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Abstract

Unmanned aerial vehicle (UAV)-borne gamma-ray spectrum surveys play a cru-
cial role in geological mapping, radioactive mineral exploration, and environ-
mental monitoring. However, raw data are often compromised by flight and
instrument background noise, as well as detector resolution limitations, which
affect the accuracy of geological interpretation. This study aims to explore
the application of the Real-ESRGAN algorithm in the super-resolution recon-
struction of UAV-borne gamma-ray spectrum images to enhance spatial reso-
lution and the quality of geological feature visualization. We conducted super-
resolution reconstruction experiments with 2x ,4x, and 6x magnification using
the Real-ESRGAN algorithm, comparing the results with three other main-
stream algorithms (SRCNN, SRGAN, FSRCNN) to verify the superiority in
image quality. The experimental results indicate that Real-ESRGAN achieved
a structural similarity index (SSIM) value of 0.950 at 2x magnification, signif-
icantly higher than that of the other algorithms, demonstrating its advantage
in detail preservation. Furthermore, Real-ESRGAN effectively reduced ringing
and overshoot artifacts, enhancing the clarity of geological structures and min-
eral deposit sites, thus providing high-quality visual information for geological
exploration.
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Unmanned aerial vehicle (UAV)-borne gamma-ray spectrum surveys play a cru-
cial role in geological mapping, radioactive mineral exploration, and environ-
mental monitoring. However, raw data are often compromised by flight and
instrument background noise, as well as detector resolution limitations, which
affect the accuracy of geological interpretation. This study explores the appli-
cation of the Real-ESRGAN algorithm in the super-resolution reconstruction
of UAV-borne gamma-ray spectrum images to enhance spatial resolution and
improve the quality of geological feature visualization. We conducted super-
resolution reconstruction experiments with 2x, 4x, and 6 x magnification using
the Real-ESRGAN algorithm, comparing the results with three other main-
stream algorithms (SRCNN, SRGAN, FSRCNN) to verify its superiority in
image quality. The experimental results indicate that Real-ESRGAN achieved
a structural similarity index (SSIM) value of 0.950 at 2x magnification, signif-
icantly higher than that of the other algorithms, demonstrating its advantage
in detail preservation. Furthermore, Real-ESRGAN effectively reduced ringing
and overshoot artifacts, enhancing the clarity of geological structures and min-
eral deposit sites, thus providing high-quality visual information for geological
exploration.

Keywords: UAV-borne gamma-ray spectrum, super-resolution reconstruction,
Real-ESRGAN, Image processing

Introduction

UAV-borne gamma-ray spectrum surveys measure and record the type and in-
tensity of gamma rays emitted by natural radionuclides (e.g., uranium, thorium,
and potassium) from the ground and shallow subsurface. These data, combined
with coordinate information, are processed, screened, and corrected to produce
maps of surface radionuclide distributions, which are essential for geological
exploration, radioactive mineral prospecting, and environmental monitoring.
Compared with fixed-wing aircraft surveys, UAV-borne gamma-ray spectrum
surveys offer lower flight costs, higher measurement efficiency, safer and more
flexible flight operations, and prolonged hovering capabilities. Consequently,
they have been widely adopted in radioactive mineral exploration, radiation en-
vironment monitoring, nuclear emergency response, and related fields [?, ?, ?].

Zhang Shihong [?] skillfully employed the tension spline method and Munsell
transform technology to perform fine rasterization and anomaly correction of
aerial gamma spectrum data, successfully extracting key information and clearly
displaying the energy spectrum characteristics of the Xiangshan volcanic basin.
By analyzing the distribution of uranium, thorium, and potassium, this work
provided new clues for uranium exploration and advanced the development of
geological exploration technology. Ondréj Salek et al. [?] tested the performance
of a new type of small airborne gamma-ray spectrum measurement equipment
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based on UAVs and verified its ability to detect uranium anomalies at different
altitudes. They found that it accurately captured small changes in gamma ray
intensity even at high altitudes. Li et al. [?] developed a curvelet-based noise
reduction technique for airborne gamma data that can reconstruct multiscale
data for different analysis purposes, effectively removing noise while retaining
local anomaly information to avoid resolution loss and boundary effects.

Lyu et al. [?] proposed a K-factor prediction model that considers flight alti-
tude and direct distance, paying special attention to key factors such as path
loss, shadow fading, and small-scale fading at different flight altitudes, which
could potentially be applied to aerial gamma-ray spectral image processing.
Wang et al. [?] proposed a layered approach specifically for the radio environ-
ment map (REM) recovery of limited sampled data in unknown environments,
demonstrating the possibility of achieving high-precision REM construction un-
der low sampling rates. The data recovery algorithm and sampling optimization
strategy can serve as references in research on aerial gamma-ray spectral image
processing to improve processing accuracy and efficiency.

The demand for high-resolution UAV-borne gamma-ray spectrum images has in-
creased to improve research accuracy. For instance, in sandstone-type uranium
exploration and radiation environment monitoring, high-resolution images al-
low researchers to identify weak anomalies and locate radionuclide distributions
more accurately. However, direct acquisition of ultra-high-resolution gamma-
ray spectrum images is challenging due to UAV load and flight altitude limita-
tions.

Image super-resolution (SR) technology, which converts low-resolution (LR) im-
ages into high-resolution (HR) images, can significantly enhance the detail and
information content of existing images. This technology plays an important
role in many fields such as satellite imagery [?], face recognition [?], and medi-
cal imaging [?]. In recent years, with the development of deep learning, it has
been used to improve image super resolution. SR methods based on convolu-
tional neural networks (CNNs), residual networks (ResNets), and generative
adversarial networks (GANs) have been proposed.

SRCNN [?], the first SR deep learning network, achieved fast online applications
owing to its lightweight structure and excellent recovery quality, despite its large
computational load. ESPCN [?] introduced an innovative subpixel convolution
layer to obtain HR from LR at minimal computational cost. VDSR [?] uses an
extremely deep convolutional network combined with residual learning to sig-
nificantly improve convergence speed during training. These methods improve
the accuracy and speed of image SR by using faster and deeper CNNs. How-
ever, when enlarging an LR image to an HR image, the reconstructed SR image
often lacks texture details due to large-scale factors, resulting in unsatisfactory
reconstruction effects. SRGAN [?, 7, ?] enhanced the content loss function with
adversarial loss by training a GAN and replaced the content loss based on mean
squared error (MSE) with loss based on a VGG network feature map, effectively
overcoming the problem of low perceptual quality of reconstructed images and
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making the generated images more realistic. However, this method suffers from
complex network structure and lengthy training process.

The degradation of image quality is a complex phenomenon, usually due to
limitations of the imaging system and environmental disturbances. Blind super-
resolution (Blind SR) technology can effectively restore LR images to HR images
when the degradation process is unclear. This technology can be divided into
two categories: explicit and implicit modeling. Explicit modeling parameterizes
blur kernel and noise information. SRMD [?, 7, ?], the first deep-learning-driven
Blind SR method, introduces a dimension expansion strategy that enables the
convolution network to handle blur kernel and noise level inputs and solves the
dimension mismatch problem, although it may perform poorly for uncovered
degradation types. The BSRGAN model [?], proposed by Zhang et al. in 2021,
enhances model adaptability to real-world degradation by introducing complex
degradation factors and random shuflling strategies. Based on the kernel stretch-
ing strategy of Zhang et al., Luo et al. [?] proposed a new practical degradation
model that uses a dynamic depth linear filter and a constrained least squares
deconvolution algorithm based on a neural network to improve the restoration
quality of blurred images. Implicit modeling abandons explicit parameters and
uses deep learning techniques, particularly GANs, to restore LR images directly
to HR images. The CinCGAN [?, ?] model adopts a double-cycle GAN struc-
ture that effectively solves the problem of complex interference in LR inputs.
The research classification of Liu et al. [?] points out that some methods train
SR models by learning the degradation process from HR to LR and using the
generated LR samples, such as Degradation GAN [?], FSSR [?], and FSSR-
GAN [?]. However, these methods may have domain gap problems. DASR
improves SR training performance through domain-gap awareness training and
a domain-distance-weighted monitoring strategy. Real-ESRGAN [?] improved
upon ESRGAN [?] using a discriminator designed with U-Net and a high-order
degradation process, introducing a sinc filter to reduce ringing and overshoot
artifacts. It provides a more accurate and stable SR solution for real-world
images.

In this paper, a new scheme combining UAV-borne gamma-ray spectrum survey
and image super-resolution technology is proposed to overcome the limitations
of existing technology in obtaining HR images. Real-ESRGAN technology can
improve the clarity and feature enhancement of UAV-borne gamma-ray spec-
trum images and help interpret geological data more accurately. For example,
it can enhance areas of an image that are blurred due to topographic effects,
making geological features more clearly visible. In addition, the denoising and
detail enhancement capabilities of Real-ESRGAN help remove the noise gen-
erated during flight measurements, thereby improving data quality. Image SR
technology can improve LR images to HR images through algorithmic processing
and compensate for hardware equipment shortages. This technology, combined
with UAV-borne gamma-ray spectrum survey, not only improves the clarity and
detail expression of the image but also effectively improves the accuracy and re-
liability of data analysis. Therefore, the combination of UAV-borne gamma-ray
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spectrum survey and SR image technologies can more effectively monitor envi-
ronmental radiation levels, provide more accurate data support for the efficient
exploration of radioactive minerals, and promote the development of radioactive
geophysical exploration technology.

Technical Principles and Methods
UAV-borne Gamma-ray Spectrum Technology

UAV-borne gamma-ray spectrum technology captures gamma rays of different
energy levels from the ground and shallow surfaces using a gamma detector
mounted on the UAV. This technology is promising for geological exploration
and environmental radiation monitoring. However, the generated images often
suffer from noise and disturbances, leading to potential misinterpretations of
geological information.

In the field of image processing, a series of noise filtering and image enhancement
techniques are typically required to improve the quality of UAV-borne gamma-
ray spectrum images. A Gaussian filter, which reduces the interference of noise
on image quality by smoothing the image, is widely used. The formula for
Gaussian filtering [?] can be expressed as:

1  224y2
e 202

G(as,y) =

2mo?

where G(z,y) is a Gaussian kernel function, and in practical applications, this
kernel function is usually discretized and applied to an image. x and y are
the positions of the pixels in the image, and o denotes the standard deviation
of the Gaussian distribution. However, when the Gaussian filter is used for
global smoothing of the entire image, it lacks self-adaptation and cannot smooth
different regions according to local features.

Median filtering [?] is also a common nonlinear filtering technique that reduces
noise by replacing the value of a pixel with the median value in its neighborhood.
For a given image I, the formula for calculating the pixel value of the image I’
after median filtering at (z,y) is:

I'(x,y) = median{I(x + 4,y + j)|(z,j) € W}

where I(z,y) denotes the pixel value of the original image at position (z,y),
I’ (z,y) is the filtered image pixel value at position (z,y), and W is a neighbor-
hood window, typically a (2k 4+ 1) x (2k + 1) rectangular window centered at
(z,y). The median represents the median of the pixel values in the neighborhood
window.

Although this method surpasses Gaussian filtering in preserving edge informa-
tion, it may cause boundary blurring when processing images with high-contrast
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edges. To further emphasize the geological features of AGS images, image en-
hancement techniques such as contrast enhancement are used to improve the
dynamic range of the images, making subtle details more visible. Edge detec-
tion technology can identify boundary lines in an image, which is critical for
determining the precise locations of geological structures. However, these tech-
niques may increase artificial distortion of images, leading to overemphasis or
misidentification of geological features.

Image Super-resolution Reconstruction

Image SR aims to convert LR images into HR images by modeling the degrada-
tion process, which includes blurring, down-sampling, and noise. The goal is to
determine an operator that makes the reconstructed image as close as possible to
the original HR image. Under the Bayesian framework, this process is expressed
as a maximum a posteriori (MAP) problem [?], which involves a least-squares
problem with a regularization term to incorporate prior knowledge. The core
goal of image SR reconstruction technology is to convert LR images into HR
images. Mathematically, this process is often modeled as a degradation process
in which the LR image is regarded as the result of the HR image being blurred,
down-sampled, and disturbed by noise:

where H is a degenerate operator that includes processes such as downsampling,
blurring, and noise, and can be expressed as a matrix or an integral operator.
n represents the observation noise, which may include instrument noise and
environmental noise. The general production is assumed to follow a Gaussian
or Poisson distribution.

The goal of SR reconstruction is to find an operator R that makes R(I;z) as
close as possible to the original HR image I z. The formula is as follows:

Iyp = R(ILp)

where I, r denotes the estimated HR image.

Under the Bayesian framework [?], SR reconstruction can be expressed as a
MAP problem:

R* = arg maxp(IHR|ILR>

where R* denotes the optimal reconstruction operator and p(Iyg|I. ) is the
posterior probability of Iy given the observed I .
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In practice, because it is usually not feasible to compute p(Iy |l ) directly, the
SR reconstruction algorithm typically uses a regularization term that translates
into a least-squares problem:

R* =argmin{|[I, — H - R(I5)|3+ X UR(IyR))}

where | - | denotes the L, norm and is used to measure the reconstruction
error, {)(+) is a regularization term (such as gradient smoothing or sparse repre-
sentation) used to introduce prior knowledge of Iy, and A is a regularization
parameter used to balance data fitting and the importance of regularization.

In the field of deep learning, Real-ESRGAN and other algorithms approximate
the optimal reconstruction operator R* by training a deep neural network. Si-
multaneously, a GAN is used to improve the visual quality and naturalness of
the reconstructed image.

Super-resolution Reconstruction of UAV Gamma-ray Spec-
trum Images

Real-ESRGAN Principle

Enhanced super-resolution generative adversarial networks (ESRGANSs), which
are based on GANS, generate high-quality SR images through competition be-
tween the generator and discriminator. Real-ESRGAN improves upon ESR-
GAN specifically for the SR reconstruction of real-world images. By introduc-
ing higher-order degradation models and Sinc filters, it can more accurately
simulate the image degradation process in the real world, including blur, down-
sampling, noise, and JPEG compression. Additionally, Real-ESRGAN employs
a U-Net structure discriminator and spectral normalization technology, which
not only enhances the discriminator’s ability to distinguish but also improves
the stability of the training process.

Generative Adversarial Network (GAN) The GAN [?] consists of two
main components: generator and discriminator. As shown in [Figure 1: see
original paper], the generator converts the LR image into an HR image, whereas
the discriminator distinguishes between the generated and real HR images. The
two are trained through a process of adversarial interaction, where the generator
continually refines its output to deceive the discriminator, while the discrimina-
tor concurrently enhances its capability to distinguish between generated and
real images more effectively.

Network Architecture Real-ESRGAN retains the residual-in-residual
dense block (RRDB) [?] from ESRGAN as the core component of its generator.
Through an innovative network structure design, the performance of image SR
reconstruction is significantly improved. The RRDB is composed of multiple
residual blocks, each of which is further densely connected, allowing features
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from all previous layers to be directly connected to the current layer. The
RRDB enhances the learning capability of the network through multiple resid-
ual connections, while simultaneously eschewing the use of batch normalization
(BN) layers, which contributes to improved detail clarity in the generated
images. In addition, the RRDB’s role in the generator is multifaceted. It not
only acts as the backbone for feature extraction but also works collaboratively
with other parts of the network through residual connections, such as sampling
layers and feature fusion modules, to generate high-quality HR images. [Figure
2: see original paper| shows the structure of the RRDB. Through this design,
Real-ESRGAN is able to produce detailed and visually realistic SR images to
meet the needs of various practical applications.

Loss Function To achieve high-quality reconstruction, Real-ESRGAN em-
ploys a composite loss function, a design that ensures the accuracy of the gen-
erated high-resolution images at the pixel level as well as visual fidelity and
richness of detail. The compound loss function consists of the following key
components.

1) L1 Loss (MAE)

L1 loss measures the average absolute difference between predicted and true
values, and its mathematical expression is defined as follows:

L1 Loss = Z ’I?R — fg)R

where I;?R is the ¢th real HR image pixel value, fg)R corresponds to the gener-

ated image pixel value, and N is the total number of pixels.
2) Perceptual Loss

Perceptual loss is typically based on pretrained CNNs (such as VGG networks)
to extract features and compare the differences in these features between gener-
ated and real images. A simplified perceptual loss can be expressed as:

Perceptual Loss = Z HF (I}}%) —F (IA;?R)HE

where F' represents the feature extraction network, M is the total number of
elements in the feature map, and | - || is the Euclidean norm.

3) Adversarial Loss

By training the discriminator to distinguish between real and generated images,
the generator’s goal is to maximize the probability that the discriminator will
make an incorrect judgment. A common form of adversarial loss uses Wasser-
stein distance, which is expressed as:
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Adversarial Loss = —E; p 1, [DUpp) +E; _p 7, [DLgg)]

where D is the discriminator, and P,,,, and P, are the distributions of real and
generated images, respectively.

These loss functions work synergistically to ensure that the generated HR images
not only exhibit fidelity at the pixel level but are also visually realistic and
sufficiently detailed to meet the needs of various real-world applications.

Data Source

The data used in this study were obtained from an experimental area in northern
Gansu Province, China, as shown in [Figure 3: see original paper|. In total,
62,889 data points from the total count (Tc), uranium (U), thorium (Th), and
potassium (K) channels were measured and processed to create equivalent maps
of surface radionuclide distributions. To enhance the visual quality and detailed
resolution of the UAV-borne gamma-ray spectrum images, image restoration
techniques were employed on the raw data. Consequently, the color scales in
the UAV-borne gamma-ray spectrum images presented herein are dimensionless,
serving solely to enhance contrast and visualization rather than to measure
radioactive count rates quantitatively.

In our study, to adapt to the specific resolution and characteristics of UAV-
borne gamma-ray spectrum data, we performed segmentation and selection on
different regions of the original UAV-borne gamma-ray spectrum images, di-
rectly skipping areas where the cropping region exceeded the image boundaries,
ultimately forming 232 two-dimensional slices of 80 x 80 pixels each. The 80
x 80 pixel cutting size was selected to take full advantage of the spatial resolu-
tion of the gamma-ray detector at the actual flight altitude while maintaining
sufficient detail for effective geological feature analysis.

To obtain LR UAV-borne gamma-ray spectrum images, the resize function
from the PIL.Image library was utilized to alter the image size by specifying
new dimension parameters (width and height). The resample=Image.LANCZ0S
parameter specifies the use of the Lanczos resampling algorithm, which is a high-
quality resampling method suitable for image scaling. As shown in [Figure 4:
see original paper], with a six-fold increase in the UAV-borne gamma spectrum
image, some geological detail loss can be clearly observed.

Model Training and Analysis

The hardware used includes an INTEL I5-13600KF 14-Core processor with 3.5
GHz, 32 GB memory, and an NVIDIA GeForce RTX 4070Ti graphics card.
The Real-ESRGAN model was constructed using the PyTorch framework. The
Adam optimizer was used to train the model at a learning rate of 1 x 1074,
and exponential moving average (EMA) was employed for more stable training.
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In addition, L1 loss, perceptual loss, and GAN loss were combined for training
with weights of (1, 1, 0.1), respectively. L1 loss ensures the accuracy of the
reconstructed image at the pixel level, perceptual loss enhances the high-level
visual quality of the image to align with human perception, and GAN loss
increases the realism and naturalness of the image. The comprehensive use of
different types of loss functions improves the effects of UAV-borne gamma-ray
spectrum SR image reconstruction.

UAV-borne gamma-ray spectrum images are a special type of remote sensing
image that provide important data for geological exploration, mineral resource
development, and environmental monitoring by detecting and recording the
distribution of radioactive elements on the surface. These images require high
spatial resolution to capture subtle geological features. The main advantage of
SR images is their ability to significantly enhance the spatial resolution of the
image, making the visual effect clearer, more detailed, and more realistic. To
evaluate the application of SR reconstruction technology to UAV-borne gamma-
ray spectrum images, this study selected the peak signal-to-noise ratio (PSNR)
and structural similarity index (SSIM) as the main evaluation indicators.

PSNR is a crucial metric for measuring image quality and is primarily used
to evaluate the similarity between reconstructed and original images, providing
quantitative analysis of pixel-level errors. Its unit is decibels (dB), and a higher
value indicates better image quality. The calculation of PSNR depends on MSE,
and the formula is as follows:

i
AN
3
AN

MSE = (I(i,5) — K(i, 7))

i

Il
[=}
.

Il
[=}

where (i, j) is the pixel value of the original image, K (i, j) is the pixel value of
the reconstructed image, and m and n are the width and height of the image,
respectively. The calculation formula for PSNR is:

MSE

MAX?
PSNR = 10log; , ( )

where MAX denotes the maximum possible value of an image pixel. If the pixel
value is 8 bits (i.e., the range is 0-255), then MAX = 255. The MAX values
corresponding to the images in this study were 255.

SSIM is an index used to measure the similarity between two images. It evaluates
image quality through brightness, contrast, and structure to reflect perceived
quality more comprehensively. The calculation of SSIM is based on three main
components: brightness, contrast, and structure. For the original image x and
the reconstructed image y, the SSIM index is:
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SSIM(II}, y) = [l(.’l?, y)]a [C(.’B, y)]ﬁ[s(x’ y)]fy

2pg ty+Cy
pz+ug+Cy
age grayscales of the original image x and the reconstructed image y, and C is
20,0,+C,
HoIiC,
the standard deviations of the grayscale of the original image = and the recon-
Ty +C3
am;y+03
comparison, o,, is the covariance of the grayscale of the original image x and
the reconstructed image y, and Cjy is usually Cy/2. «, §, and vy are weight
parameters, usually taking the value of 1. The final SSIM index formula is as

follows:

where I(z,y) = is the brightness comparison, y, and p, are the aver-

a non-zero constant; c(z,y) = is contrast comparison, o, and o, are

structed image y, and C, is a non-zero constant; s(z,y) = is structural

(p2 + p2 + Cy)(02 + 02 + Cy)

SSIM(z, y) =

The value ranges from 0 to 1. The closer the SSIM value is to 1, the more similar
the reconstructed image is to the original image and the higher the quality.
In contrast, the lower the SSIM value, the greater the difference between the
reconstructed and original images, and the worse the quality.

Results and Discussion

In this study, we reconstructed UAV-borne gamma-ray spectrum images with
2%, 4x, and 6x SR. The SRCNN, SRGAN, FSRCNN, and Real-ESRGAN
algorithms were compared to verify the effectiveness of the Real-ESRGAN algo-
rithm.

To validate model performance, 10 images were randomly selected from the im-
age set of four elements (U, Th, K, and Tc) to constitute a test set. Th and K
were selected for analysis during the testing process. By comparing and analyz-
ing the geological map of the survey area (as shown in [Figure 3: see original
paper]), the distribution patterns of Th and K within the survey area exhibited
a high degree of consistency. Notably, a fault within the survey area extends
from northwest to southeast, which aligns closely with the high-value bands of
Th and K. This phenomenon is attributed to the distribution of Hercynian late-
stage granites, which caused anomalous enrichment of radioactive K and Th in
the survey area. Typically, granites contain minerals such as potassium feldspar
and mica, which are rich in K; concurrently, they also contain Th-bearing min-
erals such as monazite and xenotime. Consequently, in areas where granite is
present, the contents of thorium and potassium are generally high. Therefore,
the test dataset employed in this study accurately reflected the distribution of
natural radioactive nuclides within the survey area.

To visually demonstrate the superior effect of the Real-ESRGAN algorithm
on SR reconstruction of UAV-borne gamma-ray spectrum images, the three
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introduced SR reconstruction algorithms were applied with 2x, 4x, and 6x
magnification to the test set. The results are presented in [Figure 5: see original
paper], [Figure 6: see original paper], and [Figure 7: see original paper].

The analyses presented in these figures expose discernible disparities in the ef-
ficacy of the assorted algorithms engaged in imagery reconstruction. The SR
reconstructions yielded by the SRCNN algorithm exhibited a measure of ob-
scurity and chromatic aberration with pronounced exacerbation in blurriness
concomitant with escalated magnification. In particular, at the 6x magnifica-
tion exemplified in [Figure 7: see original paper], the loss of detailed information
leads to the obscurity of geological body boundaries, rendering them difficult to
discern.

The FSRCNN algorithm, an advanced rendition of its progenitor, ameliorates
the acuity of high-frequency detail capture through refinement of convolutional
strata and activation mechanisms, thereby resulting in marked enhancement in
the textural, marginal, and configurational fidelity of the reconstructed imagery
relative to those of SRCNN (as depicted in [Figure 5: see original paper]). De-
spite these advancements, discrepancies persist between FSRCNN'’s output and
the authentic geological background and boundaries, with observable residual
haziness (as illustrated in [Figure 7: see original paper]).

The SRGAN algorithm surpasses its precursors in holistic quality of image re-
construction by integrating the GAN architecture to facilitate more nuanced
rendition of intricate image details. Even with magnification increased to 6x,
the detailed information and boundaries of geological bodies remain distinctly
visible, with significant reduction in image blurriness. In stark contrast to SR-
CNN, FSRCNN, and SRGAN, the Real-ESRGAN algorithm demonstrates pro-
nounced superiority in reconstructed image fidelity, efficaciously attenuating
artifacts such as ringing and overshoot. As portrayed in [Figure 5: see original
paper], the algorithm enables distinct identification of depositional loci across
macroscopic and microscopic scales. The reconstructed imagery not only eluci-
dates the ore body’s continuity but also accentuates the demarcation between
the ore body and the enveloping rock matrix, affording exact visual portrayal of
the ore deposit’s morphology, magnitude, and orientation. However, an increase
in magnification intensity introduces over-saturation at the orebody periphery,
as shown in [Figure 7: see original paper].

To comprehensively verify the superiority of the Real-ESRGAN algorithm, this
study further selected and reconstructed U, Th, K, and Tc images in the test
set, as shown in [Figure 8: see original paper]. The results indicate that images
reconstructed by the Real-ESRGAN algorithm show significant improvement in
overall sharpness and color vividness. A smoother and more natural transition
is displayed at the edge of the ore body and key geological landmarks, effectively
avoiding misunderstandings and errors that may arise during image processing.
This not only improves overall image resolution but also enhances detailed rep-
resentation of geological structures and deposit sites, providing more abundant
and accurate identifiable features for geological exploration and resource evalu-
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ation.

When evaluating the quality of super-resolution reconstructed images, in addi-
tion to subjective analysis based on visual senses, this study also adopted var-
ious objective quantitative indicators to verify experimental accuracy. PSNR
and SSIM were introduced as evaluation criteria to objectively quantify the er-
ror between reconstructed and original images, as presented in and . A residual
analysis between the original and generated SR image was also conducted by
calculating the residual image and analyzing its histogram. The ability of the
Real-ESRGAN algorithm in detail recovery and noise processing was revealed,
providing a comprehensive perspective for evaluating SR reconstructed image
quality, as shown in [Figure 9: see original paper].

Comparison of the peak signal-to-noise ratio (PSNR) of super-resolution recon-
structed images using different algorithms

Magnification SRCNN SRGAN FSRCNN Real-ESRGAN

Comparison of the structural similarity index (SSIM) of super-resolution recon-
structed images using different algorithms

Magnification SRCNN SRGAN FSRCNN Real-ESRGAN

The analysis results from and indicate that with an increase in magnification,
the PSNR and SSIM values of reconstructed images obtained by each algo-
rithm generally show a downward trend. Notably, the Real-ESRGAN algorithm
demonstrates pronounced superiority in both indices, signifying its exceptional
performance in reconstructing SR images. When juxtaposing these quantita-
tive measures, it is evident that Real-ESRGAN algorithm reconstructions are
markedly closer to original images. This is particularly observed in SSIM values,
which excel in capturing structural fidelity and perceptual quality. The SSIM
metric, sensitive to both local alterations and texture granularity, provides com-
prehensive assessment of image quality.

Mustratively, at 2x magnification, the Real-ESRGAN algorithm achieves an
SSIM value of 0.950, which underscores the close resemblance of the recon-
structed image to its pristine counterpart. This high SSIM value not only attests
to Real-ESRGAN’s proficiency in preserving fine details but also substantiates
its overall efficacy and preeminence in SR image reconstruction tasks.

As observed from [Figure 9: see original paper], residual values are mainly con-
centrated in the central position and most are close to zero. This shows that
the difference between the SR reconstructed image and original image is very
small for most pixels, and the Real-ESRGAN model can better retain the distri-
bution characteristics of radioactive elements in the original image. Although
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most residuals are concentrated in the center, some residuals are too large,
which may be due to differences between reconstructed and original images at
geological boundaries, high-frequency structures, or noisy areas. The symme-
try of the histogram indicates that residuals are evenly distributed in positive
and negative directions. This symmetry means that the Real-ESRGAN model
has no obvious systematic bias and can restore radiation intensity changes in
UAV-borne gamma-ray spectrum images in a balanced manner.

Conclusion

In this study, the Real-ESRGAN algorithm was successfully applied to recon-
struct UAV-borne gamma-ray spectrum images at super-resolution, significantly
enhancing spatial resolution and improving visualization quality of geological
features. By comparing it with SRCNN, SRGAN, and FSRCNN algorithms,
Real-ESRGAN demonstrated excellent performance in PSNR and SSIM objec-
tive evaluation indices. In particular, under 2x magnification, the SSIM value
was as high as 0.950, substantiating its advantage in detail preservation and tex-
ture clarity and further highlighting significant enhancement in identification of
geological body boundaries.

Additionally, the Real-ESRGAN algorithm effectively reduced ringing and over-
shoot artifacts, making transitions between ore body edges and key geological
markers smoother and more natural, and greatly enhancing detailed represen-
tation of geological body structures and deposit sites. This clear delineation of
lithological boundaries provides geologists with more intuitive and accurate ge-
ological information, thereby offering significant application value for geological
exploration and resource assessment. Consequently, the Real-ESRGAN algo-
rithm is not only theoretically advanced but also demonstrates robust practical
utility, providing an effective image processing tool for UAV-borne gamma-ray
spectrum image processing.
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