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Abstract
Evapotranspiration, as a critical component of the water cycle, is essential for
water resource regulation and ecological protection, playing a particularly im-
portant role in water consumption and redistribution in arid regions. This
study takes the Aksu River Basin as the research area, utilizing MOD16 evap-
otranspiration product data from 2001 to 2022 to systematically analyze the
spatiotemporal variation patterns of actual evapotranspiration (AET) and po-
tential evapotranspiration (PET), and explores their influencing factors, pro-
viding a scientific basis for regional water resource management and ecological
environmental protection. The results show that: (1) MOD16 product data is
relatively consistent with ET0 data (R2 = 0.8133); the product accuracy meets
the requirements for studying the spatiotemporal distribution of evapotranspi-
ration in the Aksu River Basin; (2) The multi-year average AET and PET
are 168.36 mm and 1569.03 mm, respectively; AET shows an overall increasing
trend, while PET shows a decreasing trend. AET and PET exhibit significant
differences in spatial distribution and opposite changing trends; (3) Over the
past 22 years, AET in the Aksu River Basin has increased significantly, mainly
concentrated in cropland, forest land, and oases, while PET has decreased over-
all but increased near oasis edges and river channels. AET shows poor stability
whereas PET is relatively stable. The Hurst exponent for both indicates that
future trends may change, with 56% of the area showing anti-persistence for
AET and 89% for PET; (4) Changes in AET and PET are intrinsically linked
to variations in climatic factors, among which wind speed and relative humid-
ity are the main driving factors influencing regional AET and PET changes.
This study can provide important references for water resource management
and scientific utilization in arid regions.
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Abstract
Evapotranspiration, as a critical component of the water cycle, is essential for
water resource regulation and ecological protection, particularly in arid regions
where it plays a major role in water consumption and redistribution. This study
examines the Aksu River Basin using MOD16 evapotranspiration product data
to systematically analyze the spatiotemporal variation patterns of actual evap-
otranspiration (AET) and potential evapotranspiration (PET), and to explore
their influencing factors, providing a scientific basis for regional water resource
management and ecological conservation.

The results indicate that: (1) MOD16 product data show strong consistency
with ET0 data (R2 = 0.8133, p < 0.01), demonstrating that the product ac-
curacy meets the requirements for analyzing evapotranspiration distribution in
the Aksu River Basin. (2) The multi-year average AET and PET are 168.36
mm and 1569.03 mm, respectively. AET exhibits an overall increasing trend,
while PET shows a decreasing trend. The spatial distributions of AET and
PET differ markedly, with opposite trends observed across the region. (3) Over
the past 22 years, AET in the Aksu River Basin has increased significantly,
primarily in cultivated land, forestland, and oases, whereas PET has decreased
overall but increased near oasis edges and river channels. AET demonstrates
poor stability while PET remains relatively stable. Both show potential future
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trend reversals, with 56% of the region exhibiting anti-persistence for AET and
89% for PET. (4) Changes in AET and PET are intrinsically linked to climatic
factors, with wind speed and relative humidity identified as the primary drivers
influencing regional variations. This research provides an important reference
for water resource management and scientific utilization in arid regions.

Keywords: evapotranspiration; water cycle; spatiotemporal variation; water
resource management; Aksu River Basin

1. Introduction
1.1 Study Area Overview

The Aksu River Basin is located on the southern slopes of the Tianshan Moun-
tains and the northwestern edge of the Tarim Basin, forming the largest headwa-
ter region of the Tarim River. This study focuses primarily on the oasis portion
of the basin (Figure 1), covering an area of approximately 1.5 × 104 km2 within
the geographic range of 78°89�–81°87�E and 40°17�–41°54�N. The region is char-
acterized by a warm temperate extreme continental arid desert climate, with
a multi-year average temperature of 10.7°C and annual precipitation of 50.4
mm. Soil types consist primarily of poplar forest soils (Tukay soils), and the
dominant vegetation includes poplar, tamarisk, Haloxylon, and reed.

1.2 Data Sources and Processing

1.2.1 Remote Sensing Data The MOD16 global terrestrial evapotranspira-
tion product includes actual evapotranspiration (AET), latent heat flux (LE),
potential evapotranspiration (PET), and potential latent heat flux (PLE). The
data are derived using the Penman-Monteith formula based on an algorithm
developed in 2005. This study utilized monthly and annual AET and PET data
from 2001 to 2022 (MOD16A2). The data were processed using the MODIS Re-
projection Tool (MRT) for batch mosaicking, projection conversion, and trans-
formation into WGS-1984 GeoTiff format.

1.2.2 Meteorological Data Meteorological data from the Aksu, Awati, and
Alar stations for the period 2001–2022 were obtained from the National Meteo-
rological Science Data Center and Urumqi Meteorological Bureau. Parameters
included daily mean temperature, maximum temperature, minimum tempera-
ture, atmospheric pressure, wind speed, relative humidity, and sunshine dura-
tion. These data were used to calculate ET0 values using the Penman-Monteith
equation for validation of the remote sensing products.

1.3 Research Methods

1.3.1 Sen+MK Trend Analysis The Theil-Sen median slope estimation
and Mann-Kendall trend test were employed to analyze trends in AET and
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PET from 2001 to 2022. The Sen slope (𝛽) is calculated as:

𝛽 = Median (𝑥𝑗 − 𝑥𝑖
𝑗 − 𝑖 ) for 𝑖 < 𝑗

where 𝑥𝑗 and 𝑥𝑖 represent the AET/PET time series values. A positive 𝛽 indi-
cates an increasing trend, while a negative 𝛽 indicates a decreasing trend.

The Mann-Kendall test statistic S is defined as:

𝑆 =
𝑛−1
∑
𝑖=1

𝑛
∑

𝑗=𝑖+1
sgn(𝑥𝑗 − 𝑥𝑖)

where sgn is the sign function. For large samples (n > 10), S approximates a
normal distribution with mean zero and variance:

Var(𝑆) = 𝑛(𝑛 − 1)(2𝑛 + 5)
18

The standardized test statistic Z is then calculated as:

𝑍 =
⎧{
⎨{⎩

𝑆−1
√Var(𝑆) if 𝑆 > 0
0 if 𝑆 = 0

𝑆+1
√Var(𝑆) if 𝑆 < 0

A two-tailed test at significance level 𝛼 = 0.05 was used to determine trend
significance (|Z| > 1.96). Trend classification criteria are presented in Table 1.

1.3.2 Coefficient of Variation The coefficient of variation (C�) was used to
assess the stability of AET and PET spatial patterns:

𝐶𝑣 = 𝜎
̄𝑥

where 𝜎 is the standard deviation and ̄𝑥 is the multi-year mean. Variability was
classified as: very stable (C� < 0.1), stable (0.1 ≤ C� < 0.2), unstable (0.2 ≤ C�
< 0.3), and very unstable (C� ≥ 0.3).

1.3.3 Hurst Analysis Hurst analysis was applied to evaluate the persistence
of AET and PET trends. For time series ET� (i = 1, 2, …, n), the mean series
is:

𝐸𝑇 (𝑡) = 1
𝑡

𝑡
∑
𝑖=1

𝐸𝑇𝑖 𝑡 = 1, 2, … , 𝑛
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The cumulative deviation is:

𝑅(𝑡) = max
1≤𝑖≤𝑡

(
𝑡

∑
𝑖=1

(𝐸𝑇𝑖 − 𝐸𝑇 (𝑡))) − min
1≤𝑖≤𝑡

(
𝑡

∑
𝑖=1

(𝐸𝑇𝑖 − 𝐸𝑇 (𝑡)))

The standard deviation is:

𝑆(𝑡) =
√√√
⎷

1
𝑡

𝑡
∑
𝑖=1

(𝐸𝑇𝑖 − 𝐸𝑇 (𝑡))2

The Hurst exponent (H) is derived from the relationship 𝑅(𝑡)/𝑆(𝑡) = 𝑐𝑡𝐻 . When
H > 0.5, the series exhibits persistence; when H = 0.5, it shows randomness;
and when H < 0.5, it demonstrates anti-persistence. Future trend classification
criteria are shown in Table 2.

2. Results
2.1 MOD16 Data Validation

To assess the applicability of MOD16 data in the Aksu River Basin, ET0 values
were calculated using the Penman-Monteith equation for the Aksu, Awati, and
Alar meteorological stations and compared with MOD16-PET data. Since both
ET0 and PET estimate potential evapotranspiration under given meteorological
conditions without water limitation, they are directly comparable. The corre-
lation analysis revealed a strong relationship (R2 = 0.8133, p < 0.01) between
Penman-Monteith simulated ET0 and MOD16-PET (Figure 2), confirming that
MOD16 data are suitable for analyzing spatiotemporal evapotranspiration pat-
terns in the study area.

2.2 Spatiotemporal Characteristics of AET and PET

2.2.1 Interannual Variation Annual AET fluctuated between 102.44 mm
and 228.09 mm, with a multi-year average of 168.36 mm. The most pronounced
fluctuations occurred in 2004 (-22.94%) and 2010 (37.99%), reflecting significant
variations in water availability. PET ranged from 1480.65 mm to 1659.83 mm,
averaging 1569.03 mm, with the largest variations in 2004 (7.55%) and 2010
(-10.79%). The substantial difference between AET and PET indicates that the
region experiences severe arid conditions and water scarcity (Figure 3).

2.2.2 Spatial Distribution The spatial distribution of multi-year average
AET and PET shows contrasting patterns (Figure 4). AET decreases from
north to south, ranging from 0 to 344.3 mm, while PET increases from north
to south, ranging from 1074.79 to 1919.17 mm. High AET values correspond to
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areas with dense vegetation cover, whereas high PET values occur in sparsely
vegetated regions. Blank areas in the MOD16 product represent deserts, water
bodies, unused land, and built-up areas where the algorithm cannot retrieve
valid data due to limitations in using leaf area index to represent soil moisture
conditions.

2.3 Dynamic Change Characteristics

2.3.1 Interannual Trends Sen+MK trend analysis reveals that AET in-
creased significantly across 94.96% of the basin, primarily in cultivated land,
forestland, and oases, while only 3.57% of built-up areas showed significant de-
creases. Conversely, PET decreased across 83.25% of the region but increased
significantly near oasis edges and river channels (9.39%). The area of AET
increase far exceeds that of decrease, while PET shows the opposite pattern
(Figure 5; Table 3).

2.3.2 Interannual Variability The coefficient of variation analysis indicates
that AET is highly unstable, with unstable and very unstable areas comprising
38.86% of the basin, while very stable areas account for only 0.16%. In contrast,
PET exhibits remarkable stability, with very stable areas covering 92.85% of the
region and stable areas covering 3.56%, totaling nearly 96.41% of the study area.
Unstable areas represent only 0.03% of PET distribution, with no very unstable
areas observed (Figure 6; Table 4).

2.3.3 Persistence Characteristics Hurst analysis shows that AET has a
mean H value of 0.44, with 56% of pixels exhibiting anti-persistence (H < 0.5),
suggesting future trend reversals. These anti-persistent areas are concentrated in
regions with currently significant AET increases, indicating that growth trends
may cease or reverse. PET has a mean H value of 0.41, with 89% of the region
showing anti-persistence, while only 11% demonstrates persistence (Figure 7).

2.4 Influencing Factors

Correlation analysis between meteorological factors and AET/PET reveals dis-
tinct relationships (Table 5). AET is positively correlated with temperature,
wind speed, vapor pressure, and sunshine duration, but negatively correlated
with relative humidity. Specifically, AET shows a significant positive correla-
tion with wind speed (r = 0.817, p < 0.01) and a significant negative correlation
with relative humidity (r = -0.606, p < 0.01). PET, however, is positively cor-
related with temperature, relative humidity, and sunshine duration, but nega-
tively correlated with wind speed and vapor pressure. Notably, PET exhibits a
significant negative correlation with wind speed (r = -0.446, p < 0.05). These re-
sults demonstrate that wind speed and relative humidity are the primary drivers
of AET and PET variations in the Aksu River Basin.
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3. Discussion
As the core hydrological unit of the Tarim River system, the Aksu River Basin
provides the most significant perennial water supply to the mainstream and
serves as a critical ecological barrier against desertification. Despite previous
research on PET using various methods, systematic studies on long-term spa-
tiotemporal dynamics and sustainability predictions remain limited. This study
addresses this gap using MOD16 data and meteorological observations.

The increasing AET trend reflects multiple factors, including enhanced
snowmelt from global warming and improved water use efficiency through
advanced irrigation techniques (e.g., drip irrigation), which reduce water
stress during growing seasons. The decreasing PET trend reveals an “evapo-
ration paradox” consistent with findings in other arid regions. Spatially, the
contrasting north-south patterns of AET and PET can be explained by the
complementary relationship theory: in water-sufficient areas (farmland, oases),
AET approaches PET, while in water-limited areas (deserts, gobi), reduced
AET leads to increased PET due to enhanced land-atmosphere interactions.

Trend analysis shows significant AET increases in vegetated areas, likely due to
improved vegetation cover and ecosystem function, while PET decreases over-
all but increases near oasis edges, possibly influenced by radiation forcing and
humidity changes. The high variability of AET compared to PET’s stability
reflects the impacts of water resource management policies, irrigation improve-
ments, and land cover changes on actual water consumption, whereas PET
remains more constrained by stable climatic conditions.

Hurst analysis reveals anti-persistence for both AET and PET, suggesting that
current trends may reverse due to complex interactions among land use changes,
water management policies, and climate factors. This instability poses chal-
lenges for agricultural production and water resource management. The identi-
fication of wind speed and relative humidity as primary drivers enhances under-
standing of evapotranspiration mechanisms and provides a scientific basis for
future water management under climate change.

Future research should focus on the long-term impacts of climate change and
human activities, particularly extreme events and land use changes, to provide
more precise guidance for ecological protection and water resource management
in the Aksu River Basin.

4. Conclusions
This study validated MOD16 evapotranspiration products using the Penman-
Monteith equation and analyzed the spatiotemporal variations and trends of
AET and PET in the Aksu River Basin from 2001 to 2022, along with their
meteorological drivers. The main conclusions are:
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1. Data Validation: MOD16-PET data correlate highly with Penman-
Monteith simulated ET0 values (R2 = 0.8133, p < 0.01), confirming that
MOD16 data are suitable for analyzing evapotranspiration patterns in the
Aksu River Basin.

2. Interannual Variation: From 2001 to 2022, AET ranged from 102.44 to
228.09 mm (mean: 168.36 mm) and showed an increasing trend, while PET
ranged from 1480.65 to 1659.83 mm (mean: 1569.03 mm) and exhibited a
decreasing trend. Spatially, AET is higher in the north (vegetated areas)
and lower in the south, whereas PET shows the opposite pattern, being
higher in sparsely vegetated southern areas.

3. Dynamic Change Characteristics: Over the past 22 years, AET in-
creased significantly across 94.96% of the basin, concentrated in cultivated
land, forestland, and oases. PET decreased across 83.25% of the region
but increased near oasis edges and river channels. AET is highly unstable
(38.86% unstable or very unstable), while PET is predominantly stable
(96.41% stable or very stable). The mean Hurst index for AET is 0.44, in-
dicating anti-persistence in 56% of the region, while PET’s mean H value
of 0.41 shows anti-persistence in 89% of the area, suggesting potential
future trend reversals.

4. Influencing Factors: Wind speed and relative humidity are the primary
drivers of AET and PET variations. AET correlates significantly posi-
tively with wind speed (r = 0.817, p < 0.01) and negatively with relative
humidity (r = -0.606, p < 0.01), while PET correlates significantly nega-
tively with wind speed (r = -0.446, p < 0.05).
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