation of the gradient vanishing problem in the
ResNet architecture [44] in the image domain (which introduces the concept of
residual learning), networks can learn residual mappings (the difference between
the input and desired output). This facilitates the training of very deep neural
networks. Thus, a skip-connection mechanism was introduced into the PINN
architecture.

The input sampling features are the coordinates, namely, x, y, and t. These
are independent. Therefore, a separate filter was applied to each feature in
the experiment. A one-dimensional convolution was used as the basis for each
network layer. Each hidden layer is expressed as follows:

zl = fl(Wlzl−1 + bl)

where zl denotes hidden layer l between the input and output layers; Wl and bl
are the weight and bias, respectively; and fl(・) denotes the activation function
(e.g., the Tanh function).

On this basis, skip connections were added between different layers. The corre-
sponding hidden layer is expressed as

zl = fl((Wlzl−1 + bl) + zl−n−1), l > n + 1

where n represents the skip distance, that is, the number of crossed hidden
layers. To determine where a skip connection should be added, the contribution
of each layer to the training of the entire network was measured by calculating
the gradient norm for each layer. Here, the gradient norm was computed as in
[40]:

||g|| = sqrt(sum(g 2

For example, in the 10-layer network, the gradient contribution was calculated
for each layer of the network (Fig. 4 [Figure 4: see original paper]). When the
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gradient is significant, the parameters of the layer can be updated conveniently.
A large gradient results in an unstable model, and a small gradient indicates
that the layer may need to undergo more iterations to attain the optimal state
and may encounter a gradient vanishing problem. Thus, the network increases
the shallow gradient paths by establishing shallow-to-deep skip connections.
This provides more gradient paths in the shallow layers and prevents vanishing
gradients in the deep layers. The detailed 10-layer S-CNN architecture used in
Section IV is presented in Table 4 . Here, B, C, and L represent the batch size,
channel, and length, respectively.

Meanwhile, referring to the grid division of conventional numerical computa-
tion methods, fine-grained samples should be collected from regions with large
gradients to improve the prediction accuracy of the network in these regions.
Based on this, we consider using Eq. 24 to update our dataset, that is, introduc-
ing RAR [38] to improve the distribution of residual points during the training
process of PINNs to address the bottleneck phenomenon that originates from
the difficulty of reducing the PDE residuals in certain regions. This ultimately
enhances the predictive accuracy of the model.

By selectively sampling more points in regions where the PDE residuals are
significant, this approach enables the network to focus on challenging areas and
adjust the sampling density accordingly. This, in turn, results in improved
learning and prediction capabilities. The method is particularly effective for
capturing the complex behavior of PDE solutions and identifying sharp gradient
regions.

The pseudocode for the RAR method is as follows: Set S with ran-
domly sampled initial points

Algorithm 1: RAR Algorithm.

Input Output: Updated set S

Divide the solution domain into $�$2 subintervals;

Train PINN for n iterations;

repeat

Compute LossPDE for points in set S;

Calculate the average residual of each subinterval;

Randomly sample S� from the subinterval with the highest average residual.

Update set S:

S = S � S�;

Train PINN for n iterations;

until the maximum number of iterations is attained or the total number of points
attains the limit;
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Fig. 4. Gradient Norm of Each Layer.

Table 4. S-CNN Structure.

Input Size(B,C,L) Output Size(B,C,L) (None,2,1) (None,26,1) (None,26,1)
(None,26,1) (None,26,1) (None,26,1) (None,26,1) (None,26,1) (None,26,1)
(None,26,1) (None,26,1) (None,26,1) (None,26,1) (None,26,1) (None,26,1)
(None,26,1) (None,26,1) (None,26,1) (None,26,1) (None,1,1) Param Layer
Name input layer conv1 layer conv2 layer conv3 layer conv4 layer conv5 layer
conv6 layer conv7 layer conv8 layer output layer

In the experiment, the skip distance n was set to 3 for larger gradient propa-
gation spans. It is the best parameter for shallow networks. When n < 3, the
jump distance is insufficient. This may limit the network’s capability to learn
complex physical fields and does not prevent the gradient vanishing problem.
When n > 3, the number of jumping layers is excessively large. This may pose
a challenge to gradient propagation and, thus, increase the difficulty of optimiz-
ing the network. Experiments were conducted on S-CNN models with varying
depths, and high-precision results were obtained consistently. This validated
the effectiveness of the residual module in addressing the gradient problem.

C. RAR Mechanism

Owing to specific regions with large gradients in the overall solution domain, if
sampled uniformly, the network displays inadequate fitting of the local regions.
This issue can be addressed by increasing the weights of specific sampling points
(as shown in Eq. 23) or by resampling using Eq. 24:

This algorithm divides the solution domain into $�$2 subintervals with 𝛼 sub-
divisions in both x- and t-directions. The Latin hypercube sampling (LHS)
method [39] was used for random sampling. This ensured that sample points
covered the entire space without clustering or bias.

Xnew = Xraw + w ・Xf

Xnew = Xraw + Xresample

where Xraw represents the original dataset, Xnew represents the new dataset,
Xf represents the set of sampling points with more significant PDE residuals,
Xresample represents the set of resampling points, and w represents the penalty
weight.

As shown in Fig. 5 [Figure 5: see original paper], by adaptively adding points to
regions with more significant residuals, more intensive sampling was conducted
in one of the subdomains of the entire domain. This enabled the network to
better capture the PDE solution’s behavior. This adaptive sampling approach
improved the distribution of residual points and mitigated the bottleneck phe-
nomenon. Ultimately, it enhanced the accuracy and performance of the model
and accelerated its convergence.
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D. Proposed Framework: R2-PINN

Our study proposed an R2-PINN architecture. It combines the PINN structure,
S-CNN, and RAR mechanisms to solve PDEs with improved accuracy and com-
putational efficiency. The structure of R2-PINN is shown in Fig. 6 [Figure 6:
see original paper]. In R2-PINN, S-CNN is used as the backbone of the network.
It can better capture the features of the PDE solution and improve the train-
ing efficiency. The RAR mechanism is employed to balance LossPDE across
regions of the domain. This ensures that the network focuses on regions with
large errors and adaptively refines the mesh. By combining the PINN structure,
S-CNN, and RAR mechanisms, the R2-PINN can effectively solve PDEs with
improved accuracy and computational efficiency. It leverages the capability of
deep learning and adaptive refinement to capture the complex features of a PDE
solution. Thereby, it enables a more precise representation of the physical phe-
nomena. Section IV describes the verification of the superiority of the proposed
R2-PINN network and each mechanism through a series of experiments.

IV. EXPERIMENTS
In Section IV A, the generation of datasets is introduced, specifically for testing
the accuracy. Section IV B compares S-CNN networks with different depths to
validate the superiority of the improved PINN network architecture. Section
IV C investigates how resampling affects the model accuracy. In Section IV D,
R2-PINN is implemented to search for k∞, and its search efficiency is further
enhanced in Section IV E. Finally, in Section IV F, the generalization capabilities
of the improved PINN architecture model are presented. Furthermore, Sections
IV G to IV I evaluate the generalizability of the models in two-dimensional
neutron diffusion, including multi-group and multi-material scenarios. Finally,
Section IV J explains the strategy for selecting optimal hyperparameters for the
R2-PINN.

Fig. 6. Overall Architecture.

Finally, all the samples in the dataset were used to validate the model accuracy.

A. Dataset preparation

1. One-dimensional reactor diffusion equation for a single energy
group According to Eq. 3 and assuming symmetric initial conditions, two
initial distributions were used for the dataset.

�1(x, 0) = cos(𝜋 ・x /a) − 0.4cos(2𝜋 ・x /a) − 0.4;

�2(x, 0) = 0.5cos(2𝜋 ・x /a) + 0.5; x � [−0.5, 0.5]

The numerical values used in Eq. 2 are as follows: v=2.2 × 103 m/s, D=0.211 ×
10−2 m, L2=2.1037 × 10−4 m2, and a=1 m. The boundary follows the delicacy
boundary and predicts the flux distribution for 0.015 s. Data on how the flux
varies with time for different parameter settings can be obtained by modifying
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the k∞ parameter value. Our test dataset consists of 10000 data points with
100 grid points in both x- and t-directions. The experimental section tests the
accuracy of the model prediction on this dataset.

2. Two-dimensional reactor diffusion equation for a single energy
group To ensure that the boundary flux was zero and that the full-domain
flux was continuous, we set the initial flux distribution at time t = 0 to the
following equation:

� = (exp(−(x 2 + y 2)/20) − exp(−100)) x � [−10, 10], y � [−10, 10].

An iterative solution was obtained using 100 grids in the x-, y-, and t-directions
to solve the flux distribution for 1 s, which was used as a dataset for testing the
model.

3. Two-dimensional rectangular geometry multi-group multi-material
diffusion problem A source iteration method was used to solve the dual-
group neutron flux and test the accuracy of the model. The ranges of the values
of x and y are shown in Fig. 2. The total dataset consists of 10000 data points
with 100 grid points in both x- and y-directions. The boundary follows the
delicacy boundary.

4. 2D-IAEA problem The reference solution for the two-dimensional two-
group diffusion equations was obtained using the high-quality general-purpose
finite-element solver FreeFem++ [45]. The eigenvalue problem was solved using
Arpack ++. It is an object-oriented version of the ARPACK eigenvalue package
[46]. The total number of samples in the dataset was 12286 [47], with 76 data
points as data fed into the network.

Fig. 5. PDE Points Distribution. (a) Before Resampling; (b) After Resampling.

B. S-CNN depth and kernel size ablation experiment

All the parameters except for the base network were maintained consistent to
compare the FCN and S-CNN architectures. The total number of sampled data
points was 5000, with 3000 data points used to calculate LossPDE, 1000 data
points sampled for LossInitial and 1000 data points sampled for LossBoundary.
Network training does not involve feeding the data to calculate LossData. The
Tanh activation function and LBFGS optimizer were used. The Gaussian dis-
tribution random sampling method was used to initialize the network weights
and biases. The number of hidden neurons per layer in the network was set to
26.

To investigate the impact of the layer number and kernel size on the model
performance, ablation experiments were conducted on S-CNN networks with
different depths and kernel sizes. The padding was set to zero for kernel size
one and to one for kernel size three. The detailed experimental results are listed
in Table 5 and Fig. 7 [Figure 7: see original paper].
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In Table 5 and Fig. 7, Ω MSE refers to the mean squared error (MSE) score over
the entire domain, and Ω1 MSE refers to the MSE score at t=0.015 s, which
is calculated separately to assess the capability of the model to extrapolate in
time. The baseline refers to the results of FCN. From Table 5 and Fig. 7, it can
be observed that when the number of layers is less than 10, the accuracy shows a
positive correlation with the number of layers. However, as the number of layers
increases further, the accuracy does not increase. Hence, it is preferable to select
fewer layers to make the NN train faster and achieve a high accuracy. This is
because although the expressive capability of the neural network increases with
the number of layers, beyond a certain threshold, an increase in the number of
layers does not significantly improve the expressive capability of the network.
An increase in the number of layers only causes an increase in the training
time, and the model experiences overfitting problems. Moreover, because the
input features are coordinates and not related to each other, the kernel size set
to one can consider each channel as an independent feature to be addressed.
This operation is more in line with reality. Therefore, a kernel size set to one
can achieve a higher accuracy than a kernel size set to three. Based on the
above analysis, the 10-layer S-CNN with a kernel size of one exhibited the best
predictive accuracy with the minimum number of parameters. Consequently,
this configuration was used in the subsequent experiments.

C. Ablation experiment on resampling parameters in S-CNN

According to the RAR algorithm, the resampling granularity was set to 𝛼 to
define the granularity of the subdomains in the solution domain. The solution
domain was divided into 𝛼 subintervals along the x and t dimensions. This re-
sulted in $�$2 subintervals. Following the RAR algorithm, in every 1000 epochs,
the network calculates and compares the MSEs of each subdomain and performs
resampling in the subinterval with the largest MSE. The number of resampling
points is denoted by m.

The initial PDE sampling point was set to 3000 to prevent excessive sampling
and training. Moreover, 2000 data points were sampled, with 1000 points to
calculate the initial loss and 1000 points to calculate the boundary loss. The
maximum number of PDE samples was set to 5000. Resampling was stopped
when the total number of PDE samples attained 5000 after multiple iterations.
The LHS method was used to resample.

Ablation experiments were conducted in two dimensions (resampling granular-
ity and number of resampling points) while maintaining an identical S-CNN
architecture (10 layers) and the other hyperparameters. The S-CNN network
was compared with an FCN (baseline) using identical initial conditions, that is,
�0 = �1. The detailed experimental results are presented in Tables 6 and 7.

Table 6 . Ablation Study on Resampling Numbers.

Resample Numbers m Baseline Ω MSE 8.9 × 10−7 9.1 × 10−8 1.3 × 10−7 9.5
× 10−8 1.3 × 10−7 9.8 × 10−8 8.0 × 10−8 1.3 × 10−7 1.0 × 10−7 3.9 × 10−8
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Ω1 MSE 3.8 × 10−6 2.1 × 10−8 8.4 × 10−8 9.8 × 10−9 5.4 × 10−8 4.1 ×
10−8 4.9 × 10−9 3.1 × 10−8 2.0 × 10−8 1.8 × 10−8

Table 7 . Ablation Study on Resampling Granularity.

Resample Granularity 𝛼 Baseline Ω MSE 8.9 × 10−7 8.0 × 10−8 1.5 × 10−7
1.2 × 10−8 6.4 × 10−7 1.0 × 10−7 Ω1 MSE 3.8 × 10−6 4.9 × 10−9 8.5 ×
10−8 9.1 × 10−8 3.5 × 10−8 8.8 × 10−8

From Table 6 and Table 7, it is evident that under different sampling hyper-
parameters, our network consistently achieved a better Ω1 MSE result. It was
two orders of magnitude higher than that of the FCN baseline. When using the
optimal hyperparameters, the R2-PINN achieved an accuracy of 10−8or even
10−9. This indicates that our method has a significant advantage in determin-
ing whether the flux values attain a steady-state at a specific instant. This
advantage was demonstrated during the k∞ search described in Section IV D.

Furthermore, the results were obtained by adopting another initial condition,
where �0 = �2. A boxplot analysis of the resampling hyperparameters for all
the results is shown in Fig. 8 [Figure 8: see original paper] and Fig. 9 [Figure
9: see original paper]. When the number of resamples is 500 and the resample
granularity is set to two, the model achieves the best accuracy.

Table 8 . Training Performance with Different Resample Numbers.

m Training Epochs Training Time (s) Avg. Time per Epoch(s)

Fig. 8. MSE Comparison Between Parameters. (a) m Comparison; (b) 𝛼
Comparison.

Fig. 11 [Figure 11: see original paper] shows the distribution of the values
predicted by the model. When t approaches zero, there is a specific deviation
between the predicted result in the boundary region and zero. This guided us
to appropriately increase the weights of the LossBoundary and LossInitial.

Fig. 10 [Figure 10: see original paper]. Error Field. (a) k∞ = 1.0001; (b) k∞
= 1.0041.

Fig. 9. Resample Parameter 3D Visualization.

Given the introduction of the RAR mechanism, it is necessary to consider
whether there is a significant time overhead. Hence, time comparisons were
performed for different numbers of samples. The results are listed in Table 8. It
can be observed that when the number of resamplings was set to 500, the train-
ing time required by the model reduced significantly compared with that when
it was set to zero. By calculating the time consumed per cycle, we determined
that this trend did not increase significantly. Thus, setting an appropriate num-
ber of resamplings effectively reduced the overall network training time. This
shows that the RAR method involves an increase in the number of sampling
points. This results in a different density of samples in each region, as well as a
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relatively large number of sampling points in complex regions. This contributes
substantially to the convergence speed of the network.

The model uses the optimal resampling parameter configuration to predict the
flux distribution under different k∞ values where �0 = �1. The error plot is
shown in Fig. 10. Except for the relatively large errors at t=0 s, the errors in
the other regions were relatively flat. Significantly, as the time increased, the
errors increased marginally. In addition, Fig. 11. Predict Result. (a) k∞ =
1.0001; (b) k∞ = 1.0041.

To evaluate the performance of the model and measure the difference between
the losses, Fig. 12 [Figure 12: see original paper] shows the training and testing
losses, respectively. R2-PINN converged in 2000 epochs. In Fig. 12, LossPDE
is larger than LossBoundary and LossInitial. This may result in LossPDE dom-
inating the optimization process, whereas the other losses cannot be optimized
effectively. To address this issue, w in Eq. 19 was set to 100 to impose higher
penalties on the boundary and initial region error.

Based on the experimental results in Section IV B and Section IV C, an op-
timized S-CNN architecture with an optimized RAR mechanism was used to
compose the R2-PINN for further use in searching critical parameters. This is
discussed in Section IV D and Section IV E.

Fig. 13 [Figure 13: see original paper]. � Distribution. (a) �0 = �1, k∞ = 1.0001;
(b) �0 = �1, k∞ = 1.0041; (c) �0 = �2, k∞ = 1.0001; (d) �0 = �2, k∞ =

D. k∞ Search with R2-PINN

For a given geometric shape and volume of the reactor core, k∞ and L2 can
be adjusted by modifying the reactor core size or modifying the composition
of the materials within the reactor such that keff is one. When the system
attains a steady state after a sufficient period, the neutron flux density follows
the distribution described by Eq. 6, and the reactor is in a critical state.

In this experiment, the L2 parameter size was not altered. Moreover, different
networks were trained by adjusting k∞ to predict the evolution of the neutron
flux at this parameter. By continuously adjusting the value of k∞, we attempted
to adjust keff to one, thereby attaining the critical state. Initially, the parameter
search range was set as [1.0001, 1.0041]. It has been verified that when k∞
is 1.0001, keff < 1. This indicates a subcritical state in which �(x, t) decays
exponentially with time t. When k∞ is 1.0041, keff > 1 indicates a supercritical
state in which �(x, t) increases continuously. The specific distributions are shown
in Fig. 13.

In the absence of delayed neutrons, when the system approaches criticality it
converges to a critical state within a significantly short time (5 − 8 ms) re-
gardless of the boundary conditions. Here, � does not vary. At this point, the
�-distribution is a steady-state analytical solution. The parameter search inter-
val is partitioned into n equal parts, yielding multiple k∞ values. The network
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is trained for each value, calculates �t after a specific time t𝜏 , and performs a
search until �t approaches zero within a reasonable accuracy range. The process
is illustrated in Fig. 14 [Figure 14: see original paper]. In each network, Eq. 2 is
used as the equation for LossPDE. Eq. 25 is used as the equation for LossInitial.
The MSE between the boundary predicted values and zero is used to compute
LossBoundary.

Using the automatic differentiation mechanism of the NN, the partial deriva-
tive of � for t was calculated after obtaining the predicted values. Given the
network’s capability to predict flux variations within a time interval of 0.015
s, the experiment used the last five time points to calculate ��(r, t)/�t and to
determine whether the system was in a critical state [29].

Using Fig. 14, searches for k∞ when the initial distribution follows �1 and �2
were conducted. Each search result was recorded. �t as a function of k∞ is
shown in Fig. 15 [Figure 15: see original paper]. When n = 2 and the grid
method degenerates into a binary search, only approximately 20 iterations are
required to obtain the search results with an accuracy level of 10−5. The total
runtime of the program was approximately 30 min.

From Fig. 15, �t varies exponentially with k∞. This further indicates that
gradient-based methods such as gradient descent or Newton’s method can be
evaluated to search for parameter values more rapidly and efficiently. Alterna-
tively, using curve-fitting techniques to fit the scattered data and the intersec-
tion of the resulting curve with the x-axis yields the value of k∞ at the critical
state. This process can be completed in a small number of search iterations.
The k∞ value Fig. 15. Search Result of �t. (a) �0 = �1; (b) �0 = �2.

corresponding to the critical state is identified by progressively refining the
interval. The search results are presented in Table 9. Among these, Δ� at the
last five time points is recorded to determine whether � attains a steady state.
Compared with the results of the FCN [29], the R2-PINN has a smaller Δ�. This
implies that the R2-PINN search has a higher accuracy than FCN. Furthermore,
the search results Fig. 16. Steady-State Verification. (a) �0 = �1; (b) �0 = �2.

From Fig. 16, the flux tends to stabilize as t increases. This implies that
the system has attained a critical state. This indicates that our network can
effectively search for optimal parameters corresponding to the critical state.

E. k∞ Search efficiency improvement

When searching for k∞, the initial search interval is large. The k∞ value to be
searched differs considerably from the critical state k value. Thus, the accuracy
of prediction is not highly required. Only the prediction is used to compute
�t to serve as a priori information for the next interval refinement. Therefore,
during the training section, we examined whether the rate of variation in the
fluxes converged at regular intervals. When �t converges, the training section is
stopped, and the next k-value network training begins. This results in a faster
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parameter search without loss of accuracy. The equation for determining when
to stop network iteration is as follows:

((�t)i+1 − (�t)i)/((�t)i − (�t)i−1) < 𝜆
The parameter 𝜆 was set to 0.01. At every 200 iterations, Eq. 27 was computed
to determine if the network had stopped iterating. The comparative results for
�0 = �1 are listed in Table 10 . The early termination mechanism can significantly
reduce the search time (0.56 times the original one).

Table 10. Time Consume Comparation.

R2-PINN R2-PINN(Early Termination) Cost Time 7841 s 1837 s 1027 s Search
Result

Furthermore, as shown in Fig. 15, �t is exponentially related to k∞. Therefore,
it can be used to determine the critical value of k∞ by fitting a quadratic
function. To optimize the search algorithms, an experiment was conducted to
compare three search methods: binary, grid, and quadratic fitting. Using R2-
PINN with an early termination mechanism, the results are shown in Fig. 17
[Figure 17: see original paper].

Fig. 18 [Figure 18: see original paper]. MSE Accuracy Comparison for Different
k∞.

a high accuracy of at least 10−7. This indicated its capability to handle various
scenarios and maintain reliable predictions. The observed differences in MSE
across parameter values were relatively small. This further highlights the stabil-
ity and effectiveness of the network. The robustness of the R2-PINN network
is evident from its consistently high accuracy for different parameter values.

G. R2-PINN for solving a two-dimensional reactor diffusion equation
for a single energy group

In this experiment, an 11-layer S-CNN network was used for training. The
remaining hyperparameters were selected as described in Section IV D.

To validate the generalizability of the models, an experiment was conducted
between different k∞. The results are shown in Table 11 . Here, the network
achieved an accuracy of 10−5 under different parameters, and the MSE for the
extrapolation region (that is, the region with t = 1 s) still achieved an accuracy
of 10−5. This demonstrates that the model performs well in terms of temporal
extrapolation capability and can be used to search for parameters corresponding
to the critical state.

Fig. 17. Comparison of Search Method.

Table 11. MSE Results in Different k∞.

The quadratic fitting search method determined k∞ rapidly in 250 s and at-
tained an accuracy of 10−4. Meanwhile, the grid search method determined
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k∞ in 522 s and attained an accuracy of 10−5. Different methods can be
selected for parameter searches based on the actual requirement for time and
accuracy.

F. Network prediction for different k∞: R2-PINN’s robustness

The network was trained at different k∞ values. The results were compared
with the analytical solution generated to obtain the accuracy at each k∞ value,
as shown in Fig. 18, to validate the robustness of the R2-PINN.

The robustness of R2-PINN is illustrated in Fig. Across the tested values, the
network consistently maintained 4.4 × 10−6 1.1 × 10−6 3.2 × 10−6 1.2 × 10−6
1.8 × 10−6 8.5 × 10−7 2.4 × 10−6 1.1 × 10−5 5.5 × 10−6 2.2 × 10−6 4.5 ×
10−6 t=1 s MSE 9.0 × 10−6 1.7 × 10−6 5.2 × 10−6 2.2 × 10−6 3.0 × 10−6
1.6 × 10−6 4.4 × 10−6 2.2 × 10−5 9.3 × 10−6 4.7 × 10−6 8.2 × 10−6

Searching for the k∞ parameter in the manner described in Section IV D yields
k∞ = 1.1378. Using the source iteration method, we determined that k∞=
1.1202. The calculation error is approximately 1.5%. The results of the pre-
diction and reference truths are presented in Fig. 19 [Figure 19: see original
paper]. The error plots are shown in Fig. 20 [Figure 20: see original paper].

Using R2-PINN, the MSE of �1 attains 1.36 × 10−6 and that of �2 attains 2.49
× 10−7. To better illustrate the flux distribution, particularly the abrupt varia-
tions in the neutron flux at the material interfaces for different neutron groups,
cross-sectional views of the neutron flux were adopted with slices extracted from
the x-z and y-z planes. The results and reference solutions are presented in Fig.
21 [Figure 21: see original paper], Fig. 22 [Figure 22: see original paper].

Fig. 19. Comparison Between Result and Truth. (a) Prediction Result (t=0
s); (b) Prediction Result (t=1 s); (c) Truth (t=0 s); (d) Truth (t=1 s). (a) �1
Distribution in x-z Plane; (b) �2 Fig. 21. Predict Result.

Distribution in x-z Plane; (c) �1 Distribution in y-z Plane; (d) �2 Distribution
in y-z Plane.

Fig. 20. Loss Field. (a) t=0 s; (b) t=1 s.

H. R2-PINN for solving two-dimensional rectangular geometry multi-
group multi-material diffusion problem

In this two-group diffusion problem, each neutron group’s flux is predicted inde-
pendently to enhance the accuracy. Specifically, we separately model the fast
group neutron flux (�1) and hot group neutron flux (�2) using dual PINNs with
a criticality factor of keff = 0.9693. Given the interconversion relationship be-
tween the fluxes of these two energy groups, dual PINNs are designed to share
loss functions and are optimized sequentially. This shared loss structure ensures
that the interaction between the energy groups is captured effectively while al-
lowing for customized optimization paths for each flux. To train the models, a
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four-layer S-CNN was employed. The other PINN-related parameters, such as
the sampling ratios, activation functions, and optimization strategies, remained
consistent with those detailed in Section IV D.

Fig. 22. Truth Result. (a) �1 Distribution in x-z Plane; (b) �2 Distribution in
x-z Plane; (c) �1 Distribution in y-z Plane; (d) �2 Distribution in y-z Plane.

The error fields for each energy group are presented in Figs. 23. Owing to the
small value of the flux, to clarify the error representation, we calculated the loss
rate. This is shown in Fig. 23 [Figure 23: see original paper]. The specific
equations are given in Eq. 28.

loss rate = ABS(�predict − �truth)/�truth

Fig. 23. Loss Field and Loss Rate Field. (a) �1 Loss; (b) �2 Loss; (c) �1 Loss
Rate; (d) �2 Loss Rate.

The results show that we can effectively determine the flux distribution under
the specified keff according to the steady-state equations. Additionally, accord-
ing to the experiments presented in Section IV D and Section IV G, we can
determine the critical parameters according to the transient equations. Thus,
the model can be adapted well to solve the two major problems of nuclear reac-
tors, that is, solving for the fluxes and searching for the steady-state parameters.

I. R2-PINN for solving 2D-IAEA problem

Using a 6-layer R2-PINN structure, we incorporated keff as a parameter for iter-
ative optimization in neural network training. The model utilized 18000 points
for computing LossPDE, 500 points for LossBoundary, and 76 points for Loss-
Data. Finally, the relative error and relative L∞ error were used to evaluate
the accuracy of the R2-PINN. Herein, the relative L∞ error is particularly im-
portant in the nuclear engineering domain. The specific equations are expressed
in Eq. 29 and Eq. 30. The prediction results and reference truth are presented
in Fig. 24 [Figure 24: see original paper]. The absolute error plots are shown
in Fig. 25 [Figure 25: see original paper].

Fig. 24. Comparison Between Results and Reference. (a) R2-PINN result of �1;
(b) R2-PINN result of �2; (c) FreeFem++ result of �1; (d) FreeFem++ result of
�2.

Fig. 25 [Figure 25: see original paper]. Absolute Loss Field. (a) Absolute Error
of �1; (b) Absolute Error of �2.

Considering the engineering acceptance criteria for the 2D IBP, the flux calcu-
lation error in fuel assemblies with a relative flux higher than 0.9 should be less
than 5%. In fuel assemblies with a relative flux less than 0.9, the flux calculation
error should be less than 8%. In addition, the relative error of keff should be
less than 0.005 [47]. The predicted results shown in Table 12 satisfy these ac-
ceptance criteria. This indicates that R2-PINN also holds practical engineering
application value.
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Table 12. Results of 2D-IAEA Benchmark.

e∞ of �1 e∞ of �2 er of keff 1.02977 1.797 × 10−4 er = ABS(�predict −
�truth)/�truth

J. The strategy for hyperparameter selection

��predict − �truth�∞ ��truth�∞
The hyperparameter selection strategy was formulated meticulously to balance
the model expressiveness, training stability, and prediction accuracy across the
computational domain. This subsection explains the important hyperparameter
selections for neural networks.

First, a 10-layer network was selected to achieve an optimal tradeoff between
complexity and expressiveness. Compared with shallower networks, deeper net-
works more effectively approximate complex nonlinear functions. This is typical
in physical modeling. As shown in Table 5, our evaluation across configurations
indicated that a 10-layer S-CNN structure consistently outperforms the others.
This makes it the optimal option. This selection method was similarly applied
to different benchmark cases to ensure robustness.

Second, the Tanh activation function was selected over ReLU and Sigmoid be-
cause of its smoother nonlinearity, which is critical for approximating continuous
functions in physical problems. Although ReLU is effective in mitigating van-
ishing gradients, it has insufficient stability in capturing smooth physical fields
and generally encounters difficulty with highly nonlinear PDEs. In contrast,
Tanh enhances numerical stability. This makes it more suitable for PINNs.

Third, the LBFGS optimization algorithm was selected for its faster conver-
gence in high-dimensional problems and capability to prevent gradient explo-
sions. Compared with first-order optimizers such as Adam and SGD, LBFGS
provides a second-order approximation. This results in more stable training
and better performance, particularly in data-limited scenarios. During testing,
Adam and SGD were vulnerable to early convergence and local minima, thereby
yielding suboptimal predictions. Meanwhile, LBFGS provided better stability
and training completeness.

Finally, the selection of 26 hidden neurons per layer achieved a balance be-
tween the model capacity and generalization. Excessively few neurons result
in underfitting, whereas excessively many neurons risk overfitting and instabil-
ity. Through extensive experimentation, 26 neurons per layer were observed to
provide an optimal trade-off. This ensured accurate and stable predictions.

V. RESULTS AND DISCUSSION
An ablation study on the number of layers revealed that an increase in the
depth of the S-CNN architecture improved the accuracy. Significantly, a kernel
size of one yielded superior results. However, an accuracy bottleneck makes
excessively deep layers unnecessary. As described in Section IV B, the S-CNN
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outperformed the FCN architecture across layer configurations. Even when the
number of layers increased to two-fold, no vanishing gradients were observed.
The addition of skip connections effectively mitigated the vanishing gradients
and enhanced the stability, robustness, and overall accuracy of the model.

In Section IV C, a sensitivity analysis of the resample parameter revealed that
the optimal R2-PINN configuration is a resample granularity of 2 and 500 re-
samples. Setting the loss weight coefficient w to 100 achieved the best prediction
performance, thereby resulting in lower losses than the PDE loss. The test loss
in Fig. 12 illustrates a smooth training process without significant fluctuations.
At approximately 2000 epochs, the LBFGS optimizer automatically stopped
training, thereby achieving an MSE accuracy of 10−7. This indicates a high
precision.

Furthermore, k∞ was determined by searching for the critic state in Section
IV D using the adjusted R2-PINN. R2-PINN converged rapidly in 1000 epochs
and attained an accuracy of 10−8. The fast convergence and high convergence
accuracy of the model indicate that it is suitable for parameter search goals that
require the training of multiple networks.

Then, multiple search methods are compared in Section IV E to improve the
search efficiency. From the experimental results, the quadratic fitting search
method can rapidly identify k∞ in only two k-value search processes, with an
accuracy of 10−4 in 250 s. This is of significant value for scenarios with high
real-time requirements. The grid method can also achieve a parameter search
with an accuracy of 10−5 within 10 min. When a high accuracy is required, the
grid method can set the optimal grid refinement numbers to attain a reasonable
duration with a higher accuracy.

The results of experiments conducted at different k∞ values (described in Sec-
tion IV F) show that our R2-PINN network exhibited exceptional performance
in capturing the system dynamics within the domain Ω1. This region exhibited
a significant improvement in accuracy compared with FCN networks. By ac-
curately representing the intricate features and sharp gradients of this specific
region, our network enables a more precise determination of whether the system
is in a steady state. This enhanced accuracy is highly effective when conduct-
ing parameter searches because it allows for higher precision and more reliable
results.

Finally, to verify the generalizability of the model, experiments were conducted
using the S-CNN architecture for a 2D single cluster (Section IV G). The param-
eter search error was approximately 1.6%. A solution with an accuracy of e-06
was obtained by using S-CNN to solve 2D multi-cluster multi-materials (Section
IV H). The standardized test problem sets——2D-IAEA benchmark for search
keff attained an accuracy of 10−4 (Section IV I). These results show that the
model can effectively predict the variation in physical quantities in the physi-
cal field under multiple equations, different initial conditions, and boundaries.
Moreover, it has good generalization under different scenarios.
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To summarize, the R2-PINN network performed better than the FCN network
in solving the neutron diffusion equations. The accuracy improvement of one–
two points is noteworthy considering the computational efficiency achieved by
our framework. This efficiency reduces the computational load and maintains a
high accuracy. Thus, it is a potential approach for practical applications. Using
a suitable search method, the proposed architecture exhibits good real-time
performance.

VI. CONCLUSIONS
This study introduced a novel and innovative framework called R2-PINN. It
addresses the persistent challenge of the disappearing gradient phenomenon in
DNN. In addition, our framework is designed to enhance the accuracy and
computational efficiency of PINNs when solving neutron diffusion equations.
The R2-PINN can determine k∞ with an accuracy of 10−4 in 250 s. The
single NN accuracy attained 10−8 on an average. This is an order of magnitude
higher than that for FCN. The S-CNN architecture is integrated into the R2-
PINN framework to overcome vanishing gradients. By leveraging cross-layer
connections, our model effectively learns the residual information. This improves
the depth and expressive power of the network. This architectural enhancement
ensures that the network can effectively propagate gradients through the layers,
thereby enabling more accurate and stable learning. Furthermore, the RAR
method is introduced to enhance the representation and sampling strategies
within the network. The RAR method allows for adaptive collection of sample
points. Thereby, it ensures that the model captures the essential features and
gradients in the solution space. This refinement strategy dramatically improves
the capacity of the network to handle sharp gradients and intricate features in
the PDE solutions.

As described in the experimental section, comprehensive comparative experi-
ments were conducted to optimize the R2-PINN framework. Through meticu-
lous parameter tuning, including adjusting the number of layers, kernel size, and
resampling hyperparameters, R2-PINN achieved significant accuracy improve-
ments of one–two units compared with FCN. This demonstrated its effectiveness
in enhancing PDE solutions. The parameter search capability of the R2-PINN
was validated by efficiently determining the corresponding value of k∞ when it
entered the critical state within the specified search interval using high-precision
network predictions. To evaluate the robustness and accuracy of the model un-
der varying parameters, MSE validation experiments with different values of
k∞ were conducted. These consistently yielded highly accurate results. Fi-
nally, for complex models such as the two-dimensional single-group neutron
diffusion equation, two-group two-material neutron diffusion equation models,
and 2D-IAEA benchmark, the search for effective value-added coefficients and
steady-state flux distribution solutions was conducted successfully.

Overall, the experimental results verify that the integration of S-CNN and the
RAR mechanism in R2-PINN enables the network to capture intricate features
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and sharp gradients in PDE solutions. The adaptive refinement strategy sig-
nificantly improves the distribution of residual points. This, in turn, enhances
the capability of the network to accurately represent complex physical systems.
Our observations provide compelling evidence of the potential for the R2-PINN
to advance the field of deep-learning-based PDE solving. Our framework out-
performs existing methods and exhibits potential for application in real-world
physical systems. The contributions of this study have substantial implications
for the development of more accurate and efficient models in various scientific
and engineering domains.
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