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Abstract
Recently, machine learning has become a powerful tool for predicting nuclear
charge radius 𝑅C, providing novel insights into complex physical phenomena.
This study employs the continuous Bayesian probability (CBP) estimator and
the Bayesian model averaging (BMA) to optimize the predictions of 𝑅C from so-
phisticated theoretical models. The CBP estimator treats the residual between
the theoretical and experimental values of 𝑅C as a continuous variable, deriv-
ing its posterior probability density function (PDF) from Bayesian theory. The
BMA method assigns weights to models based on their predictive performance
for benchmark nuclei, thereby accounting for each model’s unique strengths.
In global optimization, the CBP estimator improves the predictive accuracy of
the three theoretical models by about 60%. In extrapolation analyses, it consis-
tently achieves an improvement rate of approximately 45%, demonstrating the
robustness of the CBP estimator. Furthermore, the combination of the CBP
and BMA methods reduces the standard deviation to below 0.02 fm, effectively
reproducing the pronounced shell effects on 𝑅C of the Ca and Sr isotope chains.
The studies in this paper propose an efficient way to accurately describe 𝑅C of
unknown nuclei, with potential applications to research on other nuclear prop-
erties.
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Machine learning has recently emerged as a powerful tool for predicting nuclear
charge radius 𝑅𝐶 , offering novel insights into complex physical phenomena. This
study employs a continuous Bayesian probability (CBP) estimator and Bayesian
model averaging (BMA) to optimize predictions of 𝑅𝐶 from sophisticated the-
oretical models. The CBP estimator treats the residual between theoretical
and experimental 𝑅𝐶 values as a continuous variable and derives its posterior
probability density function (PDF) from Bayesian theory. The BMA method
assigns weights to models based on their predictive performance for benchmark
nuclei, thereby accounting for the unique strengths of each model. In global
optimization, the CBP estimator improved the predictive accuracy of the three
theoretical models by approximately 60%. Extrapolation analyses consistently
achieved an improvement rate of approximately 45%, demonstrating the robust-
ness of the CBP estimator.

Furthermore, the combination of CBP and BMA methods reduces the standard
deviation to below 0.02 fm, effectively reproducing the pronounced shell effects
on 𝑅𝐶 of the Ca and Sr isotope chains. The studies in this paper propose an
efficient method to accurately describe 𝑅𝐶 of unknown nuclei, with potential
applications in research on other nuclear properties.

Keywords: Machine learning, Nuclear charge radii, Continuous Bayesian prob-
ability estimator, Bayesian model averaging

Introduction
The nuclear charge radius 𝑅𝐶 is a fundamental property of atomic nuclei that
plays a crucial role in research on nuclear structures [?]. It provides insights
into various phenomena, including shape coexistence [?], neutron skin [?, ?,
?], proton halo [?], shell structure [?], odd-even staggering [?, ?], and nuclear
matter saturation [?]. Two main experimental methods exist for measuring
𝑅𝐶 . One directly determines 𝑅𝐶 through experiments such as muonic atom
X-ray spectroscopy (𝜇−) [?] and high-energy elastic electron scattering (𝑒−)
[?, ?]. The second type analyzes subtle differences between isotopes to indirectly
measure 𝑅𝐶 , for instance, 𝐾𝛼 X-ray isotope shifts (K𝛼IS) [?] and optical isotope
shifts (OIS) [?]. Recently, advancements in laser spectroscopy techniques have
enabled precise determination of 𝑅𝐶 for over 130 unstable nuclei [?, ?, ?, ?, ?, ?].
Nevertheless, challenges in experimental measurement of 𝑅𝐶 persist, especially
in the production of exotic isotopes and in improving experimental sensitivity,
making it difficult to understand nuclear structures in unexplored regions.

Many theoretical models have been developed to study 𝑅𝐶 , ranging from macro-
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scopic formulas to sophisticated microscopic approaches. First, a conventional
approach to estimate 𝑅𝐶 is a semi-empirical formula based on the 𝐴1/3 law or the
𝑍1/3 dependence of the liquid drop model, improved by introducing effects such
as shell structure, isospin, and odd-even nuclear effects [?, ?, ?]. Subsequently,
local-relation-based models determine 𝑅𝐶 from the properties of neighboring nu-
clei [?, ?, ?, ?], with prominent examples being the Garvey-Kelson relation [?, ?]
and mirror nuclei relation [?, ?]. Additionally, more sophisticated mean-field
nuclear structure models offer self-consistent descriptions of 𝑅𝐶 and other nu-
clear properties. Examples include the Skyrme-Hartree-Fock-Bogoliubov (HFB)
models [?, ?, ?, ?], relativistic mean-field (RMF) models [?, ?, ?, ?], and rel-
ativistic Hartree-Bogoliubov (RHB) models [?, ?, ?]. Recent studies in Refs.
[?, ?] have systematically calculated properties such as nuclear binding energy,
charge radii, and electric quadrupole moment based on the deformed RHB the-
ory in continuum. Finally, a class of ab initio approaches, such as the no-core
shell model (NCSM), starts from realistic nucleon interactions and provides a
precise description of 𝑅𝐶 by solving the many-body Schrödinger equation or
the corresponding self-consistent field equations [?, ?]. Theoretical models have
achieved significant advancements, reducing root-mean-square errors to below
0.05 fm and providing satisfactory descriptions of the unique behaviors of 𝑅𝐶
in isotope chains. However, as accuracy requirements for calculations increase,
the complexity of theoretical models also increases significantly.

In recent years, machine learning (ML) techniques have been widely applied in
nuclear physics [?, ?], including nuclear mass studies [?, ?, ?, ?, ?, ?, ?, ?, ?],
charge density distributions [?, ?], nuclear decay [?, ?, ?, ?, ?], and nuclear
reactions [?, ?, ?], particularly for predicting 𝑅𝐶 [?, ?, ?, ?, ?, ?, ?, ?]. Initially,
the ML method was applied to train the experimental values of 𝑅𝐶 , indepen-
dent of the theoretical models. As early as 2013, researchers utilized artificial
neural networks (ANN) to predict 𝑅𝐶 by directly generating a formula [?]. Sub-
sequently, to incorporate the strengths of theoretical models, ML techniques
were employed to refine them by estimating the residuals between theoretical
and experimental values of 𝑅𝐶 . Early work in 2016 proposed a Bayesian neu-
ral network (BNN) with a single hidden layer to optimize these predictions [?].
Later, multiple research groups significantly enhanced the robustness of BNN
by introducing physical effects and adding input features [?, ?, ?, ?]. Notably,
the naive Bayesian probability (NBP) classifier, which applies Bayesian theory
and k-means clustering, reframes the prediction of 𝑅𝐶 as a classification task.
This approach demonstrated strong extrapolation capabilities and provided un-
certainty in prediction [?, ?].

Recently, the application of the continuous Bayesian probability (CBP) estima-
tor and Bayesian model averaging (BMA) further improved the reliability of
nuclear mass descriptions [?]. Unlike the NBP method, which discretizes the
residuals 𝛿 of the theoretical model, the CBP estimator considers 𝛿 as a con-
tinuous variable. By combining the Bayesian framework with kernel density
estimation (KDE), the CBP estimator derives a posterior probability density
function (PDF) of 𝛿 for the target nuclei. This method demonstrates robust
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predictive performance and can explain intrinsic numerical relationships. More-
over, the BMA method combines the predictive strengths of different theoretical
models across distinct regions of the nuclear chart, further improving overall per-
formance [?, ?, ?].

This study combines the CBP estimator and BMA method to optimize the pre-
dictions of 𝑅𝐶 . The initial theoretical values of 𝑅𝐶 were calculated separately
using the HFB, RHB, and semi-empirical liquid drop models. First, the global
optimization capability of the CBP estimator was evaluated by comparing its
predictions with experimental data from the 2013 compilation of nuclear charge
radii [?]. Subsequently, its extrapolation capability was investigated using the
learning set from the 2004 compilation [?] to predict 𝑅𝐶 for nuclei newly re-
ported in the 2013 compilation. After optimization using the CBP estimator,
to further improve predictive accuracy for nuclei near the drip line, the BMA
method was applied to assign weights to each model based on their predictive
performance on benchmark nuclei. The benchmark nuclei selected in this study
are 49K [?], 38Ca [?], 100Cd, 119Cd [?], 201Po [?], and 233Ra [?]. Finally, we
predict 𝑅𝐶 of the Ca and Sr isotopic chains using the CBP estimator in combi-
nation with the BMA method to verify the ability of this approach to capture
physical effects on 𝑅𝐶 .

This paper is structured in three sections: Sect. II introduces the theoretical
framework of the CBP and BMA methods. Section III presents the results of
these methods. Section IV provides the summary of this study.

Theoretical Framework
The theoretical framework offers detailed procedures and formulas for a con-
tinuous Bayesian probability (CBP) estimator and Bayesian model averaging
(BMA). A method for evaluating the predictive performance and a formula for
quantifying the uncertainties are also presented.

A. The continuous Bayesian probability method

In the CBP estimators, the residuals 𝛿 of 𝑅𝐶 are treated as continuous variables
and their posterior PDFs are derived from Bayesian theory. The estimated resid-
uals, which are used to correct the theoretical models, can then be calculated
from the posterior PDFs.

For continuous multivariate variables, given a set of features or variables
𝑋1, 𝑋2, … , 𝑋𝑚 and a target variable 𝑌 , the posterior PDF can be expressed as

𝑝(𝑌 |𝑋) = 𝑝(𝑋1|𝑌 )𝑝(𝑋2|𝑌 ) ⋯ 𝑝(𝑋𝑚|𝑌 )𝑝(𝑌 )
∫ 𝑝(𝑋1|𝑌 )𝑝(𝑋2|𝑌 ) ⋯ 𝑝(𝑋𝑚|𝑌 )𝑝(𝑌 )𝑑𝑌

The conditional PDF 𝑝(𝑋𝑖|𝑌 ) represents the likelihood of observing events 𝑋𝑖
given the occurrence of 𝑌 , whereas the prior PDF 𝑝(𝑌 ) denotes the frequency
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of occurrence for a given 𝑌 . The denominator in Eq. (1) acts as a normalization
constant, ensuring that the posterior PDF 𝑝(𝑌 |𝑋) is integrated to unity.

According to Eq. (1), event 𝑌 represents the continuous residual 𝛿. Events
𝑋𝑖 correspond to the proton number 𝑍𝑡 and neutron number 𝑁𝑡 of the target
nucleus. It is assumed that 𝑍𝑡 and 𝑁𝑡 are independent of other variables. Thus,
the posterior PDF can be expressed as

𝑝(𝛿|𝑍𝑡, 𝑁𝑡) = 𝑝(𝑍𝑡|𝛿)𝑝(𝑁𝑡|𝛿)𝑝(𝛿)
∫ 𝑝(𝑍𝑡|𝛿)𝑝(𝑁𝑡|𝛿)𝑝(𝛿)𝑑𝛿

The conditional PDFs 𝑝(𝑍𝑡|𝛿) and 𝑝(𝑁𝑡|𝛿) in Eq. (2) can be derived using the
following univariate Bayesian formula,

𝑝(𝑍𝑡|𝛿) = 𝑝(𝛿|𝑍𝑡)𝑝(𝑍𝑡)
𝑝(𝛿)

𝑝(𝑁𝑡|𝛿) = 𝑝(𝛿|𝑁𝑡)𝑝(𝑁𝑡)
𝑝(𝛿)

In Eqs. (3) and (4), the prior probability 𝑝(𝑍𝑡(𝑁𝑡)) was calculated from the oc-
currence frequencies of 𝑍𝑡(𝑁𝑡) in the learning set. The likelihood PDFs 𝑝(𝛿|𝑍𝑡)
and 𝑝(𝛿|𝑁𝑡) are estimated using kernel density estimation (KDE).

𝑝(𝛿|𝑍𝑡) = 1
𝑛𝑍ℎ𝑍

𝑛𝑍

∑
𝑖=1

𝐾 (𝛿 − 𝛿𝑖
ℎ𝑍

)

𝑝(𝛿|𝑁𝑡) = 1
𝑛𝑁ℎ𝑁

𝑛𝑁

∑
𝑖=1

𝐾 (𝛿 − 𝛿𝑖
ℎ𝑁

)

where ℎ𝑍(𝑁) denotes the bandwidth parameter and 𝑛𝑍(𝑁) represents the number
of nuclei in the learning set that have the same 𝑍𝑡(𝑁𝑡) as the target nucleus.
Kernel function 𝐾(𝑡) is specified as a Gaussian kernel because the residuals
follow a Gaussian distribution:

𝐾(𝑡) = 𝑒−𝑡2

√𝜋

Similarly, the prior PDF 𝑝(𝛿) can also be obtained using

𝑝(𝛿) = 1
𝑛ℎ𝛿

𝑛
∑
𝑖=1

𝐾 (𝛿 − 𝛿𝑖
ℎ𝛿

)
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where ℎ𝛿 denotes the bandwidth parameter, and 𝑛 is the total number of nuclei
in the learning set. In Eqs. (5), (6), and (8), the individual residual 𝛿𝑖 is defined
as

𝛿𝑖 = 𝑅exp
𝐶,𝑖 − 𝑅th

𝐶,𝑖

When determining the likelihood PDF and prior PDF, a weight function is
introduced to account for the local relationship between neighboring nuclei:

𝑤(𝑍, 𝑁; 𝑍𝑡, 𝑁𝑡) = exp [−(𝑍 − 𝑍𝑡)2 + (𝑁 − 𝑁𝑡)2

𝜌2 ]

Parameter 𝜌 significantly affects the prediction performance and extrapolation
range of the CBP estimator. Based on the distribution characteristics of the
nuclei from the dataset on the nuclear chart, 𝜌 = 4 was selected for this study.
Parameter 𝜀 affects the stability of the posterior PDF, and 𝜀 = 10−10 was chosen
to ensure a Gaussian distribution for 𝑝(𝛿|𝑍𝑡, 𝑁𝑡). The prior PDF and likelihood
PDF with the applied weights are as follows:

𝑝wt(𝛿) = 1
𝑛ℎ𝛿

𝑛
∑
𝑖=1

𝐾 (𝛿 − 𝛿𝑖
ℎ𝛿

) 𝑤(𝑍𝑖, 𝑁𝑖; 𝑍𝑡, 𝑁𝑡),

𝑝wt(𝛿|𝑍𝑡) = 1
𝑛𝑍ℎ𝑍

𝑛𝑍

∑
𝑖=1

𝐾 (𝛿 − 𝛿𝑖
ℎ𝑍

) 𝑤(𝑍𝑖, 𝑁𝑖; 𝑍𝑡, 𝑁𝑡),

𝑝wt(𝛿|𝑁𝑡) = 1
𝑛𝑁ℎ𝑁

𝑛𝑁

∑
𝑖=1

𝐾 (𝛿 − 𝛿𝑖
ℎ𝑁

) 𝑤(𝑍𝑖, 𝑁𝑖; 𝑍𝑡, 𝑁𝑡).

The posterior PDF 𝑝(𝛿|𝑍𝑡, 𝑁𝑡) is obtained by combining Eqs. (2)-(12), and
the expected value was used to determine the estimated residual of the target
nucleus.

𝛿em(𝑍, 𝑁) = ∫ 𝛿𝑝(𝛿|𝑍, 𝑁)𝑑𝛿.

Ultimately, the refined nuclear charge radius is obtained by appending the esti-
mated residual 𝛿em(𝑍, 𝑁) to the theoretical nuclear charge radius 𝑅th

𝐶 (𝑍, 𝑁):

𝑅corr
𝐶 (𝑍, 𝑁) = 𝑅th

𝐶 (𝑍, 𝑁) + 𝛿em(𝑍, 𝑁).
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B. Bayesian model averaging

Even after refinement by the CBP estimator, individual models often fail to
comprehensively account for all physical phenomena, owing to their varying
strengths and weaknesses in different regions of the nuclear chart. To consider
the advantages of different models in the isotopic and isotonic chains, Bayesian
model averaging (BMA) was introduced [?].

The BMA method is based on the Bayesian theorem, and assigns weights to each
model by assessing its predictive performance. Specifically, given a set of 𝐾 can-
didate models 𝑀1, … , 𝑀𝐾, the BMA method calculates posterior probabilities
based on the predictions for the benchmark nucleus from each model. These
posterior probabilities serve as the weights for each model and are calculated as
follows:

𝑃(𝑀𝑘|𝐷) = 𝑃(𝐷|𝑀𝑘)𝑃 (𝑀𝑘)
∑𝐾

𝑖=1 𝑃(𝐷|𝑀𝑖)𝑃 (𝑀𝑖)

In this study, the six selected benchmark nuclei in dataset 𝐷 were 49K, 38Ca,
100Cd, 119Cd, 201Po, and 233Ra, which were used to evaluate the accuracy of
the models based on the entire nuclide chart. Residuals were obtained using
three theoretical models: the HFB model with SLy4 parameterization, RHB
model with PK1 parameter set, and semi-empirical liquid drop model. The
prior probability 𝑃(𝑀𝑘) = 1/𝐾 is related to the number of candidate models
and the conditional probability 𝑃(𝐷|𝑀𝑘) depends on the predictive performance
of each theoretical model,

𝑃(𝐷|𝑀𝑘) =
𝐽

∏
𝑗=1

1√
2𝜋𝜇 exp [−

(𝛿corr
𝑘,𝑗 )2

2𝜇2 ]

where 𝐽 denotes the total number of benchmark nuclei. The refined residuals
𝛿corr for the 𝑗-th benchmark nucleus corresponding to the theoretical model 𝑀𝑘
are defined as 𝛿corr

𝑘,𝑗 = 𝑅exp
𝐶,𝑗 − 𝑅corr

𝐶,𝑘,𝑗. The parameter 𝜇 is used to normalize the
values of 𝛿corr

𝑘,𝑗 and is defined by

𝜇 =
√√√
⎷

1
𝐾 ⋅ 𝐽

𝐾
∑
𝑘=1

𝐽
∑
𝑗=1

(𝛿corr
𝑘,𝑗 )2.

Finally, the average nuclear charge radius calculated using the BMA method is:

𝑅̄(𝑍𝑡, 𝑁𝑡) =
𝐾

∑
𝑖=1

𝑅corr
𝐶,𝑖 𝑃(𝑀𝑖|𝐷).
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The discrepancies between the corrected theoretical predictions and the exper-
imental data for each model were assessed using the standard deviation 𝜎rms,
defined as

𝜎rms = √ 1
𝑛

𝑛
∑
𝑖=1

(𝑅exp
𝐶,𝑖 − 𝑅corr

𝐶,𝑖 )2.

In the CBP estimator, the prediction uncertainties are obtained from the pos-
terior PDF. The one-sigma uncertainty 𝜎em(𝑍, 𝑁) of each model corresponding
to a specific nucleus (𝑍, 𝑁) is defined as

𝜎em(𝑍, 𝑁) = √∫[𝛿 − 𝛿em(𝑍, 𝑁)]2𝑝(𝛿|𝑍, 𝑁)𝑑𝛿,

and the uncertainty of the BMA is given by

𝜎BMA(𝑍, 𝑁) =
√√√
⎷

𝐾
∑
𝑖=1

𝜎2
em,𝑖(𝑍, 𝑁)𝑃(𝑀𝑖|𝐷).

Results
In this section, the theoretical values of 𝑅𝐶 are initially calculated using the HFB
model with SLy4 parameterization, RHB model with the PC-PK1 parameter set
[?], and three-parameter semi-empirical formula of Sheng et al. [?]. Notably, the
RHB model is based on the relativistic continuum Hartree-Bogoliubov theory,
and incorporates nucleon intrinsic electromagnetic structure corrections [?, ?].
Subsequently, the initial results were refined by employing the CBP estimator
and BMA method. The entire set comprises 892 nuclei with proton numbers 𝑍 >
3 sourced from the 2013 charge radii compilation [?]. The global optimization
and extrapolation capabilities of the CBP estimator are evaluated, followed by
an analysis of the extrapolation performance of the approach that combines
CBP and BMA methods.

A. Global optimizations of the CBP estimator

The theoretical 𝑅𝐶 values of 892 nuclei were calculated using three models, and
the raw residuals 𝛿pre = 𝑅exp

𝐶 − 𝑅th
𝐶 for each nucleus were obtained. Subse-

quently, the CBP estimator was applied to refine the predictions of each model.
According to Sect. II, the posterior PDF 𝑝(𝛿|𝑍𝑡, 𝑁𝑡) of the target nucleus can
be calculated by Eqs. (2)-(12). The refined charge radius 𝑅corr

𝐶 (𝑍𝑡, 𝑁𝑡) was
then obtained using Eqs. (13) and (14). The HFB and RHB models in this
study were solved under the assumption of spherical symmetry. In the entire
set, the majority of 𝛿pre is distributed within the range of −0.1 fm to 0.1 fm.
For nuclei with identical proton or neutron numbers, the variation in 𝛿pre is
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typically limited to within 0.05 fm. Based on the distribution characteristics
of 𝛿pre, the bandwidth parameters were selected as ℎ𝛿 = 0.07 fm−1, ℎ𝑍 = 0.01
fm−1, and ℎ𝑁 = 0.02 fm−1. Table 1 presents the standard deviations 𝜎pre of the
three theoretical models before optimization, and 𝜎post after optimization by
the CBP estimator. The global optimization performance of the CBP estimator
was evaluated using the improvement rate Δ𝜎/𝜎pre = (𝜎pre − 𝜎post)/𝜎pre.

As shown in Table 1 , the standard deviations 𝜎pre for the spherical HFB, RHB,
and semi-empirical formulas are approximately 0.04 fm. However, the deformed
mean-field theories give a standard deviation of approximately 0.03 fm [?, ?].
After refining using the CBP estimator, the standard deviations 𝜎post for both
spherical models are further reduced to approximately 0.016 fm, representing
an improvement of approximately 60%. This improvement demonstrates the
advantages of the CBP estimator. The CBP estimator can introduce deforma-
tion effects into the calculations of spherical theoretical models using statistics,
thereby improving the description of 𝑅𝐶 for deformed atomic nuclei.

To illustrate the progress achieved by the CBP method, Table 1 presents the op-
timization performance of the NBP method for comparison. The NBP method is
a discrete Bayesian probabilistic approach that employs the k-means algorithm
to determine the cluster centers 𝛿𝑖, which are then used to refine the theoret-
ical models. For the three models, the improvement rate of the CBP method
is approximately 10% higher than that of the NBP method. This arises from
the CBP estimator treating residuals as continuous variables and obtaining the
estimated residual value 𝛿em by integrating the posterior PDF over the entire
residual distribution, rather than using a discrete posterior probability, as in
the NBP method. The CBP estimator accounts for all possible residual contri-
butions, thereby achieving a higher degree of optimization and demonstrating
a clear advantage.

To further illustrate the performance of the CBP estimator across the different
models and regions, Fig. 1 [Figure 1: see original paper] presents the raw resid-
uals (gray dots) from the HFB model, the RHB model and the semi-empirical
formula, along with the corrected residuals (blue dots) after applying the CBP
estimator. It is evident that after CBP optimization, the residuals for all three
theoretical models were remarkably reduced across most regions. This improve-
ment can be attributed to the CBP estimator framework. Based on the global
description of theoretical models, the CBP estimator utilizes a statistical ap-
proach to further capture the local correlation effects among nuclei with identi-
cal proton or neutron numbers. The introduction of the weight function ensures
that only nuclei in close proximity to the target nucleus on the nuclear chart sig-
nificantly influence the prediction, thereby enhancing the sensitivity of the CBP
estimator to local correlation effects. Therefore, the CBP estimator is more ef-
fective in regions where local correlations are stronger, and the distribution of
𝛿pre is more regular, such as regions with pronounced shell effects.

In regions 60 < 𝐴 < 90, 120 < 𝐴 < 140, and 215 < 𝐴 < 240 in Fig. 1a;
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45 < 𝐴 < 90, 110 < 𝐴 < 140, and 220 < 𝐴 < 240 in Fig. 1b; and 80 <
𝐴 < 95, 110 < 𝐴 < 145, and 210 < 𝐴 < 240 in Fig. 1c, where theoretical
model predictions exhibit similar accuracy and the distribution of 𝛿pre is highly
regular, the CBP estimator achieves substantial improvements, considerably
reducing the residuals. In particular, for nuclei with mass numbers around
𝐴 = 100, 𝐴 = 150, and 𝐴 = 190, where proton-neutron residual interactions
and other physical effects lead to large 𝛿pre, the CBP method markedly enhances
the predictive accuracy by statistically accounting for these interactions and
effects. However, for light nuclei, where 𝛿pre exhibits greater variability owing
to relatively low nucleon numbers, the optimization effect of the CBP estimator
is comparatively limited. As more charge radii of light nuclei are precisely
measured in experiments, the predictive performance of the CBP estimator for
light nuclei can be further enhanced.

B. Extrapolating capabilities of the CBP estimator

Model extrapolation was essential for the acquisition of unknown data. In this
section, we evaluate the extrapolation performance of the CBP estimator. The
learning set comprised 790 nuclei with proton numbers 𝑍 > 3 from the 2004
charge radii compilation [?], while the validation set included 102 experimental
charge radii added between 2004 and 2013. The bandwidth parameters ℎ𝛿, ℎ𝑁 ,
and ℎ𝑍 used in the extrapolation process are the same as those employed in the
global optimization. The standard deviations 𝜎pre and 𝜎post for the learning and
validation sets, both before and after applying the CBP estimator, are reported
in Table 2 along with the optimization rate Δ𝜎/𝜎pre.

According to Table 2, the standard deviations of 𝑅𝐶 calculated using the HFB,
RHB, and semi-empirical formulas are approximately 0.040 fm for both the
learning and validation sets. This consistency indicates that the initial theo-
retical models possess considerable extrapolation capabilities, which are more
beneficial for the CBP estimator in predicting unknown regions. After applying
the CBP estimator, the standard deviations for all three models in the learning
set decreased to less than 0.020 fm, achieving an improvement of approximately
60% compared to the initial results. In the validation set, the standard devia-
tions were slightly greater than 0.020 fm, with improvement rates of approxi-
mately 45% for the three models. The steady improvement rates across both the
learning and validation sets demonstrate the robust extrapolation capabilities
of the CBP estimator.

The optimization rates for all three models in the validation set were lower than
those in the learning set. This phenomenon can be explained by the CBP frame-
work: the Bayesian formula accounts for statistical correlations among nuclei
with the same proton and neutron numbers, whereas the weight function consid-
ers local relationships among neighboring nuclei. Most nuclei in the validation
set were positioned near the drip line, where fewer neighboring nuclei were rep-
resented in the learning set, thereby diminishing the performance of the CBP
estimator. As more 𝑅𝐶 values were measured experimentally, the extrapolation
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ability of the CBP estimator was expected to improve significantly.

The results in Table 2 indicate that the CBP estimator demonstrates excellent
extrapolation capabilities. The HFB, RHB and semi-empirical formulas provide
the overall trends of 𝑅𝐶 variations. By inheriting the advantages of theoretical
models and incorporating local correlation characteristics between nuclei, the
CBP estimator captures the physical effects that are not reflected in theoretical
models, leading to reliable corrections of 𝑅𝐶 . Consequently, for nuclei lacking
experimental data, the CBP estimator can offer precise and robust predictions.

C. Comprehensively factoring in the results of different models using
the BMA method

After optimization using the CBP estimator, specific models exhibited optimal
predictive performance in distinct regions, especially for nuclei far from the
𝛽-stability line. This study introduces the BMA method to integrate these
strengths. The BMA method assigns weights based on the predictive perfor-
mance of different models for the benchmark nuclei. To balance the predictive
discrepancies between the theoretical models across different regions of the nu-
clear chart, the benchmark nuclei selected for the BMA method were 49K, 38Ca,
100Cd, 119Cd, 201Po, and 233Ra, which cover a wide range of the nuclear chart,
including from light nuclei to heavy nuclei, and from proton-rich regions to
neutron-rich regions. These selected nuclei are located near the edges of the
nuclear chart and are outside the 2013 charge radii compilation, making them
particularly valuable for benchmarking extrapolation capabilities.

After obtaining the corrected residuals 𝛿corr = 𝑅exp
𝐶 − 𝑅corr

𝐶 for the benchmark
nuclei, the weights for each model were calculated using the BMA method and
the results are presented in Table 3 . The HFB model exhibits superior pre-
dictive accuracy for benchmark nuclei, and is thus assigned higher weights. In
contrast, the RHB model and semi-empirical formula are assigned lower weights
owing to their lower predictive accuracies. The BMA method was applied to
optimize the predictions for 102 validation nuclei. The standard deviation is
0.019 fm, which is lower than that of the individual model optimized by the
CBP estimator, as shown in Table 2. Compared with the HFB model, the RHB
model, and Sheng’s formula individually optimized using the CBP estimator,
the introduction of the BMA method improves the accuracy by 9.5%, 24.0%,
and 26.9%, respectively. This demonstrates that the BMA method effectively
combines the strengths of the different models, further enhancing predictive
accuracy.

Analysis of the trend of variation in charge radii within isotopic chains reveals
many important and interesting physical phenomena. This study combines the
CBP and BMA methods to predict the 𝑅𝐶 of the Ca and Sr isotopic chains,
illustrating the capability of this approach to capture the physical effects within
the isotopic chains. The calcium isotopic chain serves as a distinctive nuclear
system for investigating interactions between protons and neutrons inside the
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nucleus [?, ?, ?]. In the stable isotope region of the Ca chain, 40Ca and 48Ca
both exhibit a large number of protons and neutrons, and their 𝑅𝐶 values are
nearly identical. Owing to the change in the nuclear structure associated with
shell closure, a kink in 𝑅𝐶 at 𝑁 = 28 is observed. For 20 < 𝑁 < 28, the trend
of 𝑅𝐶 follows a parabolic shape, and the odd-even staggering effect on 𝑅𝐶 is
particularly pronounced. For neutron-rich nuclei with 𝑁 > 28, 𝑅𝐶 exhibited a
strong increase.

Figure 2a [Figure 2: see original paper] presents the predicted charge radii 𝑅̄
(purple squares) for the Ca isotopic chain based on the combined CBP and BMA
methods, along with uncertainty bands calculated from the corresponding error
estimates. The experimental values 𝑅exp

𝐶 (gray circles) and initial results from
the HFB model (blue squares) are also provided for comparison. The HFB model
predicts an approximately linear relationship between 𝑅𝐶 and the mass number,
which deviates from the experimental results. After corrections using the CBP
and BMA methods, the discrepancies between 𝑅̄ and the experimental data
were substantially reduced, providing an accurate description of the parabolic
trend of 𝑅𝐶 and kink at 48Ca. The experimental charge radii in Fig. 2a clearly
show the shell effect and odd-even staggering. However, the odd-even staggering
is diluted in the 𝑅𝐶 predicted using the CBP estimator combined with the
BMA method. This is because the calculation of the CBP estimator relies on
nuclides with the same proton number 𝑍 or neutron number 𝑁 , which leads to
a weakening of the odd-even staggering effect. The introduction of the BMA
method combines the results of the three models, further diluting the odd-even
staggering effect.

In addition to Ca isotopes, the charge radii of Sr isotopes also exhibit prominent
shell effects [?]. The Sr isotope chain extends from the valley of stability at
88Sr, where isotopes show a spherical shape, to the strongly deformed isotopes
on either side of the stability line. As the nucleus approached the neutron shell
closure at 𝑁 = 50 from the neutron-deficient side, 𝑅𝐶 gradually decreased. At
𝑁 = 50, it exhibited a kink, after which it began to increase. When 𝑁 reached
60, a sudden increase in 𝑅𝐶 was observed, corresponding to an experimental
transition from a near-spherical shape to a strongly deformed configuration [?].
The refined predictions 𝑅̄ of Sr isotopes obtained using the CBP estimator in
conjunction with the BMA approach are shown in Fig. 2b [Figure 2: see original
paper]. 𝑅̄ was closely aligned with the experimental data, particularly for the
kink of 88Sr and the pronounced increase in 𝑅𝐶 observed at 98Sr.

Summary
This study combined the continuous Bayesian probability (CBP) estimator
with Bayesian model averaging (BMA) to refine 𝑅𝐶 predictions from the HFB,
RHB, and semi-empirical formulas. In global optimization, the CBP estimator
achieved an improvement of approximately 60% for all three models. In ex-
trapolation, it demonstrates an improvement rate of approximately 45%. These
results indicate that, based on sophisticated theoretical models, the CBP esti-
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mator can provide accurate predictions of 𝑅𝐶 in the unknown regions of the
nuclear chart. To enhance the predictive accuracy for nuclei near the drip line,
the BMA method was subsequently employed to assign weights to each model
based on their predictive performance for the benchmark nuclei. By combining
the CBP estimator with the BMA method, the standard deviation is further
reduced, and the physical phenomena on 𝑅𝐶 such as shell effects in the Ca and
Sr isotopic chains are accurately captured.

The improvements achieved by the proposed method are attributed to the the-
oretical frameworks of the CBP estimator and the BMA method. According
to the CBP estimator framework, a continuous posterior probability density
function (PDF) was generated to obtain the estimated residuals for the tar-
get nucleus. The Bayesian formula captures the statistical relationships among
nuclei with the same proton or neutron number, whereas the weight function
accounts for the local correlations among neighboring nuclei. The theoretical
models provide the overall trend of 𝑅𝐶 , and the CBP estimator reliably refines
these theoretical results through statistical techniques. Thus, the BMA method
combines the strengths of different models across various regions of the nuclear
chart, leading to further refinement of the results.

In summary, the CBP and BMA methods were effectively employed to predict
the nuclear masses and charge radii, demonstrating considerable predictive ac-
curacy. The methodologies developed in this work can be further extended to
estimate charge radii in regions far from the 𝛽-stability line, and are equally
applicable to the exploration of other nuclear properties, including nuclear reac-
tions and decay processes.
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