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Abstract
To study the uncertainty quantification of resonant states in open quantum sys-
tems, we developed a Bayesianframework by integrating a reduced basis method
(RBM) emulator with the Gamow coupled-channel (GCC)approach. The RBM,
constructed via eigenvector continuation and trained on both bound and reso-
nant configu-rations, enables the fast and accurate emulation of resonance prop-
erties across the parameter space. To identifythe physical resonant states from
the emulator’s output, we introduce an overlap-based selection technique that-
effectively isolates true solutions from background artifacts. By applying this
framework to unbound nucleus6Be, we quantified the model uncertainty in the
predicted complex energies. The results demonstrate relativeerrors of 17.48% in
the real part and 8.24% in the imaginary part, while achieving a speedup of four
ordersof magnitude compared with the full GCC calculations. To further inves-
tigate the asymptotic behavior of theresonant-state wavefunctions within the
RBM framework, we employed a Lippmann–Schwinger (L–S)-basedcorrection
scheme. This approach not only improves the consistency between eigenvalues
and wavefunctionsbut also enables a seamless extension from real-space train-
ing data to the complex energy plane. By bridgingthe gap between bound-state
and continuum regimes, the L–S correction significantly enhances the emula-
tor’scapability to accurately capture continuum structures in open quantum
systems.
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To study uncertainty quantification of resonant states in open quantum sys-
tems, we developed a Bayesian framework by integrating a reduced basis method
(RBM) emulator with the Gamow coupled-channel (GCC) approach. The RBM,
constructed via eigenvector continuation and trained on both bound and reso-
nant configurations, enables fast and accurate emulation of resonance properties
across parameter space. To identify physical resonant states from the emula-
tor’s output, we introduce an overlap-based selection technique that effectively
isolates true solutions from background artifacts. By applying this framework
to the unbound nucleus 6Be, we quantified model uncertainty in the predicted
complex energies. The results demonstrate relative errors of 17.48% in the real
part and 8.24% in the imaginary part, while achieving a speedup of four or-
ders of magnitude compared with full GCC calculations. To further investigate
the asymptotic behavior of resonant-state wavefunctions within the RBM frame-
work, we employed a Lippmann–Schwinger (L–S)-based correction scheme. This
approach not only improves consistency between eigenvalues and wavefunctions
but also enables seamless extension from real-space training data to the com-
plex energy plane. By bridging the gap between bound-state and continuum
regimes, the L–S correction significantly enhances the emulator’s capability to
accurately capture continuum structures in open quantum systems.

Keywords: Uncertainty quantification, Reduced basis method, Resonance em-
ulator, Bayesian analysis, Gamow coupled-channel model

Introduction
Modern nuclear physics has evolved into a field of increasing complexity, ac-
companied by the development of a wide range of theoretical models capable of
describing diverse systems and observables with growing precision [?, ?, ?, ?, ?].
Rather than focusing solely on numerical predictions, it is increasingly impor-
tant to deepen our understanding of the predictive capabilities and reliability
of theoretical models, and to elucidate their connection with experimental ob-
servations. This shift in perspective has motivated the growing emphasis on
uncertainty quantification in recent years [?, ?, ?, ?, ?, ?, ?, ?, ?], which not
only provides quantitative measures of predictive reliability, but also allows
systematic constraint of model parameters through realistic experimental data.
These advances ultimately lead to deeper insights into the interpretation of
observed nuclear phenomena.

Statistical methods have played a pivotal role in this paradigm shift. Although
traditional frequentist approaches are widely used for parameter estimation and
regression [?], the rise of machine learning (ML) techniques, particularly within
the Bayesian framework, has opened new opportunities for model calibration,
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experimental design, and model mixing [?, ?, ?, ?, ?, ?, ?, ?]. In contrast to clas-
sical frequentist statistics, Bayesian inference incorporates prior knowledge of a
model and its parameters into posterior distributions, treating data as proba-
bilistic ensembles rather than isolated points [?]. This framework is particularly
advantageous for rigorous uncertainty quantification.

A key challenge in Bayesian analysis is the high computational cost associated
with large-scale sampling. Millions or even billions of model evaluations are
typically required to achieve convergence of posterior distributions. This is
prohibitive for state-of-the-art nuclear models, which are often characterized by
large Hilbert spaces and high-dimensional operators [?]. Efficient and accurate
surrogate models are essential to address this bottleneck. Although Gaussian
Process (GP) emulators have been applied in previous studies [?], their data-
driven nature often limits physical interpretability. This limitation motivates the
adoption of model-driven strategies, such as the reduced basis method (RBM),
which has emerged as a powerful tool for reducing computational cost in physics-
informed simulations [?, ?, ?]. The RBM is particularly effective because it
constructs low-dimensional approximations rooted in the fundamental dynamics
of the system, such as the Schrödinger equation. Certain implementations of the
RBM are mathematically similar to the variational principle [?], making them
suitable for uncertainty analysis in linearly varying parameter spaces [?, ?, ?].
Furthermore, the RBM enables effective extrapolation into regions that are
inaccessible to direct high-fidelity computations [?].

One of the most cutting-edge directions in nuclear physics is the study of nu-
clei near driplines, which are considered open quantum systems. These exotic
nuclei have attracted considerable attention because of their unique structural
features [?, ?, ?], where continuum coupling and resonance degrees of freedom
play central roles. Accurately describing such systems requires models that ex-
plicitly account for these continuum effects, which significantly increases the
complexity of high-fidelity computations. At present, only a limited number of
microscopic models are capable of treating resonant states in a consistent and
unified framework [?, ?], among which the Gamow Shell Model (GSM) and its
variants [?] are prominent examples. To quantify or even improve the computa-
tional capabilities of these models, it is essential to advance our understanding
of the dripline, and ultimately, the unified nuclear chart.

Although the ground states of stable nuclei can be accurately reproduced using
a simple Galerkin RBM [?], modeling open quantum systems presents new chal-
lenges. In such systems, exotic structural features and nonsmooth parameter
dependencies significantly hinder the performance of standard RBM emulators,
thereby complicating the large-scale sampling required for Bayesian inference.
A key characteristic of dripline nuclei is the presence of resonant states, whose
wavefunctions exhibit fundamentally different asymptotic behavior compared
with bound states [?]. Developing reliable emulators for such resonance states
remains a challenge. For example, Ref. [?] proposed an improved eigenvector
continuation (EC) scheme to extrapolate resonance energies from a bound-state
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training subspace.

In this study, we employed an EC-based emulator to perform uncertainty quan-
tification for the weakly bound nucleus 6Be within the Gamow coupled-channel
(GCC) framework. To further address the asymptotic behavior of resonant wave-
functions, we apply a Lippmann–Schwinger (L–S) equation-based correction,
aiming to construct an emulator that can extrapolate from bound to resonant
states and provide corrected wavefunctions within the reduced subspace.

The remainder of this paper is organized as follows. In Sect. II, we introduce the
three-body GCC model, Bayesian inference framework, and the construction of
the EC emulator. In Sect. III, we present the uncertainty quantification results
for 6Be and the outcomes of the L–S correction scheme. Finally, a summary
and outlook are provided in Sect. IV.

Methods
A. The three-body Gamow coupled-channel method

In this study, we focused on atomic nuclei that can be effectively described as
three-body systems. Within the three-body GCC model, such systems are mod-
eled as frozen cores with two valence nucleons. The corresponding Hamiltonian
is given by

𝐻(𝑐) = ∑ 𝑝2
𝑖

2𝑚𝑖
+ ∑ 𝑉1𝑗[𝑐0, 𝑐1](𝑟1𝑗) + 𝑐2𝑉 23

(𝑟23) + 𝑇c.m.,

where the kinetic energy of each cluster is represented by 𝑝2
𝑖 /2𝑚𝑖 and 𝑇c.m. is

the kinetic energy of the center of mass. The potential energy consists of the
interactions between the clusters; specifically, 𝑉1𝑗 represents the nuclear force
between the frozen core and each valence nucleon, which is modeled using the
phenomenological Woods–Saxon (WS) potential within the GCC approach. The
potential is expressed as follows:

𝑉 [𝑐0, 𝑐1](𝑟) = 𝑐0 ⋅ 𝑉0𝑓(𝑟) + 𝑐1 ⋅ 𝑉s.o. (1
𝑟

𝑑
𝑑𝑟) 𝑓(𝑟) ⃗ℓ ⋅ ⃗𝑠 + 𝑉Coul(𝑟),

where the form factor 𝑓(𝑟) is given by

𝑓(𝑟) = 1
1 + exp ( 𝑟−𝑅0

𝑎 )
.

In addition, the Coulomb potential is defined by the point-charge formula when
the distance between two clusters exceeds the Coulomb radius 𝑅𝐶 , while transi-
tioning to a finite-distribution form when the distance becomes smaller than 𝑅𝐶 .
The nucleon-nucleon interaction between the two valence nucleons 𝑉23(𝑟23) was
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modeled using the Minnesota potential [?]. To capture the different effects of
the nuclear force and ‘pairing’ interactions, we introduce a set of three potential
strength parameters, c = [𝑐0, 𝑐1, 𝑐2]𝑇 . Specifically, 𝑐0 governs the central poten-
tial, 𝑐1 accounts for spin-orbit coupling, and 𝑐2 indicates the nucleon-nucleon
interaction. These parameters set the stage for exploring how non-affine param-
eters influence the entire potential, thereby providing a framework for future
investigations.

In the GCC framework, the total three-body wavefunction is expressed in Ja-
cobi coordinates, which is particularly advantageous for describing the asymp-
totic behavior of the system [?, ?, ?]. The angular components are constructed
using hyperspherical-harmonic oscillator basis functions, while the radial part—
determined by a set of quantum numbers representing various configurations—is
expanded using the Berggren basis [?]. This basis is directly related to the in-
coming and outgoing momenta of free particles as well as the complex energy of
the eigenstates, satisfying the orthogonality and completeness relationship [?].
The Berggren basis is a key feature of the GCC model, allowing it to treat scat-
tering states, resonances, and bound states equally. This provides a universal
framework for modeling nuclear structure and scattering properties.

B. Bayesian inference framework

The basic philosophy of Bayesian inference is encapsulated by Bayes’ theorem,
which in this context is expressed as

𝑃(c|E) = 𝑃(E|c)𝑃 (c)
𝑃 (E) ,

where 𝑃 (c|E) is the posterior probability that represents the updated distribu-
tion of model parameters c after incorporating the observed data E. The term
𝑃(E|c) is the likelihood, which describes the probability of observing data E
given the parameters c. 𝑃(c) represents the prior probability that encodes the
initial belief regarding the parameters before observing any data. The denom-
inator 𝑃(E) is the marginal likelihood, which ensures that the posterior sums
to one. Therefore, the key function in Bayesian inference is the product of
likelihood and prior.

In this study, we applied a Bayesian framework to quantify uncertainties in the
three-body energy and the associated sensitivities of the strength parameters
for nuclear and nucleon-nucleon forces between valence pairs. We assume that
the error between the observable energy and model predictions follows a normal
distribution; therefore, the likelihood is expressed as Gaussian:

𝐿(c) = 1
√2𝜋𝜎2

𝑅

1
√2𝜋𝜎2

𝐼
exp {−[𝑦𝑅(c) − 𝐸𝑅]2

2𝜎2
𝑅

− [𝑦𝐼(c) − 𝐸𝐼 ]2
2𝜎2

𝐼
} ,
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where 𝑦(c) is the energy predicted by the model for parameters c and 𝐸𝑅,𝐼
are the real and imaginary components of the observed energy, respectively,
and 𝜎𝑅,𝐼 represents the experimental errors in the real and imaginary parts,
respectively.

The error 𝐸𝑅,𝐼 = 𝑦𝑅,𝐼(c) + 𝜖𝑅,𝐼 consists of three components: intrinsic model
error (𝜖mo

𝑅,𝐼), emulator error (𝜖em
𝑅,𝐼), and experimental error (𝜖ex

𝑅,𝐼). Each of these
errors follows a normal distribution with standard deviations 𝜎mo

𝑅,𝐼 , 𝜎em
𝑅,𝐼 , and

𝜎ex
𝑅,𝐼 , respectively. These contribute to the total error, which is given by

𝜎2
𝑅,𝐼 = (𝜎mo

𝑅,𝐼)2 + (𝜎em
𝑅,𝐼)2 + (𝜎ex

𝑅,𝐼)2.

However, the high computational cost of high-fidelity models, such as GCC,
makes direct evaluations for every parameter sample prohibitive. To overcome
this challenge, we employed an emulator based on the reduced-basis method,
which offers a fast and accurate approximation of the original model. This
emulator dramatically reduces computational time while preserving accuracy,
thereby enabling efficient posterior sampling within a feasible timeframe.

Next, we utilize Markov Chain Monte Carlo (MCMC) methods to sample from
the posterior distribution. MCMC provides a way to avoid direct computation
of the marginal likelihood 𝑃(E), which would be computationally expensive. In
each step, new parameter proposals are drawn from a normal distribution, and
the acceptance probability is determined using the Metropolis algorithm:

𝛼(c → c′) = min (1, 𝑝(c′|E)
𝑝(c|E) ) ,

where lowercase 𝑝 is the posterior computed as the product of likelihood and
prior, and c and c′ represent the current and proposed parameters, respectively.
This approach satisfies the detailed balance condition, ensuring that the sam-
pling distribution converges to the true posterior distribution.

C. The emulator

Intrinsically, the wavefunction exhibits several consistent properties as the pa-
rameters of the Hamiltonian vary, assuming that the system remains linear.
For example, when the total potential strength 𝑉 is sufficiently large, the sys-
tem becomes tightly bound and the corresponding eigenstate wavefunction is
spatially localized. By contrast, for weak total potential strength, the system
becomes loosely bound or unbound, and the wavefunction displays an extended
asymptotic tail, which is characteristic of resonant states [?]. By leveraging these
properties, one can avoid repeated diagonalization of the high-dimensional, high-
fidelity Hamiltonian for each parameter set. Instead, the emulator algorithm
learns the trajectory of the wavefunctions across parameter space, thereby en-
abling efficient and accurate predictions. This is mathematically expressed as
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Ψ =
𝑁𝑏

∑
𝑛=1

𝑎𝑛ΨRB
𝑛 ,

where the wavefunction Ψ of the target Hamiltonian, governed by specific pa-
rameters, is written as a linear combination of 𝑁𝑏 reduced basis functions ΨRB

𝑛 .
These reduced basis functions are generally chosen as high-fidelity solutions
for selected parameters, which can be prepared in advance during the offline
stage [?]. Numerically, we apply principal component analysis (PCA) to these
high-fidelity solutions to extract the main features of the physical wavefunction,
further reducing the number of required reduced basis functions [?]. We refer to
the resulting reduced basis as the training basis because it captures the essential
physical features of eigenstates.

This basis spans a low-dimensional subspace that effectively represents the main
characteristics of the physical eigenstates, in stark contrast to the significantly
larger dimensionality of the original free-particle basis. By inserting the reduced
basis expansion into the Schrödinger equation, we obtain a projected Hamilto-
nian defined in this reduced subspace, with matrix elements given by

𝐻̃𝑚𝑛 = ⟨ΨRB
𝑚 |𝐻|ΨRB

𝑛 ⟩.

The associated norm matrix is defined as

𝑁𝑚𝑛 = ⟨ΨRB
𝑚 |ΨRB

𝑛 ⟩.

The approximated eigenstate 𝐸 was then determined as an eigenvalue of the
combined matrices. The eigenvectors correspond to the solutions of the basis
coefficients 𝑎𝑛 in the expansion.

A central challenge in reduced-basis modeling is identifying the physically rel-
evant eigenstate among many solutions of the reduced subspace. In contrast
to high-fidelity calculations based on the Berggren basis—where the analytic
structure of the complex energy plane facilitates clear classification of bound,
resonant, and scattering states—the emulator’s eigenvalues are often irregularly
distributed and do not exhibit distinct branch cuts. Consequently, additional
selection criteria are required to isolate the target physical eigenstate.

One possible approach is to examine the eigenvector components on a principal-
component basis. In theory, physically meaningful eigenstates should exhibit
dominant contributions from the first few principal components, because these
components are associated with localized structures in configuration or momen-
tum space. However, this strategy is hindered by the complexity of configuration
mixing and the lack of direct physical interpretability of the individual principal
components.
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Given that the current reduced basis method (RBM) is mathematically equiva-
lent to a variational approach [?], the physical eigenstate is expected to closely
resemble the training basis. In contrast, spurious solutions—such as those corre-
sponding to scattering-like states—typically show weaker projections onto this
basis. To distinguish the target eigenstate robustly, we adopted an overlap-
based method. In this approach, a reference wavefunction is selected in advance,
and the overlap between this reference and each eigenfunction in the reduced
subspace is computed as:

Overlap(𝑖) = |⟨Ψref|Ψ𝑖⟩|
2 ,

where Ψ𝑖 represents the 𝑖-th eigenvalue solution in the subspace and Ψref is the
reference. The maximum overlap indicates the solution corresponding to the
target state.

To improve the accuracy of the emulator’s approximation, we applied a wave-
function correction scheme inspired by the Lippmann–Schwinger equation [?]
using the following iterative formula:

Ψ(𝑖+1) = Ψ(𝑖) + 𝜔 [𝑉 Ψ(𝑖) − diag(𝐸0)Ψ(𝑖)] ,

where 𝜔 is a relaxation factor used to preserve the local features of the initial em-
ulator solution and suppress divergence toward scattering-like solutions. Once
the corrected wavefunction is obtained, the energy is updated as

𝐸(𝑖+1) = ⟨Ψ(𝑖+1)|𝐻|Ψ(𝑖+1)⟩
⟨Ψ(𝑖+1)|Ψ(𝑖+1)⟩ .

While a more detailed analysis of the L–S correction method is provided in [?],
the present work focuses on its preliminary performance and its effectiveness in
improving emulator predictions for realistic physical systems.

D. Model space and parameters

We selected the two-proton emitter 6Be as our test nucleus, which has been
extensively studied [?, ?, ?]. The experimental energy of the 0+ state of 6Be
has been reported to be 1.372 − 0.092𝑖 MeV.

In the GCC framework, the hyperangular configuration for 6Be is constructed
as described in Ref. [?]. The quantum number set (𝐾, ℓ𝑥, ℓ𝑦) determines the
different configurations, where we set max(ℓ𝑥, ℓ𝑦) ≤ 8 and 𝐾max = 16. We
employ the Berggren basis for channels where 𝐾 ≤ 𝐾max to account for contin-
uum effects, using the Harmonic Oscillator (HO) basis with an oscillator length
𝑏 = 1.75 fm and 𝑁max = 20, supplemented in higher orbitals. Although the
L–S correction method is theoretically inapplicable on an HO basis, we set the
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maximum hyperspherical quantum number 𝐾max = 8 and used the Berggren
basis for all angular parts.

To fit the experimental energy, we adjusted several non-affine potential param-
eters and the Berggren basis contour. The nuclear force is primarily governed
by six parameters, which we set as: 𝑎 = 0.65 fm, 𝑉0 = 49 MeV, 𝑅0 = 2
fm, 𝑉s.o. = 30 MeV, 𝑅s.o. = 2 fm, and the radius of the Coulomb potential
𝑅𝐶 = 2 fm. The complex momentum Berggren basis contour is defined as
𝑘̃ = 0 − 0.05𝑖 → 1 − 0.05𝑖 → 1 − 6𝑖 (all in fm−1), with 30 discretized scattering
states in each segment. The nucleon-nucleon interaction was modeled using the
Minnesota potential, with detailed parameters set as in Ref. [?].

To maximize the accuracy of the emulator, both bound and resonance states
were included in the training subspace, although the target state was resonant.
The training parameter is the strength of the total potential, which varies be-
tween [0.9, 1] for resonance states and [1.2, 2] for bound states, to obtain their
corresponding wavefunctions. PCA is then performed on the 20 training vec-
tors with a singular value accuracy of 10−15, which is close to the computational
limitations of our current servers.

The standard deviation 𝜎mo was chosen empirically to ensure effective conver-
gence of the probability distribution following previous studies, and was set to
0.25% of the corresponding experimental value [?, ?]. The error 𝜎ex is negli-
gible compared with the other sources of uncertainty. For the emulator error
𝜎em, we collected random samples and fitted their error distribution with a
Gaussian function as well as the Berggren basis contour properties, ultimately
determining its value to be 15% of the experimental value, as will be discussed
in detail later. Prior studies employed uncertainty decomposition methods to
address model deviations with improved precision [?, ?]. However, given the
much larger deviations in our emulator, we omitted such corrections from this
analysis.

We assume that the prior distribution for parameter vector c follows a multi-
variate normal distribution as follows:

𝑃(c) ∝ exp [−1
2(c − 𝜇)𝑇 Σ−1(c − 𝜇)] ,

where the mean vector 𝜇 and covariance matrix Σ are determined based on
physical considerations and previous studies.

Results and Discussions
A. Computational Performance of the Emulator

PCA is a powerful dimensionality-reduction technique that is particularly ef-
fective when the training space exhibits redundancy. To quantitatively assess
this redundancy, we analyzed the singular values of the principal components
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and determined an appropriate cutoff for the subspace dimension. Fig. 1 shows
the singular value spectrum of the dataset. Although resonance states feature
abrupt changes in their asymptotic behavior compared with bound states, their
key features can still be efficiently captured via PCA owing to similarities in
the local structure of their wavefunctions. Specifically, the first component that
captures the largest singular value in Fig. 1 resembles the shapes of the bound
states. The second component corresponds to the average shape of a sharp
peak in the resonance wavefunction in momentum space, as well as the oscilla-
tory outgoing wave. The exponentially decaying weighted components are more
similar to the free-particle basis, which is analogous to the Berggren basis.

The singular value analysis indicates that our training space sufficiently cap-
tures the high-fidelity properties. While both bound and resonance features are
included, the emulation process primarily functions as an interpolation operator
because the parameter variations are smooth. Therefore, it is more reasonable to
estimate the error between the emulator and GCC using a statistical approach
rather than providing 𝜎em point by point.

As discussed previously, isolating the target eigenstate within the emulator sub-
space is crucial. To achieve this, we employed an overlap technique, which is
mathematically defined in Eq. (12). Figure 2 presents the overlap analysis for
a representative parameter point given by [𝑐0, 𝑐1, 𝑐2]𝑇 = [0.9, 0.8, 1.1]𝑇 . In this
case, the reference wavefunction was chosen as the resonance state obtained
using all potential strengths set to unity. This reference is sufficiently diffuse
to suppress spurious overlaps with scattering-like states, which may otherwise
introduce significant noise into the overlap calculation.

In Fig. 2, each circle corresponds to the eigenvalue of the emulator Hamiltonian
in the reduced subspace. The size and color intensity of the circles represent
the magnitude of overlap with the reference wavefunction. The largest overlap
is associated with the emulator-predicted eigenstate, marked by the darkest
circle, which yields an energy of 𝐸em = 0.45(9)−0.52(7)𝑖 MeV. For comparison,
the exact result obtained from the full GCC model is 𝐸GCC = 2.649 − 0.084𝑖
MeV, shown as a red square. The non-negligible difference between these values
highlights the necessity of incorporating emulator error into MCMC sampling
to ensure a reasonable acceptance rate.

The remarkable computational efficiency of the emulator is worth emphasizing.
The diagonalization of the projected Hamiltonian requires only 5.26 × 10−3 s,
which is nearly four orders of magnitude faster than the 36.6 s required for full
high-fidelity GCC calculation. This acceleration enabled the use of an emulator
for large-scale posterior sampling and uncertainty quantification.

B. Constraining potentials in 6Be

We investigated the 0+ ground state of 6Be using our Bayesian analysis frame-
work. Following a burn-in of 1,000 points and collection of 100,000 posterior
samples, we achieved an acceptance rate of 36.7%. The entire computation was
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completed in approximately 3 h on a server, which would have required nearly
four months without the use of the emulator.

Assuming that the emulator error follows a normal distribution, we estimated
it by sampling 1000 random parameter points. After excluding unphysical
scattering-like states (102 invalid cases), we retained 898 valid samples for the
analysis. The resulting relative error distributions are shown in Fig. 3, where
over 90% of the predictions exhibited deviations below 10% in both the real and
imaginary parts. The mean relative error is approximately 15%, demonstrating
the overall robustness of the emulator. Relative errors provide a more consis-
tent metric across varying energy scales than absolute deviations. In practice,
because exact GCC results are unavailable during sampling, we use the exper-
imental energy 𝐸exp as a practical reference for converting relative errors into
absolute uncertainty, assigning 𝜎em = 0.15 × 𝐸exp. This threshold also serves
to filter non-resonant or deeply bound states during posterior inference. While
approximately 10% of the points exceed our acceptable error range, likely owing
to pathological parameter configurations or model limitations, these outliers ex-
hibit limited deviation magnitudes and negligibly impact our overall uncertainty
estimates. The physical reasonableness of our results is further confirmed by the
posterior energy distributions shown in Fig. 5, thus validating the uncertainty
quantification approach.

Figure 4 presents the posterior distributions for all three model parameters.
Evidently, the central force strength 𝑐0 is strongly constrained by the data. In
contrast, the spin-orbit strength 𝑐1 retains a distribution shape close to its prior
value, suggesting limited sensitivity of the observable to this parameter in the
current setting. The distribution of the nucleon-nucleon interaction strength 𝑐2
shows a moderate deviation from the prior value, which may be attributed to a
negative correlation with the central force strength 𝑐0.

We further visualize the distribution of the calculated resonance energies under
the sampled posterior parameters, as shown in Fig. 5. The peak values of the
distributions exhibited noticeable deviations from the experimental resonance
energies. This discrepancy may arise partly because the likelihood function
is more sensitive to the imaginary part of energy, which is smaller than the
real energy. Moreover, latent variables that are not directly sampled in this
study, such as the diffuseness and radius parameters of the WS potential, also
contribute to the overall model uncertainty.

We fitted the predicted energy distributions shown in Fig. 5 to Gaussian func-
tions, extracting both the mean (𝜇) and standard deviation (𝜎) values, which
are indicated in the upper-right corner of each subplot. The predicted mean
energies deviate by 17% (real energy) and 8% (imaginary energy) from the
reference values. The energy deviations fall within approximately 1𝜎 credible
intervals, demonstrating the statistical consistency between the results of the
emulator and the expected uncertainty distribution. Furthermore, this implies
that emulators can be developed for other non-affine parameters in the future
to investigate the overall impact of our model on multi-nucleon decay.
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C. Correcting the emulated eigen-pair with L–S method

As discussed above, the L–S correction not only yields consistent improvements
in both eigenvalues and wavefunctions, but also enables a natural extension
of real-space training data to the complex energy plane. Here, we examine the
performance of our L–S correction method for two types of training spaces in the
6Be system: one composed of bound-state solutions, and the other of resonance-
state solutions. We selected a representative parameter point, [𝑐0, 𝑐1, 𝑐2] =
[0.925, 1, 1.4], drawn from the posterior distribution shown in Fig. 4. This
parameter set corresponds to a resonance state that is close to the experimental
value.

The maximum iteration step was set to 1000, and we defined 𝜖(𝐸) as the rela-
tive error of each step compared to the previous step. Figure 6 illustrates the
convergence behavior of our iteration, whereas Table 1 lists the final corrected
energy with high accuracy. The results demonstrate that the L–S correction
can converge to nearly the same energy within a few hundred steps regardless
of whether the training space consists of bound or resonance states. This is
particularly beneficial for improving the extrapolation capability of the RBM,
especially when only bound high-fidelity solutions are available as a training
subspace.

Remarkably, the L–S correction can restore the resonance energy even when the
emulator subspace consists only of bound states, which do not exhibit oscillatory
asymptotic behavior outside the nucleus in the resonance state. Fig. 7 illustrates
how the wavefunction in momentum space is restored. The emulated wavefunc-
tion closely resembles that of the bound states, with small contributions from
the low-momentum components and outer regions of coordinate space. The
dominant configurations, such as C1 and C2 with occupation probabilities ex-
ceeding 0.1 and quantum numbers 𝐾 = 0 or 4, are well recovered, leading to an
energy correction that closely approaches the resonance state. In contrast, con-
figurations associated with higher 𝐾 values (e.g., 𝐾 = 8 and 12) exhibit larger
deviations in the wavefunction shape compared with the high-fidelity results.
These discrepancies are particularly pronounced at low momenta, particularly
below 2 fm−1. This can be attributed to the fact that high-𝐾 configurations typ-
ically represent subdominant components in the total wavefunction. As such,
infinitesimal features such as inflection points on the momentum axis, which
are not well captured by the original emulator, can lead to amplified errors in
the correction process. Nevertheless, these results highlight that the L–S correc-
tion method can be an effective tool for extending the emulator to continuum
physics.

Further studies should be conducted in the future.

Summary
In this study, we developed a Bayesian uncertainty quantification framework
for resonant states in open quantum systems by integrating an RBM emulator
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with a GCC model. The emulator was constructed using the EC technique with
a training subspace that included both bound and resonant components. To
isolate physical resonance solutions from scattering-like background states, we
introduced an overlap-based selection method that enables accurate and robust
emulation of complex energy eigenvalues relevant to continuum structures.

We applied this framework to an unbound nucleus 6Be for the first time. The
EC emulator demonstrated both accuracy and efficiency, achieving at least four
orders of magnitude in computational speedup relative to full GCC calculations.
Large-scale Bayesian sampling was completed within three hours, allowing us to
identify key sensitivity patterns in the parameter space. In particular, we found
that the central component of the nuclear force plays a dominant role in deter-
mining the resonance position, while the valence nucleon–nucleon interaction
contributes a negatively correlated uncertainty. The relative uncertainties in
the predicted real and imaginary energy components were 17% and 8%, respec-
tively, indicating greater sensitivity of the resonance widths to the interaction
strength.

Furthermore, we explored the extrapolation of resonance properties from a
bound-state training subspace by using a correction scheme based on the
Lippmann–Schwinger equation. This method provides refined wavefunctions
within the reduced subspace and consistently improves the emulator’s output.
The iterative correction converged to machine precision (10−15) within 400
steps. The corrected energies closely approach the high-fidelity solutions
regardless of whether the training subspace is bound or resonant. The
corrected wavefunctions restored the dominant configurations well, particularly
in the asymptotic region of the resonance states. Most of the remaining errors
originate from higher-𝐾 configurations, where the L–S correction becomes
suboptimal owing to the absence of relevant perturbative components in the
initial emulated wavefunction used for the iteration. These findings not only
enhance the practical predictive power of uncertainty quantification but also
advance algorithmic methods for resonance modeling, contributing to the
broader development of dripline nuclear physics. The GCC framework’s inher-
ent ability to describe open quantum systems makes it ideal for extension to
heavier two-nucleon emitters. To enable realistic applications for these nuclei,
our future work will focus on incorporating effects such as core excitations and
deformation into the uncertainty quantification.
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