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Abstract

Austenitic stainless steels have been extensively utilized as key structural com-
ponents in nuclear reactors, yet they exhibit a strong tendency to undergo
swelling under neutron irradiation, which consequently deteriorates their me-
chanical performance. Hence, reliable prediction of the swelling evolution in
austenitic stainless steels is essential to guarantee their operational integrity
during reactor service. This research draws on a curated dataset document-
ing neutron irradiation-induced swelling in austenitic stainless steels, in which
correlation analysis and recursive feature elimination were used to identify crit-
ical factors governing swelling behavior—mamely, temperature, neutron flux,
and the concentrations of Cr, Mn, Ni, Si, P, and C. Based on the 15 selected
features, a multilayer perceptron (MLP) model was developed for predictive
analysis of swelling, enabling precise prediction of the peak swelling tempera-
ture and the dose corresponding to the swelling incubation stage. Using the
trained MLP model, a quantitative relationship was established between the
swelling rate and the elemental concentrations of Cr, Mn, Ni, Si, P, and C. The
analysis revealed that higher Cr content consistently promotes swelling, while
increases in Si and P (above 0.02 wt.%) effectively suppress swelling. Addi-
tionally, there exist threshold concentrations for Mn (2.5 wt.%), Ni (35 wt.%),
and C (0.1 wt.%), beyond which swelling is most effectively mitigated. The re-
sults of elemental interaction analysis indicate that in austenitic stainless steels
containing high levels of Cr, Ni must be increased to 15-20 wt.% to achieve en-
hanced swelling resistance. Under conditions of low C concentration, increasing
the P content appropriately can enhance the material’s resistance to irradiation-
induced swelling. These findings offer quantitative guidance for designing and
optimizing the composition of austenitic stainless steels with improved swelling
resistance under irradiation.
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Preamble

Machine learning-based prediction of alloying element effects on irradiation
swelling in austenitic steelsx
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Austenitic stainless steels have been extensively utilized as key structural com-
ponents in nuclear reactors, yet they exhibit a strong tendency to undergo
swelling under neutron irradiation, which consequently deteriorates their me-
chanical performance. Hence, reliable prediction of the swelling evolution in
austenitic stainless steels is essential to guarantee their operational integrity
during reactor service. This research draws on a curated dataset document-
ing neutron irradiation-induced swelling in austenitic stainless steels, in which
correlation analysis and recursive feature elimination were used to identify crit-
ical factors governing swelling behavior—mnamely, temperature, neutron flux,
and the concentrations of Cr, Mn, Ni, Si, P, and C. Based on the 15 selected
features, a multilayer perceptron (MLP) model was developed for predictive
analysis of swelling, enabling precise prediction of the peak swelling tempera-
ture and the dose corresponding to the swelling incubation stage. Using the
trained MLP model, a quantitative relationship was established between the
swelling rate and the elemental concentrations of Cr, Mn, Ni, Si, P, and C. The
analysis revealed that higher Cr content consistently promotes swelling, while
increases in Si and P (above 0.02 wt.%) effectively suppress swelling. Addi-
tionally, there exist threshold concentrations for Mn (2.5 wt.%), Ni (35 wt.%),
and C (0.1 wt.%), beyond which swelling is most effectively mitigated. The re-
sults of elemental interaction analysis indicate that in austenitic stainless steels
containing high levels of Cr, Ni must be increased to 15-20 wt.% to achieve en-
hanced swelling resistance. Under conditions of low C concentration, increasing
the P content appropriately can enhance the material’s resistance to irradiation-
induced swelling. These findings offer quantitative guidance for designing and
optimizing the composition of austenitic stainless steels with improved swelling
resistance under irradiation.

Keywords: Austenitic stainless steel, Void swelling, Machine learning, Alloying
elements, Irradiation

Introduction

Owing to their outstanding mechanical strength and corrosion resistance,
austenitic stainless steels have been extensively employed as structural compo-
nents in light water reactor systems, and are regarded as promising candidates
for fuel cladding in Generation IV fast neutron reactors [?]. Nevertheless,
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austenitic stainless steels are particularly vulnerable to swelling under irra-
diation, due to the irradiation-induced generation of dense cavities, voids,
and dislocation loops, which cause substantial volumetric expansion, thereby
degrading the mechanical integrity of the material. As reported by Garner, an
irradiation swelling rate as high as 86.36% was observed in 20% cold-worked
316 austenitic stainless steel following exposure to a fast neutron fluence of
27.16 x 10?2 n/em? at 510 °C [?]. The swelling behavior of austenitic stainless
steels under irradiation is governed by complex interactions among alloying
elements, thermomechanical processing, and irradiation environment, which
has hindered a comprehensive understanding of the swelling mechanisms,
thereby posing substantial challenges to the accurate prediction of swelling
trends in austenitic stainless steels.

At present, only a limited number of irradiation swelling prediction models for
austenitic stainless steels have been publicly reported, among which Kalchenko
[?] developed an empirical model for predicting the swelling behavior of
18Cr10NiTi austenitic stainless steel, but this model was constructed using a
limited experimental dataset, and its applicability and accuracy require further
validation. In addition, most current swelling models emphasize the prediction
of the linear swelling stage, characterized by a swelling rate that levels off
at approximately 1% per dpa beyond a critical neutron fluence, whereas the
accurate estimation of the incubation dose remains insufficiently addressed. In
addition to the incubation dose and peak temperature, which are critical for
predicting irradiation swelling trends, the addition of alloying elements enables
precise tailoring of swelling resistance in austenitic stainless steels.

For Fe-Cr-Ni austenitic stainless steels, studies [?] demonstrate that under
fixed irradiation temperature and flux conditions, chromium content exhibits
a monotonic influence on swelling, where swelling magnitude progressively in-
creases with elevated chromium content. Nevertheless, nickel content exhibits
threshold behavior in its influence on irradiation swelling. As nickel content
increases, swelling magnitude first undergoes rapid decline, reaching a mini-
mum value at a specific nickel concentration. Beyond this point, swelling grad-
ually increases at a moderate pace. Consequently, reducing chromium content
while increasing nickel concentration enhances irradiation swelling resistance in
austenitic stainless steels. Further optimization involves tailoring minor alloying
elements (e.g., C, Ti, Si, P, Nb, V, B, Mn, N), leading to the development of
next-generation cladding materials through this compositional design strategy.
Representative alloys include Japan’s PNC316, France’s 15-15T1i, and America’s
D9 [?]. These minor alloying additions demonstrate pronounced influences on
swelling behavior [?, ?, ?, 7], with four principal suppression mechanisms: (1)
Enhanced vacancy diffusion coefficients reduce vacancy supersaturation, inhibit-
ing void/cavity nucleation and growth (e.g., Si, P, Ti); (2) Coherent carbide
precipitates (TiC, NbC, VC) formed through reactions of titanium, niobium,
or vanadium with carbon serve as defect sinks for vacancies; (3) v-phase stabi-
lization via carbon, nitrogen, and manganese additions suppresses M,;Cg and
Ni;Si precipitation, preventing matrix depletion of nickel, silicon, or titanium
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and consequent swelling acceleration; (4) Boride/phosphide precipitates pin dis-
locations, absorbing vacancies and transmutation helium to achieve swelling
suppression.

Given the complex interdependencies between alloying elements and irradia-
tion swelling in austenitic steels, current alloy design relies predominantly on
empirical compositional tuning. This approach is constrained by the resource-
intensive nature of irradiation experiments, where substantial costs, protracted
timelines, and environmental specificities restrict holistic evaluation of elemental
interactions and their collective impact on swelling phenomena. At the micro-
scopic level, alloying elements engage in complex interactions with irradiation-
induced defects. Multiscale computational modeling provides critical insights
into swelling mechanisms, where the methodology seeks to track defect evolu-
tion across spatiotemporal scales while capturing the complete lifecycle of defect
generation, diffusion, annihilation, and aggregation. This approach enables pre-
diction of material swelling behavior through simulations of void, dislocation
loop, and helium bubble distributions [?, ?]. Nevertheless, the multiscale na-
ture of irradiation damage (atomic defects — macroscopic swelling) necessitates
experimental calibration of critical model parameters, especially for gas atom
dynamics [?] and minor alloying element roles [?]. Such reliance inherently
limits precise quantitative prediction of swelling evolution.

In recent years, machine learning approaches have gained significant attention
for materials composition design and performance prediction, owing to their ro-
bust capability for multidimensional nonlinear mapping, which enables extrac-
tion of hidden patterns from complex datasets [?]. Machine learning methods
establish complex nonlinear correlations between input features (e.g., composi-
tion, heat treatment parameters) and output properties (e.g., tensile strength,
yield strength) based on mathematical statistics principles, thereby enabling
efficient prediction of material performance. Kemp et al. [?] employed artifi-
cial neural networks to investigate the effects of material composition, testing
temperature, and irradiation parameters on the yield strength of 9Cr steels, re-
vealing that testing temperature and irradiation temperature exert the most pro-
nounced influence, while increased nickel content also contributes to a marked
enhancement in yield strength. Jin et al. [?] implemented machine learning to
predict the onset of irradiation swelling in nuclear structural materials, including
austenitic stainless steels and ferritic-martensitic steels, based on an established
experimental dataset. Machine learning algorithms have also seen increasing
application in predicting hardening and embrittlement trends of reactor pres-
sure vessels (RPVs) [?, ?, ?]. Based on surveillance data from international and
Chinese domestic reactor pressure vessel steels, Chu et al. developed a simplified
fluence-dependent model to predict transition temperature shift [?]. Ferrefio et
al. employed machine learning algorithms, including gradient boosting trees and
neural networks, to investigate variables influencing irradiation embrittlement
(AT,;J) in reactor pressure vessel steels. Their analysis identified unirradiated
yield strength (YS(u)) as a newly significant predictor alongside nickel content
and irradiation temperature, enhancing model accuracy with a 7% reduction in
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root mean square error (RMSE) and a 15% increase in the coefficient of deter-
mination (R?) [?]. In addition, artificial neural networks can effectively investi-
gate key factors influencing the creep lifetime of oxide dispersion-strengthened
(ODS) steels [?]. Machine learning algorithms thus represent an essential tool
for forecasting mechanical performance and critical determinants in key reactor
materials. Their application to irradiation swelling phenomena in austenitic
stainless steels promises substantial scientific value.

This study compiles irradiation swelling data for austenitic stainless steels from
published literature. Based on this dataset, six supervised machine learning
models are trained, while feature selection identifies key variables for predict-
ing swelling magnitude. Building on the optimized dataset comprising 15 fea-
ture variables, this work constructs a multilayer perceptron (MLP) model. This
model predicts irradiation swelling magnitude in austenitic stainless steels, while
quantitatively analyzing relationships between swelling magnitude and six key
alloying elements (Cr, Mn, Ni, Si, P, C). The analysis further decouples syn-
ergistic effects among these elements, ultimately predicting optimal composi-
tional ranges that minimize swelling magnitude. These findings enable accurate
forecasting of irradiation swelling behavior, offering strategic insights for alloy
design to improve irradiation swelling resistance in austenitic stainless steels.

2.1. Data Collection and Curation

The dataset used in this study is derived from experimental results reported
in the literature and technical reports [?, ?, 2, 2, 7. 2, 7, 7, ?]. It includes
the chemical compositions of alloying elements in austenitic stainless steels,
intrinsic dislocation density, irradiation parameters (pre-irradiation fluence, to-
tal neutron fluence, and irradiation temperature), as well as the corresponding
irradiation-induced swelling rate data. Notably, several experiments incorpo-
rated pre-irradiation treatment with the aim of introducing microstructural de-
fect sinks prior to the main irradiation. This approach was intended to sup-
press vacancy clustering and void formation during subsequent high-dose expo-
sure, thereby delaying or mitigating irradiation-induced swelling. In addition,
given that the processing history exerts a significant influence on the irradiation
swelling behavior of austenitic stainless steels, this study uses intrinsic disloca-
tion density as a surrogate parameter to represent this effect. The dislocation
density can be estimated using a modified Rietveld refinement method [?]. For
example, 20% cold-worked 316 stainless steel typically exhibits a dislocation
density of approximately 3.6 x 10'® m=2.

The austenitic stainless steel irradiation swelling dataset established in this work
comprises 668 individual samples, each consisting of 23 feature variables (e.g., el-
emental composition, intrinsic dislocation density, and irradiation parameters)
and a single target variable, i.e., irradiation swelling rate, all expressed as nu-
merical values. In order to gain insight into the numerical distribution of each
feature variable, the minimum, maximum, and average values were computed
for all features, as presented in Table 1 . The target variable (irradiation swelling
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magnitude) in the dataset is presented in Fig. 1 [Figure 1: see original paper].
Swelling magnitude values exhibit a broad distribution range (—10% to 90%),
resulting from variations in irradiation conditions, material compositions, and
characterization methodologies. For example, under identical irradiation condi-
tions, solution-annealed and 20% cold-worked austenitic stainless steels exhibit
contrasting swelling responses: the cold-worked variant demonstrates negative
swelling magnitude. The dataset reveals a non-uniform swelling distribution,
with the predominant range (60% of data) at 0-10%, followed by 10-20% (12%)
and 20-30% (7%) swelling magnitude intervals, with the remainder distributed
across other ranges.

Table 1. The summary for each feature in the dataset.

Features Description Minimum Maximum Average
Temperature (°C)

Pre-® Pre-irradiation fluence (10?2 n/cm?)

o Irradiation fluence (10%2 n/cm?)

Dislocation density (10*/m?)
Fe fraction (wt.%)
Cr fraction (wt.%)
Ni fraction (wt.%)
Mo fraction (wt.%)
Mn fraction (wt.%)
Si fraction (wt.%)
C fraction (wt.%)
Al fraction (wt.%)
B fraction (wt.%)
Co fraction (wt.%)
Nb fraction (wt.%)
Cu fraction (wt.%)
N fraction (wt.%)
P fraction (wt.%)
S fraction (wt.%)
Ta fraction (wt.%)
Ti fraction (wt.%)
O fraction (wt.%)
Pb fraction (wt.%)

Notably, the measurement methods used for the samples in Table 1 differ among
sources, resulting in variability in the quality and accuracy of the data. In
addition, the dataset integrates physically distinct characteristics with hetero-
geneous units (e.g., elemental concentrations, dislocation density, irradiation
flux). Specimens derived from divergent experimental protocols and material
processing histories further exacerbate feature-scale disparities. These magni-
tude variations spanning multiple orders may induce gradient instabilities during
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model optimization, consequently diminishing convergence efficiency and predic-
tion fidelity, necessitating feature scaling methodologies. Consequently, prior
to model training, this work applies Z-score normalization to all feature data
[?], as formalized in Eq. (1).

where z denotes the standardized data, x is the original value, p is the mean,
and o is the standard deviation of the corresponding feature, all calculated from
the training set. As prescribed by Eq. (1), each feature is transformed to zero
mean and unit variance, scaling the variables listed in Table 1 predominantly
within the range of [—1, 1]. This normalization procedure effectively eliminates
dimensional heterogeneity and magnitude disparities that could otherwise com-
promise prediction fidelity.

2.2. Machine Learning Models

Machine learning algorithms are broadly classified into supervised and unsuper-
vised types. Given that the irradiation swelling dataset used in this study has
clearly defined targets and exhibits nonlinear relationships in a high-dimensional
feature space, six supervised machine learning models were employed for train-
ing. These include Decision Tree Regression (DTR) [?], Random Forest (RF) [?],
Support Vector Regression (SVR) [?, ?], Gradient Boosting Regression (GBR)
[?], K-Nearest Neighbors (KNN) [?], and Multilayer Perceptron (MLP) [?]. To
evaluate the generalization ability and predictive accuracy of the machine learn-
ing models, both the hold-out method and cross-validation were employed. In
the hold-out approach, 80% of the entire dataset was used for model training,
while the remaining 20% was reserved for testing the predictive performance of
the trained models.

The fitting performance of the machine learning models was evaluated using the
coefficient of determination (R?) and the root mean square error (RMSE), as
defined in Eq. (2) and Eq. (3).

R2—1_ Z;(yi - ?32)2
S (Y —9)?
N b T s

n

where n is the number of samples; y; and g, represent the experimental and
predicted values of the i-th sample (¢ = 1,2, ...,n); and y denotes the mean of
the experimental values.
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Cross-validation was employed to determine the optimal values of the model’s
hyperparameters, as these tunable parameters have a substantial impact on
predictive performance. In this study, k-fold cross-validation was employed by
partitioning the training dataset into k equally sized folds. One fold was used
for validation, while the remaining & — 1 folds were used to train the model. In
this way, for a given set of hyperparameters, the model is evaluated k times, and
the average predictive performance across the k folds is taken as the final eval-
uation metric. Critically, initial parameter space definition requires assignment
of plausible value ranges to each hyperparameter. Subsequently, the grid search
technique is employed to systematically generate the complete set of possible pa-
rameter combinations, enabling comprehensive model optimization. Following
comprehensive evaluation of all parameter combinations, their predictive per-
formances are comparatively assessed. The configuration yielding the highest
cross-validated performance metric is designated as optimal. This methodology
maximizes information extraction from limited sample data while preventing
overestimation artifacts induced by stochastic dataset partitioning.

Notably, k-fold cross-validation enables rigorous determination of optimal tun-
able parameters for any specific training dataset, concurrently mitigating over-
fitting risks while maximizing generalization capability. However, divergent
training datasets may yield distinct optimal parameter combinations, introduc-
ing selection inconsistency. To mitigate this variability, the complete dataset
undergoes 100 independent partitioning iterations, generating 100 unique train-
ing subsets. Each subset determines an optimal parameter combination via
cross-validation. The most frequently occurring combination is then designated
as the final tunable parameter set, effectively circumventing misleading opti-
mization artifacts induced by sampling stochasticity. Table 2 lists the optimal
values for parameters in six machine learning models.

Table 2. Optimal values for parameters in six ML models.

Model Optimal hyperparameters

GBR learning  {rate}=0.08, max_ {depth}=4,
max_ {features}=sqrt, n_ {estimators}=1600

MLP activation=relu, alpha=0.0001,

hidden_ {{{layer}}{{sizes}}}=(64, 32, 16),
learning{rate}=constant, solver=adam

RFR max_ {depth}=17, max_ {features}=sqrt,
min_ {{{samples}}{{leaf} } }=1,
min{{{samples}}{{split} } }=2, n{estimators}=300

SVR C=1000, epsilon=1, gamma=auto, kernel=rbf

DTR max_ {depth}=7, max_ {features}=None,
splitter=random

KNN n_ {neighbors}=17, weights=uniform
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2.3. Feature Selection

The absence of redundancy evaluation for the 23 experimental features (Table
1) necessitates systematic feature selection, enabling identification of key feature
combinations for irradiation swelling prediction models. Inter-feature Pearson
correlation coefficients (PCC) were computed per Eq. (4) to evaluate variable
dependencies.

(u—w)7(v—0)

(u—uw)T(u—2u) (v—2v)T(v—"0)

p(u,v) = \/

where u and v represent feature columns, and u and v represent their mean
values.

The PCC ranges from —1 to 1, where positive values indicate a positive correla-
tion between two features, and negative values indicate a negative correlation.
Absolute values exceeding 0.9 (|p| > 0.9) indicate feature redundancy requiring
removal to constrain model complexity and suppress overfitting. By selectively
eliminating one feature from each redundant pair to generate two derivative
subsets, identical machine learning models are trained and tested on both mod-
ified datasets. Retention decisions are based on comparative analysis of test set
prediction errors (RMSE), preserving features from the subset minimizing error
degradation. This strategy ensures preferential retention of features exerting
significant impacts on model accuracy. Subsequent refinement employs recur-
sive feature elimination (RFE), an iterative selection methodology that sequen-
tially removes minimally influential features through repeated model training
and importance ranking. Implementation requires cyclical calculation of feature
significance scores, subsequent ranking of variables, and systematic pruning of
minimally contributive features during each iteration cycle, per the schematic
in Fig. 2 [Figure 2: see original paper].

Fig. 2. Workflow schematic of recursive feature elimination (RFE).

3.1. Model Prediction

Six machine learning models (DTR, RFR, SVR, GBR, KNN, and MLP) were
trained and tested 100 times using the normalized dataset. The average RMSE
and R? values obtained on the test sets are presented in Fig. 3 [Figure 3: see
original paper]. A lower RMSE (closer to 0) and a higher R? (closer to 1)
indicate better model fitting performance. As shown in Fig. 3, among the six
evaluated models, the MLP model achieved the lowest RMSE (2.978%) and
the highest average R? (0.93) on the test set, indicating its superior accuracy
in fitting the collected irradiation swelling data of austenitic stainless steels.
Accordingly, the MLP model was selected for subsequent predictive analyses of
the relationships among alloy composition, temperature, irradiation dose, and
swelling rate.
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Fig. 3. RMSE and R? values of various machine learning models used to
predict irradiation swelling.

For machine learning models designed to predict material properties, their pre-
dictive performance heavily depends on the selected features. However, at this
stage, redundancy among input variables has not been considered, and key
features influencing swelling behavior remain to be identified. Therefore, it is
necessary to perform feature selection in the subsequent step to eliminate re-
dundancy and identify the most informative variables. Fig. 4a [Figure 4: see
original paper| presents the correlation heatmap of the 23 feature variables listed
in Table 1. Except for Ta and Pb, whose Pearson correlation coefficient (PCC)
has an absolute value of 1, all other feature pairs exhibit absolute PCCs < 0.90,
indicating that most features do not exhibit significant redundancy. However,
the perfect linear correlation between Ta and Pb implies duplicated information,
which may affect model stability and predictive accuracy. Therefore, redundant
features must be addressed prior to model training. Retaining all other feature
variables in the dataset, two separate models were trained after individually
removing either Ta or Pb. As shown in Fig. 4b, the dataset with Ta removed
yielded a lower RMSE (2.988%), indicating better predictive performance. Con-
sequently, Pb was retained and Ta was excluded from the dataset for subsequent
model application.

Fig. 4. (a) Heatmap of the correlations among the 23 feature variables; (b)
Prediction results based on datasets with Ta or Pb removed individually.

Application of the Fig. 2 RFE framework initiated with feature significance
ranking in the Ta-depleted dataset. Systematic elimination proceeded through
ascending-ordered removal of minimally influential features. Corresponding
MLP training and RMSE-based prediction validation were executed post-
pruning. Fig. 5 [Figure 5: see original paper] quantifies MLP prediction RMSE
evolution during feature reduction. The marginal oscillations observed during
sequential removal of least contributive features substantiate their limited
effect on irradiation swelling rate modeling. After reduction to fewer than
five features, RMSE undergoes substantial deterioration. This evidences the
necessity of feature ensembles, where dominant variables cooperatively interact
with moderately significant counterparts through nonlinear coupling effects,
a fundamental mechanism in irradiation swelling prognostication. Irradiation
swelling evolves through multiphysics-activated cooperations across multidi-
mensional features. When feature space dimensionality falls below critical
thresholds, models fail to resolve essential interactive dependencies, directly
impairing swelling prediction accuracy. Across the feature dimensionality range
of 5 to 22 variables, RMSE values exhibit remarkable stability (2.84%-3.34%),
with optimal predictive performance achieved at the 15-feature configuration,
as marked by the asterisk in Fig. 5. This irradiation-optimal feature subset
comprises temperature (Temp), neutron flux (®), intrinsic dislocation density
(), and composition of 12 alloying elements categorized by nuclear significance:
chromium, iron, and nickel as matrix constituents; manganese, silicon, titanium,
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and molybdenum as micro-alloying agents; carbon and oxygen as interstitial
elements; phosphorus and sulfur as grain-boundary segregation controllers;
along with boron as the neutron-absorbing species.

Fig. 5. Evolution of RMSE versus feature count during recursive feature
elimination (RFE) selection.

3.2. Predictive Accuracy of the MLP Model

Utilizing these 15 optimally selected features, the MLP model demonstrates
high-fidelity prediction of irradiation swelling rates, as validated in Fig. 6 [Fig-
ure 6: see original paper]. The model exhibits robust predictive capability on
both training and test datasets, achieving RMSE values of 2.67% and 2.79%,
alongside R? coefficients of 0.98 and 0.97, respectively. These metrics indi-
cate exceptional agreement between predicted and experimental swelling rates.
Furthermore, the majority of data points cluster tightly along the unity-slope
line (where predicted swelling equals measured values), confirming the model’s
superior accuracy while substantiating that these 15 features comprehensively
characterize irradiation swelling behavior in austenitic stainless steels.

Fig. 6. MLP model prediction accuracy for irradiation swelling using key
feature inputs.

To further validate the generalization capability of the trained MLP model for
irradiation swelling prediction, an independent experimental dataset withheld
from model training was employed for verification. Comparative analysis be-
tween experimentally measured swelling rates [?, ?] and model predictions, as
presented in Fig. 7 [Figure 7: see original paper|, demonstrates robust extrap-
olation performance across diverse irradiation conditions. Overall, predicted
irradiation swelling values demonstrate close alignment with experimental mea-
surements for both AISI 316 and X15893 austenitic stainless steels, with par-
ticularly excellent agreement for AISI 316. Relatively significant deviations
occur between predictions and measurements for X15893, attributable to com-
pounded factors amplifying prediction complexity. Crucially, the presence of 0.3
wt.% Cu and Co in X15893 alloy—elements omitted from the model’s feature
space—prevents the MLP from learning their underlying influence mechanisms
on swelling behavior. Existing studies [?, ?] demonstrate that Cu nonlinearly
modulates irradiation swelling through mechanisms including enhanced second-
phase precipitation and regulation of point defect migration/clustering. Co
primarily influences swelling by reducing stacking fault energy (SFE) to sta-
bilize austenitic phase structure and suppress deformation-induced martensitic
transformation, thereby delaying detrimental microstructural evolution [?, ?].
Furthermore, as irradiation swelling constitutes a multiphysics-driven complex
response, its evolution inherently involves synergistic couplings among multiple
alloying elements and processing parameters. The exclusion of Cu and Co from
model training prevents recognition of their direct effects on target variables
while hindering capture of potential interactions with other input variables,
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consequently inducing prediction biases for specialty alloys like X15893.

Fig. 7. Comparison between MLP-predicted and experimentally measured
irradiation swelling rates in independent validation datasets.

Interpretability Analysis of Irradiation Swelling Prediction Models

As noted above, fifteen feature variables, namely temperature (Temp), neutron
flux (@), intrinsic dislocation density ( ), and the contents of Ni, Fe, Si, O, Mo,
B, S, Ti, C, P, Mn, and Cr, were found to be closely associated with the swelling
behavior of neutron-irradiated austenitic stainless steel. To further investigate
how these key features influence the swelling rate, Shapley Additive exPlana-
tions (SHAP) [?] were employed to interpret the predictive model. SHAP inter-
prets the model output as a cooperative game payout, in which each feature’s
contribution is assessed by averaging its marginal impact across all possible fea-
ture combinations, thereby quantifying its importance in driving the model’s
prediction. It is important to note that the SHAP values are computed based
on a specific data split, and as such, the resulting feature importance is highly
dependent on how the training dataset is partitioned. To validate the robust-
ness of the identified feature rankings and mitigate potential bias introduced by
favorable data splits, the dataset was randomly divided into training and testing
sets using 50 different splitting schemes. The distribution of the absolute mean
SHAP values of 15 selected features, averaged over 50 repeated training runs, is
presented in Fig. 8 [Figure 8: see original paper]. Features with larger absolute
SHAP values are considered to exert a greater influence on the final predictions,
while those with smaller values are regarded as having minimal impact. From
the results, neutron flux (®) and irradiation temperature (Temp) are identified
as the most influential factors affecting the swelling rate of austenitic stainless
steel under neutron irradiation. In terms of alloy composition, Cr, Mn, Ni,
Si, P, and C were found to have significant impacts on the irradiation-induced
swelling of austenitic stainless steel, particularly the three primary alloying el-
ements: Cr, Mn, and Ni. Although Fe also exhibited relatively high SHAP
values, it was excluded from further consideration since it serves as the matrix
element. Therefore, only the effects of additional alloying elements were consid-
ered, with the aim of providing guidance for improving swelling resistance from
the perspective of compositional design.

Fig. 8. Significance hierarchy of critical features governing irradiation swelling
predictions in neutron-irradiated austenitic stainless steels.

4.1. Effect of Temperature and Dose

Section 3.3 presents the results of the feature importance analysis, which iden-
tify ® and Temp as the most influential factors affecting irradiation swelling
in austenitic stainless steels. Based on this finding, the MLP model was used
to predict the variation of swelling rate with respect to these two variables.
The predicted trends are shown in Fig. 9 [Figure 9: see original paper]. As
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illustrated in Fig. 9a, the MLP model accurately captures the non-monotonic
dependence of swelling rate on temperature, with the maximum swelling occur-
ring at 463 °C. This value falls within the experimentally reported range of 445
to 520 °C [?], confirming the model’s reliability. Fig. 9b shows that the swelling
rate remains nearly zero at low neutron fluence and begins to increase rapidly
after a certain threshold is reached. This behavior suggests two distinct stages
of swelling: an initial incubation period followed by a swelling growth phase.
The predicted irradiation doses marking the transition from incubation to rapid
swelling are 88 dpa at 400 °C, 37.85 dpa at 525 °C, and 73 dpa at 600 °C.
These predictions are in good agreement with experimental data, including the
incubation dose of 36 dpa reported by Bruce J. Makenas [?] at 513 °C. At in-
termediate temperatures (525 °C), swelling initiates rapidly at lower doses and
reaches peak rates due to optimal defect dynamics. In contrast, low tempera-
tures extend incubation periods by restricting defect diffusion and clustering,
while high temperatures suppress swelling through enhanced vacancy-interstitial
recombination that inhibits void nucleation.

Fig. 9. MLP-predicted irradiation swelling rate evolution (a) versus irradiation
temperature, (b) versus neutron flux.

4.2. Effect of Alloying Elements

Based on feature importance analysis (Fig. 8), Cr, Mn, Ni, Si, P, and C are
identified as pivotal alloying elements governing irradiation swelling rates in
austenitic stainless steels. To further investigate the influence of these six el-
ements on swelling behavior, single-factor sensitivity analysis was conducted
using the optimized MLP model. When predicting a target element’s impact
(e.g., Mn, Si, P, or C), the Fe-Cr—Ni ternary alloy system served as the baseline
with Cr and Ni concentrations fixed at representative mean values from the
training dataset, while varying the target element’s content and maintaining
Fe balance. For Cr and Ni sensitivity assessments, predictions were performed
by varying one element’s concentration range while fixing the other. Concen-
trations of all non-essential elements listed in Table 1 were rigorously set to 0
wt.%, preserving only the six key elements and matrix Fe. This purification
protocol creates an isolated evaluation environment where swelling responses
can be unambiguously attributed to individual elemental variations.

Under neutron irradiation at 8.6 x 10?2 n/cm? and 525°C, the MLP model
mapped irradiation swelling responses of Fe-Cr—Ni austenitic steels to controlled
variations in Cr, Ni, Si, P, and C concentrations, revealing element-specific
swelling thresholds shown in Fig. 10 [Figure 10: see original paper|. The analy-
sis reveals a monotonic positive correlation between Cr content and irradiation
swelling rate in Fe—Cr—Ni austenitic stainless steels, where swelling increases pro-
gressively with rising Cr concentrations (Fig. 10a). Similarly, swelling exhibits
a monotonic inverse relationship with Si content, indicating that controlled Si
additions effectively suppress irradiation swelling in these alloys (Fig. 10f). Rel-
evant experimental and theoretical studies [?, ?] have provided mechanistic in-
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sights into the role of Si in irradiation-induced swelling behavior. Si is considered
a fast-diffusing solute atom that can significantly enhance the effective vacancy
diffusion rate in austenitic stainless steels, thereby suppressing vacancy super-
saturation and nucleation, which in turn delays cavity formation and the onset
of irradiation swelling. Moreover, Si may form neutral complexes with intersti-
tial atoms, indirectly promoting vacancy—interstitial recombination and further
reducing the effective defect concentration. Under irradiation, Si tends to seg-
regate at defect sinks such as dislocations and voids, and may co-precipitate
with Ni to form Si-rich NizSi (7 ) or G-phase particles. These precipitates are
capable of increasing the cavity nucleation energy barrier through interfacial
trapping mechanisms, thereby substantially extending the swelling incubation
period. In addition, some studies [?] have suggested that the presence of Si
can inhibit helium atom adsorption to a certain extent, increase the migration
energy barrier of He atoms, and thus retard helium accumulation and bubble
formation.

The effects of Mn, Ni, P, and C contents on the irradiation swelling rate were
found to be non-monotonic. As the concentrations of Mn, Ni, and C increased,
the swelling rate initially decreased sharply (Fig. 10b, ¢, e). After reaching a
certain critical content, the swelling rate reached a minimum and then began
to increase gradually. These results suggest that threshold concentrations exist
for Mn, Ni, and C that correspond to the optimal suppression of irradiation-
induced swelling, which are approximately 2.5 wt.% for Mn, 35 wt.% for Ni,
and 0.1 wt.% for C. Maintaining the concentrations of these elements near their
respective thresholds may enhance the swelling resistance of austenitic stainless
steels under neutron irradiation. In the case of phosphorus (Fig. 10d), an
initial increase in P content leads to a rise in swelling rate, with the peak
swelling occurring at approximately 0.02 wt.% P. When the P content exceeds
this threshold, the swelling rate of austenitic stainless steel decreases rapidly.
Notably, the predicted trends in swelling rate as a function of alloying element
content, as shown in Fig. 10, are consistent with previous experimental findings
[?, ?], further demonstrating the high predictive accuracy of the MLP model in
capturing the irradiation swelling behavior of austenitic stainless steels.

Fig. 10. Predicted relationships between irradiation swelling rate and the
concentrations of individual alloying elements: (a) Cr, (b) Mn, (¢) Ni, (d) P, (e)
C, and (f) Si.

In practice, the effects of alloying elements on irradiation-induced swelling in
austenitic stainless steels are governed by coupled and synergistic interactions
among the elements themselves. These interactions can be effectively evaluated
and analyzed using machine learning algorithms. As shown in Fig. 11a [Figure
11: see original paper|, a clear synergistic interaction exists between the two
principal alloying elements, Cr and Ni, in influencing the irradiation swelling
behavior of austenitic stainless steels. While increasing Cr content leads to
higher swelling rates (as observed in Fig. 10a), a simultaneous increase in Ni
content significantly mitigates swelling. For instance, as Cr content increases
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from 10 wt.% to 16 wt.%, the Ni concentration corresponding to the minimum
swelling rate also increases from 15 wt.% to 20 wt.%. This indicates that Ni
addition is effective in reducing swelling at lower Cr contents and becomes even
more critical at higher Cr levels. In other words, increasing Ni content enhances
the swelling resistance of austenitic stainless steels, particularly under conditions
of elevated Cr concentration. For steels with high Cr content, a concurrent
increase in Ni is necessary to effectively suppress irradiation-induced swelling.

In addition to the adverse effect of Cr on irradiation swelling, the addition of P
at concentrations below 0.03 wt.% was found to increase the swelling rate. To
further investigate the synergistic effect between P and Si, an element known to
suppress swelling, their combined influence was analyzed, as shown in Fig. 11b.
When the P content exceeds 0.03 wt.%, no significant synergistic interaction is
observed between Si and P. Swelling remains low regardless of the amount of
Si added, since both elements individually contribute to swelling suppression
at higher concentrations. However, when the P content is below 0.03 wt.%,
a distinct interaction emerges. As P content increases, the Si concentration
corresponding to the minimum swelling rate shifts from 0.2 wt.% to 0.9 wt.%.
This indicates that increasing the Si content is necessary to offset the swelling-
promoting effect of low-level P additions and improve overall swelling resistance.

In addition, a synergistic interaction exists between trace elements P and C,
as illustrated in Fig. 11c. When the P content increases while the C content
remains low, the suppressive effect of P on irradiation swelling in austenitic
stainless steels becomes more pronounced. As the P content rises from approxi-
mately 0.02 wt.% to 0.08 wt.% with the C content kept below about 0.05 wt.%,
a significant reduction in the swelling extremum is observed. This indicates that
under low C conditions, increasing P effectively mitigates irradiation swelling.
Conversely, at higher C levels, where carbon readily promotes carbide forma-
tion, the enhancement of swelling suppression by increasing P content becomes
even more critical and further improves the material’s irradiation resistance.

Fig. 11. Coupling effects of different alloying elements on irradiation swelling
rate: (a) Cr-Ni, (b) P-Si, (c) P-C.

5. Conclusion

In this study, approximately 668 irradiation swelling data points of austenitic
stainless steels were collected, including irradiation temperature, neutron flux,
processing methods, and alloy composition. The dataset was cleaned and fil-
tered before modeling using machine learning techniques. After systematically
comparing six commonly used machine learning algorithms, the MLP algorithm
was selected to construct the irradiation swelling prediction model. Key feature
variables were identified using correlation screening and recursive feature elimi-
nation, resulting in a subset comprising Temp, ®, , and concentrations of twelve
alloying elements. The model was further optimized, achieving a final predictive
accuracy with R? = 0.97 and RMSE = 2.79%. Its strong generalization ability
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was validated by comparing predictions with swelling data from an independent
test set. The MLP model was employed to establish the relationship between
swelling rate and variables including Temp, ®, and alloying elements such as
Cr, Ni, P, and Si. The following conclusions were drawn:

1. The most important features identified by the MLP model, irradiation
temperature and neutron flux, exhibit swelling behavior consistent with
established understanding. Specifically, the model predicted a peak irra-
diation swelling temperature of 463 °C. At a moderate temperature of 525
°C, the predicted incubation dose for irradiation swelling was 37.85 dpa.
These predictions agree well with experimentally reported values.

2. The effects of Cr and Si contents on irradiation swelling rate in austenitic
stainless steels are monotonic. Cr has an adverse effect on swelling,
whereas Si effectively suppresses it. Increasing the contents of Mn, Ni,
and C initially reduces the swelling rate but subsequently causes it to
rise. Optimal suppression of irradiation swelling is achieved when the con-
centrations of Mn, Ni, and C reach approximately 2.5 wt.%, 35 wt.%,
and 0.1 wt.% respectively. The addition of phosphorus initially promotes
swelling, but when its content exceeds 0.02 wt.%, the swelling rate de-
creases rapidly.

3. Synergistic effects exist among alloying elements. An increase in Cr con-
tent promotes irradiation swelling in austenitic stainless steels, while the
addition of Ni suppresses this swelling. Furthermore, when P content in-
creases under conditions of low C content, the inhibitory effect of P on
irradiation swelling becomes more pronounced.
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