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Abstract

Neutron CT imaging offers unique advantages in metal defect detection and
cultural relic analysis, particularly for exploring internal structures of ancient
artifacts like writing knives, due to its high penetrability and hydrogen sen-
sitivity. Accurate segmentation of its images is critical for defect detection,
with crack segmentation in writing knife images being key to understanding
craftsmanship and preservation. However, complex structures in these images—
neutron scattering noise, blurred multi-material interfaces and overlapping gray
scales hinder precise crack segmentation. Traditional algorithms, reliant on
manual tuning and single-feature extraction, lack accuracy: they roughly dis-
tinguish macroscopic structures but fail to segment fine cracks in blade edges.
This study addresses this by applying deep learning to crack segmentation in
writing knife neutron CT images, using BSEResU-Net (a residual U-Net with
SE attention). Trained on a small manually annotated dataset of The Western
Han writing knife from China Spallation Neutron Source (CSNS), the model
was validated on full-knife crack segmentation. Results show its superiority, it
obtained an Area Under the ROC Curve (AUC) of 0.9793 and an F1 score of
0.9089 on the dataset, accurately capturing fine cracks. Compared with thresh-
old segmentation, about 70% more cracks can be segmented. This framework
resolves neutron data scarcity, provides an innovative solution for cultural her-
itage defect detection, and advances deep learning in multimodal penetrating
imaging.
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Neutron CT imaging offers unique advantages in metal defect detection and
cultural heritage analysis, particularly for exploring the internal structures of
ancient artifacts such as writing knives, due to its high penetrability and hy-
drogen sensitivity. Accurate segmentation of these images is critical for defect
detection, with crack segmentation in writing knife images being key to under-
standing craftsmanship and preservation states. However, complex structures
in these images—including neutron scattering noise, blurred multi-material in-
terfaces, and overlapping gray scales—hinder precise crack segmentation. Tra-
ditional algorithms, which rely on manual tuning and single-feature extraction,
lack sufficient accuracy: they can roughly distinguish macroscopic structures
but fail to segment fine cracks at blade edges.

This study addresses these challenges by applying deep learning to crack segmen-
tation in writing knife neutron CT images, utilizing BSEResU-Net (a residual
U-Net with SE attention). Trained on a small manually annotated dataset of a
Western Han writing knife from the China Spallation Neutron Source (CSNS),
the model was validated on full-knife crack segmentation. Results demonstrate
its superiority, achieving an Area Under the ROC Curve (AUC) of 0.9793 and an
F1 score of 0.9089 on the dataset, accurately capturing fine cracks. Compared
with threshold segmentation, approximately 70% more cracks can be segmented.
This framework resolves neutron data scarcity, provides an innovative solution
for cultural heritage defect detection, and advances deep learning in multimodal
penetrating imaging.

Keywords: Neutron CT; ancient writing knife; crack segmentation; BSEResU-
Net.

Introduction

The advancement of imaging technologies has propelled progress across mul-
tidisciplinary fields. Among them, neutron imaging, as a typical penetrating
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detection technique, demonstrates irreplaceable application value in materials
science, cultural heritage conservation, and other domains by virtue of its unique
physical properties [?, ?]. Neutrons, with their strong penetrability and sensi-
tivity to hydrogen, enable non-destructive testing for internal defects in metal
materials—precisely locating micro-cracks, air holes, and other hidden hazards
in metal components. They also facilitate non-invasive analysis in cultural relic
research, such as revealing the casting techniques of ancient bronze wares or the
stratification of mural pigments.

Image segmentation [?] is a pivotal step in the data processing pipeline of neu-
tron imaging, primarily serving to partition raw images into regions with phys-
ical significance. This process not only enables effective separation of target
objects from the background but also provides the data foundation for subse-
quent applications such as defect identification and compositional analysis. In
practical scenarios, the accuracy of segmentation directly determines the reli-
ability of analysis results, including the diagnosis of internal material defects
and the structural interpretation of cultural relics. As a crucial link connecting
imaging data acquisition and in-depth analysis, improving the performance of
image segmentation technology is of great significance for advancing penetrating
detection techniques. Traditional segmentation algorithms, such as thresholding
[?] and edge detection [?], despite their simplicity in principle, exhibit limita-
tions when confronted with typical challenges of these imaging modalities. In
neutron images, low-contrast targets, complex background noise, and regions
with mixed materials [?, ?] are common. These challenges, coupled with the re-
liance of traditional algorithms on manual parameter tuning and single-feature
extraction, often lead to problems such as missed targets and blurred bound-
aries in segmentation results, making it difficult to meet the requirements of
high-precision analysis.

In recent years, breakthroughs in deep learning for image segmentation [?]
have offered new solutions to these technical challenges. Convolutional neu-
ral networks (CNNs) [?], through multi-layer feature extraction and non-linear
mapping, can automatically learn high-order representations of hydrogen dis-
tribution and defects in neutron images, effectively enhancing segmentation
robustness across different imaging modalities. Long et al. proposed the Fully
Convolutional Network (FCN) [?], a milestone in deep learning-based semantic
image segmentation models. The core contribution of FCN lies in its ability to
accept input images of arbitrary sizes and output corresponding segmentation
maps, achieved by converting fully connected layers in traditional CNNs into
convolutional layers. The advent of FCN marked a significant advancement in
deep learning for image segmentation. Building on this, Ronneberger et al. de-
veloped U-Net [?], a classic architecture specifically designed for medical image
segmentation. The core structure employs a symmetric encoder-decoder design:
the contracting path (downsampling) extracts contextual features via convolu-
tion and max-pooling, while the expansive path (upsampling) restores resolution
using transposed convolutions, with feature fusion enabled by skip connections.
This design allows the network to capture global semantic information while
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precisely localizing target regions—the downsampling path compresses features
layer-by-layer to enhance abstract representation, the upsampling path restores
spatial dimensions via transposed convolutions, and skip connections directly
transmit original features from the downsampling path to preserve details oth-
erwise lost during pooling. U-Net excels in scenarios with scarce medical data,
improving generalization through data augmentation such as rotation and scal-
ing to learn effective feature representations from minimal samples, and remains
a foundational architecture in medical segmentation to date.

The Energy Resolved Neutron Imaging Spectrometer (ERNI) of CSNS [?] has
carried out neutron CT detection on an ancient writing knife collected by the
Palace Museum. To deeply analyze its internal structure, the research team
performed image segmentation work. However, traditional image segmentation
methods can only roughly distinguish different structures inside the writing knife
and struggle to achieve accurate segmentation of subtle cracks in the blade.
To address this technical bottleneck, deep learning methods are introduced in
this study to provide a more efficient solution to these problems. The raw
data undergo denoising and preprocessing, followed by 3D reconstruction and
annotation to establish a specialized neutron image dataset. By integrating the
BSEResU-Net [?] segmentation framework—an architecture that fuses residual
learning and SE attention mechanism into the traditional U-Net—this research
conducts image segmentation on real-world datasets, significantly enhancing
feature extraction efficiency. The findings not only provide technical support
for scientific challenges such as precise material defect identification and fine-
scale structural analysis of archaeological relics but also bridge the data and
methodological gaps in deep learning applications for neutron imaging, fostering
technological integration across interdisciplinary research.

IT. Materials and Methods

BSEResU-Net, as an innovative variant within the U-Net family, has systemat-
ically reconstructed and upgraded the classic architecture. It groundbreakingly
fuses the SE attention mechanism [?] with residual connections [?] in-depth,
building an efficient framework better adapted to complex feature processing.
As shown in the architecture diagram (Fig. 1 [Figure 1: see original paper]), it
strengthens gradient transmission and suppresses network degradation through
residual operations, leverages the SE attention mechanism to precisely calibrate
channel feature weights, and cooperates with components such as skip connec-
tions and transpose convolutional layers to form a complete encoding-decoding
process.

In terms of performance, this network demonstrates two remarkable advantages.
First, regarding resolution compatibility, its flexible hierarchical design allows
seamless adaptation to multi-source heterogeneous data with different resolu-
tions, accurately parsing feature information from macro scenes to micro details.
Second, concerning architectural flexibility, it supports adjusting the number of
residual blocks and network depth as needed, achieving a dynamic balance be-
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tween model complexity (computational cost) and segmentation performance.
This customizable feature, combined with the synergistic benefits of residual con-
nections and the attention mechanism, enables BSEResU-Net to deeply tap into
the potential value of data and strengthen the expression of key features. Con-
sequently, in complex scene segmentation tasks, it achieves a dual breakthrough
in precision and robustness, effectively coping with challenges such as noise in-
terference and target blurriness, and providing a superior technical solution for
fields like medical image analysis and remote sensing image interpretation.

A. Residual Convolution

In the realm of deep learning, as the number of network layers grows, linearly
stacked architectures often encounter the formidable challenges of vanishing
gradients [?] and performance degradation. These issues severely impede the
training of deep neural networks, limiting their ability to extract hierarchical
features effectively. Residual connections emerge as a groundbreaking solution,
revolutionizing network design through an innovative skip connection [?] mech-
anism. As shown in Fig. 2 Figure 2: see original paper, residual connections
establish direct “shortcut paths” that bypass intermediate layers, enabling seam-
less transmission of low-level feature information from early network stages to
deeper layers. This architectural innovation allows the network to focus on
learning the residual differences between the input and desired output, rather
than reconstructing the entire mapping from scratch. By doing so, it not only
mitigates the exponential decay of gradients during backpropagation [?] but
also reduces the computational burden on individual layers, facilitating more
efficient learning.

The unique design of residual connections brings dual advantages: preserving
gradient integrity throughout the network hierarchy and accelerating the op-
timization process. Empirical studies have demonstrated that this approach
significantly enhances training stability, enabling faster convergence and pre-
venting performance degradation even in extremely deep architectures. As a
result, residual connections have become a fundamental building block for de-
veloping state-of-the-art neural networks, empowering researchers to construct
highly complex yet robust models capable of achieving superior performance
across diverse applications.

B. SE Attention Mechanism

The SE Attention Mechanism represents a highly influential innovation in
deep learning that has revolutionized feature learning in Convolutional Neural
Networks (CNNs) with its unique channel-wise adaptive adjustment strategy.
Rooted in the core concept of “squeeze-and-excitation,” this mechanism pio-
neers a novel computational paradigm for channel attention, enabling precise
discrimination of the significance of different channel features in data and
dynamic optimization of feature representation.
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The SE mechanism refines channel features through a two-step process, as shown
in Fig. 2 Figure 2: see original paper. First, the Squeeze operation condenses
the spatial information of each channel into a global feature descriptor using
techniques like global average pooling [?]. This effectively captures the global
context within channels, abstracting feature maps into comprehensive represen-
tations. Subsequently, the Excitation operation leverages a Multi-Layer Percep-
tron (MLP) [?] to establish non-linear relationships across channels, adaptively
generating weight coefficients for each channel. These coefficients quantify the
contribution of individual channel features to the final output. By fusing them
with the original feature maps, the model amplifies the expression of crucial
channels while suppressing redundant or interfering information. This adap-
tive weight allocation endows the SE mechanism with exceptional capabilities
in feature selection and enhancement.

C. Loss Function

In image segmentation tasks, a single loss function is often difficult to balance
segmentation accuracy and class balance. The Dice loss function [?] focuses
on measuring the overlap between predicted results and true labels, which can
effectively deal with data imbalance problems. The cross-entropy loss function
[?] optimizes category prediction accuracy from a probability perspective and
performs well in capturing detailed features.

To leverage the advantages of both, this study uses a joint loss function combin-
ing Dice loss and cross-entropy loss, constructing an optimization objective that
considers both pixel-level classification accuracy and regional integrity through
linear weighting, thereby achieving a more balanced and accurate image seg-
mentation effect. The specific expression of the joint loss function is as follows:

L=oa-CEL+(1—a)-DL

where CEL stands for cross-entropy loss function; DL stands for Dice loss func-
tion; and « is a hyperparameter controlling the contribution of cross-entropy
loss and Dice loss. By adjusting «, the optimal combination of loss functions
can be found for different tasks to improve segmentation accuracy.

The cross-entropy loss function is often used in classification tasks, especially
in binary or multiclass classification problems. The goal is to minimize the
difference between predicted values and true labels. A major drawback of the
cross-entropy loss function is that in cases of imbalanced data, it may cause the
model to over-optimize for the large class (majority class) while ignoring the
small class (minority class). Therefore, in some highly imbalanced segmentation
tasks, cross-entropy loss may not effectively handle the segmentation problem
between foreground and background. The formula is as follows:

CEL=—) [t;In(p;,) + (1 —t;)In(1 —p,)]
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where N is the number of samples (or pixels, in the case of image segmentation
tasks). t_iis the true label of the ith example, taking the value 0 or 1 (e.g., fore-
ground or background in a segmentation task). p_1i is the predicted probability
value of the ith sample.

The Dice loss function is specifically designed for image segmentation. It is
based on the Dice coefficient, which measures the overlap between the predicted
region and the true region, and performs well especially when dealing with im-
balanced data. Its strength lies in superior performance when facing imbalanced
data, as it balances the contributions of foreground and background by directly
optimizing their overlap. In tasks such as medical image segmentation, the fore-
ground (e.g., tumors or blood vessels) usually occupies a smaller portion of the
image, and Dice loss handles this effectively. The formula is as follows:

N
2 Zi:l p;t; + €
N N
21 p; + D t; +e

DL =1-

where N is the number of samples (pixels); p_i is the predicted probability of
the ith pixel; t_i is the true label of the ith pixel; and is a small smoothing
factor used to avoid division by zero errors.

D. Evaluation Metrics

To evaluate segmentation performance and construct a scientific and reasonable
evaluation system, the following key evaluation indicators are introduced. TP,
TN, FP, and FN represent true positive, true negative, false positive, and false
negative examples of segmentation, respectively. The three evaluation metrics
are described as follows:

Se (Sensitivity/Recall) focuses on the model’s ability to identify positive sam-
ples. It measures the proportion of actual positive instances correctly predicted
as positive by the model. A higher Se value indicates a lower probability of
missing relevant positive samples, making it particularly crucial for applications
requiring high sensitivity. Sp (Specificity) evaluates the model’s proficiency in
distinguishing negative samples. It calculates the ratio of actual negative in-
stances accurately classified as negative, with higher values signifying better
discrimination against false positives. This metric is essential for scenarios
where avoiding false alarms is critical. ACC (Accuracy) provides an overall
assessment of model performance by measuring the percentage of correctly clas-
sified samples (both positive and negative) out of the total dataset. However,
in scenarios with class imbalance, ACC may not adequately reflect the model’s
true capabilities, necessitating complementary analysis with metrics like Se and
Sp to ensure comprehensive evaluation.

Ideally, a model should achieve high scores in both Se and Sp. However, there
is often an inherent trade-off between these metrics—enhancing one may inad-
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vertently compromise the other, especially in scenarios with imbalanced data
distributions or when adjusting decision thresholds.

To address the limitations of single-metric evaluation and enable a more com-
prehensive, balanced assessment of model performance, two composite metrics
have been proposed: F1-Score and Matthews Correlation Coefficient (MCC).
F1-Score, a harmonic mean of Precision and Recall, prioritizes balancing the
accuracy of positive predictions (Precision) with their completeness (Recall).
MCC, a correlation coefficient that integrates all four confusion matrix cate-
gories (TP, TN, FP, FN), is particularly well-suited for imbalanced datasets.
By accounting for both foreground-background discrimination and class distribu-
tion dynamics, these metrics provide multi-dimensional validation, overcoming

single-metric biases and offering a more robust evaluation framework. F1-Score
and MCC are described as follows:

Pr x Se

Fl=2X ——
~ Pr + Se

TP/N -8 x P

Mee = JPxSx(1-8)x(1_P)

where N denotes the total number of pixels in the image. Pr = TP/(TP+FP)
represents precision, measuring the proportion of predicted positive pixels that
are actually correct. S = (TP + FN)/N is the foreground ratio, indicating the
proportion of actual foreground pixels in the entire image. P = (TP + FP)/N
is the predicted positive ratio, reflecting the proportion of pixels classified as
foreground by the model.

III. Experiment and Results
A. Datasets

The model dataset used in the experiment is the neutron CT dataset of a
writing knife from the Western Han Dynasty. The Western Han writing

knife was tested for neutron tomography at a distance of approximately

27 meters from the ERNI instrument at CSNS. The pinhole was moved

to 20 mm, and the neutron wavelength range was set between 0.5 and 4.6
Angstroms by the chopper. For neutron tomography, all projections were
recorded through an optical system that included a 50-micron-thick ZnS/6LiF
scintillation screen, a CCD camera (Andor, Oxford Instruments), and a
Nikon photographic lens (Nikon, Japan). The camera array had a size of
2048% x 2048pixels, witheachpizelbeingl 5micronsinsize. T hemagni ficationo ftheopticallenswasadjustedtoap;
sectionaldataslices. T heoriginalcross—sectionaldatawerecroppedtoasizeo f308 x $308
pixels, and 200 representative cross-sectional images of the knife edge were
selected from different regions for annotation and training.
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In this study, the labelme [?] tool was used to complete the data annotation
work. As open-source annotation software, labelme provides flexible manual
annotation functionality, supporting researchers to accurately outline and define
the category of target areas in image data. Its open-source nature not only
reduces tool usage costs but also allows users to expand functionality through
custom scripts according to specific task requirements, providing high-quality
labeled datasets for subsequent model training and ensuring the standardization
and availability of experimental data.

B. Experiment Setup

Regarding experimental hardware configuration and training strategy, the study
employed an NVIDIA GeForce RTX 4060 Laptop GPU for computation with
the CUDA 12.7 computing framework featuring 8 GB of video memory. It should
be noted that this configuration is only appropriate for addressing the compu-
tational requirements of small-scale training scenarios. Given the focus of this
paper on verification methods, small-scale training was utilized to demonstrate
the effectiveness of the proposed approach. For large-scale data processing, it is
imperative to upgrade the hardware to overcome limitations in video memory
capacity and computational power.

During the data preprocessing phase, input images were divided into 48%x $48
pixel blocks to achieve a balance between memory utilization efficiency and
preservation of local features. This design choice not only prevents video mem-
ory overload but also ensures accurate capture of local characteristics such as
cracks and pores, thereby providing a robust data foundation for model train-
ing. The data was augmented by rotating 90°, 180°, and 270°, and a total of
40,000 patches were used for training.

Regarding model training strategy, 100 training epochs were established to en-
sure the model converges to a stable state through sufficient iterations, thus
guaranteeing the reliability of segmentation accuracy. A dynamic learning rate
adjustment strategy was implemented: initially set at 2§ x107{-2}$ to accelerate
early convergence, it was gradually attenuated to 53x107{-3}$ as training pro-
gressed. Refined parameter tuning was performed during the near-convergence
stage of the model to balance convergence speed and accuracy. The optimizer
employed stochastic gradient descent (SGD) [?], leveraging its efficient gradient
update characteristics to drive iterative optimization of model parameters. This
approach ultimately achieved high-fidelity alignment between segmentation re-
sults and real labels in tasks such as pearl inner wall segmentation and crack
detail segmentation.

C. Results on Western Han Dynasty Writing Knife Neutron CT
Dataset

From the experimental results presented in Fig. 3 [Figure 3: see original paper],
it is evident that the BSEResU-Net model utilized in this study demonstrates
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superior performance in crack detail segmentation tasks. The proposed model
effectively captures fine-scale features of crack images with significant variations
in gray value distribution, achieving high-precision segmentation outcomes.

In contrast to traditional threshold-based segmentation methods, which can
only provide rough approximations of target edge contours, BSEResU-Net lever-
ages its deep residual structure and attention mechanism to accurately identify
and segment complex crack morphologies within the writing knife. This ap-
proach effectively mitigates issues related to edge blurring and detail loss. Com-
pared to classical models such as SegNet and U-Net, the proposed model exhibits
distinct advantages in segmentation accuracy, edge localization precision, and
detail preservation. When processing crack images characterized by multi-scale
and multi-texture features, BSEResU-Net achieves more precise pixel-level clas-
sification of crack regions through its optimized feature extraction module and
multi-level feature fusion strategy, thereby significantly enhancing the refine-
ment of segmentation results.

According to the multi-dimensional evaluation metrics in Table 1 , the proposed
BSEResU-Net method attains outstanding performance across all indicators,
surpassing both SegNet and U-Net in every respect. Notably, the AUC metric
reaches 0.9793, a value that leaves comparison models far behind and under-
scores the method’s superior capacity to discriminate between segmentation re-
sults and actual ground truth. While the Sp index of BSEResU-Net, at 0.9872,
is marginally lower than SegNet’s 0.9898, overall BSEResU-Net still exhibits
more robust comprehensive segmentation performance, especially demonstrat-
ing higher precision when handling detailed components.

Table 1. Performance comparison of different segmentation methods on the
Western Han Dynasty writing knife neutron CT dataset

Methods AUCT ACCt F17 MCCT Sp?T
SegNet 0.9898
U-Net

BSEResU-Net  0.9793 0.9536 0.8621 0.9872 0.9089

The threshold segmentation result in Fig. 4 Figure 4: see original paper is
limited by the single attribute of pixel gray value, which not only leads to
blurred edges of cracks but also causes loss of structural information, making it
difficult to clearly reveal subtle defects inside the writing knife. BSEResU-Net
uses a multi-layer convolutional neural network to perform feature extraction
and semantic segmentation of writing knife images. The segmentation results
in Fig. 4 show that with powerful feature learning capability, the proposed
algorithm can not only accurately capture the fine boundaries of writing knife
cracks and completely separate them from the complex background, but also
deeply analyze the internal hierarchical structure of the blade, clearly revealing
the direction, depth, and spatial relationship between cracks and the blade
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matrix. Compared with threshold segmentation results, the 3D model output
by BSEResU-Net restores the actual form of the writing knife more realistically
and depicts crack details with exquisite precision, providing more reliable data
support for subsequent quality assessment and structural damage analysis of the
writing knife. This fully demonstrates the technical superiority of the algorithm
in the field of 3D structure segmentation of complex objects. Simultaneously,
compared with segmentation results from U-Net and SegNet, it is found that
due to insufficient segmentation by U-Net and SegNet on some slices, the final
overall 3D rendering is partially missing, which further highlights the advantage
of BSEResU-Net in segmentation effectiveness.

Although the BSEResU-Net proposed in this study demonstrated outstanding
performance in CT image segmentation tasks, thorough analysis of experimental
results revealed a typical area for optimization. In terms of segmentation accu-
racy, the quality of labeled data has an undeniable impact on model training
effectiveness. During training set annotation, subjectivity in manual labeling
and difficulty in locating boundaries of small structures led to widespread label-
ing errors, with some annotated boundaries deviating from actual target edges.
These labeling errors are learned by the model during training, leading to over-
segmentation in complex texture regions where the model misjudges texture-
similar background regions as targets. Simultaneously, segmentation accuracy
for small structures (such as millimeter-level cracks and sub-voxel-level pores) is
insufficient. This not only reflects the model’s inadequate representation capa-
bility for fine-grained features under small-sample training conditions but also
highlights how labeled data accuracy constrains model learning effectiveness.

IV. Conclusion

This study applies a novel deep learning framework, BSEResU-Net, which
deeply integrates the residual U-Net architecture with the SE attention mecha-
nism to construct an image segmentation model with efficient feature extraction
and semantic information enhancement capabilities. To systematically evaluate
model performance, a small-scale dataset for neutron CT was constructed.
Through rigorous cross-validation training and testing, experimental results
demonstrate that BSEResU-Net exhibits outstanding segmentation perfor-
mance on the neutron CT dataset, capable of accurately capturing subtle
structural differences and boundaries in images. Compared with current
mainstream image segmentation algorithms, this model achieves improvements
in key evaluation metrics, effectively overcoming technical bottlenecks of
traditional threshold segmentation methods such as insufficient accuracy and
poor adaptability, providing an innovative solution for high-precision semantic
segmentation of neutron CT images.
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