ChinaRxiv [$X]

AT translation - View original & related papers at
chinarxiv.org/items/chinaxiv-202507.00082

Unraveling the Black-box Magic: An Analysis of
Neural Networks’ Dynamic Local Extrema

Authors: Shengjian Chen, Shengjian Chen
Date: 2025-07-08T11:01:44+00:00

Abstract

We point out that neural networks are not black boxes, and their generalization
stems from the ability to dynamically map a dataset to the local extrema of
the model function. We further prove that the number of local extrema in
a neural network is positively correlated with the number of its parameters,
and on this basis, we give a new algorithm that is different from the back-
propagation algorithm, which we call the extremum-increment algorithm. Some
difficult situations, such as gradient vanishing and overfitting, can be reasonably
explained and dealt with in this framework.

Full Text

Preamble

Unraveling the Black-box Magic: An Analysis of Neural Networks’ Dynamic
Local Extrema

Shengjian Chen

Intelligent Robotics Center, Jihua Laboratory

Foshan, 528200, China

chensj@jihualab.ac.cn, chshengj@mail2.sysu.edu.cn

Abstract

We point out that neural networks are not black boxes, and their generalization
stems from the ability to dynamically map a dataset to the local extrema of
the model function. We further prove that the number of local extrema in
a neural network is positively correlated with the number of its parameters,
and on this basis, we give a new algorithm that is different from the back-
propagation algorithm, which we call the extremum-increment algorithm. Some
difficult situations, such as gradient vanishing and overfitting, can be reasonably
explained and dealt with in this framework.

chinarxiv.org/items/chinaxiv-202507.00082 Machine Translation

https://chinarxiv.org/items/chinaxiv-202507.00082
https://chinarxiv.org/items/chinaxiv-202507.00082

ChinaRxiv [$X]

Keywords: Neural network, generalization, black box, extreme increment, lin-
ear equation system

1 Introduction

Although artificial intelligence models based on neural networks have been ex-
tensively studied and widely applied, and their prediction accuracy in fields such
as image recognition, natural language processing, text processing and question
answering far exceeds that of traditional machine learning algorithms, there is
a lack of relevant research on their underlying principles, and they are still gen-
erally regarded as black boxes. With the rapid increase of model parameters,
from ANN to CNN, RNN;, and then to GPT and LLM [?, ?], its complexity also
increases sharply, while the stability of the system becomes more vulnerable ac-
cordingly. If the model malfunctions, it is impossible for us to quickly identify
the root cause of the problem and solve it immediately without understanding
its logic. For some fields with low requirements for real-time performance, such
as image classification and Al-generated artwork, the application of neural net-
work algorithms can be confidently promoted. However, for some fields that
require high real-time performance, especially safety, such as autonomous driv-
ing [?, 7], it is necessary to pay more attention to the underlying principles of
neural networks and clarify the conditions under which they take effect and fail,
so that artificial intelligence can better serve human society.

Although the model structure of neural networks has become prohibitively com-
plex, some scholars still strive to explore their working principles. Buhrmester
et al. (2021) investigated the explainers that have been popular in recent years.
This method attempts to explain neural networks by analyzing the connections
between inputs and outputs. The characteristic of black-box explainers is that
it does not need to access the internal structure of the model to reveal all the
interaction details of the model. They are mainly divided into ante-hoc sys-
tems with a global, model-agnostic feature [?, ?] and post-hoc ones with a local,
model-specific feature [?, ?]. Oh et al. (2019) analyzed neural networks from the
perspective of reverse engineering, and found that they are extremely vulnera-
ble to different types of attacks, and pointed out that the boundary between a
white box and a black box is not obvious. Tishby and Zaslavsky (2015) took
a different approach and proposed the Information Plane. Furthermore, they
believed that the main goal of neural networks was to optimize the Information
Bottleneck between the compression and prediction of each layer. Shwartz-Ziv
and Tishby (2017) further proved the effectiveness of this method. These works
provide useful references for the underlying research of neural networks, but
there is still a long way to go.

Current researchers seem to be overly obsessed with using engineering methods
to explain how neural networks work, while neglecting to explain from a theo-
retical or mathematical perspective. Neural networks may seem complex, but
their structure is clear and they are basically composed of neurons with the
same construction, making them particularly suitable for mathematical analy-

chinarxiv.org/items/chinaxiv-202507.00082 Machine Translation

https://chinarxiv.org/items/chinaxiv-202507.00082

ChinaRxiv [$X]

sis. It is necessary to revisit the pioneering work of Cybenko (1989) and Hornik
et al. (1989) in this area, which proved that feedforward neural networks can
approximate any continuous function on a compact set. That is, a feedforward
neural network that adopts a single hidden layer with a sufficient number of neu-
rons, and uses the sigmoid function as the activation function can approximate
any complex function with arbitrary accuracy, providing a basic mathematical
principle for neural networks. The only drawback of this work is that it does not
provide a method on how to find the specific function on a given dataset and
whether this function is the optimal one. Our work makes up for its deficiencies.

Specifically, our contributions mainly include the following aspects: 1) We
present the main characteristics of an ideal machine learning model, and based
on which we provide the general model training steps. This work is mainly
discussed in Section 2. 2) We discuss whether neural networks satisfy the ideal
model characteristics and point out from a mathematical perspective that neu-
ral networks mainly achieve generalization by mapping a dataset to the local
extrema of the function. We further present a model training algorithm differ-
ent from the back-propagation (BP) algorithm, namely the extremum-increment
(EI) algorithm. This work is mainly discussed in Sections 3 and 4. 3) Based
on EI algorithm, we can relatively easily point out the causes of some common
problems, such as vanishing/exploding gradients, overfitting, etc., and provide
corresponding solutions. This work is mainly discussed in Section 5.

2 General Characteristics of an Ideal Model

Let’s temporarily put aside the concept of neural networks and imagine the
basic characteristics of a model that satisfies a dataset and the target task. The
training goal of machine learning is to obtain a function curve that can precisely
fit the inputs of all samples with their corresponding outputs. That is to say,
this model can clearly tell us what the exact value of each input sample is after
processing. For example, for classification problems, this model can give an
output of “This is a cat.” instead of a vague answer of “This is very likely to be
a cat.”

2.1 Precise Mapping

Situations where there are no same-type samples. For the sake of vi-
sualization, in the discussion of this paragraph, we limit the sample size to
3. As shown in Figure 1 [Figure 1: see original paper], let the dataset be
D = {(z,y)]i € [1,3]}, where (29, y®) is the i-th sample, 2V is the origi-
nal representation of the sample, and y(*) is the category to which z(?) belongs.
Our goal is to find a function F for each ¥ such that y¥ = F(z®).

To reveal the true working principle of neural networks, we abandon the concepts
of feature and label, and instead use surface and essence to refer to z(¥ and y(¥.
Meanwhile, in order to grasp the key of the problem and simplify it, both the
surface and the essence in Section 2 are represented by scalars. The function F'

chinarxiv.org/items/chinaxiv-202507.00082 Machine Translation

https://chinarxiv.org/items/chinaxiv-202507.00082

ChinaRxiv [$X]

shown in Figure 1 is the ideal model we hope to obtain, because for any surface
2 it can precisely give the corresponding essence 3%,

Situations where there are same-type samples. As shown in Figure 2
[Figure 2: see original paper], if a new sample that is essentially the same as
one in the dataset D is added, for instance, adding sample (x<3’1), y<3>), then the
function curve F' needs to change its shape so that the new sample can just fall
onto the function curve. At this time, there is a local maximum between the
samples (z(31),y®3) and (z(3,5®)) on the function curve.

Similarly, as shown in Figure 3 [Figure 3: see original paper]|, if new samples with
the essence of y®), such as (z(3?),4®)), (233, y3)), and (234, y>3), are con-
tinuously added, the function curve needs to further change its shape to accom-
modate these new samples, thereby forming multiple local minima/maxima. If
function F' can achieve such shape alteration, it possesses the ability to precisely
map any surface to its essence, meaning it has true generalization capability.

2.2 Weakened Mapping

To obtain the aforementioned ideal function, the computation is usually enor-
mous. For a function with a limited number of parameters, the degree of change
in its curve shape is limited, and the number of extreme values cannot be in-
creased at will. Then, how should we handle the situation when the surface
of a sample has only changed slightly while its essence remains unchanged? A
natural idea is to expand the essence from a single point to an interval, so that
samples with slightly different surfaces but the same essence can be concentrated
in this interval. As shown in Figure 4 [Figure 4: see original paper], we add
sample (2135, 4(3)) where the distance between z(3*) and z(®) is small enough.
We adjust the precise mapping function F' to the approximately fitting function
F*, making the difference between F*(2(3%)) and F*(z®)) as close as possible.
When |F*(23%))— F*(23)] is small enough, we can approximately consider that
the surfaces falling within the interval [F*(2(3)), F*(2(®)] all have the essence
of 3. Then we call function F* a weakened model of function F.

Interval partition. Each sample consists of both a surface and an essence.
A surface is usually a one-dimensional vector or a multi-dimensional matrix.
Once the algorithm for generating the surface is determined, for example, using
a two-dimensional matrix to represent a grayscale image, where each matrix
element’s value ranges from 0 to 255, then the surface is definite and we cannot
make further changes to it. However, the essence is different. It is usually just
an abstract concept and can be represented by any scalar or vector. As shown
in Figure 4, if the shape of the curve of the function F is restricted, then each
essence requires a tolerance interval. How is this interval selected? One method
is to divide the range of the function F' into IV intervals with the same length,
where N is the total number of essence types. Then each interval is assigned to
each essence, and the essences of surfaces that fall within the same interval are
the same. When dividing essences using this method, the range of values of the

chinarxiv.org/items/chinaxiv-202507.00082 Machine Translation

https://chinarxiv.org/items/chinaxiv-202507.00082

ChinaRxiv [$X]

objective function should be finite.

2.3 N Classification to Binary Classification

There is a problem in the interval partition method. When there are many
types of essences and the value range of the function F' is limited within a
small interval, for example, the value of each element in the output layer of a
neural network is limited within a small interval (0,1), then overlap is prone
to occur. One solution is to reduce the types of substance and thereby expand
each partition. But this introduces two new problems. One is to what extent
the essence types should be reduced? Second, how should the essence of being
excluded be handled?

For the above problems, we can reduce the number of essences to only one type.
That is to say, the target model changes from an N-classification function F to N
binary classification functions {F}[j € [1, N]}, and the j-th binary classification
function F; only determines whether the input sample belongs to the j-th type
of essences. That is, for any given sample (zV,3), where i > 0, the ideal
objective function F); satisfies:

. 1 ¢ =
Fj(xm) = y(i) J
0y #j

The weakened objective function F} satisfies:

(a9 {[LB& UB, g =]

(LB, UB", y" #j
where LB and U B are the lower and upper limits of the function F; respectively,
and correspondingly, L B* and U B* are the lower and upper limits of the function
F7. For the ideal function Fj, each given sample is adjusted to be its extremum
point. Figure 5 [Figure 5: see original paper| presents an instance of a binary
classification function F5. We adjust the parameters of F; so that all samples of
the third-essence are adjusted to the upper limit of the function’s value range,
all other-essence samples are adjusted to the lower limit. Correspondingly, the
weakened function Fy uses the midpoint of the value range as the dividing line.
The same parameter adjustment is made for other binary classification functions
(such as Fy, F).

2.4 General Training Process of an Ideal Model

In summary, the ideal training process for all machine learning models that are
essentially classification problems can be summarized as the following steps: 1)
Transform the N-class objective function F' into a family of binary classification
functions {F}|j € [1, N]} and initialize all parameters. 2) For each F}, adjust the

chinarxiv.org/items/chinaxiv-202507.00082 Machine Translation

https://chinarxiv.org/items/chinaxiv-202507.00082

ChinaRxiv [$X]

parameters so that each training surface z(*) is exactly one of the extrema of the
function. 3) For each F » adjust the parameters so that the training samples of
the j-th essence become a local maximum, and those of non-j-th essence become
a local minimum. 4) Adjust the parameters to make the local maximum the
global maximum and the local minimum the global minimum.

The model trained through the above steps can accurately map the input to the
output, thereby enabling the machine to precisely answer “yes” or “no”. If in
actual debugging, we cannot find or it is very difficult to find an ideal function
like that in Figure 5, then a weakened function is trained that the surfaces or
points within the surfaces’ neighbors is adjusted to be its local extreme points
first, and then the parameters of the function are adjusted to move these local
extreme points as close as possible to the upper or lower limit of the function’s
range, thereby achieving a function that is close to that in Figure 5.

3.1 Model Decomposition

Any type of neural network, whether it is a traditional artificial neural network,
an improved convolutional neural network, or a recurrent neural network, is
composed of three parts: an input vector with a fixed number of elements, an
intermediate processing layer with undetermined parameters, and an output
vector with the number of elements equal to the number of essence types. To
reduce computational complexity and focus on the main working process of
neural networks, we only conduct derivative analysis on the fully connected
neural networks. Additionally, the output layer of mainstream neural networks
often uses the softmax function, which is just a normalization operation added
to the sigmoid function. To simplify the operation steps, we directly use the
sigmoid function as the output layer, so that both the hidden layers and the
output layer use the sigmoid function.

Moreover, we remove the biases because they are irrelevant to the essential
attributes of the model but make the calculations lengthy and reduce readability.
Then on this basis, we analyze the structure of a fully connected neural network
based on an N-classification problem.

Figure 6 [Figure 6: see original paper] is a schematic diagram of a fully connected
neural network structure expressed directly through numerical relations and
without graphical representation. Each sample is denoted as (x,y), where the
surface z is an m-dimensional column vector, z = (ry,2y,...,7,,)%, and y €
[1,1,] is the essence corresponding to x, where [,, is the number of elements in
the neural network’s output vector, representing the number of essence types.

The neural network has a total of n layers with the same processing method,
with the first n — 1 layers being hidden layers and the n-th layer being the
output layer. The total number of elements in the u-th layer (with the input
vector being the 0-th layer) is denoted as [,,, and the v-th element in the u-
th layer is denoted as hl (x), where v € [1,1,]. As can be seen from Figure
6, disregarding the dazzling connection of the neurons, a neural network is

chinarxiv.org/items/chinaxiv-202507.00082 Machine Translation

https://chinarxiv.org/items/chinaxiv-202507.00082

ChinaRxiv [$X]

actually a set composed of [, composite functions {hw (x)lv € [1,1,]}, with
each composite function sharing the same hidden layers.

For samples belonging to the v-th essence where v € [1,1,], the target out-

put vector of the neural network is (0, ..., hW(z) = 1,..,0)T. For all other
essence types, the target output vector of the neural network is (w, ..., hL"] (x) =
0,...,w)T where one of the w is 1 and the others are all 0. In this simplified
model, it is worth mentioning that when the sigmoid function is used as the
output, the upper and lower limits of th](x) can only approach 1 and 0 in-
finitely. When we transform the output layer that seems to be composed of an

l,,-dimensional vector into [,, scalars, the entire model becomes very clear. That

is, each composite function A" (z) is actually a binary classification problem of
the v-th essence.

Therefore, a neural network with a multi-dimensional vector output layer can
actually be regarded as a collection of multiple binary classification functions as
shown in Figure 7 [Figure 7: see original paper]. We can analyze each function
hW(z) separately and then integrate them to obtain the characteristics of the
neural network.

3.2 Extreme Points of the Model

Specifically, the expression of the function hLu] (z) satisfies:

[u u—1
By = 4° (Zk:i wt - b](ﬂs)) , u>1
v m)
S(Zk:1 wv,k-xk) , u=1

The function S(0) = H% is the sigmoid function, and wg)u}k represents the

parameters between the (u—1)-th layer and the u-th layer of the neural network,
which is the same as the parameters in traditional neural networks. To further

enhance readability, let 2 (z) = i::’ll ngf],c~h£€u71](x). Then we take the partial
derivative of the function 7" (z):
ohy'(x) . 95 (@) [[92 (a)
T W) gl : — Sz (1= Sz i
2 sl - 5 s - s @) - 2

where ¢ € [1,m], and the derivative result of the function S(6) is adopted, i.e.,
2.5(0) = 5(0) - (1 —5(0)). Let ¢ (z) = S(=(2)) - (1 — S(z1(2))), then:

020 (x) . & oY)
“ap, —Oe) == =l <>Zwa—

chinarxiv.org/items/chinaxiv-202507.00082 Machine Translation

https://chinarxiv.org/items/chinaxiv-202507.00082

ChinaRxiv [$X]

[u] [u-1]
When ahz;mfgg) = 0, since cw () > 0, then ic“:’ll wg)"}k . %%7%(1) = 0. Then
starting from the output layer, i.e., u = n, we take the partial derivatives of all

components of x respectively, and obtain the following system of equations:

L O I S)

k=1 Yok 89[:]1 =0
Loy lnl | 90 (@)
L(n7 fu) — k=1 v,k 8132

L I I
Zk:1 Wy k"~ ox =0

) m

When a surface x is given, the above system of equations is a homogeneous
linear equation system consisting of m equations, [,,_; independent variables
n—1

{wl Ik € [1,1,]} and m -1, _, coefficients {24k € [1,1, ,],¢ € [Lm]}.
Let the rank of the coefficient matrix of L(n,v) be r(n,v), then when r(n,v) is
less than the number of unknowns [,,_;, the linear equation system has infinitely
many solutions. Since r(n,v) < m, as long as the number of neurons in the last
hidden layer [,,_; is greater than m when designing a neural network, we can
always find infinitely many parameter combinations that make the surface x be
an extremum point of the binary classification function hg,n](x) for v € [1,1,].
This is the main reason why neural networks have strong generalization ability,
and the black box begins to be unveiled.

The shapes of the curves for the other binary classification functions can be
adjusted simultaneously. Let L(n,—) = L(n,1) ® L(n,2) ® - @ L(n,l,). When
given a surface z, L(n, —) is a homogeneous linear system of equations consisting
of m-1, equations, [, -1, variables {wEJ"Mv e, ke, 4]}, andm-1, ,

coefficients {%ﬁj(r”k € [1,1,_],t € [1,m]}. Any solution of L(n,—) makes
the surface x be the extremum point of each binary classification function. Then
we can select a particular solution such that when the surface x belongs to the
v-th essence, the corresponding extremum is the maximum value, and when x

belongs to other essences, the extremum is the minimum value. That is, hEJn] (x)
satisfies the ideal termination condition of model training:

1 y=v

hL%:){O by vELL

If it is difficult to find the above particular solution, then the constraints can
be relaxed, that is, a weakened termination condition can be adopted:

[n] (0.5,1], Yy=v
hv (-'17)6 {[0’05)’ y#1)7 ye[l’ln}

chinarxiv.org/items/chinaxiv-202507.00082 Machine Translation

https://chinarxiv.org/items/chinaxiv-202507.00082

ChinaRxiv [$X]

3.3 Continuous Optimization of Parameter Combinations

The above discussion only covers the situation where there is only one training
sample. What should be done when the number of samples increases? Let:

w1, [l 9hy V(@)

k- Wy k' T oz |I:w<:7:) =0
oo ey

L(n, U,m(i)) = k 1 Wy k- Oz, =gl =
[”] 3hn U(z) —0

o Wk S la=atv =

Then, L(n, —2%) = L(n,1,29) & L(n,2,2%) @ - & (n,ln, (@), When we
train the neural network with a dataset ® = {(2,y)]i € [1,¢]}, we are

actually solving the following homogeneous linear equation system:

L(n,—,®) = L(n,—,2")® L(n,—,2?) & - & L(n, —, %)

If L(n,—, ®) has infinitely many solutions, then a particular solution that meets
the conditions can be found from the general solution of the system of equations.
Otherwise, parameters between the (n — 2)-th layer and the (n — 1)-th layer
need to be introduced. That is, we need to expand the partial derivatives in

[n-1] B
the system of equations L(n,v) again. We substitute ah%igjtm = an 1](33) .

by [n—1] Bhgkﬂ(z)
Zp:1 Wiy g into L(n,v), and simplify the system:
lna 0] lno, [n=1] ohy ?(@) _
k=1 wv,k Clup=1 wk,p ’ [pax%] =0
a1 oz, [n-1] AP (@) _
L(n—1,v) = ko1 Wk pot Whp om0

n 1 n— 2 [’I’L 1 ah[}:liz](*'E) —
v k‘ Z ox,, =0

Similarly, we can obtain the system of equations L(n — 1,—), which can be
regarded as a homogeneous nonlinear system of equations consisting of m - [,,

equations with [, 4 -1, +1, 5 -1, ; independent variables {w["] lvelll,], ke

[1,1,_4]} and {wgzzl]\k € [1,0,_4],p € [1,1,_5]}. Although L(n — 1,—) seems
to be a nonlinear system of equations, due to its very regular structure, for
instance, wg) L wgcn U can be regarded as a whole, then the solution method for
homogeneous hnear equations can still be adopted. Then we just need to find
the particular solution of the equation system L(n — 1,—,®) that meets the

requirements.

By solving the homogeneous equations layer by layer, the dataset can be mapped
to the neural network.

chinarxiv.org/items/chinaxiv-202507.00082 Machine Translation

https://chinarxiv.org/items/chinaxiv-202507.00082

ChinaRxiv [$X]

4.1 General Training Method

From the above discussion, we have obtained a preliminary model training frame-
work, which we call the EI algorithm. Its main steps have significant differences
from the current commonly used neural network training methods, such as the
BP algorithm. Firstly, the BP algorithm uses gradient updates to approximate
the ideal values of parameters, while the EI algorithm attempts to directly ob-
tain the values of parameters by solving systems of equations. Secondly, the
BP algorithm needs to update all parameters each time, while the EI algorithm
only needs to update some parameters. Debugging all training samples to the
extremum points of the model is the key to the entire framework. In this sub-
section, we will have a more in-depth discussion on the details of the algorithm.

Table 1 shows the state of neural network parameters based on EI algorithm at
each round where Wt = {wg)u]k\v e [1,1,],k € [1,1,_1]}, “init” indicates that
the parameters remain at their initial values, and “update” indicates that the
parameters are updated in the current round. In the first round, we first solve
the equation system L(n,—, ®). If there is a solution, only the parameters winl
need to be updated. Otherwise, in the second round, we solve the equation
system L(n — 1,—, ®). If there is a solution, the parameters W™ and W1
need to be updated. Otherwise, we solve the equation system L(n — 2,—, @),
and so on.

Algorithm 4.1 presents the main steps for precisely mapping a dataset to the
neural network model. The symbols used, unless otherwise specified, have the
same meanings as those in the previous text. In the initial stage of the algorithm,
we manually label the sample set ®. If a sample (z(?),y?)) is classified as the
j-th essence where j € [1,1,], then (¥, y®)) = (z(?,5). After that, we initialize
the parameter set W to non-zero real numbers.

Table 1: Weights’ states in different stages.

stage weight Wil wk | wi=2 -t yylnl
L(n,—,®) init init ... init init update
L(in—1,—,®) init init ... init update update
L(n—2,—,®) init init ... update update update

Algorithm 1 Precise mapping from input to output

Input: ¢ = {(z'",y")li € [1,¢]}
Output: W = {wg)u]k|u e [1,n],velll,],kell,l, 1]}

: function FittingCurve()

Init (W)

foru [1, n-1], v [1, 1 ul, t [1, m], i [1, ϕ] do
Calculate(h™{[ul}_v(x)/ x_t|_{x=x"{(1)}I})

end for

a s wWwN -

chinarxiv.org/items/chinaxiv-202507.00082 Machine Translation

https://chinarxiv.org/items/chinaxiv-202507.00082

ChinaRxiv [$X]

6: for u [1, n-1], v [1, 1_ul, i [1, ϕ] do

7: Calculate(h~{[ul}_v(&"{(1)}))

8: end for

9: u \leftarrow n

10: while u \geq 1 do

11: W-{[u:n]l} \leftarrow L(u, -,) // for calculating W[u:n]

12: W {[u:nl} \leftarrow Polarize({h"{[nl} v(x)Ilv {1, 1_n}}, W {[u:nl},
13: if W {[u:nl} \neq {} W {[u:nl} \neq {0} then

14: W \leftarrow Update(W {[u:nl});

15: break // the general solution, equals to {W"{[jl}|j [u, nl}
16: end if

17: u \leftarrow u - 1

18: end while
19: if u \geq 1 then

20: return W

21: else

22: return Error()
23: end if

24: end function

Just like the BP algorithm, the parameter update is executed layer by layer from
the last hidden layer to the first hidden layer. We first calculate the values and
partial derivatives of all the neurons in the hidden layers, and then solve the gen-
eral solution W% = {Wll|j € [u,n]} of the equation group L(u,—,®). Then,
we select a particular solution W% that satisfies the termination condition
from Wl We call this operation “polarize”. If a particular solution Wl is
found, the parameters W are then updated. If no particular solution is found,
it indicates that the parameter set W[“" cannot precisely map the sample set
® to the neural network. Then, we need to introduce the parameter W1 to
find the particular solution W*~%"| of the equation group L(u —1,—, ®). If no
particular solution that meets the requirements is found after traversing all the
parameters of the neural network, we need to consider adjusting the structure
of the neural network (such as increasing the number of hidden layers or the
number of nodes in each hidden layer).

4.2 Reduce the Computational Complexity

In Algorithm 4.1, the polarization time for selecting a specific solution TW[%"!
from the general solution W!“"l is uncertain. This is because we do not know
the characteristics of the specific solution and can only verify each instance of
the general solution through enumeration. To reduce the training time, we can
relax the termination condition of the model training. That is, when a sample
(™, y") is a sample of the v-th essence, the value of the v-th binary classifi-
cation function Ay (z(®)) just needs to be much greater than the values of any

other binary classification function h[q"] (az(i>), without considering whether these
values are maximum or minimum values. This is equivalent to the following

chinarxiv.org/items/chinaxiv-202507.00082 Machine Translation

)

https://chinarxiv.org/items/chinaxiv-202507.00082

ChinaRxiv [$X]

weakened condition:

o (20)

— > 1—a vE[ll]y<i>:v
ln n R 9 yi'nls
S k)

hiy(20)

—— < f, anyq€lll,],qFv

ln K 9 yinls
S R ()
where a and [are two sufficiently small positive real numbers. This is the
situation when the softmax function is used as the output layer of the neural
network. That is to say, a neural network using the softmax function can be
regarded as a weakened version of an ideal model.

4.3 Reduce the Computational Scale

If each training sample corresponds to an extreme point on the model curve,
that is, by adding an equation set L(n, —,x<i)), the required scale of network
parameters will be extremely large and the training time will also increase sig-
nificantly. Is there a way to reduce the number of equation sets? To this end,
we propose the concept of surface neighborhood. In a further weakened neural
network, only a portion of the samples need to be the extreme points, and the
other samples can only satisfy the weakened termination condition 2. Then
which samples can have their restrictions relaxed? An intuitive idea is that only
the representative of all adjacent samples needs to satisfy the strict condition.

Let A = (2%, y@) and B = (2, y®)) be two samples in the dataset & =
{(z9,y"))i € [1,¢]} where a,b € [1,¢]. Then the distance between these two
samples is defined as:

dim(z)
_ 1 (@) _ ()2

If A and B are samples of the same essence, that is, y(* = y(®), and the proximity
criterion is satisfied:

D (A, B) <~

where dim(z) represents the dimension of a sample surface, and is a sufficiently
small positive real number. Then we say that samples A and B of the same
essence are located within each other’s neighborhood. Due to the continuity
of the function, it can be known that the function values of samples A and B
are close on each binary classification function. Thus, one of the samples does
not need to be sent to the algorithm for training but only needs to verify its

chinarxiv.org/items/chinaxiv-202507.00082 Machine Translation

https://chinarxiv.org/items/chinaxiv-202507.00082

ChinaRxiv [$X]

function value. Then a further weakened training algorithm can be adjusted
as follows: 1) Manually classify the training sample set and designate it as the
major category. 2) Utilize a certain numerical algorithm, such as clustering
algorithm, to further divide the samples of each major category into several
minor categories. Each minor category has a central sample. 3) Train the
model for all the central samples. 4) After the training is completed, verify
whether the predicted values of all non-central samples on the neural network
are within the specified accuracy range. If the accuracy requirements are met,
the algorithm ends. Otherwise, mark the non-central samples that do not meet
the requirements as central samples and repeat steps 3) and 4).

5.1 Gradient Vanishing/Explosion

The problem of gradient vanishing/exploding is a common and very difficult
issue encountered during the training of neural networks, and it is particularly
prone to occur in deep networks. To address this problem, some scholars have
proposed various methods to alleviate the adverse effects of gradient vanish-
ing/exploding on parameter updates, such as using batch normalization [?, ?]
and LSTM architecture [?, ?]. In the BP algorithm, the problem of gradient van-
ishing/exploding is often regarded as an abnormal issue that should be avoided.

Regarding the problem of gradient vanishing, as discussed in Sections 3 and 4,
after the initialization of network parameters, the number of parameter updates
required by the neural network varies depending on the sample size. If the
particular solution W[*™ can be found from the general solution W then the
parameters W5 %=1 of the earlier hidden layers can remain at their initial values.
That is to say, according to the neural network characteristics revealed by the
EI algorithm, gradient vanishing is an inevitable result. Gradient explosion is
also a similar problem. In the EI algorithm, when we calculate the equation
set L(u,—, ®), there may be cases where no solution exists. That is to say, the
value of the solution is infinity, which corresponds to the gradient explosion in
the BP algorithm. If the EI algorithm is adopted, we only need to continue to
solve the equation set L(u —1,—, ®).

5.2 Overfitting

The overfitting problem [?, ?] seems different from the gradient vanish-
ing/explosion problem, but in essence, both are caused by the same operational
process. In the EI algorithm, if the equation set L(1,—, ®) has solutions, but
when we increase the number of the samples, the equation set L(1,—, ®A)
maybe has no solution where & C ®,. That is, the neural network with the
current parameter scale can only accommodate a limited number of samples
®, manifested as the overfitting phenomenon of the BP algorithm. This is an
inherent characteristic of neural networks that there are only a limited number
of extreme values under the condition of limited parameters. Rather than
saying it’s overfitting, we would rather say it fits just right.

chinarxiv.org/items/chinaxiv-202507.00082 Machine Translation

https://chinarxiv.org/items/chinaxiv-202507.00082

ChinaRxiv [$X]

The BP algorithm reduces the model’s dependence on the trained samples by
adding noise to the samples and network parameters [?, ?]. This method is
similar to the clustering operation described in Section 4.3, which enables a fixed-
structure neural network to accommodate more samples, but this often comes
at the cost of model accuracy. Another approach is to increase the number of
hidden layers or the number of parameters in each layer, that is, to increase
the number of independent variables in the equation set L(1,—,®4), thereby
accommodating more samples without sacrificing accuracy, at the cost of an
increased training time.

5.3 Adding noise

During the training process of neural networks, we often enhance their robust-
ness by adding noise to the existing samples and re-feeding them into the neural
network for training [?, ?]. This is because we have observed that after adding
noise, even when humans do not perceive much difference between the previous
and subsequent samples, the prediction accuracy of the machine drops sharply.
This phenomenon can be explained by the concept of neighborhood. Let the
initial sample be A = (x,3) where x = (2, ,,...,2,,)T, and the noisy sample
be Ay = (zp,Ya) Where 15 = (v, + Axy, 29 + Axy, ..., 2, + Ax,,)T, then:

dim(x)
1
— -)2
Ds(AﬂAA) 2d1m(x) ;:1: (ALE])

The noisy sample may significantly deviate from the neighborhood of the original
sample. If it is not within the neighborhood of other same-essence samples
either, then the neural network will be unable to correctly process this sample,
that is, yo # y. If there are too many noisy samples, it is difficult for the
model to converge because we can add random noise. This is why we call the
input vector of a neural network a “surface”, as there is a significant difference
between what a neural network perceives and what humans see.

5.4 Shallow/Deep Networks

From the discussions in Sections 3 and 4, it can be concluded that the number
of samples that a neural network can precisely fit is mainly positively correlated
with the total number of network parameters, and has no necessary relationship
with the depth of the network structure. If the number of samples is limited, we
can directly adopt a network structure with only one hidden layer. According
to the condition that homogeneous linear equations have a general solution,
the number of parameters of a single-hidden-layer network should be greater
than the product of the sample number, the surface dimension, and the essence
types. If the number of samples is large and can be dynamically increased, we
can adopt a “tilted trapezoidal” network structure, in which the parameters of
the last hidden layer are the most, and then the number of parameters decreases

chinarxiv.org/items/chinaxiv-202507.00082 Machine Translation

https://chinarxiv.org/items/chinaxiv-202507.00082

ChinaRxiv [$X]

successively towards the first hidden layer. That is, in the EI algorithm, the
calculation of invalid equation sets is minimized as much as possible.

5.5 Probability

The traditional view holds that the output layer of a neural network provides
the probability that a surface of the input layer belongs to different essences. We
believe this view is not entirely accurate, at least not in the strictly statistical
sense of probability. In statistics, the probability of a random event is defined
as the ratio of the certain output to the total output. No matter how large our
training sample set is, we cannot exhaust or nearly exhaust the entire sample
space, and there is no clear specific relationship between the finite sample set
and the infinite sample space. For instance, we can add various noises to the
existing samples, and the sample set can be easily expanded several times or
even infinitely. Additionally, as shown in Figure 8 [Figure 8: see original pa-
per], the training sample set does not necessarily occupy all the extreme points
of the trained binary classification function hg,n](x). Those unoccupied maxi-
mum points are not necessarily occupied by the v-th essence samples, and the
minimum points are not necessarily occupied by non-v-th essence samples. In
extreme cases, even if there is a sample that makes h[JL] (z) = 1 hold true, it may
still be a non-v-th essence sample, although this situation is rare.

6.1 Polarization

Apart from enumeration, we have not yet proposed an efficient algorithm to find
the particular solutions that meet the requirements from the general solutions.
This is the key to whether the EI algorithm can be practically applied. Can we
draw on existing mature machine learning algorithms, such as clustering and
gradient descent, to solve the efficiency problem of the algorithm?

6.2 The Output Layer

For the convenience of calculation and demonstration, we adopted the sigmoid
function as the processing unit of the output layer. Although we believe that
the selection of the function does not affect the overall characteristics of neural
networks, what would be the difference in the final result if other functions were
used, such as the commonly used softmax function?

6.3 Activation Functions

Our analysis is based on the case where the neural network is a continuous
function, that is, the hidden layer neurons use a continuous sigmoid function. If
other functions are adopted, especially non-differentiable functions such as the
ReLu function, how should the analysis be conducted?

chinarxiv.org/items/chinaxiv-202507.00082 Machine Translation

https://chinarxiv.org/items/chinaxiv-202507.00082

ChinaRxiv [$X]

6.4 Saddle Points

Our overall discussion is conducted under the assumption that a sample satis-
fying the system of equations {%{ifr) = 0|t € [1,m]} are the extreme points
of the binary classification function. For multivariate functions, the fact that
all first-order partial derivatives are zero does not necessarily imply that this
is an extreme point of the function. It could be a saddle point. Although we
believe that neither the extreme points nor the saddle points significantly affect
our conclusion, this remains a topic worthy of discussion.

6.5 Alternative Functions

From our analysis, it can be seen that the strong generalization ability of neural
networks depends on the dynamic variability of their function curves, especially
the dynamic adjustment of extreme points. Then, can other functions with
similar properties provide equally strong generalization ability? For example,
the sine function has infinitely many extreme points, and its range is limited
to a finite interval. The number of extreme points of a polynomial is positively
correlated with its degree. These two seemingly simple functions may have
unexpected generalization ability.

7 Summary

We used the EI algorithm from a mathematical perspective to explain the spe-
cific reasons why neural networks have strong generalization ability, supplement-
ing the shortcomings in the works of Cybenko (1989) and Hornik et al. (1989).
We also present an algorithmic framework that is different from the BP algo-
rithm, although there is currently no efficient computational method for the
polarization. Compared with the mature BP algorithm, there are still many
follow-up tasks to be improved in the EI algorithm. Taking advantage of each
other’s strengths is expected to bring a new research idea to the field of artificial
intelligence.

References

V. Buhrmester, D. Miinch, and M. Arens. Analysis of explainers of black box
deep neural networks for computer vision: A survey. Machine Learning and

Knowledge Extraction, 3(4):966-989, 2021.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathe-
matics of Control, Signals and Systems, 2(4):303-314, 1989.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks
are universal approximators. Neural Networks, 2(5):359-366, 1989.

B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani, and
P. Pérez. Deep reinforcement learning for autonomous driving: A survey. IFEE
Transactions on Intelligent Transportation Systems, 23(6):4909-4926, 2021.

chinarxiv.org/items/chinaxiv-202507.00082 Machine Translation

https://chinarxiv.org/items/chinaxiv-202507.00082

ChinaRxiv [$X]

Z. C. Lipton. The mythos of model interpretability: In machine learning, the
concept of interpretability is both important and slippery. Queue, 16(3):31-57,
2018.

S. J. Oh, B. Schiele, and M. Fritz. Towards reverse-engineering black-box neu-
ral networks. Faxplainable AI: Interpreting, FExplaining and Visualizing Deep
Learning, pages 121-144, 2019.

M. T. Ribeiro, S. Singh, and C. Guestrin. “Why should I trust you?” Explaining
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 1135—
1144, 2016.

C. F. G. D. Santos and J. P. Papa. Avoiding overfitting: A survey on regular-
ization methods for convolutional neural networks. ACM Computing Surveys
(Csur), 54(10s):1-25, 2022.

S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry. How does batch normalization
help optimization? Advances in Neural Information Processing Systems, 31,
2018.

R. Shwartz-Ziv and N. Tishby. Opening the black box of deep neural networks
via information. arXiv preprint arXiv:1703.00810, 2017.

N. Tishby and N. Zaslavsky. Deep learning and the information bottleneck prin-
ciple. In 2015 IEEE Information Theory Workshop (ITW), pages 1-5. IEEE,
2015.

J. Wu, S. Yang, R. Zhan, Y. Yuan, L. S. Chao, and D. F. Wong. A survey
on LLM-generated text detection: Necessity, methods, and future directions.
Computational Linguistics, pages 1-66, 2025.

W. Xia, Y. Zhang, Y. Yang, J.-H. Xue, B. Zhou, and M.-H. Yang. GAN inver-
sion: A survey. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 45(3):3121-3138, 2022.

X. Ying. An overview of overfitting and its solutions. In Journal of Physics:
Conference Series, volume 1168, page 022022. IOP Publishing, 2019.

Y. Yu, X. Si, C. Hu, and J. Zhang. A review of recurrent neural networks:
LSTM cells and network architectures. Neural Computation, 31(7):1235-1270,
2019.

Note: Figure translations are in progress. See original paper for figures.

Source: ChinaXiv — Machine translation. Verify with original.

chinarxiv.org/items/chinaxiv-202507.00082 Machine Translation

https://chinarxiv.org/items/chinaxiv-202507.00082

	Unraveling the Black-box Magic: An Analysis of Neural Networks' Dynamic Local Extrema
	Abstract
	Full Text
	Preamble
	Abstract
	1 Introduction
	2 General Characteristics of an Ideal Model
	2.1 Precise Mapping
	2.2 Weakened Mapping
	2.3 N Classification to Binary Classification
	2.4 General Training Process of an Ideal Model

	3.1 Model Decomposition
	3.2 Extreme Points of the Model
	3.3 Continuous Optimization of Parameter Combinations

	4.1 General Training Method
	4.2 Reduce the Computational Complexity
	4.3 Reduce the Computational Scale

	5.1 Gradient Vanishing/Explosion
	5.2 Overfitting
	5.3 Adding noise
	5.4 Shallow/Deep Networks
	5.5 Probability
	6.1 Polarization
	6.2 The Output Layer
	6.3 Activation Functions
	6.4 Saddle Points
	6.5 Alternative Functions
	7 Summary
	References

