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Abstract
Accurate measurement of the activities of 𝛼/𝛽 radionuclides in environmental
samples is critical for environmental radiation monitoring. Traditional 𝛼/𝛽
discrimination methods for dualscintillator detectors primarily rely on the am-
plitude, width, and rise time of the pulse from the detector, often leading to
crosstalk between 𝛼/𝛽 signals and compromising measurement accuracy. To
address this limitation, this study designs a composite detector combining du-
alscintillators with silicon photomultiplier (SiPM) array and proposes a convo-
lutional neural network (CNN) model for 𝛼/𝛽 particle signal discrimination.
By constructing a lightweight CNN architecture, this method extracts multi-
dimensional features from pulse shapes to reach the highprecision classification
of 𝛼/𝛽 particles. Experimental validation using mixed signals from a 244 Cm
𝛼-source and a 90 Sr-90 Y 𝛽-source shows that the CNN method significantly
reduces crosstalk ratios: the alpha-to-beta (𝛼→𝛽) crosstalk ratio is reduced to
0.25 %, and the beta-toalpha(𝛽→𝛼) crosstalk ratio to 0 %. Compared with
traditional particle discrimination methods such as the Amplitude-and-width
Discrimination (AWD) and Integral Rise Time Method (IRTM), these crosstalk
ratios are reduced by one order of magnitude, demonstrating the method’s supe-
riority in improving measurement accuracy. This study provides an intelligent,
low-cost, and scalable solution for high-precision detection of radioactive con-
tamination in environmental samples, with broad prospects in environmental
radiation monitoring.
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Accurate measurement of 𝛼/𝛽 radionuclide activities in environmental samples
is critical for environmental radiation monitoring. Traditional 𝛼/𝛽 discrimina-
tion methods for dual-scintillator detectors primarily rely on pulse amplitude,
width, and rise time, often leading to crosstalk between 𝛼/𝛽 signals and com-
promising measurement accuracy. To address this limitation, this study designs
a composite detector combining dual-scintillators with a silicon photomultiplier
(SiPM) array and proposes a convolutional neural network (CNN) model for
𝛼/𝛽 particle signal discrimination. By constructing a lightweight CNN archi-
tecture, this method extracts multi-dimensional features from pulse shapes to
achieve high-precision classification of 𝛼/𝛽 particles. Experimental validation
using mixed signals from a 244Cm 𝛼-source and a 90Sr–90Y 𝛽-source shows that
the CNN method significantly reduces crosstalk ratios: the alpha-to-beta (𝛼 →
𝛽) crosstalk ratio is reduced to 0.25%, and the beta-to-alpha (𝛽 → 𝛼) crosstalk
ratio to 0%. Compared with traditional particle discrimination methods such
as Amplitude-and-width Discrimination (AWD) and Integral Rise Time Method
(IRTM), these crosstalk ratios are reduced by one order of magnitude, demon-
strating the method’s superiority in improving measurement accuracy. This
study provides an intelligent, low-cost, and scalable solution for high-precision
detection of radioactive contamination in environmental samples, with broad
prospects in environmental radiation monitoring.

Keywords: 𝛼/𝛽 discrimination; convolutional neural network; silicon photo-
multiplier; crosstalk ratio; dual-scintillator detector

Introduction
With the rapid development of nuclear energy and nuclear technology, environ-
mental monitoring requirements for artificial radionuclides have become increas-
ingly stringent. In radiation protection and environmental monitoring, accurate
measurement of extremely low activities of artificial radionuclides (especially to-
tal 𝛼 and total 𝛽 activities) in environmental samples is crucial for evaluating
radiation risks and ensuring environmental safety [?, ?]. Artificial radionuclides
in the environment (such as 𝛼 emitters 244Cm and 241Am, 𝛽 emitters 90Sr–90Y,
and 𝛾 emitters 131I) can be directly measured through the particles they release
[?, ?, ?].

Detectors used for 𝛼/𝛽 nuclide measurement mainly include gas detectors, semi-
conductor detectors, and scintillation detectors. Compared with gas detectors,
scintillation detectors generally exhibit higher detection efficiency and sensitiv-
ity, as well as more compact sizes. In contrast to semiconductor detectors, they
often offer advantages in cost and radiation damage resistance [?, ?]. However,
scintillation detectors commonly suffer from 𝛼/𝛽 signal crosstalk when simulta-
neously detecting 𝛼 and 𝛽 particles, which limits measurement accuracy [?].

Dual-scintillator detectors, composed of a ZnS(Ag) scintillator and a plastic
scintillator, represent a common solution to this challenge. Their working prin-
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ciple is as follows: 𝛼 particles are primarily absorbed by the ZnS(Ag) layer
and converted into optical signals, while higher-energy 𝛽 particles tend to pene-
trate the ZnS(Ag) layer and are detected by the subsequent plastic scintillator.
This design enables simultaneous 𝛼/𝛽 particle measurement through physical
separation [?].

For the output signals of dual-scintillator detectors, traditional particle discrim-
ination methods mainly rely on Amplitude-and-width Discrimination (AWD)
and Integral Rise Time Method (IRTM). AWD utilizes statistical differences
in amplitude and width between 𝛼 and 𝛽 particle pulses for differentiation.
However, this method faces practical challenges: the selection of optimal dis-
crimination thresholds often depends on experience, and due to the correlation
between pulse width and amplitude, complete separation of 𝛼/𝛽 particles is
difficult. The 𝛼 → 𝛽 crosstalk ratio may exceed 5%, significantly affecting mea-
surement accuracy [?, ?, ?, ?]. IRTM employs the rise time differences of optical
signals generated by 𝛼 and 𝛽 particles in the scintillator. Nevertheless, the rise
time of signals is also influenced by amplitude, leading to a high crosstalk ratio
in this method [?, ?].

In summary, the pulse signals generated by 𝛼 and 𝛽 particles in dual-scintillator
detectors exhibit significant overlap in amplitude distribution. Although tradi-
tional methods utilize energy information and partial temporal characteristics
of signals, their ability to precisely distinguish 𝛼/𝛽 particles remains limited.

In recent years, Artificial Intelligence (AI) technologies have demonstrated
tremendous potential in nuclear signal processing due to their powerful pattern
recognition capabilities and have been successfully applied to tasks such as
neutron-gamma (n–𝛾) discrimination and 𝛼–𝛽 particle discrimination. For
example, a feedforward neural network method applied to signals from a
BC-501 liquid scintillation detector achieved misidentification rates of only
1.34% and 1.28% for neutron and gamma ray discrimination, respectively [?].
Fully Connected Neural Networks (FC-NN) and Recurrent Neural Networks
(RNN) applied to stilbene scintillation detectors achieved misidentification
rates of 1% and 1.8% for neutron-gamma discrimination [?]. A Multi-Layer
Perceptron (MLP) neural network used for online heavy ion identification
achieved an accuracy exceeding 99% for 12C and 13C ions [?]. Backpropagation
(BP) and Genetic Algorithm-Optimized Backpropagation (GA-BP) methods
employed to discriminate 𝛼/𝛽 particle waveforms output by a large-area 2𝜋
multi-wire proportional counter (gas detector) achieved accuracies of 99% and
95%, respectively [?].

These studies indicate that AI algorithms exhibit excellent performance in com-
plex particle signal discrimination. However, research on intelligent 𝛼/𝛽 discrim-
ination for signals from dual-scintillator detectors remains relatively limited, and
their potential has not been fully explored in this specific detector configuration.

To address the challenge of 𝛼/𝛽 particle discrimination in signals from dual-
scintillator detectors, this paper proposes an intelligent discrimination algorithm
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based on a Convolutional Neural Network (CNN). This method fully uses the
fundamental differences in luminescence mechanisms between 𝛼 particles (in-
teracting primarily with ZnS(Ag)) and 𝛽 particles (interacting primarily with
the plastic scintillator), which lead to significant distinctions in multiple wave-
form features such as rise time, pulse amplitude, decay trend, and decay time
constants. The CNN model can automatically learn and extract these multi-
dimensional features directly from raw pulse shapes, enabling efficient and high-
precision 𝛼/𝛽 particle classification. Experimental results demonstrate that the
CNN method significantly outperforms traditional methods in discrimination
performance, showcasing extremely high accuracy and substantial advantages
in reducing crosstalk ratios. This provides a high-precision, low-cost, and scal-
able solution for environmental radiation monitoring, holding broad application
prospects. Furthermore, this paper briefly discusses the interpretability of the
CNN model in signal discrimination tasks.

2.1. Detector Based on Dual-Scintillator and SiPM Array
This study designed a composite detector based on a dual-scintillator-coupled
silicon photomultiplier (SiPM) for high-precision discrimination of 𝛼/𝛽 particles
in environmental samples, as shown in Fig. 1 [Figure 1: see original paper]. The
detector consists of a plastic scintillator coated with a ZnS(Ag) layer and ON
Semiconductor FJ60035 SiPMs. To improve photon-collection efficiency, the
SiPMs are arranged in an array with an active-area diameter of 52 mm. The
ON Semiconductor FJ60035 SiPM has the following key performance indicators:
at a working voltage of 27.5 V (Vbr + 2.5 V), the gain reaches approximately 3.4
× 105, ensuring the distinguishability of single-photon-level signals; the photon-
detection efficiency (PDE) is 38%–50% at 450 nm, matching the emission wave-
length of the ZnS(Ag)/plastic scintillator; the dark current is controlled within
0.9–7.5 µA, and the dark-count rate is ≤ 50 kHz/mm2 (21 °C), effectively sup-
pressing background noise and enhancing sensitivity to low-activity samples; the
rise time is 90–250 ps, ensuring the temporal resolution of the pulse waveform.
These parameters and their contributions jointly ensure the efficient discrimina-
tion and precise detection of 𝛼/𝛽 particles by the detector [?].

The ZnS(Ag) scintillation layer has a thickness of approximately 10 mg/cm2

and is directly sprayed onto the surface of the plastic scintillator, forming a co-
incidence scintillator capable of simultaneous 𝛼/𝛽 particle measurement. The
ZnS(Ag) crystal, with Ag+ as the luminescence center, emits 450 nm fluores-
cence when 𝛼 particles excite electrons to the conduction band; these electrons
are then captured by Ag+ and release energy through radiative transition [?, ?].
The detection efficiency of the ZnS(Ag) scintillation layer for 𝛼 particles is close
to 100%. This blue light penetrates the thin plastic scintillator layer and is
received by the SiPM. Due to the very thin ZnS(Ag) scintillation layer, its sen-
sitivity to 𝛽 particles is low, thus effectively suppressing 𝛽-induced crosstalk.

The plastic scintillator (type: BC-404) achieves 𝛽 detection through fluorescence
molecular energy transfer. The energy of 𝛽 particles is absorbed by the matrix
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and transferred to the primary scintillator PPO (2,5-diphenyloxazole), which
emits photons upon de-excitation. The wavelength shifter POPOP (1,4-bis(2-(5-
phenyloxazolyl)) benzene) absorbs these photons and emits 420 nm fluorescence,
which is ultimately converted into an electrical signal by the SiPM [?, ?, ?]. The
dual scintillator detector distinguishes 𝛼/𝛽 particles based on their different
interaction mechanisms, reducing 𝛼/𝛽 crosstalk from the source.

2.2. Background Shielding
To obtain clean 𝛼/𝛽 particle signal samples and ensure the reliability of the
training data, it is necessary to minimize the influence of environmental back-
ground and cosmic rays on the dataset. This paper adopts lead shielding and
anti-coincidence techniques to reduce the background [?, ?, ?]. In this study,
a 10 cm thick lead shielding layer is selected to effectively attenuate the im-
pact of environmental radiation, a choice validated by Monte Carlo simulation
methods.

In the experimental design, anti-coincidence measurements are employed to ex-
clude high-energy cosmic rays. The main detector detects particles released from
standard 𝛼 and 𝛽 sources, while the anti-coincidence detector identifies back-
ground radiation and cosmic rays from the surrounding environment. When
rays interact with both the main detector and the anti-coincidence detector
and generate signals almost simultaneously, these signals are determined to be
background signals and are excluded. Through the dual mechanism of physical
shielding and anti-coincidence logic discrimination, the purity of the signal data
in the training samples is significantly improved, providing a reliable dataset
foundation for subsequent analysis.

2.3. Signal Acquisition and Sample Processing
To enhance the output signal strength, signal-to-noise ratio, and sensitivity of
the detector, the main detector employs a SiPM array to convert the light sig-
nal from the scintillator. The signal is then processed by a signal summation
circuit, an amplification circuit, a pole-zero cancellation circuit, and a single-
ended-to-differential conversion circuit before being digitized by a high-speed
ADC (Analog-to-Digital Converter) [?, ?]. Given that the output signal from
the SiPM array is relatively weak, the amplification circuit amplifies the signal
strength. The pole-zero cancellation circuit, as a crucial technique, effectively
mitigates the exponential undershoot at the tail of the nuclear pulse signal,
which is caused by charge redistribution in the detector and the parasitic capac-
itance of the circuit, thereby restoring a smooth output waveform. The main
detection circuit is depicted in Fig. 2a [Figure 2: see original paper].

When processing high-frequency signals, environmental electromagnetic inter-
ference and common-mode noise can easily lead to signal distortion. Differen-
tial input offers superior stability and anti-interference capability compared to
single-ended input. The high-speed ADC operates at a sampling rate of 80
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MSPS and is controlled by an FPGA. Within the FPGA, a FIFO is employed
to buffer the digital pulse signals, with each sample comprising 576 data points,
each separated by a time interval of 12.5 ns.

The anti-coincidence detector, comprising a plastic scintillator coupled with a
SiPM array, is designed to detect 𝛾-rays and cosmic rays. Its output signal
is processed through an amplification circuit, a pole-zero cancellation circuit,
and a comparator circuit to generate a rectangular pulse signal used for anti-
coincidence veto logic. This signal is then sent to the FPGA for anti-coincidence
discrimination. The acquisition board is visualized in Fig. 2b [Figure 2: see
original paper].

In the 𝛼 and 𝛽 particle waveform acquisition experiment, the radioactive source
was positioned at the center of a sample tray, which was then placed inside
the lead-shielded detector housing’s detection chamber, as illustrated in Fig. 2c
[Figure 2: see original paper]. The distance between the source and the detector
was set to 3 mm. The 𝛼 and 𝛽 sources used in the measurements were a 244Cm
𝛼 source and a 90Sr–90Y 𝛽 source, respectively.

Within the FPGA, the output signals from the anti-coincidence detector were
utilized to suppress background events detected by the main detector, thereby
retaining only the pulses originating from the 𝛼/𝛽 sources. Subsequently, dig-
ital baseline restoration was applied to remove the DC offset, optimizing the
CNN’s waveform feature extraction capability. The cleaned digital pulse sig-
nals produced by 𝛼/𝛽 particles were then transmitted to the host computer via
an Ethernet interface. Fig. 2d [Figure 2: see original paper] shows the entire
signal chain from SiPM to host computer, including key modules like pole-zero
cancellation and FIFO buffer.

Data acquisition and preprocessing are critical steps for achieving accurate de-
tection of 𝛼 and 𝛽 particle signals. Detailed information on the 𝛼 and 𝛽 particle
signal datasets used in this study is provided in Table 1 . This paper employs
mean filtering and normalization for preprocessing digital pulse signals, aiming
to optimize the quality of training signals and improve model training perfor-
mance. The calculation formulas for mean filtering and normalization are given
by Eq. (1) and Eq. (2), respectively. Mean filtering smooths the signals by com-
puting the average within a local window, reducing high-frequency noise while
preserving the main features of the signals. Amplitude normalization of the
signals unifies the feature scales, accelerates model convergence, and enhances
training efficiency [?, ?, ?]. The results of signal data processing are presented
in Fig. 3 [Figure 3: see original paper].

𝑦𝑖 = 1
2𝑘 + 1

𝑘
∑

𝑗=−𝑘
𝑦𝑖+𝑗 (1)

𝑥norm = 𝑥 − 𝑥min
𝑥max − 𝑥min

(2)
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where 𝑦𝑖 represents the value of the filtered signal at position 𝑖, 𝑦𝑖+𝑗 is the value
of the original signal at position 𝑖 + 𝑗, 𝑘 is the radius of the filtering window
with a window size of 2𝑘 + 1, 𝑥norm is the normalized value, 𝑥 is the original
data value, 𝑥min is the minimum of the original data, and 𝑥max is the maximum
of the original data.

2.4. Characteristics of Pulse Signals Generated by 𝛼/𝛽 Par-
ticles
𝛼 and 𝛽 particles exhibit significant differences in physical properties, leading
to distinct waveform features in the detector, as shown in Table 2 . Physically,
𝛼 particles have larger mass, strong ionization ability, but weak penetrability,
while 𝛽 particles have smaller mass, relatively weak ionization ability, but strong
penetrability. When 𝛼 particles interact with the ZnS(Ag) scintillator, their high
energy deposition density excites numerous Ag+ ions, causing extensive electron
transitions and capture, resulting in large signal amplitude. The longer excited-
state lifetime of Ag+ ions gives 𝛼 particles a signal duration with a decay time
of 200 ns.

In contrast, 𝛽 particles have stronger penetrability, passing through the ZnS(Ag)
layer without significant interaction and reaching the plastic scintillator layer.
The low energy deposition density of 𝛽 particles results in fewer excited PPO
and POPOP molecules, leading to smaller signal amplitude. The rapid energy
transfer and de-excitation process of PPO gives 𝛽 particles a shorter signal
duration with a decay time of 2.4 ns. From the perspective of pulse shape
features, these physical property differences lead to distinctly different pulse
shapes for 𝛼 and 𝛽 particles in the composite scintillator. 𝛼 particles exhibit
high luminescence efficiency in the ZnS(Ag) scintillator, with large-amplitude
and long-duration fluorescence pulses, while 𝛽 particles show low luminescence
efficiency in plastic scintillator, with small-amplitude and short-duration fluores-
cence pulses. Such waveform features based on differences in energy deposition
density and excited-state lifetime provide a physical basis for particle identifi-
cation and discrimination [?, ?, ?]. This fundamental distinction enables the
CNN model to learn and extract discriminative features from pulse shapes, as
elaborated in detail in Sec. 3.

During the transmission of alpha particles, physical processes such as self-
absorption, air attenuation, and interaction with the detector lead to energy
loss. Consequently, the statistical spectrum of energy deposition of alpha
particles in the detector exhibits a low-energy tail. Relying solely on amplitude
discrimination may result in misclassification: low-energy alpha particles could
be mistaken for beta particles, while some high-energy beta particles might be
misidentified as alpha particles, thereby causing channel crosstalk. As shown
in Fig. 4 [Figure 4: see original paper], a comparison of the pulse signal shapes
of alpha and beta particles indicates that their signals may overlap in both
amplitude and width, leading to potential confusion.
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3.1. CNN for Alpha-Beta Particle Discrimination
This section systematically presents the design principles, network architecture,
and key parameters of the proposed lightweight CNN for 𝛼/𝛽 particle pulse
waveform classification. The model is implemented with Python 3.10.11 and
PyTorch 2.5.1, and all training and validation are conducted on a hardware
platform equipped with an Intel i5-12500H processor.

To fully leverage the advantages of CNNs in local feature extraction, this study
converts the collected one-dimensional time-series data into two-dimensional
matrices. Originally developed for two-dimensional image processing, CNNs ex-
cel at capturing local patterns, making them equally applicable to our reshaped
waveform data. To prevent the output size from shrinking due to convolution op-
erations, zero-padding is employed to ensure that the output features maintain
the same dimensions as the input features. The convolutional layer performs
feature extraction by sliding a convolution kernel over the input data, with con-
volution defined in Eq. (3). The stride is set to 1, which not only preserves the
correlation information of adjacent data points and ensures the integrity of local
feature extraction but also avoids losing key details by reasonably controlling
the interval at which the convolution kernel traverses the data.

𝑦𝑖,𝑗 = ∑
𝑚

∑
𝑛

𝑘𝑚,𝑛 ⋅ 𝑥𝑖+𝑚,𝑗+𝑛 + 𝑏 (3)

where 𝑘𝑚,𝑛 represents convolution kernel weights, 𝑥𝑖+𝑚,𝑗+𝑛 is the local region
of the input feature map, 𝑏 is the bias term, and 𝑦𝑖,𝑗 is the corresponding pixel
value of the output feature map.

In this study, the proposed model architecture is illustrated in Fig. 5 [Figure
5: see original paper]. Table 3 presents the parameter settings for each layer of
the CNN, including specific details such as layer type, filter size, and activation
function. The model input is a preprocessed 3D tensor with a shape of 24 ×
24 × 1, derived from the original one-dimensional waveform data. The model
structure comprises two convolutional layers, each followed by a batch normal-
ization layer and a ReLU activation function. The mathematical expression of
ReLU is given in Eq. (4).

𝑓(𝑥) = max(0, 𝑥) (4)

The pooling layer uses max pooling to reduce the dimensionality of feature maps,
lowering computational complexity while retaining key features. The fully con-
nected layer flattens the extracted feature maps, further integrating feature
information and enhancing classification accuracy. The output layer is designed
based on task requirements, specifically tailored to the needs of particle classi-
fication in low-background 𝛼/𝛽 measurement scenarios. It is configured with
2 neurons, which assign probabilities via the Softmax function—corresponding
to the classification of 𝛼 particles and 𝛽 particles, respectively—allowing the
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model to clearly distinguish between the two particle types and perform binary
classification in practical measurements.

The CNN model effectively extracts features from one-dimensional waveform
data and performs classification analysis through a combination of convolu-
tional layers, batch normalization layers, activation functions, pooling layers,
and fully connected layers. This model structure is designed to balance fea-
ture extraction capability, computational complexity, and generalization perfor-
mance, thereby making it suitable for waveform data analysis tasks. Through
this design, the CNN can fully leverage local features in one-dimensional wave-
form data to achieve high-precision discrimination between 𝛼 and 𝛽 particles.
During model training, batch normalization layers help accelerate convergence
and improve model stability, while the non-linear characteristics introduced by
the ReLU activation function enable the model to learn more complex feature
representations. By integrating the extracted feature information, the fully con-
nected layers further enhance the model’s classification accuracy, ensuring the
accurate completion of the classification task.

Results
During model training, the cross-entropy loss function was adopted as the op-
timization objective, and network parameters were updated using the Adam
optimizer. Through iterative optimization on the training set, model parame-
ters were continuously adjusted to minimize the loss function. The validation
set was used to monitor the model’s generalization performance in real time dur-
ing training. When the validation loss reached its minimum, the corresponding
model parameters were saved, indicating optimal generalization capability un-
der the current configuration. Key hyperparameters (e.g., learning rate, batch
size) were fine-tuned through multiple rounds of experiments to ensure consis-
tent performance on both the training and validation sets, thereby guaranteeing
expected performance on the test set.

The discrimination results and error rates of the model on the validation set
are presented in Table 4 . The validation set contained 400 𝛼-particle (244Cm)
samples, of which 399 were correctly identified and 1 was misclassified as a
𝛽-particle (error rate: 0.25%); it also included 400 𝛽-particle (90Sr–90Y) sam-
ples, all of which were correctly identified with no misclassifications (error rate:
0%). These results demonstrate that the proposed CNN model exhibits ex-
cellent discrimination capabilities for distinguishing between 𝛼 and 𝛽 particle
signals, achieving high-precision classification with extremely low error rates.
The model achieved near-zero error levels for both particle types.

To verify the effectiveness of the CNN in 𝛼/𝛽 pulse waveform discrimination, we
compared its discrimination results with traditional methods, such as AWD and
IRTM. AWD is widely used in nuclear physics and radiation detection. Since
the pulse signal amplitudes and widths generated by 𝛼 and 𝛽 rays in composite
scintillators usually differ significantly under normal conditions, this method
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can be used to discriminate between them. By setting appropriate discrimi-
nation thresholds and combining pulse amplitude and width information, the
crosstalk rate can be effectively reduced, detection efficiency can be improved,
and discrimination of 𝛼 and 𝛽 pulse signals can be achieved. This method uses
the change in pulse width to distinguish signals, thereby compensating for the
possible shortcomings of relying solely on amplitude discrimination.

IRTM is based on the characteristic that the integral value of the pulse signal
changes with time. When a particle passes through the detector, a pulse signal
is generated, and the intensity (or amplitude) and shape of this signal depend
on the type and energy of the particle. By calculating the integral value of
the pulse signal (that is, the total sum of the signal intensity over time), the
trend of the integral value increasing with time can be observed. As the number
of integration points increases, the growth rate of the integral value gradually
slows down and eventually approaches a stable value, which is called the integral
constant [?, ?]. Since the pulse trailing edge of 𝛽 particles drops rapidly and
their energy deposition process is short, compared with 𝛼 particles, the pulse
integral rise time of 𝛽 particles is shorter. This characteristic enables the integral
value of 𝛽 particles to reach a stable value within a short period of time, making
it convenient for rapid discrimination. In this paper, two threshold parameters
for the rise time are selected as 15% and 95%.

In terms of evaluating the performance of the classification model, the confusion
matrix serves as a key tool that can visually display the comparison between
the predicted results of the model and the actual results in different categories.
In this study, we used three different models to analyze the discrimination of
pulse signals. Fig. 6 [Figure 6: see original paper] shows the confusion matrices
of these three models on the test set and the corresponding distribution of
classification results.

Fig. 6a presents the confusion matrix for the amplitude-and-width-based
particle-discrimination method. A total of 325 𝛼 events and 393 𝛽 events
were correctly identified; nevertheless, 75 𝛼 events were misclassified as 𝛽
events and 7 𝛽 events as 𝛼 events. Fig. 6b shows the corresponding proba-
bility distributions, with red bars denoting 𝛼 events and blue bars 𝛽 events.
Although separation is achieved, the misclassification rate indicates limited
accuracy. Fig. 6c gives the confusion matrix for IRTM. This approach achieves
higher accuracy, correctly predicting 388 𝛼 events and 400 𝛽 events. Only
12 𝛼 events are misclassified as 𝛽 events, and no 𝛽 events are misclassified
as 𝛼 events, demonstrating excellent 𝛽-particle discrimination with minor
𝛼-particle mislabeling. Fig. 6d displays the probability distribution of the
rise-time method. The 𝛼-particle probability is concentrated between 0 and
0.2, whereas the 𝛽-particle probability is concentrated between 0.8 and 1.0,
indicating effective separation and high discrimination power. Fig. 6e shows
the confusion matrix for the CNN-based method. The CNN correctly classifies
398 𝛼 events and 400 𝛽 events, misclassifying only one 𝛼 event as 𝛽 and no
𝛽 events as 𝛼, demonstrating outstanding accuracy. Fig. 6f presents the
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probability distribution of the CNN method. The 𝛼-particle probability is
tightly clustered between 0 and 0.2, and the 𝛽-particle probability between 0.8
and 1.0, indicating nearly perfect separation with negligible overlap.

Meanwhile, the crosstalk ratio is introduced to further evaluate model perfor-
mance. The calculation formulas for the crosstalk ratio are as follows, and the
crosstalk ratio results of different discrimination methods are shown in Table 5
. The calculation formula for the 𝛼 → 𝛽 crosstalk ratio is shown in Eq. (5):

𝑋𝛼→𝛽 = 𝑁𝛼→𝛽
𝑁𝛼→𝛽 + 𝑁𝛼

(5)

where 𝑁𝛼→𝛽 is the number of 𝛼 particles mispredicted as 𝛽 and 𝑁𝛼 is the number
of 𝛼 particles predicted as 𝛼.
The calculation formula for the 𝛽 → 𝛼 crosstalk ratio is shown in Eq. (6):

𝑋𝛽→𝛼 = 𝑁𝛽→𝛼
𝑁𝛽→𝛼 + 𝑁𝛽

(6)

where 𝑁𝛽→𝛼 is the number of 𝛽 particles mispredicted as 𝛼 and 𝑁𝛽 is the number
of 𝛽 particles predicted as 𝛽.
The results comparison demonstrates that the CNN model achieves the highest
accuracy on the test set, highlighting its superior performance in classification
tasks. The CNN-based discrimination method not only shows significant advan-
tages in classification accuracy but also possesses powerful feature extraction
and generalization capabilities, enabling effective processing of complex signal
features. This advantage arises from the CNN model’s ability to automatically
learn and optimize feature representations, reducing the need for manual feature
selection and thus improving the efficiency and robustness of the classification
process.

Analysis
AWD is characterized by a simple algorithm and high computational efficiency,
enabling rapid extraction of key static features (amplitude and width). However,
its ability to capture time-domain characteristics is limited, and the lack of in-
depth analysis of the signal’s dynamic evolution may result in the loss of subtle
features. Experimental results (Table 5) show an 𝛼 → 𝛽 crosstalk ratio of
18.75% and a 𝛽 → 𝛼 crosstalk ratio of 1.75%, indicating limited accuracy for
complex signal classification tasks.

IRTM, as a typical time-domain technique, extracts the rise-time feature, effec-
tively capturing dynamic characteristics. Experimental data (Table 5) yield an
𝛼 → 𝛽 crosstalk ratio of 3.0% and a 𝛽 → 𝛼 crosstalk ratio of 0%, outperforming
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AWD. Nevertheless, its performance under highly complex or noisy conditions
remains to be improved.

The CNN exhibits superior performance in time-domain signal analysis. Con-
volutional layers automatically learn local spatiotemporal features, capturing
dynamic information. Trained with these features, the network learns intrin-
sic signal patterns and delivers high-precision classification. Experimental data
(Table 5) reveal an 𝛼 → 𝛽 crosstalk ratio of only 0.25% and a 𝛽 → 𝛼 crosstalk
ratio of 0%, significantly surpassing both AWD and IRTM. CNN thus markedly
reduces inter-particle misclassification and is particularly suited to complex time-
domain signal processing that demands high accuracy.

In summary, AWD suffices for low-precision, simple classification tasks; IRTM
is effective for time-domain feature extraction but limited in complex scenarios;
while CNN demonstrates outstanding classification performance, substantially
enhancing the accuracy and reliability of signal discrimination. Experimental
evidence confirms that CNN offers a robust technical solution for high-precision
particle identification.

Impact of Data Preprocessing and Model Architecture

Data preprocessing steps play a key role in improving model performance. Base-
line correction, mean filtering, and normalization not only enhance the quality
of input data but also facilitate model convergence and training efficiency. By
removing baseline drift and reducing high-frequency noise, the main features of
pulse signals are retained, enabling the CNN to focus on learning the essential
features for distinguishing 𝛼 and 𝛽 particles.

The CNN architecture, which combines convolutional layers, batch normaliza-
tion layers, activation layers, and pooling layers, has proven effective in extract-
ing and classifying features from pulse shape data. The hierarchical feature
learning approach allows the model to capture both local and global signal fea-
tures, providing a comprehensive representation for accurate identification. The
use of batch normalization and ReLU activation functions helps address the van-
ishing gradient problem and accelerate the training process, making the model
more applicable to practical applications. Additionally, CNN has significant ad-
vantages in processing high-speed pulse signals. Its parallel computing architec-
ture can leverage hardware acceleration using GPUs, and the parallel computing
characteristics of convolution kernels enable simultaneous feature extraction at
multiple positions, greatly improving computational efficiency. Compared with
traditional methods, CNN can capture multiple feature types such as signal am-
plitude, width, and rise time simultaneously, more comprehensively reflecting
signal characteristics, thus achieving efficient processing of high-speed signals.

Discussion on Error Sources

The sources of error in this study mainly include the following aspects. In the
data-preprocessing stage, mean filtering and normalization were employed. Al-
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though mean filtering smooths the signal and suppresses high-frequency noise,
it may also blur salient features such as the pulse rise time and shape. To im-
prove preprocessing performance, more advanced techniques—such as adaptive
filtering or wavelet transform—will be considered for more effective signal-noise
separation.

The CNN model comprised two convolutional layers with a learning rate of
0.001 and a batch size of 32. These hyperparameters strongly affect model
performance; an overly high learning rate can destabilize training, whereas an
overly low rate slows convergence. Future work will adopt refined optimization
techniques (e.g., Bayesian optimization or genetic algorithms) to automatically
tune these parameters and enhance both performance and generalization.

The experimental setup employed a 244Cm 𝛼 source and a 90Sr–90Y 𝛽 source.
The dataset contained 6400 𝛼-particle and 6400 𝛽-particle samples. Although
representative, the dataset may not encompass all potential environmental dis-
turbances or signal variations. Fluctuations in equipment performance and am-
bient conditions can also introduce additional uncertainties. Subsequent experi-
ments will therefore incorporate stricter environmental controls (including tem-
perature stabilization and electromagnetic shielding) and expand the dataset to
cover broader environmental conditions, thereby improving model robustness.

Conclusion
This study has successfully developed an AI-driven 𝛼/𝛽 particle discrimination
system for dual-scintillator detectors, demonstrating significant advancements
in environmental radiation monitoring. By integrating convolutional neural
networks with the composite ZnS(Ag)/plastic scintillator detection system, we
have achieved breakthrough performance in particle discrimination accuracy.
Results showed the CNN model outperformed traditional methods significantly
in 𝛼/𝛽 particle classification. The alpha-to-beta crosstalk ratio was as low as
0.25%, and the beta-to-alpha crosstalk ratio was 0%. Compared to AWD (𝛼 →
𝛽 crosstalk ratio of 18.75%) and IRTM (𝛼 → 𝛽 crosstalk ratio of 3%), the CNN
achieved an order-of-magnitude improvement.

The system’s core innovation lies in its end-to-end feature learning mech-
anism. It automatically extracts waveform differences of 𝛼/𝛽 particles in
ZnS(Ag)/plastic scintillators, such as rise time and decay constants. Combined
with a lightweight network architecture, it overcomes the limitation of tradi-
tional methods that rely on manual feature engineering, offering a high-precision
and low-cost solution for low-background environmental monitoring. In the
future, we will continue to optimize the system’s real-time performance and
plan to conduct field validation to further advance the intelligent development
of nuclear emergency response technology.

With its powerful feature extraction and generalization capabilities, the CNN
can efficiently process complex signal features, automatically learn key patterns,
and accurately identify critical information. This reduces dependence on manual
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feature extraction and enhances system stability and reliability. In conclusion,
the CNN shows unique advantages in signal discrimination under complex con-
ditions, indicating great potential in environmental radioactivity monitoring. It
is expected to provide more accurate and reliable technical support for moni-
toring applications and lay a solid foundation for the intelligent development of
environmental radioactivity monitoring technology.
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