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Abstract

Humans often need to make predictions based on current situations to guide sub-
sequent behavior. However, researchers currently debate vigorously regarding
whether predictable or unpredictable items yield better memory performance.
In this study (Experiment 1: item recognition; Experiment 2: associative recog-
nition), we manipulated expectancy through category and semantic distance
to examine memory performance under different levels of expectancy. Both
experiments consistently showed that during the learning phase, participants
achieved higher accuracy and shorter reaction times when processing items that
conformed to category rules. Experiment 2 found that closer semantic distance
produced more positive P600 amplitudes (an ERP index of semantic integra-
tion). In both experiments, multivariate pattern analysis indicated significant
differences in neural representations across conditions. Both experiments found
that as category rules were violated and semantic distance increased, the ampli-
tude of N400 (an ERP index of predictability) during the learning phase became
more negative, and memory performance during the test phase became worse.
Additionally, N400 during the learning phase showed a significant positive cor-
relation with memory performance during the test phase. These results suggest
that category and semantic distance modulate the effect of expectancy on mem-
ory through different mechanisms: category influences memory by modulating
encoding load, while semantic distance influences memory by modulating se-
mantic integration. These findings provide a new perspective for resolving the
debate on memory performance for predictable versus unpredictable items.
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Abstract

Humans constantly generate predictions based on current contexts to guide sub-
sequent behavior. However, researchers remain divided over whether predictable
or unpredictable items yield superior memory performance. In this study (Ex-
periment 1: item recognition; Experiment 2: associative recognition), we manip-
ulated prediction through category and semantic distance to examine memory
performance across different levels of predictability. Both experiments consis-
tently demonstrated that during the study phase, participants exhibited higher
accuracy and shorter reaction times when processing items that conformed to
category rules. Experiment 2 revealed that shorter semantic distances elicited
more positive P600 amplitudes (an ERP index of semantic integration). Mul-
tivariate pattern analysis in both experiments showed significant differences in
neural representations across conditions. Both experiments found that as cat-
egory rule violations increased and semantic distance grew, N400 amplitudes
(an ERP index of predictability) became more negative during encoding, while
memory performance during the test phase declined. Moreover, study-phase
N400 amplitudes showed significant positive correlations with test-phase mem-
ory performance. These results indicate that category and semantic distance
modulate prediction’s impact on memory through distinct mechanisms: cate-
gory influences memory by modulating encoding burden, whereas semantic dis-
tance influences memory through semantic integration. These findings provide
a novel perspective for resolving the debate surrounding memory performance
for predictable versus unpredictable items.
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Introduction

Humans frequently need to make predictions based on current situations to
guide subsequent behavior (Bar, 2007, 2009). However, humans are not born
prophets; we must continuously learn from past predictive experiences to im-
prove our predictive abilities. Understanding memory performance under dif-
ferent predictive conditions is therefore crucial. Currently, researchers debate
whether prediction enhances or impairs memory performance. In this study, we
used EEG to investigate memory across different levels of predictability.

Some studies have found that when learning materials can be predicted based
on semantic context, memory performance improves (Craik & Tulving, 1975;
Kutas, 1993; Schulman, 1974; Silcox et al., 2023). For example, Schulman
(1974) manipulated prediction through categories to examine memory for pre-
dictable versus unpredictable items. Participants saw expected events (e.g.,
“is a corkscrew an opener?”) and unexpected events (e.g., “is a corkscrew a
scholar?”), with better memory observed for expected items. Subsequently, Sil-
cox et al. (2023) manipulated both category and semantic distance to examine
the relationship between the ERP index of prediction (N400; DeLong et al.,
2005; Federmeier et al., 2007; Kutas & Hillyard, 1984) and memory perfor-
mance. During the study phase, they applied transcranial magnetic stimulation
(TMS) to the left inferior frontal gyrus (LIFC), a hub of the speech produc-
tion network (Bonhage et al., 2015; Giglio et al., 2022; Menenti et al., 2011;
Silbert et al., 2014), with right inferior frontal gyrus (RIFC) stimulation as a
control condition. No stimulation was applied during memory testing. Results
showed that regardless of stimulation site, N400 amplitudes became progres-
sively more negative across three conditions (high typicality: flower-rose, low
typicality: flower—poppy, and incongruent: flower—opera), indicating decreas-
ing target word predictability. With RIFC stimulation, memory performance
declined across the three conditions. With LIFC stimulation, high-typicality
memory performance dropped to the low-typicality level, yet both remained sig-
nificantly better than the incongruent condition. These findings demonstrate
that both category and semantic distance influence memory, though the mech-
anisms remain unclear.

Conversely, other studies have found better memory for unexpected learning ma-
terials (Frank et al., 2020; Kafkas & Montaldi, 2015; Rajaram, 1998; Nyberg,
2005). For instance, Rajaram (1998) found that “bank” showed better mem-
ory performance in an unexpected context (“river”) than in an expected one
(“money”). Kuperberg et al. (2003) found that anomalous items (e.g., “eggs”
in “For breakfast the eggs would only eat toast and jam”) elicited a more pos-
itive P600, reflecting the brain’s effort to repair or integrate anomalous items.
Similarly, Schotter et al. (2023) found that anomalous items elicited a more
positive LPC than expected items, indicating greater effort to integrate anoma-
lous target words into semantic context. These studies suggest that anomalous
(or unpredictable) items elicit more positive ERP activity following the N400
time window, reflecting integration processes. However, Kuperberg et al. (2003)
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and Schotter et al. (2023) did not examine the relationship between P600 and
memory performance.

The present study aimed to compare memory performance across different pre-
dictability levels while measuring the neural processes of memory encoding. We
manipulated prediction through category and semantic distance, establishing
three conditions: C+S+ (within-category and near semantic distance; e.g., fur-
niture: sofa, as sofa belongs to furniture), where participants could effectively
predict the target word; C-S+ (out-of-category but near semantic distance; e.g.,
furniture: decoration), where the target word did not belong to the category
but was semantically close; and C-S- (out-of-category and far semantic distance;
e.g., furniture: phase), where the target word neither belonged to the category
nor was semantically close. Our design differs from previous studies (Feder-
meier et al., 2010; Ryskin et al., 2020; Silcox et al., 2023). Specifically, Silcox et
al. (2023) used “flower” as context, with “rose” in the high-expectation condi-
tion, “poppy” in the low-expectation condition, and “opera” in the incongruent
condition. Their high-expectation condition resembles our C+S+, their incon-
gruent condition resembles our C-S-, but their low-expectation condition (poppy
as a low-typicality flower member) differs from our C-S+ (decoration is not fur-
niture but semantically close). Our design allows us to investigate prediction’s
impact on memory while strictly controlling category and semantic distance.

Previous studies comparing high-typicality, low-typicality, and incongruent con-
ditions found graded N400 effects. However, these effects could reflect decreas-
ing category typicality, increasing semantic distance, or a combination of both,
making it impossible to isolate the unique mechanisms of category and semantic
distance. By comparing C+S+ and C-S+, we can examine category’s influence
while controlling semantic distance. By comparing C-S+ and C-S-, we can ex-
amine semantic distance’s influence while controlling category. This clarifies
how different aspects of prediction affect memory.

Based on previous research, we hypothesized: (1) N400 amplitudes would be-
come progressively more negative across C+S+, C-S+, and C-S- conditions,
reflecting decreasing target word predictability; (2) P600 amplitudes would be
most positive in the C-S- condition, as these word pairs violate category rules
and have far semantic distance, requiring the greatest integration effort. To
provide convergent evidence, we complemented univariate analyses with ma-
chine learning, an effective method for distinguishing neural representations
across conditions (Haxby et al., 2001) that trains classifiers on partial data and
tests on remaining data (Treder, 2020). We also conducted temporal gener-
alization analysis—training classifiers at one time point and testing across all
time points—to examine the stability of neural representations across conditions
(King & Dehaene, 2014).
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Experiment 1

Participants A power analysis based on effect sizes from Elmer et al. (2022;
p? = 0.114) indicated that 22 participants were needed for 95% statistical power
(a = 0.05) to detect prediction effects on memory. Experiment 1 recruited 28
undergraduate and graduate students aged 18-25 years (mean age = 22 years;
18 females, 10 males; native Chinese speakers). The study was approved by
the Psychological Research Ethics Committee. Participants provided informed
consent and received compensation. All participants were right-handed with
normal or corrected-to-normal vision and no history of psychiatric disorders.

Materials Study-phase materials consisted of word pairs (e.g., “fruit: ba-
nana::furniture: sofa”; Zhao et al., 2012). In each pair, the second word belonged
to the first word’s category (e.g., “banana” belongs to “fruit,” “sofa” belongs to
“furniture”). The first word pair (“fruit: banana”) provided semantic context,
indicating that participants should evaluate the relationship in the subsequent
pair. Word pairs with consistent relationships served as C+S+ trials.

We also included C-S+ and C-S- conditions. In C-S+, we used pairs like
“fruit: banana::furniture: decoration,” where “decoration” does not belong to
“furniture” but is semantically close. In C-S-, we used pairs like “fruit: ba-
nana::furniture: phase,” where “phase” neither belongs to “furniture” nor is
semantically close.

Two experimenters initially selected materials from a noun database. Twelve
participants who did not participate in the formal experiment rated the materi-
als on acceptability, semantic distance, and familiarity. Acceptability assessed
the degree to which the second word belonged to the first (1 = completely un-
acceptable, 9 = completely acceptable). To ensure high acceptability, C+S+
materials received ratings above 7.0, while C-S+ and C-S- materials received
ratings below 3.0. Semantic distance ratings were M(C+S+) = 8.10, SE =
0.13; M(C-S+) = 7.87, SE = 0.16; M(C-S-) = 1.23, SE = 0.03. C+S+ and C-
S+ did not differ significantly (t(11) = 2.31, p = 0.123, Cohen’s d = 0.67) but
both were significantly higher than C-S- (C4+S+ vs. C-S-: t(11) = 51.80, p <
0.001, Cohen’s d = 14.95; C-S+ vs. C-S-: t(11) = 42.36, p < 0.001, Cohen’s d =
12.23). Familiarity ratings did not differ across conditions (F(2, 22) = 0.93, p =
0.411, p? = 0.08), preventing familiarity differences from confounding memory
performance. The final material set included 336 word pairs (112 per condition,
excluding filler pairs used during study).

Procedure Participants completed the experiment in a sound-attenuated,
well-lit room. They were instructed to maintain a comfortable posture and
remain still. The computer screen was positioned 100 cm from participants. All
stimuli appeared in white on a black background. The experiment consisted of
study and test phases.

During the study phase, stimulus presentation followed Zhao et al. (2012). Par-
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ticipants first completed a practice block identical to the formal experiment.
Each trial began with a central fixation point (1400-1600 ms), followed by
Word Pair 1 (e.g., “fruit: banana”; 6.8° x 1.3°) for 1000 ms. Next, the prime
word (the first word of Pair 2, e.g., “furniture:”; 3.1° x 1.3°) appeared for 1500
ms. Finally, the target word (the second word of Pair 2, e.g., “sofa”; 2.6° x
1.3°) appeared for 2000 ms. A jitter of 300-500 ms separated adjacent stimuli.
When the target word appeared, participants responded by pressing keys: “1”
if the target belonged to the prime, “2” if it did not belong but was semanti-
cally close, and “3” if it neither belonged nor was semantically close. Response
mappings were counterbalanced across participants, and trials from different
conditions were randomly intermixed. To minimize primacy and recency ef-
fects, each study block began and ended with two filler trials excluded from
analysis. Participants completed six 3-minute study blocks, each containing 8
C+S+, 8 C-S+, and 8 C-S- trials. After all study blocks, participants completed
a surprise memory test (see Figure 1 [Figure 1: see original paper|A).

In the test phase, participants first completed a practice block. Each trial began
with a central fixation point (900-1300 ms), followed by a target word from the
study phase (old) or a new word not previously seen. Participants rated each
word on a 6-point scale (1 = definitely not studied, 2 = probably not studied,
3 = guess not studied, 4 = guess studied, 5 = probably studied, 6 = definitely
studied). “Definitely,” “probably,” and “guess” indicated different confidence
levels. Old and new words appeared in a 1:1 ratio with counterbalanced response
mappings. Participants completed six 3-minute blocks, each containing 24 old
and 24 new words (see Figure 1A). Words in Test Block 1 came from Study
Block 1, and so on.

EEG Recording and Analysis We recorded EEG using a Neuroscan ESI-
64 system with an Ag/AgCl electrode cap based on the international 10-20
extended electrode system. The left mastoid served as online reference, the
right mastoid as recording electrode, with offline re-referencing to the average
of both mastoids. Vertical EOG was recorded from electrodes above and below
the left eye, horizontal EOG from electrodes at the outer canthi of both eyes,
and the ground electrode was positioned between Fpz and Fz. The sampling
rate was 500 Hz, with electrode impedance maintained below 5 k).

We preprocessed EEG data using EEGLAB (Delorme & Makeig, 2004) in MAT-
LAB. Data were bandpass filtered from 0.1 Hz to 40 Hz and re-referenced to
the average mastoids. Independent component analysis (ICA) identified blink
and saccade components, which were manually removed. We segmented data
from 200 ms pre-target (baseline) to 1000 ms post-target, rejecting trials with
amplitudes exceeding $+$75 V at any time point or electrode. Mean valid trial
counts (range) were: C+S+ = 43.5 (25-48), C-S+ = 43.0 (25-48), C-S- = 43.2
(21-48).

ERP Analysis: Based on previous research and grand-average waveforms, we
selected three time windows for statistical analysis: (1) 300-500 ms for N400;

chinarxiv.org/items/chinaxiv-202507.00149 Machine Translation


https://chinarxiv.org/items/chinaxiv-202507.00149

ChinaRxiv [$X]

(2) 500-700 ms for early P600; (3) 700-1000 ms for late P600. We calculated
regional averages for frontal (F1, Fz, F2), central (C1, Cz, C2), and parietal
(P1, Pz, P2) electrodes. For example, parietal N400 was the average amplitude
across P1, Pz, and P2 during 300-500 ms. Greenhouse-Geisser correction was
applied when sphericity was violated, with post-hoc comparisons conducted via
paired t-tests and Bonferroni correction for multiple comparisons.

EEG Decoding: We conducted multivariate pattern analysis using the MVPA-
light toolbox (Treder, 2020) in MATLAB. Linear discriminant analysis (LDA)
distinguished EEG data across conditions. We used preprocessed EEG data
excluding EOG (VEOG, HEOG) and reference (M1, M2) electrodes. To reduce
computational load, we downsampled data to 250 Hz. Trial counts were bal-
anced across conditions via random sampling. Data were converted to z-scores
to improve model performance and stability. To enhance signal-to-noise ratio,
we randomly averaged 5 trials into 1 until fewer than 5 trials remained. During
decoding, data were randomly split into three folds, with two folds used for
training and one for testing. This process was repeated three times so each fold
served as test data, with the entire cross-validation repeated 10 times.

After decoding, we performed cluster-based permutation testing on decoding ac-
curacy to identify time points significantly above chance level (chance = 33.33%,
a = 0.05, permutations = 1000).

Regression Analysis: To directly examine relationships between study-phase
ERP components and subsequent memory performance, we conducted regres-
sion analyses. For each participant, we calculated correlations between ERP
components (N400, early P600, late P600) and memory performance (Pr). Each
participant thus had 3 ERP values (mean amplitudes for C+S+, C-S+, C-S-)
and 3 behavioral values (mean Pr for each condition), yielding one regression co-
efficient per participant. We then tested whether standardized beta coefficients
differed significantly from zero (Lorch & Myers, 1990).

Experiment 1 Results

Behavioral Results Test Phase: Pr

To eliminate response bias in old/new judgments, we calculated Pr as hit rate
minus false alarm rate for each condition. One-way repeated measures ANOVA
revealed significant differences across conditions (F(2, 54) = 30.59, p < 0.001,
p? = 0.53). Post-hoc tests showed Pr was significantly higher for C+S+ than
C-S+ (t(27) = 3.62, p = 0.004, Cohen’s d = 0.68) and C-S- (t(27) = 6.42, p
< 0.001, Cohen’s d = 1.21), and significantly higher for C-S+ than C-S- (t(27)
= 5.11, p < 0.001, Cohen’s d = 0.97) (see Table 1 , Figure 2 [Figure 2: see
original paper|A). These results indicate that memory performance declined as
predictability decreased.

Study Phase: Accuracy
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One-way repeated measures ANOVA revealed significant differences across con-
ditions (F(2, 54) = 16.70, p < 0.001, p? = 0.38). Post-hoc tests showed accuracy
was significantly higher for C-S- than C-S+ (t(27) = 6.09, p < 0.001, Cohen’s
d = 1.15) and C+S+ (t(27) = 3.31, p = 0.008, Cohen’s d = 0.63), and signifi-
cantly higher for C+S+ than C-S+ (t(27) = 2.67, p = 0.038, Cohen’s d = 0.50)
(see Table 1, Figure 2A).

Reaction Time (RT)

One-way repeated measures ANOVA revealed significant differences across con-
ditions (F(2, 54) = 19.68, p < 0.001, p? = 0.42). Post-hoc tests showed RT was
significantly longer for C-S+ than C+S+ (t(27) = 5.15, p < 0.001, Cohen’s d =
0.97) and C-S- (t(27) = 4.85, p < 0.001, Cohen’s d = 0.92), with no significant
difference between C+S+ and C-S- (£(27) = -0.64, p = 1, Cohen’s d = -0.12)
(see Table 1, Figure 2A).

Study-phase behavioral results showed that C+S+ and C-S- conditions yielded
higher accuracy and shorter RTs than C-S+, indicating processing advantages
(higher accuracy, faster responses) in C+S+ and C-S-.

EEG Results Leveraging EEG’s high temporal resolution, we examined neu-
ral encoding processes across three time windows (300-500 ms: N400; 500-700
ms: early P600; 700-1000 ms: late P600) under different predictability levels.

N400

A 3 (Region: frontal, central, parietal) x 3 (Condition: C+S+, C-S+, C-S-)
repeated measures ANOVA revealed a significant main effect of condition (F(2,
54) = 22.89, p < 0.001, p? = 0.50) and no significant region x condition
interaction (F(4, 108) = 0.85, p = 0.496, p? = 0.03). Post-hoc tests showed
N400 was more positive for C+S+ (M = 4.28 V, SE = 0.94) than C-S+ (M =
2.54 V, SE = 0.74, t(27) = 4.18, p < 0.001, Cohen’s d = 0.79) and C-S- (M
=141 V, SE = 0.79, t(27) = 5.66, p < 0.001, Cohen’s d = 1.07), and more
positive for C-S+ than C-S- (t(27) = 3.30, p = 0.008, Cohen’s d = 0.62). Given
N400’s parietal distribution, we conducted a separate one-way ANOVA for the
parietal region, finding significant differences (F(2, 54) = 19.67, p < 0.001, p?
= 0.42). Parietal N400 was more positive for C+S+ (M = 5.00 V, SE = 0.85)
than C-S+ (M =3.46 V, SE = 0.68, t(27) = 4.12, p < 0.001, Cohen’s d = 0.78)
and C-S- (M = 2.32 V, SE = 0.64, t(27) = 5.76, p < 0.001, Cohen’s d = 1.09),
and more positive for C-S+ than C-S- (£(27) = 2.59, p = 0.046, Cohen’s d =
0.49) (see Figure 2B). This indicates that target word predictability decreased
progressively across C+S+, C-S+, and C-S- conditions.

Early P600

A 3 x 3 repeated measures ANOVA revealed no significant main effect of condi-
tion (F(2, 54) = 1.49, p = 0.235, p? = 0.05) but a significant region x condition
interaction (F(4, 108) = 4.43, p = 0.002, p? = 0.14). Simple effects analysis
revealed no significant differences among the three conditions (see Figure 2B).

Late P600
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A 3 x 3 repeated measures ANOVA revealed no significant main effect of condi-
tion (F(2, 54) = 0.67, p = 0.52, p? = 0.02) and no significant region x condition
interaction (F(4, 108) = 1.24, p = 0.297, p? = 0.04) (see Figure 2B).

EEG Decoding

We conducted MVPA (decoding) on study-phase EEG data using LDA. Cluster-
based permutation tests revealed that LDA successfully distinguished conditions
during 340440 ms and 584-912 ms post-target (p < 0.05, see Figure 2C).
Temporal generalization analysis showed no cross-temporal decoding between
N400 and P600 time windows (see Figure 2D).

These results indicate significant differences in neural representations across con-
ditions during both N400 and P600 time windows, with temporal generalization
analysis showing that N400 and P600 reflect distinct cognitive processes (He et
al., 2024; Schotter et al., 2023).

Regression Analysis

We conducted paired t-tests on standardized regression coefficients between
ERP components and Pr to test whether they differed from zero. N400-Pr
regression coefficients were significantly greater than zero in frontal (M = 0.40,
SE = 0.14, t(27) = 2.88, p = 0.008, Cohen’s d = 0.55), central (M = 0.47, SE
= 0.12, t(27) = 3.93, p < 0.001, Cohen’s d = 0.74), and parietal regions (M =
0.42, SE = 0.12, t(27) = 3.51, p = 0.002, Cohen’s d = 0.66). Early P600-Pr
coefficients did not differ from zero in frontal (M = 0.18, SE = 0.13, t(27) =
1.44, p = 0.162, Cohen’s d = 0.27), central (M = 0.21, SE = 0.14, t(27) = 1.45,
p = 0.159, Cohen’s d = 0.27), or parietal regions (M = 0.02, SE = 0.15, t(27) =
0.11, p = 0.916, Cohen’s d = 0.02). Late P600-Pr coefficients also did not differ
from zero in frontal (M = 0.22, SE = 0.12, t(27) = 1.78, p = 0.087, Cohen’s
d = 0.34), central (M = 0.21, SE = 0.14, t(27) = 1.48, p = 0.150, Cohen’s d
= 0.28), or parietal regions (M = -0.11, SE = 0.14, t(27) = -0.83, p = 0.417,
Cohen’s d = -0.16) (see Figure 2E).

These results demonstrate that study-phase N400 effectively predicted subse-
quent memory performance, whereas P600 (early and late) did not.

Experiment 1 Discussion

Experiment 1 examined item recognition memory across different predictability
levels. During the study phase, C4+S+ showed higher accuracy and shorter RTs
than C-S+, indicating a processing advantage. N400 amplitudes became progres-
sively more negative across C+S+, C-S+, and C-S- conditions. During the test
phase, memory performance declined across these conditions, and study-phase
N400 significantly predicted test-phase memory performance. These results
show that predictability level effectively predicts subsequent memory perfor-
mance, supporting the view that predictable items yield better memory (Craik
& Tulving, 1975; Kutas, 1993; Schulman, 1974; Silcox et al., 2023).
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P600 reflects semantic integration of word meaning with context (Brouwer et
al., 2017; Federmeier, 2022; Schotter et al., 2023). Previous studies found that
anomalous words elicited more positive P600, reflecting greater cognitive ef-
fort required for integration (Kuperberg et al., 2003; Schotter et al., 2023).
However, Experiment 1 found no P600 differences across conditions. We spec-
ulate that the study-phase task (word-pair judgment) did not require semantic
integration—participants could complete judgments without integrating word
meanings. To investigate the relationship between P600 and memory perfor-
mance, we conducted Experiment 2 (associative recognition).

In Experiment 2, we examined associative recognition memory across pre-
dictability levels. Compared to Experiment 1, we made three changes: First,
participants were explicitly informed about both study-phase (word-pair
judgment) and test-phase (associative recognition) tasks before the experiment
began. Second, participants received immediate associative recognition tests
after each study block to encourage integration of prime and target words.

Experiment 2

Participants Based on the effect size from Experiment 1 ( p? = 0.53), 12
participants were needed for 95% power (o = 0.05). Experiment 2 recruited 26
participants aged 18-25 years (mean age = 22 years; 16 females, 10 males). All
procedures, including ethics approval and informed consent, were identical to
Experiment 1. The entire experiment lasted approximately 100 minutes.

Materials Identical to Experiment 1.

Procedure Experiment 2 differed from Experiment 1 in three ways: (1) The
test phase assessed associative recognition of prime-target combinations (e.g.,
“furniture sofa”) rather than target words alone. Participants judged pairs as
old, recombined, or new; (2) Recombined pairs served as filler trials to prevent
judgments based on single words. These were created by randomly selecting one
C+S+ pair (e.g., “Chinese medicine: ginseng”), one C-S+ pair (e.g., “furniture:
decoration”), and one C-S- pair (e.g., “color: bullet”), then recomposing them
(e.g., “Chinese medicine: decoration,” “furniture: bullet,” “color: ginseng”).
Recombined pairs were excluded from analysis; (3) Participants completed im-
mediate associative recognition tests after each study block. The experiment
comprised 7 study-test blocks. Each study block contained 8 C+S+, 8 C-S+,
and 8 C-S- trials. Each test block included 7 old and 7 new pairs per condition,
plus 3 recombined filler pairs (see Figure 1B).

EEG Recording and Analysis After preprocessing, mean valid trial counts
(range) were: C+S+ = 50.7 (34-56), C-S+ = 50.6 (41-56), C-S- = 51.0 (38-56).
All other parameters were identical to Experiment 1.
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Experiment 2 Results

Behavioral Results Test Phase: Pr

One-way repeated measures ANOVA revealed significant differences across con-
ditions (F(2, 50) = 54.44, p < 0.001, p? = 0.69). Post-hoc tests showed Pr was
significantly higher for C+S+ than C-S+ (t(25) = 4.61, p < 0.001, Cohen’s d
= 0.90) and C-S- (£(25) = 9.43, p < 0.001, Cohen’s d = 1.85), and significantly
higher for C-S+ than C-S- (t(25) = 6.52, p < 0.001, Cohen’s d = 1.28) (see Ta-
ble 1, Figure 3 [Figure 3: see original paper|A). Memory performance declined
as predictability decreased.

Study Phase: Accuracy

One-way repeated measures ANOVA revealed significant differences across con-
ditions (F(2, 50) = 14.85, p < 0.001, p? = 0.37). Post-hoc tests showed accuracy
was significantly lower for C-S+ than C4+S+ (t(25) = -3.52, p = 0.005, Cohen’s
d =-0.69) and C-S- (t(25) = -5.85, p < 0.001, Cohen’s d = -1.15), with no dif-
ference between C+S+ and C-S- (t(25) = -1.03, p = 0.934, Cohen’s d = -0.20)
(see Table 1, Figure 3A).

Reaction Time (RT)

One-way repeated measures ANOVA revealed significant differences across con-
ditions (F(2, 50) = 29.51, p < 0.001, p? = 0.54). Post-hoc tests showed RT was
significantly longer for C-S+ than C+S+ (t(25) = 7.48, p < 0.001, Cohen’s d =
1.47) and C-S- (t(25) = 6.10, p < 0.001, Cohen’s d = 1.20), with no difference
between C+S+ and C-S- (£(25) = -1.88, p = 0.214, Cohen’s d = -0.37) (see
Table 1, Figure 3A).

EEG Results N400

A 3 x 3 repeated measures ANOVA revealed a significant main effect of con-
dition (F(2, 50) = 20.76, p < 0.001, p? = 0.45) and no significant region x
condition interaction (F(4, 100) = 1.21, p = 0.312, p? = 0.05). Post-hoc tests
showed N400 was more positive for C+S+ (M = 3.55 V, SE = 0.70) than C-S+
(M = 2.60 V, SE = 0.63, t(25) = 2.67, p = 0.040, Cohen’s d = 0.52) and C-S-
(M =0.86 V, SE = 0.66, t(25) = 5.37, p < 0.001, Cohen’s d = 1.05), and more
positive for C-S+ than C-S- (t(25) = 4.35, p < 0.001, Cohen’s d = 0.85). A
separate one-way ANOVA for the parietal region showed significant differences
(F(2, 50) = 27.92, p < 0.001, p? = 0.53). Parietal N400 was more positive for
C+S+ (M = 4.03 V, SE = 0.81) than C-S+ (M = 3.13 V, SE = 0.65, t(25) =
2.41, p = 0.071, marginally significant, Cohen’s d = 0.47) and C-S- (M = 1.07
V, SE = 0.63, t(25) = 6.00, p < 0.001, Cohen’s d = 1.18), and more positive
for C-S+ than C-S- (t(25) = 6.17, p < 0.001, Cohen’s d = 1.21) (see Figure
3B). This indicates decreasing predictability across C+S+, C-S+, and C-S-.

Early P600
A 3 x 3 repeated measures ANOVA revealed no significant main effect of con-

chinarxiv.org/items/chinaxiv-202507.00149 Machine Translation


https://chinarxiv.org/items/chinaxiv-202507.00149

ChinaRxiv [$X]

dition (F(2, 50) = 1.80, p = 0.175, p? = 0.07) and no significant region x
condition interaction (F(4, 100) = 1.24, p = 0.298, p? = 0.05) (see Figure 3B).

Late P600

A 3 x 3 repeated measures ANOVA revealed a significant main effect of con-
dition (F(2, 50) = 2.85, p = 0.046, p? = 0.12) and no significant region x
condition interaction (F(4, 100) = 0.62, p = 0.653, p? = 0.02). Post-hoc tests
showed amplitude was more positive for C-S+ (M = 3.32 V, SE = 0.74) than
C-S- (M = 2.26 V, SE = 0.63, t(25) = 2.90, p = 0.023, Cohen’s d = 0.57).
C+S+ M = 3.16 V, SE = 0.79) did not differ from C-S+ (t(25) = -0.33, p
= 1, Cohen’s d = -0.07) or C-S- (t(25) = 1.81, p = 0.249, Cohen’s d = 0.35).
Given P600’s parietal distribution, a separate one-way ANOVA for the parietal
region showed significant differences (F(2, 50) = 6.18, p = 0.004, p? = 0.20).
Parietal amplitudes were more positive for C+S+ (M = 3.90 V, SE = 0.75,
£(25) = 2.63, p = 0.044, Cohen’s d = 0.52) and C-S+ (M = 4.28 V, SE = 0.67,
t(25) = 3.80, p = 0.003, Cohen’s d = 0.74) than C-S- (M = 2.91 V, SE = 0.64),
with no difference between C+S+ and C-S+ (t(25) = -0.83, p = 1, Cohen’s d
= -0.16) (see Figure 3B). This indicates more positive parietal amplitudes for
C+S+ and C-S+ versus C-S-.

EEG Decoding

LDA decoding of study-phase EEG data revealed significant condition discrim-
ination during 336-500 ms and 668—-1000 ms post-target (p < 0.05, see Figure
3C). Temporal generalization analysis showed no cross-temporal decoding be-
tween N400 and P600 windows (see Figure 3D), consistent with Experiment
1.

Regression Analysis

Paired t-tests on standardized regression coefficients showed N400-Pr coefficients
were significantly greater than zero in frontal (M = 0.45, SE = 0.12, t(25) =
3.78, p < 0.001, Cohen’s d = 0.74), central (M = 0.56, SE = 0.11, t(25) = 4.94,
p < 0.001, Cohen’s d = 0.97), and parietal regions (M = 0.60, SE = 0.11, t(25)
= 5.37, p < 0.001, Cohen’s d = 1.05). Early P600-Pr coefficients did not differ
from zero in frontal (M = 0.08, SE = 0.12, t(25) = 0.67, p = 0.511, Cohen’s d =
0.13), central (M = 0.09, SE = 0.14, t(25) = 0.68, p = 0.501, Cohen’s d = 0.13),
or parietal regions (M = 0.25, SE = 0.15, t(25) = 1.75, p = 0.092, Cohen’s d
= 0.34). Late P600-Pr coefficients also did not differ from zero in frontal (M =
0.17, SE = 0.16, £(25) = 1.07, p = 0.297, Cohen’s d = 0.21), central (M = 0.17,
SE = 0.15, t(25) = 1.20, p = 0.243, Cohen’s d = 0.23), or parietal regions (M
= 0.15, SE = 0.15, t(25) = 1.00, p = 0.327, Cohen’s d = 0.20) (see Figure 3E).

Experiment 2 Discussion

Experiment 2 examined associative recognition memory across predictability
levels. During the study phase, C+S+ showed higher accuracy and shorter
RTs than C-S+, with N400 amplitudes becoming progressively more negative
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across C+S+, C-S+, and C-S-. During the test phase, associative recognition
memory declined across these conditions, and study-phase N400 significantly
predicted associative memory performance. These results replicate Experiment
1. Additionally, C+S+ and C-S+ showed more positive P600 amplitudes and
better associative memory than C-S-; indicating that semantic distance facili-
tates prime-target integration, which enhances subsequent associative memory.

General Discussion

This study (Experiment 1: item recognition; Experiment 2: associative recogni-
tion) manipulated prediction through category and semantic distance to exam-
ine encoding differences and memory performance across predictability levels.
Both experiments consistently found that C+S+ and C-S- yielded higher ac-
curacy and shorter RTs than C-S+ during the study phase. N400 amplitudes
became progressively more negative across C+S+, C-S+, and C-S-. Only Ex-
periment 2 found more positive P600 amplitudes for C+S+ and C-S+ versus
C-S-. In both experiments, LDA successfully distinguished neural represen-
tations across conditions during N400 and P600 time windows. During the
test phase, item recognition (Experiment 1) and associative recognition (Exper-
iment 2) both showed graded memory decline across C+S+, C-S+, and C-S-.
Moreover, both experiments consistently demonstrated that study-phase N400
significantly predicted test-phase memory performance. These results indicate
that prediction’s impact on memory is modulated by category and semantic
distance.

Both experiments found that C+S+ and C-S- yielded higher accuracy and
shorter RTs than C-S+4. While both conditions showed behavioral advantages,
we propose they reflect different cognitive mechanisms. Specifically, C+S+’s
superior performance stemmed from facilitative effects of semantic context (Sil-
cox & Payne, 2021), where appropriate semantic context enhances semantic
processing of matching words. C-S-’s advantage may reflect a self-termination
procedure: LeFevre and Bisanz (1986) found that when processing anomalous
sequences, identification of an anomalous element triggers processing termina-
tion, saving subsequent processing time. This may explain why C-S- showed
shorter RTs than C-S+. Notably, Rommers et al. (2013) found longer RTs for
anomalous conditions using sentence frames, suggesting that anomalous item
processing varies across paradigms—a point we will revisit in relation to EEG
results.

Category and semantic distance significantly affected predictability. Both ex-
periments found progressively more negative N400 amplitudes across C+S+,
C-S+, and C-S-, consistent with previous research showing highest predictabil-
ity for high-typicality category members (Federmeier et al., 2010; Silcox et al.,
2023). The more positive N400 for C+S+ versus C-S+ demonstrates category’s
influence on predictability, while the more positive N400 for C-S+ versus C-S-

chinarxiv.org/items/chinaxiv-202507.00149 Machine Translation


https://chinarxiv.org/items/chinaxiv-202507.00149

ChinaRxiv [$X]

demonstrates semantic distance’s influence. These results indicate that pre-
diction is a complex cognitive process integrating multiple information sources
(e.g., category, semantic distance) to forecast upcoming events.

Semantic distance modulated integration encoding of prime-target pairs. Both
experiments showed LDA distinguished conditions during the P600 window,
and Experiment 2 found more positive P600 amplitudes for C+S+ and C-S+
versus C-S-. This indicates that semantic distance facilitates prime-target inte-
gration encoding. While Experiment 1 found no P600 differences, we attribute
this to task demands. First, Experiment 2’s explicit associative recognition test
encouraged participants to invest more effort in integration encoding. P600
indexes semantic integration (Brouwer et al., 2017; Federmeier, 2022; Schotter
et al., 2023), and the closer semantic distance in C+S+ and C-S+ promoted
integration, yielding more positive P600 amplitudes. C-S-’s self-termination
procedure (LeFevre & Bisanz, 1986) may have reduced integration effort, pro-
ducing smaller P600. Sentence-frame studies showing longer RTs and more
positive P600 for anomalous words (Rommers et al., 2013; Schotter et al., 2023)
likely reflect higher semantic integration demands compared to word-pair judg-
ments, explaining paradigm differences. Second, MVPA is more sensitive than
univariate analysis, detecting differences ERP cannot (Davis et al., 2014; Petit
et al., 2024). Experiment 1 may not have motivated integration effort, so con-
dition differences appeared only in the more sensitive MVPA rather than P600
amplitude.

Category and semantic distance influenced memory performance. Both exper-
iments found higher Pr for C4+S+ than C-S+, indicating that conforming to
category rules enhances memory. Higher Pr for C-S+ than C-S- indicates that
near semantic distance improves memory. The significant positive correlation
between study-phase N400 (an index of prediction) and test-phase memory per-
formance supports the view that predictable materials yield better memory
(Craik & Tulving, 1975; Kutas, 1993; Schulman, 1974; Silcox et al., 2023).
Combined with previous research (Silcox et al., 2023; Silcox & Payne, 2021),
we propose that predictable contexts reduce encoding burden and facilitate in-
tegration of target words with semantic context, thereby improving memory
performance.

We propose that category and semantic distance influence memory through dis-
tinct mechanisms. First, both factors affect memory. Previous studies manipu-
lating typicality (high/low) found better memory for high-typicality (e.g., flower:
rose) than low-typicality (flower: poppy) items (Silcox et al., 2023). Here, both
targets were category members but differed in semantic distance, demonstrating
semantic distance’s influence. Our finding that C+S+ (furniture: sofa) yielded
better memory than C-S+ (furniture: decoration) shows category’s influence
when semantic distance is controlled. Thus, memory performance is modulated
by both category and semantic distance.

Second, we speculate these factors operate through different mechanisms. Some
studies suggest that rule-congruent items enhance memory by reducing encoding
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burden (Frank & Kafkas, 2021; Silcox & Payne, 2021). Our study-phase results
showing shorter RTs, higher accuracy, and better memory for C+S+ than C-
S+ support this encoding advantage for rule-congruent items. Conversely, our
finding that C4+S+ and C-S+ showed more positive P600 and better memory
than C-S- suggests that near semantic distance enhances memory by facilitat-
ing prime-target integration. Additionally, a recent retrieval study (Dai et al.,
2025) found significant LPC old/new effects for semantic predictability (C+S+)
but FN400 old/new effects for semantic relatedness (C-S+), indicating distinct
retrieval mechanisms. Silcox et al. (2023) used TMS to show that LIFC is associ-
ated with semantic distance’s effect on memory, not category’s effect, providing
neural evidence for distinct mechanisms. These findings suggest category and
semantic distance influence memory through different mechanisms, offering a
potential resolution to the predictable-unpredictable memory debate.

We propose that the predictable-unpredictable memory discrepancy may be
determined by the relative contributions of encoding difficulty and encoding
effort—two separable factors. Although researchers debate the precise func-
tional significance of N400 and P600, there is consensus that they are distinct
ERP components reflecting different cognitive processes (He et al., 2024; Kutas
& Federmeier, 2011; Troyer et al., 2024). Our temporal generalization results
showing no cross-decoding between N400 and P600 support this distinction.
We therefore propose that at least two independent cognitive processes operate
during prediction’s influence on memory. N400 reflects semantic processing dif-
ficulty (Hagoort et al., 2009; Kutas & Federmeier, 2011), while P600 reflects
cognitive effort invested in processing (Rosburg et al., 2015). We suggest that
N400 indexes encoding difficulty and P600 indexes encoding effort. When cogni-
tive effort is equivalent, lower encoding difficulty yields better memory. When
encoding difficulty is equivalent, greater effort yields better memory. Critically,
N400 and P600 are not necessarily linked—easy encoding does not imply less
effort, and greater effort does not imply difficult encoding. Predictable condi-
tions typically involve easier encoding because they align with prior knowledge
(Frank & Kafkas, 2021). Encoding effort varies across paradigms. When partic-
ipants invest more effort in predictable conditions (as in our study), predictable
items show better memory. When they invest more effort in unpredictable con-
ditions, memory performance depends on the relative balance between encoding
difficulty and encoding effort.

Our results support the view that predictable materials yield better memory
performance. However, given variations across studies in paradigms, materials,
and prediction manipulations (see Frank & Kafkas, 2021), we must carefully
delimit our conclusions. First, we used a word-pair judgment paradigm ma-
nipulating prediction through category and semantic distance. The preceding
C+5S+ pair may have primed participants to generate predictions along category
and semantic dimensions, potentially limiting generalizability to real-world pre-
diction formation, which involves more dimensions. Second, while we propose
two sub-processes (encoding difficulty and encoding effort) in prediction’s effect
on memory, ongoing debate about N400 and P600 functional significance means
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our interpretation remains somewhat speculative and requires future validation.
Third, P600 results for unpredictable conditions vary across paradigms, suggest-
ing paradigm influences on P600. Future research should examine P600-memory
relationships to resolve the predictable-unpredictable memory debate.

In summary, this study demonstrates that category and semantic distance modu-
late prediction’s impact on memory performance. Predictable semantic contexts
enhance subsequent memory by reducing encoding burden and/or facilitating
semantic integration. These findings support the view that predictable items
yield better memory performance and illuminate the relationship between en-
coding processes and subsequent memory, advancing our understanding of the
prediction-memory relationship.
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