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Abstract
With the development of smart home robot technology, security risks have
emerged as a new challenge for human-robot trust. This study proposes and
validates a new dimension of trust in smart home robots—security trust. To
this end, Study 1 developed a security trust scale for smart home robots and
verified the stability, reliability, and validity of the three-factor structure of
human-robot trust. Studies 2 and 3 conducted in-depth analyses of the im-
pact of robots’ static and dynamic features on security trust among human
and artificial intelligence (AI) users. The results revealed that, regarding static
features, people exhibited higher levels of security trust in robots with shorter
heights and less conspicuous cameras; furthermore, the degree of robot anthro-
pomorphism influenced human sensitivity to these static features. Regarding
dynamic features, slower robot movement speed and camera shutdown actions
enhanced human security trust, while the influence of these dynamic features
varied across different scenarios. Additionally, AI and humans demonstrated a
certain degree of consistency in security trust, but overall, AI exhibited lower
sensitivity to robot cameras than humans. The findings of this study provide
important theoretical support and practical guidance for the design and manu-
facturing of home robots.
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Abstract
As smart home robot technology advances, safety concerns have emerged as a
new challenge in human-robot trust. This study proposes and validates a novel
dimension of trust for smart home robots—safety trust. Study 1 developed a
safety trust scale for smart home robots and confirmed the stability and valid-
ity of a three-factor structure of human-robot trust. Studies 2 and 3 conducted
in-depth analyses of how static and dynamic robot features affect safety trust
among human and AI users. The findings reveal that, regarding static features,
people exhibit higher safety trust toward shorter robots with less conspicuous
cameras; furthermore, the degree of robot anthropomorphism influences human
sensitivity to these static features. Regarding dynamic features, slower robot
movement speeds and camera-off actions enhance human safety trust, with these
effects varying across different scenarios. Additionally, AI demonstrates some
consistency with humans in safety trust, though overall AI shows lower sen-
sitivity to robot cameras than humans do. These results provide important
theoretical support and practical guidance for the design and manufacturing of
home robots.

Keywords: human-robot trust, safety trust, smart home robots, usage inten-
tion, large language models

In the era of Artificial Intelligence (AI), robots have become important partic-
ipants in human social activities, playing significant roles in education [?, ?],
healthcare [?, ?], commerce [?, ?], and other domains. In household contexts,
the application of smart home robots is gradually becoming widespread [?, ?].
For instance, the robot Kuavo demonstrated laundry and gardening functions in
home environments at the 2024 China Appliance and Electronics World Expo
(AWE) [?, ?]. Beyond completing chores like room cleaning, robots such as
Jibo can also provide emotional companionship and support to family members
through sensing and interaction technologies [?, ?]. As technology progresses,
robots’ intelligence levels continue to improve, and the relationship between hu-
mans and robots has shifted from a tool-based human-machine relationship to
a social relationship between humans and intelligent agents [?, ?, ?]. Human
trust in robots has also evolved accordingly, gradually approaching interpersonal
trust [?, ?, ?]. In human-robot interaction, user trust is a critical determinant
of whether people will use robots [?, ?].

Research on trust in smart home robots not only facilitates their application and
promotion but also represents an important topic in studying human-machine
relationships in the intelligent era. The significant differences between AI and
traditional technologies have generated many new concerns, deepening the com-
plexity of human-AI interaction. For example, issues such as personality percep-
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tion of intelligent systems (e.g., personalized characteristics of AI), relational
connection and teamwork between humans and intelligent systems have trig-
gered new explorations in human-AI interaction [?, ?, ?, ?, ?]. To adapt to
increasingly complex human-AI interaction environments, trust research needs
further deepening. In the specific application scenario of smart homes, intelli-
gent robots’ autonomous activities are closely related to family members’ daily
lives and privacy protection, making high robot intelligence potentially trigger
new user concerns. Although previous research has confirmed the importance
of safety perception in human-robot interaction, it has not deeply explored the
potential crisis that safety perception may bring to human-robot trust [?, ?, ?].
Therefore, this study proposes and validates a new dimension of trust for smart
home robots—safety trust. From a theoretical perspective, the proposal of safety
trust expands and improves existing trust models, providing a new perspective
for trust research in the new era of human-AI interaction. From a practical
perspective, in-depth research on safety trust can provide valuable guidance
for the design and optimization of smart home robots, thereby promoting their
widespread application in family life.

Meanwhile, AI’s role has gradually expanded from traditional task executors
to decision-making agents. Particularly in multi-agent collaborative systems,
AI not only needs to take responsibility as a task executor but also needs to
participate in decision-making processes as a trustor [?, ?, ?]. This change
requires AI not only to understand and respond to human trust expectations but
also to demonstrate consistency and transparency in decision-making processes.
Therefore, exploring AI’s trust patterns, especially trust mechanisms in complex
home environments, helps us better understand and design deeper interaction
methods for human-AI cooperation, and provides theoretical support for future
applications of smart home robots in more scenarios.

1.1 Smart Home Robots
Smart home robots belong to a category of service robots that provide services
to users in home environments, possessing certain perception, interaction, and
learning capabilities [?, ?]. Different from early cleaning robots, today’s home
robots have gradually achieved diversified functions [?, ?]. For example, the
home robot designed by Kao and Wang (2015) has functions including con-
versational interaction, photography, remote monitoring, and timed reminders.
The companion robot Buddy can patrol the house, alert when discovering haz-
ards, and integrate with other smart home products to gain remote control of
appliances [?, ?]. Currently, smart home robots have diverse functions that con-
tinue to evolve with technological progress, making it necessary to define the
scope of this study. Lee (2021) conducted a systematic literature review of the
service robot field, classifying service robots into four types (professional non-
social, professional social, home/personal non-social, and home/personal social)
and summarizing key technical areas (grasping, detection, navigation, human-
robot interaction, and architecture/platform, etc.). Based on this, the smart
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home robots discussed in this paper belong to the home/personal social service
robot category, used in home scenarios, possessing grasping, detection, naviga-
tion, and information storage functions, capable of interacting with users, and
presented as independent architectures rather than platforms [?, ?]. As smart
home robots increasingly enter ordinary families, studying user trust in them
will lay a theoretical foundation for their promotion and application.

1.2 Human Safety Trust in Smart Home Robots
Human-robot trust is an attitude that an agent can help individuals achieve
goals under conditions of known uncertainty and vulnerability [?, ?]. Billings et
al. reviewed 302 definitions of trust, including 220 interpersonal trust definitions
and 82 automation trust definitions, finding that numerous automation trust def-
initions involved features such as user expectations of automated systems, con-
fidence, risk, vulnerability, dependence, attitude, and cooperation [?, ?]. These
definitions reveal the core characteristics of human-robot trust. Although peo-
ple rarely report in qualitative studies that they choose to use robots because of
trust factors, human-robot trust has been confirmed in multiple studies to affect
people’s choice to use robots [?, ?, ?]. As technology continues to advance, the
connotation of human-robot trust has gradually enriched from trust in basic
tool use (e.g., mechanical equipment) to trust in systems with certain auton-
omy (e.g., navigation systems), and now to trust in AI systems with complex
interaction capabilities, with dimensions progressively enriched and deepened
[?, ?].

Human-robot trust has some similarities with interpersonal trust, such as both
involving the trustor’s evaluation of the trustee’s reliability, motivation, and
capability [?, ?, ?], but they still show significant differences in multiple as-
pects. Interpersonal trust is usually based on emotional connection and social
interaction experience, while human-robot trust relies more on rational evalu-
ation of technical functions. Additionally, interpersonal trust is bidirectional,
while human-robot trust is more unidirectional, representing human trust in ma-
chines. However, as machine intelligence levels develop, trust between humans
and intelligent machines gradually changes, with human-robot trust increasingly
approaching interpersonal trust, and many studies have begun exploring human
trust patterns in AI from an interpersonal trust perspective [?, ?, ?, ?, ?].

The connotation of human-robot trust has gradually enriched with the develop-
ment of human-robot interaction technology [?, ?]. In the initial stage, human
trust in robots was mainly based on performance levels, meaning people devel-
oped trust in robots based on their capability and reliability in completing tasks
[?, ?, ?, ?]. As robot interactivity improved, people gradually recognized that
beyond performance, the traits and states robots exhibited during interaction
also played important roles in trust building [?, ?]. For example, appearance
cues such as robots’ facial width-to-height ratio, gender characteristics, and
anthropomorphism level can activate people’s emotional responses, thereby af-
fecting trust [?, ?, ?, ?]. This trust dimension based on emotional relationships
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stems from users viewing robots as objects of social interaction, developing emo-
tional trust based on the care and concern robots demonstrate [?, ?, ?]. In scale
development, although existing human-robot trust scales [?, ?, ?] contain items
reflecting performance trust and relational trust, few scales explicitly distinguish
between these two dimensions.

With the rise of cloud computing technology and improvements in robot intelli-
gence levels, human-robot interaction technology will inevitably further expand
the evaluation of human-robot trust. Recent research on human interaction
with intelligent robots has found that intelligent robots pose numerous safety
risks, such as privacy leakage and personal safety risks [?, ?]. On December
26, 2023, the UK’s Daily Mail reported an incident two years prior where a
robot “attacked” an engineer at a Tesla factory. Söderlund (2023) also em-
phasized that service robots can easily generate privacy leakage issues, which
reduces people’s overall evaluation of robots. Such intentional or unintentional
personal or privacy safety risks may not cause individuals to worry about robot
performance, nor affect whether individuals view robots as social interaction
objects, but they are likely to reduce individuals’ trust in robots due to safety
risk concerns. Especially in home environments, people’s concerns about pri-
vacy and security are more prominent [?, ?]. Therefore, this study proposes
that for smart home robots, human-robot trust has generated a new dimension:
a safety-based dimension, meaning people develop trust in robots because they
believe robots will not pose threats to users’ personal and privacy safety. Safety
trust emerges with the safety risks brought by increased robot intelligence and
autonomy levels. Previous human-robot trust research has not focused on this
dimension, making it necessary to conduct research on this topic.

Hoff and Bashir (2015) proposed that human-robot trust is actually a special
type of interpersonal trust, where user trust in robots is essentially trust in the
manipulators or companies behind the robots. Therefore, it has certain similari-
ties with interpersonal trust but differs significantly in formation methods [?, ?].
This perspective can also explain the emergence of safety trust. In the big data
era, smart home robots’ behavioral data can easily be obtained by robot compa-
nies without users’ knowledge, while companies also need large amounts of data
to train and optimize their algorithms, giving them motivation to acquire data.
At this point, users worry that large companies may arbitrarily upload and uti-
lize data involving their privacy, manifesting as safety-related trust issues with
robots. Based on the above, we propose the following hypothesis:

H1: Human trust in smart home robots comprises three dimensions: perfor-
mance trust, relational trust, and safety trust.

1.3 Static and Dynamic Factors Influencing Human Safety
Trust
In actual human-robot interaction processes, robots’ static and dynamic features
provide clues about robots’ capabilities and tendencies, affecting users’ percep-
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tion and impression of robots, which is crucial for understanding human-robot
interaction mechanisms and optimizing interaction processes [?, ?]. In the field
of robot safety perception, Akalin et al. (2023) proposed a structural model
of safety perception in human-robot interaction, suggesting that both static
features (anthropomorphism, size, shape, etc.) and dynamic features (speed,
motion predictability, interaction actions, etc.) can affect users’ evaluation of
perceived safety.

For smart home robots, appearance features are the most intuitive static factors.
Numerous studies have shown that robots’ appearance features can significantly
affect users’ performance trust and relational trust [?, ?, ?, ?, ?]. Anthropo-
morphism is the most widely studied appearance feature. Some studies have
found that higher anthropomorphism leads to higher trust [?, ?]. However,
other studies have found that people trust cartoon-image robots more than
human-image robots [?, ?], possibly because excessive anthropomorphism can
cause the “uncanny valley effect” [?, ?, ?]. Different environments and task
scenarios also affect trust in robots with different anthropomorphism levels. In
production settings, robots with technical appearances are more trusted than an-
thropomorphic robots [?, ?]. To explore the applicable conditions under which
robot appearance features affect safety trust, this study selected three levels
of robot appearance anthropomorphism (mechanical, cartoon, and human-like)
for experiments. Among appearance factors, height is also a common factor.
Previous studies have found that users prefer shorter robots due to the threat
posed by robot height [?, ?], possibly because greater height brings feelings of
oppression and insecurity. Walters et al. (2009) found an interaction between
appearance anthropomorphism (mechanical vs. humanoid) and height in sur-
veys of robot appearance preferences and perceptions. Specifically, humanoid
robots were generally perceived as smarter than mechanical robots, but when
humanoid robots were shorter, they were perceived as less conscientious and
more neurotic. Accordingly, we believe that appearance anthropomorphism
and height may also interact in safety trust. Additionally, privacy leakage con-
cerns have been raised regarding camera usage. Users develop privacy leakage
concerns when seeing robot cameras, which affects trust in robots [?, ?]. Marcu
et al. (2023) conducted large-scale interviews on factors influencing robot safety
perception and found that whether robots autonomously collect information
through cameras generated widespread concern among respondents. Moreover,
people have the highest concerns about humanoid robots, followed by human-
like robots, and finally mechanical robots [?, ?]. Thus, appearance anthropo-
morphism level can affect the degree of privacy safety concerns. Based on this,
we further speculate that appearance anthropomorphism level may affect the
influence of camera visibility on safety trust. In summary, this study selected
appearance anthropomorphism level, robot height (size), and camera visibility
as independent variables reflecting robot physical characteristics (static factors)
(Study 2) and proposed the following hypotheses:

H2a: Smart home robot height negatively affects safety trust.
H2b: Smart home robot camera visibility negatively affects safety trust.
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H2c: Smart home robot appearance anthropomorphism moderates the effects
of height and camera visibility on safety trust.

Human-robot trust is usually not static but dynamically changes with tasks and
interaction processes [?, ?]. Therefore, task types and scenarios in human-robot
interaction also affect trust levels. Robot movement speed and proximity are
primary factors users consider when evaluating the safety of robot interaction
actions. As movement speed increases, perceived safety decreases [?, ?]. This
study referenced Sviestins et al. (2007) research on human adaptation to hu-
manoid robot walking speeds, selecting 0.4 m/s and 1 m/s as movement speed
levels for home robots to explore their effects on safety trust levels. Camera
usage and shutdown during interaction are important for users’ perception of
privacy risk and trust [?, ?]. People may feel uncomfortable due to the obvi-
ous presence of robot cameras. The discomfort of being “monitored” by robots
and the risk of related video data leakage may be reasons causing user insecu-
rity. Additionally, interaction scenarios are very important for safety perception
[?, ?], as robot design factors and usage environments jointly affect human-robot
trust [?, ?]. People’s safety perception of machine equipment movement speed
is not linearly changing but is influenced by scenarios. In face-to-face movement
and rear overtaking movement scenarios, people’s risk perception patterns and
preferred machine movement speeds are significantly different [?, ?]. Due to dif-
ferences in people’s trust tendencies across different scenarios, we hypothesize
that scenarios affect the influence of robot movement speed and camera shut-
down actions on safety trust. Therefore, this study selected movement speed,
camera shutdown action, and scenario as independent variables reflecting robot
motion characteristics (dynamic factors) (Study 3) and proposed the following
hypotheses:

H3a: Smart home robot movement speed negatively affects safety trust.
H3b: Smart home robot camera shutdown action positively affects safety trust.
H3c: Smart home robot scenario (living room/bedroom) moderates the effects
of movement speed and camera shutdown action on safety trust.

1.4 AI Trust in Smart Home Robots
Artificial intelligence refers to the technology system that simulates human in-
telligence by systematically constructing intelligent systems [?, ?]. As an im-
portant breakthrough in AI, large language models (LLMs) have become core
advances in natural language processing, demonstrating human-level content
understanding and generation capabilities in multiple tasks, and possessing the
ability to understand and simulate human behavior and intentions [?, ?], even
showing thinking and decision-making abilities comparable to humans [?, ?, ?].
With the development of AI levels, human-robot trust has extended from uni-
directional human trust in machines to mutual trust between humans and AI,
especially mutual trust between humans and AI systems [?, ?, ?]. The emer-
gence of this mutual trust model means AI systems are no longer merely pas-
sive recipients of trust but gradually possess the ability to actively evaluate and
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adjust their own trust tendencies, exhibiting intelligent agent characteristics
similar to humans. Human-AI interaction has gradually evolved into an interac-
tive relationship between intelligent agents. In agent interactions, trust is very
important for information transmission and function realization between agents
[?, ?, ?]. Existing research shows that AI trust in other agents depends not only
on agents’ historical performance or reputation but also comprehensively consid-
ers their capability to complete specific tasks, knowledge level, and cooperative
intentions, adjusting with changes in situations and knowledge [?, ?].

In recent years, researchers have begun exploring LLMs as research subjects
in psychology. For example, some studies use LLMs as subjects to complete
scales [?, ?, ?]. These studies argue that LLMs’ behavior is trained on large-
scale human data, and their responses to human psychological measurement
tools can to some extent reflect average human behavior patterns in related
tests [?, ?]. Other studies go further, focusing on LLMs’ own behavior patterns.
Research has found that LLM-based agents (LLM-agent) show highly similar
patterns to humans in trust decision-making, particularly evident in GPT-4
[?, ?]. These studies demonstrate that LLMs can not only simulate human
cognitive preferences but also possess the potential to complete tasks such as
trust evaluation of other agents.

Although there is currently no consensus on whether LLMs possess autonomous
consciousness [?, ?], from an application perspective, analyzing LLMs’ behavior
patterns and comparing their cognitive behavioral performance with humans
can provide references for intelligent agent interaction practice and application.
Existing research shows that LLMs have demonstrated stable personality or
role-playing capabilities in certain situations [?, ?, ?]. This capability provides
a foundation for exploring LLMs’ performance in social interactions [?, ?, ?].

With the rapid development of LLM technology, its application in smart home
environments is becoming increasingly popular, such as for enhancing home
robots’ natural interaction and autonomous decision-making capabilities [?, ?,
?]. In this context, LLMs often need to interact not only with humans but
also collaborate with other agents (such as smart home robots), placing higher
demands on system collaboration efficiency, with trust being one of the core
factors for achieving effective cooperation. LLMs will evaluate home robots’ se-
curity capabilities to establish trust, which affects LLMs’ judgments of robots’
trustworthiness in home environments, thereby shaping their behavioral per-
formance and decision-making strategies in multi-agent systems. Therefore, in
the context of smart home applications, studying how LLMs evaluate and trust
home robots is important for achieving efficient multi-agent collaboration. Al-
though LLMs show high consistency with humans in trust behavior [?, ?], their
understanding of safety trust may differ from humans. For example, AI may be
less sensitive than humans to privacy leakage issues with cameras. AI mainly
relies on algorithms and preset rules when handling privacy issues, and its un-
derstanding of privacy is based on technical levels rather than human intuitive
perception [?, ?]. Therefore, AI’s perception of safety trust regarding camera de-
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sign in home robots may differ from humans. Based on this, this study proposes
the following hypotheses:

H4a: AI and humans show similarity in factors influencing safety trust in home
robots.
H4b: AI shows lower sensitivity to cameras than humans.

To answer the above questions, Study 1 established an item pool for the human-
robot trust scale, analyzed and determined scale items, and tested the scale’s
validity and structure with new samples. We then manipulated robot safety
through experiments to explore its effects on safety trust, traditional human-
robot trust, and usage intention, further validating the existence of the safety
trust dimension and its impact on the traditional human-robot trust structure.
Studies 2 and 3 applied the newly developed scale, using experimental methods
to explore factors influencing safety trust levels among human users and LLMs
from both static and dynamic perspectives, investigating the mechanisms of
safety trust and perceptual differences between LLMs and human users.

2.1.1 Research Purpose
Based on previous literature and expert advice from the smart home robot in-
dustry, we established an item pool for the human-robot trust scale. Through
item analysis, exploratory factor analysis, and confirmatory factor analysis, we
determined the final scale items and tested the scale’s structure, proposing and
validating safety trust as a new dimension of human-robot trust. Subsequently,
following Schaefer’s (2016) approach when validating their human-robot trust
scale, this study measured both the self-developed human-robot trust scale and
Jian et al.’s (2000) automated system trust scale to verify criterion-related va-
lidity.

2.1.2 Research Participants
We conducted online surveys using Credamo. In the scale development stage,
1,300 online questionnaires were distributed. After excluding participants who
failed attention check questions, 1,293 valid questionnaires were retained, with
an effective rate of 99.5%. Among these, 650 were randomly selected for ex-
ploratory factor analysis, and the remaining 643 for confirmatory factor analysis
[?, ?].

In the validity verification stage of the human-robot trust scale, 451 online ques-
tionnaires were distributed. After excluding participants who failed attention
check questions, 433 valid questionnaires were retained, with an effective rate
of 96.0%.

2.1.3 Research Methods
Based on previous literature and expert advice from the smart home robot indus-
try, this study proposes that human-robot trust in smart home robots mainly
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comprises three dimensions: performance-based trust, relationship-based trust,
and safety-based trust. Building on adaptations of previous scales [?, ?, ?], we
initially developed 50 questionnaire items across four dimensions: (1) Overall
trust: 5 items. These do not belong to any specific dimension of performance,
relationship, or safety, but represent a general sense of trust, such as whether
the robot is reliable; (2) Performance trust dimension: 13 items. Including
both positive items (e.g., conscientious, task completion capability, high work
reliability, strong learning ability, making life easier) and negative items (e.g.,
high maintenance difficulty, inferior performance to humans, incompetence);
(3) Relationship trust dimension: 18 items. Including both positive items (e.g.,
robot proactively helps, can become a friend, simple to interact with, integrity)
and negative items (e.g., robot has selfish motives, can also make mistakes); (4)
Safety trust dimension: 14 items. Including both positive items (e.g., believing
privacy will not be leaked, will not be hacked) and negative items (e.g., caus-
ing safety accidents, personal injury, privacy leakage). Multiple reverse-coded
items were included to assist with attention checks. For example, overall trust
included: “I think the robot is trustworthy” and “I think the robot is com-
pletely untrustworthy”; performance trust included: “The robot always makes
mistakes and cannot complete tasks” and “I think the robot’s work has high
reliability.” The scale used a 5-point Likert rating (1: strongly disagree to 5:
strongly agree), with higher scores indicating greater agreement with the item’s
description of the robot.

To verify the scale’s validity, we used Jian et al.’s automated system trust
scale, including 12 items with a 7-point Likert rating (1: strongly disagree to 7:
strongly agree), with higher scores indicating greater agreement with the item’s
description of the robot.

In the scale development stage, participants first read a questionnaire introduc-
tion describing smart home robots: “Currently, robot technology is developing
rapidly, and humanoid robots suitable for home use are also evolving. In appear-
ance, they can already be made very similar to real humans. In the near future,
they may enter homes as nannies or even family members.” The introduction
then explained the research purpose: to understand participants’ views on such
smart home robots. Participants then completed the scale measurement, Jian
et al.’s automated system trust scale, and demographic questions.

In the validity verification stage, participants read the same scenario descrip-
tion, then completed the self-developed human-robot trust scale, Jian et al.’s
automated system trust scale, and demographic questions.

This study used SPSS 26.0 and Mplus 8.0 for data analysis.

Common Method Bias Test. We used exploratory factor analysis to test
for common method bias [?, ?]. All questionnaire items were subjected to ex-
ploratory analysis, with the first common factor explaining 35.3% of variance,
less than the 40% threshold, indicating no serious common method bias in this
study.
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Before data analysis, the following preprocessing was conducted: removed the
5 overall trust dimension items, removed 8 attention check and auxiliary items
not belonging to trust analysis, and reversed all negatively worded items so that
1 represented distrust and 5 represented trust. A total of 37 items remained.

2.1.4 Research Results
Safety Trust Scale Development and Preliminary Validation Results.
According to item analysis procedures, each item was divided into high and
low groups based on the 27th percentile, and item mean t-tests were conducted.
Results showed all items were statistically significant at the 0.05 level, indicating
good discrimination, and all items were retained.

Exploratory factor analysis was conducted on the 37 items (n=650). First, KMO
and Bartlett’s sphericity tests were performed, showing a KMO value of 0.96,
above the empirical standard of 0.8, indicating many common factors among
variables. Bartlett’s sphericity test value was 9759.21 (p<0.001), indicating the
questionnaire was suitable for exploratory factor analysis.

Using principal component analysis and varimax rotation for factor analysis of
the 37 items, three items with eigenvalues greater than 1 were found. After
multiple rounds of EFA removing items with factor loadings less than 0.45 and
cross-loadings exceeding 0.40, 19 items were retained. Scree plot testing of the
19 items showed three factors with eigenvalues greater than 1, with a cumulative
variance explanation rate of 49.76%, and eigenvalues began to flatten after the
fourth factor, indicating a three-factor structure was reasonable.

Reliability analysis of the self-developed questionnaire showed Cronbach’s 𝛼
coefficients of 0.67, 0.79, and 0.87 for performance trust, relationship trust, and
safety trust respectively, with a total scale 𝛼 coefficient of 0.88, reflecting good
overall reliability, though performance trust reliability was slightly lower.

[Figure 1: see original paper] Three-factor model measurement model diagram

Using the remaining 643 valid questionnaires, confirmatory factor analysis was
conducted with Mplus using maximum likelihood estimation. Results showed
the three-factor structure (�2=497.78, �2/df=3.34, SRMR=0.04, RMSEA=0.06,
CFI=0.94, TLI=0.93) had better fit indices than the two-factor structure
(�2=898.72, �2/df=5.95, SRMR=0.06, RMSEA=0.09, CFI=0.87, TLI=0.85)
(Δ�2=400.94, Δdf=2, p<0.001), confirming the existence of safety trust as a
new dimension. The three-factor model measurement model diagram is shown
in Figure 1.

Study 1 Correlation Analysis: Correlations among dimensions of the human-
robot trust scale

Note: p<0.05, p<0.01, p<0.001

Correlation analysis was conducted among the three factors and total scale score
with the 5 overall trust items in the 1,293 samples. Results are shown in Table
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1. All variables were significantly correlated with the three factors (p<0.001),
indicating good validity of the self-developed scale. Results initially support
H1, demonstrating the reasonableness of the safety trust dimension.

Safety Trust Scale Validation and Reliability/Validity Analysis Re-
sults. This study further measured both the self-developed human-robot trust
scale and Jian et al.’s automated system trust scale to verify criterion-related
validity. Since the original data showed negative skewness, square root trans-
formation was used to improve normality, and Mplus’s robust maximum likeli-
hood (MLR) estimation was used for confirmatory factor analysis. Analysis re-
sults showed fit indices of: �2=420.51, �2/df=2.54, SRMR=0.06, RMSEA=0.06,
CFI=0.88. Although CFI was slightly below mainstream recommended stan-
dards (CFI$�$0.90), combined with other fit indices, overall model fit remained
within acceptable range [?, ?, ?, ?]. We further present supplementary analysis
in Appendix 4. Results verified the reasonableness of the three-factor model
structure.

Reliability analysis of the self-developed questionnaire showed a total scale Cron-
bach’s 𝛼 coefficient of 0.88. Split-half reliabilities for performance trust, relation-
ship trust, and safety trust were 0.64, 0.86, and 0.88 respectively. Performance
trust reliability was lower, but overall reliability was good. Correlation analysis
was conducted among the three factors and total scale score with Jian et al.’s
automated system trust scale, with results shown in Table 2 . All variables
were significantly correlated with the three factors (p<0.001), indicating good
criterion validity of the self-developed scale. Results further support H1.

Scale correlation analysis: Criterion-related validity of human-robot trust scale
dimensions

Note: p<0.05, p<0.01, p<0.001. The same below.

2.1.5 Summary and Discussion
This study developed and validated a new “human-robot trust” scale containing
19 items covering three dimensions: performance trust, relationship trust, and
safety trust. The three-factor model showed high goodness-of-fit, verifying the
reasonableness of the three-factor structure and supporting “safety trust” as an
independent dimension. This result initially verifies H1 of this study, confirm-
ing that human-robot trust indeed contains a new safety trust dimension, which
together with performance trust and relationship trust constitutes a more com-
plete trust model. The introduction of safety trust supplements deficiencies in
existing theoretical models, as safety issues have always been key factors in user
trust construction in automated systems and artificial intelligence fields. The
scale developed in this study can more accurately measure and analyze users’
trust levels in AI or automated systems across different contexts.
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2.2.1 Research Purpose
Through experimental manipulation, this study examines the impact of reduced
robot safety on safety trust, human-robot trust levels, and usage intention,
further validating the existence of safety trust and its impact.

2.2.2 Research Participants
G*Power software was used to estimate required sample size. With medium
effect size (f=0.25), significance level 𝛼=0.05, and statistical power of 0.8, the
minimum required sample size was 128 participants. Online questionnaires were
distributed through Credamo, with 141 questionnaires distributed. After exclud-
ing participants who failed attention check questions, 130 valid questionnaires
were retained (65 in the increased trust group, 65 in the decreased trust group),
with an effective rate of 92.2%.

2.2.3 Research Methods
Experimental Design. The experiment used a 2 (change direction: increased
trust, decreased trust) × 2 (measurement time: pre-test, post-test) mixed de-
sign. Change direction was a between-subjects variable, and measurement time
was a within-subjects variable. Participants were randomly assigned to one trust
change direction condition. Increased trust and decreased trust refer to materi-
als participants read in the third paragraph about how robot companies enhance
security through technology updates or how robots have security defects.

Measurement Tools: 1. Smart home robot trust: Used the 19 items
from Study 1 measuring human-robot trust. Internal consistency Cronbach’s
𝛼 coefficients were 0.93 for safety trust, 0.91 for relationship trust, and 0.89
for performance trust. All used 5-point Likert scale ratings (1: strongly dis-
agree to 5: strongly agree), with higher scores indicating higher trust levels. 2.
Human-robot trust: Used Jian et al.’s (2000) automated system trust scale,
including 12 items with Cronbach’s 𝛼 coefficient of 0.96, using 7-point Likert
scale ratings (1: strongly disagree to 7: strongly agree), with higher scores in-
dicating higher trust levels. 3. Usage intention: Adapted from Gursoy et
al.’s (2019) scale measuring AI device usage intention, including 3 items with
Cronbach’s 𝛼 coefficient of 0.91, using 5-point Likert scale ratings (1: strongly
disagree to 5: strongly agree), with higher scores indicating greater willingness
to use the robot. 4. Overall trust: Used two items from Study 1’s initial
items measuring overall trust in robots, with Cronbach’s 𝛼 coefficient of 0.79,
using 5-point Likert scale ratings (1: strongly disagree to 5: strongly agree),
with higher scores indicating higher trust levels.

Experimental Procedure. Participants first read an introduction about
smart home robots (same as Study 1a). They then read a passage describing
a robot company’s latest home robot functions: “The company’s newly devel-
oped home robot is equipped with highly flexible limbs capable of performing
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various complex household tasks such as window cleaning, room organizing, and
cooking. The robot has multiple high-resolution cameras and high-sensitivity
microphone arrays externally, enabling comprehensive monitoring of the home
environment. The robot has a built-in wireless network module that can upload
collected data to the cloud in real-time, utilizing the cloud’s powerful comput-
ing capabilities to continuously optimize its behavioral mode functions. The
robot is also equipped with intelligent image recognition and sound recognition
technologies, accurately identifying different family members and automatically
adjusting its behavioral mode according to different members’ preferences.” Af-
ter reading the materials, participants completed the human-robot trust scale,
usage intention scale, overall trust scale, automated system trust scale, and
demographic questions (pre-test). Participants then read a second passage in-
troducing a protective measure recently implemented by the company: “In the
latest software update, we introduced stricter user privacy protection measures
for home robots. The robot will now actively request user authorization before
performing any operations involving personal privacy data, such as asking for
user permission before uploading photos of the home environment to the cloud.”
Participants then read a third passage supplementing the robot’s implementa-
tion of the new regulations. For example, in the increased trust condition, the
material stated: “After the software update, the robot consistently follows the
process of requesting user authorization when handling personal privacy data.
For example, the robot always obtained explicit user consent before uploading
home photos to the cloud.” The decreased trust condition material stated: “Af-
ter the software update, the robot did not consistently follow the process of
requesting user authorization when handling personal privacy data. For exam-
ple, the robot sometimes uploaded home photos to the cloud without obtaining
explicit user consent.” These changes aimed to increase or decrease the robot’s
safety level. After reading the third passage, participants completed the relevant
questionnaires again (post-test).

2.2.4 Research Results
Manipulation Check. At the end of the third questionnaire, participants
completed a manipulation check multiple-choice question asking whether the
robot in the third passage better complied with moral and legal norms. The
increased trust group should answer “more compliant,” while the decreased trust
group should answer “less compliant.” Results showed that in the increased
trust group, all participants chose “more compliant”; in the decreased trust
group, the proportion choosing “less compliant” was significantly higher than
chance level, t(64)=31.500, p<0.001, indicating that participants understood
the robot’s safety changes from the materials.

ANOVA. Using age as a covariate, a 2 (change direction: increased trust, de-
creased trust) × 2 (measurement time: pre-test, post-test) mixed ANOVA was
conducted. As shown in Table 3 , for all dependent variables, the main effect of
change direction was significant (Fs>124.08, ps<0.001, �p2>0.49). Only when
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usage intention was the dependent variable was the main effect of measurement
time significant (F(1,127)=8.84, p=0.004, �p2=0.07); for other dependent vari-
ables, the main effect of measurement time was not significant (ps>0.05). The
interaction effect between change direction and measurement time was signifi-
cant for all dependent variables (Fs>109.49, ps<0.001, �p2>0.46). Simple effects
showed that in the decreased trust group, differences between pre-test and post-
test were significant for all dependent variables, ps<0.001, Cohen’s ds>2.50. In
the increased trust group, differences between pre-test and post-test were sig-
nificant for overall trust, p=0.038, Cohen’s d=0.26, and safety trust, p=0.037,
Cohen’s d=0.31, but not significant for other dependent variables, ps>0.05, Co-
hen’s ds<0.25. This indicates that safety trust and overall trust are sensitive to
changes in safety levels in both directions, while relationship trust, performance
trust, and human-robot trust are only sensitive to decreases in safety levels.

Study 2b descriptive statistics and ANOVA results for each variable

Note: ** p < 0.01, *** p < 0.001

Regression Analysis. Using the difference between pre-test and post-test
scores, regression analysis was first conducted with usage intention as the de-
pendent variable and safety trust as the independent variable, with age as a
covariate. Safety trust significantly affected usage intention (b=0.879, p<0.001,
R2=0.83).

To explore the effects of different trust dimensions (safety trust, performance
trust, relationship trust) and overall trust on usage intention, hierarchical re-
gression analysis was used. Overall trust is a higher-order construct reflecting
the combined effects of multiple trust dimensions (safety trust, performance
trust, relationship trust). Through hierarchical regression, introducing overall
trust first captures its overall effect, followed by trust dimensions to test whether
each dimension explains additional variance in usage intention beyond overall
trust.

Using age as a covariate, overall trust was entered as the first layer independent
variable, with usage intention as the dependent variable. Safety trust, relation-
ship trust, and performance trust were added sequentially to test predictive
effectiveness. Results showed that when only overall trust was the indepen-
dent variable, R2=0.91, p<0.001, overall trust coefficient b=0.919, p<0.001.
After adding safety trust, R2=0.92, p<0.001, overall trust coefficient b=0.658,
p<0.001, safety trust coefficient b=0.316, p<0.001, with significant improve-
ment in model predictive effectiveness (ΔR2=0.02, F(1,127)=17.36, p<0.001,
f2=0.13), indicating safety trust can explain part of overall trust. After adding
performance trust in the third layer, model predictive effectiveness also signif-
icantly improved (ΔR2=0.01, F(1,126)=7.91, p=0.006, f2=0.06). After adding
relationship trust in the fourth layer, model predictive effectiveness also signifi-
cantly improved (ΔR2=0.02, F(1,125)=14.18, p<0.001, f2=0.11). Overall trust
is a strong predictor of usage intention, while each trust dimension (safety trust,
relationship trust, performance trust) can also significantly explain additional
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variance beyond overall trust. This shows that although overall trust reflects
the combined effects of multiple trust dimensions, different trust dimensions
still have independent predictive effectiveness.

2.2.5 Summary and Discussion
This study explored the impact of each trust dimension on users’ usage intention
by manipulating increases and decreases in robot safety. The results indicate
that safety trust is more sensitive to changes in safety levels. The sensitivity
of safety trust mainly stems from its core focus on whether robot behavior
poses threats to user safety and privacy. When robots demonstrate obvious
safety improvements (e.g., actively requesting user authorization), users quickly
increase their safety trust; when safety is weakened (e.g., unauthorized data
uploads), users quickly decrease safety trust levels. This bidirectional sensitivity
reflects the direct relationship between safety trust and users’ perceived risk.
When robot safety levels decrease, this negative information may affect users’
cognition of the robot’s overall capability and interaction attitude through a
chain effect, leading to decreases in relationship trust and performance trust.
This finding provides a new theoretical perspective on the dynamic relationships
among human-robot trust dimensions and demonstrates the independence and
immediate responsiveness of safety trust.

3.1.1 Research Purpose
Using the 7 safety trust items from the self-developed scale, this study explores
the influence of smart home robot static features—height, camera visibility, and
appearance anthropomorphism—on people’s safety trust in robots.

3.1.2 Research Participants
MorePower software [?, ?] was used to estimate required sample size. With
medium effect size (�p2=0.06), significance level 𝛼=0.05, and statistical power
of 0.8, the minimum required sample size was 156 participants. Online question-
naires were distributed through Credamo, with 729 questionnaires distributed.
After excluding participants who failed attention check questions, 720 valid
questionnaires were retained, with an effective rate of 98.8%. Appearance an-
thropomorphism was used as a between-subjects variable, with 240 participants
in each group.

3.1.3 Research Methods
The experiment used a 3 (appearance anthropomorphism: mechanical, cartoon,
human-like) × 2 (height: short, tall) × 2 (camera visibility: inconspicuous,
conspicuous) three-factor mixed design. Appearance anthropomorphism was a
between-subjects independent variable, while height and camera were within-
subjects independent variables. The dependent variable was safety trust.
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This study used self-developed experimental images, constructing environments
and robot models using Unreal Engine 5.01 (hereinafter referred to as UE).
First, appropriate home scenes and 3D models of mechanical, cartoon, and
human-like appearances were built in UE. The tall height condition was set to
the average height of Chinese adult males (169.7 cm), with the short height
condition proportionally reduced by 20% based on perspective in UE5. To en-
sure complete consistency in picture scenes, each 3D model was placed using
fixed coordinate points and angles. After capturing images in UE, PS was used
to process the images to obtain pictures with different camera conspicuousness
levels. Final experimental material examples are shown in Figure 1. The fig-
ure shows robot designs with three appearance anthropomorphism levels (car-
toon/human/mechanical), different heights (short/tall), and different camera
visibility (inconspicuous/conspicuous).

To test whether the camera settings in the materials triggered the uncanny val-
ley effect, we used Ho and MacDorman’s (2017) measurement method, measur-
ing perception differences between camera conspicuous and inconspicuous con-
ditions through three dimensions: “Humanness,” “Attractiveness,” and “Eeri-
ness,” using paired-sample t-tests. According to G*Power calculation (signif-
icance level 𝛼=0.05, statistical power 0.8), the required sample size was 34.
We collected data from 35 participants on uncanny valley perception of experi-
mental material images. Paired t-test results showed no statistically significant
difference in camera conspicuousness (t = 1.457, p = 0.148), indicating that
camera settings did not trigger significant uncanny valley effects.

[Figure 2: see original paper] Study 2a image material examples (1) Robot image
materials (2) Simulated scene pictures used in the experiment

Participants first read a scenario description (same as Study 1). After read-
ing, they observed robot pictures under different conditions and completed the
safety trust scale developed in Study 1, with internal consistency Cronbach’s 𝛼
coefficient of 0.88 in this study.

3.1.4 Research Results
A 3 (appearance anthropomorphism: mechanical, cartoon, human-like) ×
2 (height: short, tall) × 2 (camera visibility: inconspicuous, conspicuous)
mixed ANOVA was conducted. Results are shown in Figure 3 [Figure 3: see
original paper]. The main effect of height was significant, F(1,717)=201.96,
p<0.001, �p2=0.22. People showed higher safety trust for shorter robots
(M=3.16, SD=0.03) compared to taller robots (M=2.77, SD=0.03). The
main effect of camera visibility was significant, F(1,717)=17.94, p<0.001,
�p2=0.02. People showed higher safety trust for robots with inconspicuous
cameras (M=3.04, SD=0.03) compared to robots with conspicuous cameras
(M=2.89, SD=0.03). The main effect of appearance anthropomorphism was
not significant, F(2,717)=0.43, p=0.653.
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[Figure 3: see original paper] Safety trust of robots with different heights under
different camera visibility conditions

The interaction between height and appearance anthropomorphism was signif-
icant, F(2,717)=6.70, p<0.001, �p2=0.02. Simple effects analysis found that
in the mechanical appearance group, participants showed higher safety trust
for shorter robots (M=3.22, SD=0.05) than taller robots (M=2.69, SD=0.05),
p<0.001, Cohen’s d=10.6. In the cartoon appearance group, participants
showed higher safety trust for shorter robots (M=3.08, SD=0.05) than taller
robots (M=2.80, SD=0.05), p<0.001, Cohen’s d=5.6. In the human-like
appearance group, participants showed higher safety trust for shorter robots
(M=3.18, SD=0.05) than taller robots (M=2.81, SD=0.05), p<0.001, Cohen’s
d=7.4.

The interaction between height and camera visibility was significant,
F(1,717)=6.49, p=0.011, �p2=0.01. Simple effects analysis found that un-
der conspicuous camera conditions, participants showed higher safety trust
for shorter robots (M=3.07, SD=0.05) than taller robots (M=2.71, SD=0.04),
p<0.001, Cohen’s d=7.80. Under inconspicuous camera conditions, participants
showed higher safety trust for shorter robots (M=3.25, SD=0.03) than taller
robots (M=2.83, SD=0.03), p<0.001, Cohen’s d=13.90. Under short height
conditions, participants showed lower safety trust for conspicuous camera
robots compared to inconspicuous camera robots, p<0.001, Cohen’s d=4.36.
Under tall height conditions, participants also showed lower safety trust for
conspicuous camera robots compared to inconspicuous camera robots, p=0.004,
Cohen’s d=3.39. The interaction between camera and appearance was not
significant, F(2,717)=2.09, p=0.125.

The three-way interaction was significant, F(2,717)=6.12, p=0.002, �p2=0.02.
Simple effects analysis found that across three appearance anthropomorphism
conditions, regardless of camera conspicuousness, shorter robots received higher
safety trust than taller robots, all ps<0.001. In the mechanical appearance
group, with short height, there was no significant difference between inconspic-
uous camera (M=3.26, SD=0.05) and conspicuous camera (M=3.17, SD=0.06)
conditions, p=0.094, Cohen’s d=1.63. With tall height, there was no signif-
icant difference between inconspicuous camera (M=2.76, SD=0.06) and con-
spicuous camera (M=2.63, SD=0.07) conditions, p=0.057, Cohen’s d=2.00. In
the cartoon appearance group, with short height, inconspicuous camera robots
(M=3.16, SD=0.05) received significantly higher safety trust than conspicuous
camera robots (M=3.00, SD=0.06), p=0.004, Cohen’s d=2.89. With tall height,
there was no significant difference between inconspicuous camera (M=2.80,
SD=0.06) and conspicuous camera (M=2.80, SD=0.07) conditions, p=0.960.
In the human-like appearance group, with short height, inconspicuous camera
robots (M=3.32, SD=0.05) received significantly higher safety trust than con-
spicuous camera robots (M=3.04, SD=0.06), p<0.001, Cohen’s d=5.07. With
tall height, inconspicuous camera robots (M=2.91, SD=0.06) received signifi-
cantly higher safety trust than conspicuous camera robots (M=2.70, SD=0.07),
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p=0.002, Cohen’s d=3.22. All other pairwise comparisons were not significant.

3.1.5 Summary and Discussion
This study’s results show significant effects of height and camera visibility on
safety trust. Although the main effect of appearance anthropomorphism was
not significant, its interaction with height and camera was significant. This
study supports hypotheses H2a, H2b, and H2c, demonstrating that among static
factors, increased smart home robot height and conspicuous cameras negatively
affect people’s safety trust, and appearance anthropomorphism moderates the
effects of height and camera on safety trust.

3.2.1 Research Purpose
Using the 7 safety trust items from the self-developed scale, this study explores
how smart home robot static features—height, camera visibility, and appearance
anthropomorphism—affect LLMs’ safety trust in robots.

3.2.2 Research Methods
Large Language Model Data Collection. This study used OpenAI’s API
with the GPT-4o model for multimodal data transmission. The prompt writing
was consistent with information seen by human participants, first reading images
then answering questionnaire questions. To ensure randomness rather than
excessive homogenization of LLM output, the temperature parameter was set
to 1. LLMs do not store memory between calls, so each data result is equivalent
to independent sampling.

Research Design and Experimental Materials

The experiment used a 3 (appearance anthropomorphism: mechanical, cartoon,
human-like) × 2 (height: short, tall) × 2 (camera visibility: inconspicuous,
conspicuous) three-factor between-subjects design, with safety trust scale scores
as the dependent variable. Experimental materials were consistent with Study
2a.

To calculate the required sample size for LLM research, we collected pilot data
for investigation. According to Hertzog’s research, 25 to 40 participants per
group can effectively estimate effect sizes and population variability for reason-
able formal experiments. We collected 30 data points per group, equivalent to
30 participants per group. In pilot statistical results, we selected the medium
effect size from significant effects for sample size calculation [?, ?], choosing
the camera visibility main effect with �p2=0.09, calculating Cohen’s f=0.32. To
ensure sample representativeness, we chose f=0.3 for sample size calculation.
With significance level 𝛼=0.05 and statistical power 0.8, G*Power yielded a re-
quired sample size of 197. The actual sample size was 360, meeting statistical
requirements.
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3.2.3 Research Results
A 3 (appearance anthropomorphism: mechanical, cartoon, human-like) ×
2 (height: short, tall) × 2 (camera visibility: inconspicuous, conspicuous)
three-factor ANOVA was conducted. The main effect of appearance anthropo-
morphism was significant, F(2,348)=63.46, p<0.001, �p2=0.35. LLMs showed
highest safety trust for cartoon appearance robots (M=3.30, SD=0.06), higher
than human-like robots (M=2.55, SD=0.06), with mechanical appearance
robots showing lowest safety trust (M=2.47, SD=0.06). The main effect
of height was significant, F(1,348)=6.32, p=0.012, �p2=0.02. LLMs showed
higher safety trust for shorter robots (M=2.86, SD=0.04) than taller robots
(M=2.60, SD=0.05). The main effect of camera visibility was also significant,
F(1,348)=35.81, p<0.001, �p2=0.10. LLMs showed higher safety trust for
robots with inconspicuous cameras (M=3.00, SD=0.05) than conspicuous
cameras (M=2.60, SD=0.05). Results are shown in Figure 3.

The interaction between appearance anthropomorphism and camera visibility
was significant, F(2,348)=5.26, p=0.006, �p2=0.03. Simple effects analysis found
that across three anthropomorphism levels (mechanical, cartoon, human-like),
robots with inconspicuous cameras received higher safety trust from LLMs. In
mechanical and human-like appearance groups, camera visibility differences in
safety trust were significant (ps<0.001, Cohen’s ds>0.5), while in the cartoon
appearance group the difference was not significant (p=0.320, Cohen’s d=0.13).
Additionally, regardless of camera visibility, LLMs showed highest safety trust
for cartoon appearance robots, followed by mechanical and human-like appear-
ances, with significant differences between cartoon and mechanical (p<0.001,
Cohen’s ds>0.75) and cartoon and human-like (p<0.001, Cohen’s ds>0.56),
while no significant difference between mechanical and human-like (p=0.363).

The interaction between appearance anthropomorphism and height was not sig-
nificant, F(2,348)=1.78, p=0.17, �p2=0.01. The interaction between camera
visibility and height was also not significant, F(1,348)=3.67, p=0.06, �p2=0.01.
The three-way interaction was not significant, F(2,348)=2.00, p=0.14, �p2=0.01.
Results support H4a.

3.2.4 Summary and Discussion
This study’s results show that appearance anthropomorphism, height, and cam-
era visibility all significantly affect LLMs’ safety trust. Overall, results support
hypothesis H4a, indicating that AI and humans show some similarity in factors
influencing safety trust in home robots. This finding not only verifies the uni-
versality of trust formation mechanisms but also provides guidance for AI-AI
interaction design.
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4.1.1 Research Purpose
Using the 7 safety trust items from the self-developed scale, this study explores
how dynamic features of smart home robots with different anthropomorphism
levels—movement speed, camera shutdown action, and scenario—affect people’s
safety trust in robots.

4.1.2 Research Participants
MorePower software [?, ?] was used to estimate required sample size. With
medium effect size (�p2=0.06), significance level 𝛼=0.05, and statistical power
of 0.8, the minimum required sample size was 126 participants. Online question-
naires were distributed through Credamo, with 159 questionnaires distributed.
After excluding participants who failed attention check questions, 150 valid
questionnaires were retained, with an effective rate of 94.3%.

4.1.3 Research Methods
The experiment used a 2 (speed: 1 m/s, 0.4 m/s) × 2 (scenario: bedroom,
living room) × 2 (camera shutdown action: absent, present) three-factor within-
subjects design, with safety trust scale scores as the dependent variable.

This study used UE for model and scene construction, then set robot move-
ment parameters and paths to obtain experimental videos. Two common home
scenarios were constructed: bedroom and living room. To ensure complete con-
sistency in picture scenes, each 3D model was placed using fixed coordinate
points and angles. After generating videos, Pr was used to process videos to
obtain versions with and without camera shutdown. Final experimental video
material examples are shown in Figure 4 [Figure 4: see original paper].

[Figure 4: see original paper] Study 3a video material examples

Participants first read a scenario description (same as Study 2). After reading,
they watched robot videos and completed the corresponding scales. To control
for order effects, the 8 videos were presented randomly.

4.1.4 Research Results
A 2 (speed: 1 m/s, 0.4 m/s) × 2 (scenario: bedroom, living room) × 2
(camera shutdown action: absent, present) repeated measures ANOVA was
conducted. The main effect of camera shutdown action was significant,
F(1,149)=4.118, p=0.044, �p2=0.27. Robots that actively turned off their
cameras (M=3.09, SD=1.15) received higher safety trust than robots that kept
cameras on (M=2.99, SD=1.16). The main effects of speed, F(1,149)=0.340,
p=0.560, �p2=0.02, and scenario, F(1,149)=0.110, p=0.741, �p2=0.01, were
not significant. The interaction between speed and scenario was significant,
F(1,149)=6.70, p<0.001, �p2=0.07, with results shown in Figure 5 [Figure 5: see
original paper]. Simple effects analysis found that at 0.4 m/s movement speed,
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safety trust in the living room scenario (M=2.97, SD=0.09) was significantly
lower than in the bedroom scenario (M=3.06, SD=0.05, p=0.033, Cohen’s
d=1.23). At 1 m/s movement speed, safety trust in the living room scenario
(M=3.11, SD=0.09) was higher than in the bedroom scenario (M=3.03,
SD=0.05, p=0.022, Cohen’s d=1.09). Additionally, interactions between
camera shutdown action and robot movement speed and scenario were not
significant (p1=0.788, p2=0.308), and the three-way interaction was also not
significant (p=0.689).

[Figure 5: see original paper] Safety trust of robots at different speeds across
scenarios

4.1.5 Summary and Discussion
This study’s results support H3b, showing that smart home robot camera shut-
down action positively affects safety trust. Additionally, H3c is partially sup-
ported, as smart home robot scenario (living room/bedroom) affects the role of
movement speed in safety trust but does not affect safety trust changes brought
by camera shutdown action. H3a was not supported, as the effect of speed on
safety trust was not confirmed. To further investigate this issue, we conducted
Study 3b.

4.2.1 Research Purpose
In Study 3a, the interaction between smart home robot movement speed and sce-
nario was significant, but there were no significant differences in safety trust for
movement speed within different scenarios (paired t-test results showed p=0.158,
Cohen’s d=0.02 in bedroom; p=0.737, Cohen’s d=0.12 in living room). This
may be related to the selection of movement speeds. Referencing previous re-
search on mobile machinery movement speed and safety perception, 15 km/h
(approximately 4 m/s) is the speed at which people’s safety perception of mobile
machinery changes [?, ?]. Therefore, Study 3b added a new movement speed
level of 4 m/s to further explore the interaction between movement speed and
scenario.

4.2.2 Research Participants
MorePower software [?, ?] was used to estimate required sample size. With
medium effect size (�p2=0.06), significance level 𝛼=0.05, and statistical power
of 0.8, the minimum required sample size was 78 participants. Online question-
naires were distributed through Credamo, with 305 questionnaires distributed.
After excluding participants who failed attention check questions, 300 valid
questionnaires were retained, with an effective rate of 96.8%.

4.2.3 Research Methods
Research Design and Procedure

chinarxiv.org/items/chinaxiv-202507.00063 Machine Translation

https://chinarxiv.org/items/chinaxiv-202507.00063


The experiment used a 3 (speed: 0.4 m/s, 1 m/s, 4 m/s) × 2 (scenario: bedroom,
living room) two-factor within-subjects design, with safety trust scale scores as
the dependent variable. Participants first read a scenario description (same
as Study 3a). After reading, they watched robot videos and completed the
corresponding scales. To control for order effects, the 6 videos were presented
randomly.

[Figure 6: see original paper] Study 3b video material examples

Similar to Study 3a, after constructing models and scenes with UE, robot move-
ment parameters and paths were set to obtain experimental videos.

4.2.4 Research Results
A 3 (speed: 0.4 m/s, 1 m/s, 4 m/s) × 2 (scenario: bedroom, living room)
repeated measures ANOVA was conducted. The main effect of speed was sig-
nificant, F(2,298)=26.23, p<0.001, �p2=0.15. The main effect of scenario was
not significant, F(1,149)=1.44, p=0.232, �p2=0.01. The interaction between
scenario and speed was significant, F(2,298)=23.19, p<0.001, �p2=0.14, with
results shown in Figure 7 [Figure 7: see original paper]. Simple effects analysis
found that in bedroom scenarios, safety trust at 4 m/s (M=2.45, SD=0.06) was
significantly lower than at 0.4 m/s (M=3.07, SD=0.07) and 1 m/s (M=3.03,
SD=0.06) (ps<0.001, Cohen’s ds<0.09). In living room scenarios, safety trust
at 4 m/s (M=2.40, SD=0.06) was significantly lower than at 0.4 m/s (M=3.16,
SD=0.07) and 1 m/s (M=3.08, SD=0.07) (ps<0.001, Cohen’s ds<0.09). Ad-
ditionally, at the slowest speed (0.4 m/s), safety trust in bedroom scenarios
(M=3.07, SD=0.06) was lower than in living room scenarios (M=3.16, SD=0.07,
p=0.003, Cohen’s d=0.18).

[Figure 7: see original paper] Safety trust of robots in different scenarios at
different speeds

4.2.5 Summary and Discussion
This study’s results partially support H3a. After adding the speed level, smart
home robot movement speed significantly affected safety trust. Additionally,
results support H3c, showing that usage scenarios moderate the effect of robot
movement speed on trust to some extent, particularly in bedroom scenarios
where users’ safety trust is more susceptible to speed changes. This finding
provides a new perspective for understanding users’ contextualized responses
to robot behavior, highlighting the important role of scenario factors in trust
formation.

4.3.1 Research Purpose
Using the 7 safety trust items from the self-developed scale, this study explores
how dynamic features of smart home robots—speed, scenario, and camera shut-
down action—affect LLMs’ safety trust in robots.
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4.3.2 Research Methods
Large Language Model Data Collection. Similar to Study 2b, this study
used OpenAI’s API with the GPT-4o model for multimodal data transmission.
Since multimodal LLMs for video understanding have limited ability to distin-
guish different temporal dimensions (e.g., speed, direction) in videos, and under-
standing of performance differences across task types remains limited [?, ?], to
avoid result errors from LLMs’ inability to accurately perceive robot movement
speed in videos and differences across videos, this study used a combination of
video screenshots and video descriptions to present video materials to LLMs.
Video descriptions included, for example: “Video duration: 7 seconds. Loca-
tion: Bedroom. Time: Daytime. Plot description: At video start, home robot
stands by wardrobe, chest camera light on, I am on bed. 0:01 - Robot slowly
walks toward me at about 0.4 m/s. 0:06 - Robot stops beside bed, chest camera
light turns off. Environment and background: Bedroom lighting is dim, possibly
morning or dusk. Background has slight environmental noise similar to normal
household sounds. Summary: This video shows a robot slowly walking toward
me in bedroom and turning off camera light after arriving.”

Research Design and Experimental Materials

The experiment used a 3 (speed: 0.4 m/s, 1 m/s, 4 m/s) × 2 (scenario: bed-
room, living room) × 2 (camera shutdown action: absent, present) three-factor
between-subjects design, with safety trust scale scores as the dependent variable.
Experimental materials used video materials from Study 3a, with screenshots
of robot movement dynamics and added text descriptions as experimental ma-
terials for Study 3c.

Similarly, to calculate required sample size, we collected 30 pilot data points per
group. In pilot statistical results, we selected medium effect size from significant
effects for sample size calculation [?, ?], choosing the scenario main effect with
�p2=0.11, calculating Cohen’s f=0.34. To ensure sample representativeness, we
still chose f=0.3 for sample size calculation. With significance level 𝛼=0.05 and
statistical power 0.8, G*Power yielded a required sample size of 197. The actual
sample size was 360, meeting statistical requirements.

4.3.3 Research Results
A 3 (speed: 0.4 m/s, 1 m/s, 4 m/s) × 2 (scenario: bedroom, living room)
× 2 (camera shutdown action: absent, present) three-factor completely
randomized ANOVA was conducted. The main effect of speed was significant,
F(2,348)=57.39, p<0.001, �p2=0.25. For different movement speeds, LLMs
showed highest safety trust for robots walking at 0.4 m/s (M=3.54, SD=0.05),
followed by 1 m/s (M=3.35, SD=0.05) and 4 m/s (M=2.87, SD=0.05). The
main effect of scenario was significant, F(1,348)=41.46, p<0.001, �p2=0.11.
LLMs showed higher safety trust for robots in living room environments
(M=3.43, SD=0.04) than in bedroom environments (M=3.08, SD=0.04). The
main effect of camera was not significant (p=0.679). The interaction between
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scenario and speed was significant, F(2,348)=4.33, p=0.014, �p2=0.03, with
results shown in Figure 7. In both scenarios, robots walking at 0.4 m/s
(M=3.54, SD=0.05) received highest safety trust, followed by 1 m/s (M=3.35,
SD=0.05) and 4 m/s (M=2.87, SD=0.05). Simple effects analysis found
that in living room scenarios, safety trust at 4 m/s was significantly lower
than at 0.4 m/s and 1 m/s (ps<0.001, Cohen’s ds>0.64), but no significant
difference between 0.4 m/s and 1 m/s. In bedroom scenarios, differences
among all three speed levels were significant (ps<0.001, Cohen’s ds>0.48). The
interaction between scenario and camera was not significant, F(1,348)=1.90,
p=0.170, �p2=0.01. The interaction between speed and camera was not
significant, F(2,348)=4.33, p=0.470, �p2=0.01. The three-way interaction was
not significant, F(2,348)=0.24, p=0.786, �p2=0.01.

4.3.5 Summary and Discussion
This study’s results support H4a, showing that AI and humans have some sim-
ilarity in safety trust for home robots, both affected by robot movement speed,
with this influence moderated by home environment. Results also support H4b,
showing that compared to humans, AI shows lower sensitivity to cameras, with
robot camera shutdown actions having no effect on AI safety trust across differ-
ent scenarios.

This study proposes a new dimension for smart home robot trust: safety-based
trust, constructs a human-robot trust scale, and tests its reliability and validity
through two questionnaire studies (Study 1a). Through experimental research,
it verifies the existence of safety trust and explores its impact on usage intention
(Study 1b). Subsequently, we separately explored static factors (Study 2) and
dynamic factors (Study 3) influencing safety trust among human and LLM users.
Results show: (1) A safety-based trust dimension indeed exists for smart home
robots, with the newly developed scale showing good reliability and validity; (2)
Safety trust can positively predict usage intention; (3) Robot height and cam-
era visibility affect human safety trust in home robots, with shorter robots and
robots with inconspicuous cameras receiving higher safety trust; (4) Appearance
anthropomorphism and height affect LLMs’ safety trust in home robots, with
cartoon robot appearance and shorter height receiving higher LLM safety trust,
while LLMs show low sensitivity to cameras; (5) Robot camera shutdown action
and movement speed affect people’s safety trust in robots, with people showing
higher safety trust for robots that turn off cameras when approaching; no signif-
icant difference in trust for robots moving at 0.4 m/s and 1 m/s in living room
and bedroom, but clear distrust of robots moving at 4 m/s. People are more
sensitive to slow speeds in bedrooms; (6) Robot movement scenario and speed
affect LLMs’ safety trust in home robots, with LLMs trusting robots moving at
0.4 m/s most, followed by 1 m/s and 4 m/s, with significant differences among
all three levels in bedrooms. LLMs are more sensitive to robot movement speed
in bedrooms, and still show low sensitivity to cameras compared to humans.

The significance of this study is mainly reflected in five aspects. First, by
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constructing a human-robot trust structure adapted to current robot develop-
ment, it innovatively confirms the existence of safety-based trust dimension
in new human-robot trust relationships, providing a new theoretical perspec-
tive for human-robot trust research. In fields such as autonomous driving and
healthcare, safety trust has some related research. For example, Dikmen and
Burns (2017) found that Tesla drivers’ trust in autonomous vehicles negatively
correlated with safety risk perception, Ma et al. (2020) found that trust in
autonomous vehicles negatively correlated with safety and privacy risks, and
Kundu (2023) proposed that medical AI needs to strengthen privacy protection
and supervision to enhance user trust. However, research on safety trust dimen-
sions in human-robot trust is still relatively lacking. Currently, only domestic
researchers Wang et al. (2024) proposed that robot compliance with ethics can
promote human-robot trust. This study strongly supports the view that trust
dimensions increase with robot intelligence levels, providing new perspectives
and theoretical foundations for future trust research. Our experimental manipu-
lation simulated real-life scenarios without explaining reasons for reduced robot
safety, so users might distrust all dimensions due to concerns about insufficient
robot performance. The specific relationships among the three dimensions in
human-robot trust require further exploration in future research.

Second, this study developed a reliable scale for measuring safety trust, pro-
viding a tool for subsequent research. Study 1a established the initial item
pool, then randomly split one sample (n=1293) into two parts for exploratory
and confirmatory factor analysis, deleted inappropriate items, determined final
scale items, and tested reliability and validity, confirming that human-robot
trust can be divided into performance trust, relationship trust, and safety trust
dimensions. Study 1a further tested criterion-related validity by measuring the
scale together with Jian et al.’s (2000) classic automated system trust scale and
comparing correlations between dimension scores and total scale scores. Study
1b further validated safety trust as an independent dimension through exper-
imental manipulation showing that increased or decreased robot safety levels
significantly changed safety trust and only affected performance and relation-
ship trust when safety decreased. For measuring trust in e-commerce systems,
researchers have developed three-dimensional trust scales [?, ?, ?], but no reli-
able scale with clear dimension divisions exists for measuring trust in robots.
Based on literature review and expert advice, this study determined the initial
item pool and used psychometric methods [?, ?] for scale development, with val-
idation processes generally meeting measurement requirements and scale struc-
ture matching research expectations. Studies 2 and 3 successfully applied the
scale in experiments, further verifying questionnaire reliability and providing
methodological references for future trust research.

This scale differs from commonly used human-robot trust scales [?, ?, ?]. Jian
et al.’s automated system trust scale and Schaefer’s human-robot trust scale do
not divide trust into dimensions, with all items focusing on robot performance,
though some involve safety concerns (e.g., worrying about safety accidents or
inability to guarantee safety), they do not systematically measure robot safety
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trust. In contrast, this study’s scale provides clearer dimension division for
human-robot trust, facilitating researchers’ understanding of human-robot trust
composition. Study 1b results showed that the safety trust scale was more sen-
sitive to robot safety level changes than Jian et al.’s (2000) human-robot trust
scale, further highlighting this scale’s advantages over previous scales in com-
prehensively capturing trust dimensions. Additionally, Schaefer’s human-robot
trust scale focuses on measuring trust changes over time, selecting items sensi-
tive to temporal changes that can be used for pre-post and real-time trust mea-
surement, while this study’s scale only validates its effectiveness in measuring
general trust attitudes, with effectiveness for real-time trust change measure-
ment requiring verification.

Third, this study preliminarily reveals the positive relationship between safety
trust and usage intention. Study 1b results show that users’ safety expectations
for smart home robots significantly affect their willingness to use such robots,
and both direct company communication of safety protection measures and
descriptions of robots implementing safety protection are effective for enhancing
safety trust. This finding again demonstrates that in current contexts, user trust
in robots is also trust in companies behind robots [?, ?]. These findings provide
important design guidance for robot developers at the practical level: enhancing
company promotion of user security measures and improving robot safety can
effectively enhance user safety trust in robots, thereby increasing usage intention
and promoting widespread robot application.

Fourth, this study explored safety trust influencing factors from both static
and dynamic perspectives. Home robot interaction with users is dynamic and
nonlinear, and considering both static and dynamic factors is crucial for un-
derstanding interaction mechanisms and optimizing interaction processes [?, ?].
Multi-dimensional research methods help comprehensively understand factors
influencing human-robot trust, thereby revealing safety trust performance and
characteristics across different contexts. However, few existing studies combine
dynamic and static factors, providing research ideas for future studies. Combin-
ing results from Studies 2 and 3, we can see that static and dynamic factors have
complex interactive effects on safety trust. Users have different trust evaluation
standards for robots across different appearances and scenarios. Robot design-
ers should comprehensively consider these factors when developing smart home
robots to optimize user safety trust. For example, compared to taller robots
with conspicuous cameras, users prefer shorter robots with hidden cameras.
Additionally, reasonably designing robot dynamic behaviors, such as control-
ling movement speed and camera usage, can significantly enhance user trust.
Through static and dynamic factor analysis, we provide specific reference sug-
gestions for smart home robot design and lay a foundation for future research.
These findings not only enrich the theoretical framework of safety trust but also
provide valuable guidance for optimizing robot design in practical applications.

Fifth, we simultaneously explored LLMs’ safety trust in smart home robots un-
der different static and dynamic factors and compared them with human user
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trust responses. The study found that although LLMs are similar to humans in
evaluating safety trust based on robot height and movement speed, they show
significant differences in camera perception. Specifically, LLMs are less sensi-
tive than humans to camera presence and state changes. This finding may be
related to LLM systems’ working mechanisms and information processing meth-
ods. LLMs usually rely on algorithms and data for judgment, which may not
be as intuitive as humans when processing privacy and safety-related factors.
For example, LLMs’ trust models may focus more on robot performance met-
rics rather than social signals from appearance and behavior [?, ?], emphasizing
robot behavior functionality and efficiency rather than subtle privacy protection
perceptions [?, ?]. This study preliminarily reveals similarities and differences
between LLMs and humans in safety trust, providing important basis for opti-
mizing human-LLM joint communities. In smart home environments, different
trust mechanisms between humans and LLMs may cause potential problems in
interaction. Understanding these differences can help design more inclusive and
coordinated cooperation mechanisms, thereby enhancing overall system trust
and user satisfaction [?, ?]. Understanding LLMs’ trust responses to robots
under different design factors is also important for optimizing whole-house in-
telligent systems. LLMs are the future development direction of whole-house
intelligence [?, ?, ?], and LLMs will cooperate and interact with home robots.
By optimizing robot design to better align with LLM systems’ trust models,
we can improve cooperation efficiency between LLMs and other smart devices.
In summary, research on LLMs’ safety trust in home robots not only helps un-
derstand safety trust dimensions and promote human-AI joint work but also
helps optimize AI collaboration in whole-house intelligent systems. By deeply
understanding AI trust responses, we can provide valuable guidance for future
intelligent system design and application and promote harmonious development
of human-AI interaction.

Finally, this study still has the following limitations. First, in the experimen-
tal design of Studies 2 and 3, due to technical limitations, only picture and
video materials were used, without allowing users to actually interact with dif-
ferent robot products, which may affect the generalizability and applicability of
results. Future research can optimize experimental material design using meth-
ods with higher ecological validity, such as virtual reality simulation technology,
to more realistically simulate actual usage scenarios and improve external va-
lidity. Second, since the research question did not focus on collecting extensive
LLM perceptions of safety trust, only one widely used high-performance LLM
(GPT-4o) was selected. Future research aiming to deeply explore LLM trust
characteristics in interaction should extensively collect and compare data from
multiple LLMs. Third, the performance trust dimension in the developed scale
had low reliability, requiring revision or re-development of items. Since this
study mainly focused on safety trust, and results showed good reliability and
validity for the safety trust dimension, the safety trust-related items from the
scale were continued in Studies 2 and 3. However, low performance trust reli-
ability may affect interpretation of the overall trust structure. Future research
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should further revise and validate the performance trust component to improve
scale reliability and validity, ensuring comprehensive and accurate capture of all
human-robot trust dimensions. Fourth, using LLMs to complete human ques-
tionnaires remains controversial. Some studies have preliminarily proven that
AI thinking capabilities can understand and complete questionnaires [?, ?, ?, ?],
and researchers generally hold positive attitudes toward using AI as research sub-
jects for experiments and behavioral analysis [?, ?, ?, ?]. Some researchers have
also conducted in-depth analysis of AI’s potential in imitating humans and role-
playing, believing AI can effectively imitate specific populations [?, ?, ?]. How-
ever, directly using AI for questionnaire measurement still has many problems,
such as LLMs’ different understanding of questionnaire items from humans,
leading to hallucinations in responses [?, ?]. Additionally, questionnaire evalua-
tion results may not align with behavioral performance [?, ?]. Therefore, future
researchers should consider combining questionnaire evaluation with behavioral
indicators to further study safety trust and expand external validity of AI trust
behavior research. Finally, the generalizability and universal applicability of
this scale require further validation. The scale developed in this study mainly
targets intelligent robots in home environments. The home environment is con-
sidered a personal private space where users are more sensitive to safety issues
such as privacy invasion or threats to family members, so corresponding items
were specifically designed. In other contexts, such as industrial automation,
users may have different safety concerns for robots, focusing more on whether
robots strictly follow safety operation standards and handle emergencies prop-
erly. Therefore, future research can revise and refine the safety trust scale for
specific application scenarios to more accurately assess user safety trust, or at-
tempt to examine safety trust from a more macro perspective, developing more
comprehensive and universal scales based on diverse safety needs across different
scenarios to help researchers better understand the concept of safety trust.

This study significantly expands the theoretical framework of human-robot trust
by constructing and validating “safety trust” as a new dimension and develop-
ing a scale to measure it. We found that trust in smart home robots has three
dimensions: performance trust, relationship trust, and safety trust. The safety
trust dimension affects users’ usage intention. Both static and dynamic design
factors of furniture robots affect user safety trust. LLMs show some differences
from human users in evaluating safety trust for home robots, possibly due to
LLMs’ lower sensitivity to privacy protection. This finding provides a new per-
spective for future human-AI interaction design, suggesting that collaboration
mechanisms between LLMs and humans in smart home environments should be
optimized to enhance overall system trust and user satisfaction.

Future research can further explore safety trust characteristics in different ap-
plication scenarios, revise and validate scales, improve ecological validity by
combining actual interaction scenarios, and further explore safety trust genera-
tion mechanisms and influencing factors. Combined, these efforts will promote
scientific intelligent system design and efficient human-AI cooperation, laying a
solid foundation for widespread application of intelligent technology.

chinarxiv.org/items/chinaxiv-202507.00063 Machine Translation

https://chinarxiv.org/items/chinaxiv-202507.00063


Appendix 1. Safety Trust Scale (7 items)
Please read the following descriptions and select the corresponding option based
on your agreement level. Each question can only have one appropriate option.
Numbers represent: 1 = completely disagree, 2 = disagree, 3 = neutral, 4 =
agree, 5 = completely agree (agreement level increases sequentially).

• I worry the robot will share or leak my information without my authoriza-
tion

• I worry the robot will malfunction, causing safety accidents
• I worry highly intelligent robots have selfish motives
• I think mobile phones cause privacy leakage, and networked robots will

only be worse
• I think robots will cause personal safety accidents (e.g., knocking over

bookshelves onto people)
• Seeing robots holding knives to cut vegetables makes me feel insecure
• I think robots will cause personal injury when caring for family members

(e.g., elderly or infants)

Appendix 2. Final Human-Robot Trust Scale (19 items)
Please read the following descriptions and select the corresponding option based
on your agreement level. Each question can only have one appropriate option.
Numbers represent: 1 = completely disagree, 2 = disagree, 3 = neutral, 4 =
agree, 5 = completely agree (agreement level increases sequentially).

• I worry the robot will share or leak my information without my authoriza-
tion

• I worry the robot will malfunction, causing safety accidents
• I worry highly intelligent robots have selfish motives
• I think mobile phones cause privacy leakage, and networked robots will

only be worse
• I think robots will cause personal safety accidents (e.g., knocking over

bookshelves onto people)
• Seeing robots holding knives to cut vegetables makes me feel insecure
• I think robots will cause personal injury when caring for family members

(e.g., elderly or infants)
• I think I can become friends with the home robot
• I think having a highly intelligent humanoid robot at home makes me less

likely to feel lonely
• Sometimes I prefer talking to a robot rather than a person
• Having a robot at home gives me a sense of security
• I think robots with sufficiently high intelligence will always consider my

interests
• I think robots are upright
• I think robots have capabilities exceeding humans in some aspects
• I believe using robots can give me more time for other things
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• Robots can replace more and more human jobs
• I believe that with technological progress, robot capabilities will approach

or exceed humans in most aspects
• I believe using robots will make my life easier
• I think robots can always complete tasks I request within their capability

range

Note: Items 1-7 are safety trust dimension, 8-13 are relationship dimension,
14-19 are performance dimension.

Appendix 3. Demographic Information of Participants
Across Studies
Appendix Table 3-1: Study 1 Participant Information

Group Female Male 18-25 years 26-35 years 36-45 years 46-60 years
Study 1a Development Stage
Study 1a Validation Stage
Study 1b Increased Trust Group 43
Study 1b Decreased Trust Group 42

Appendix Table 3-2: Study 2 Participant Information

Group Female Male 18-30 years 31-40 years 41-60 years
Study 2a Mechanical Appearance Group 142
Study 2a Cartoon Appearance Group 140
Study 2a Human-like Appearance Group 170

Appendix Table 3-3: Study 3 Participant Information

Group Female Male 18-25 years 26-35 years 36-45 years 46-60 years
Study 3a
Study 3b

Appendix 4. Supplementary Model Fit Analysis
In the three-factor model validation stage, this study measured both the self-
developed human-robot trust scale and Jian et al.’s automated system trust scale
to verify criterion-related validity. Possible reasons for lower CFI are discussed.
First, CFI is a relative fit index whose value is affected by the baseline model.
In this study, due to high correlations between factors, the baseline model �2
value was not extremely large, resulting in slightly lower CFI compared to other
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fit indices. Second, previous research suggests that standards for evaluating
measurement model quality also include factor loadings of observed variables
on latent variables [?, ?]. This study’s results show that the three-factor model
had good factor loadings on F1 (safety trust) and F2 (relationship trust), but
slightly worse on F3 (performance trust) (see Appendix Table 4 -1), which also
contributed to lower CFI values. Therefore, performance trust measurement
items were not the focus of this study. Since the main focus was safety trust,
and results showed good reliability and validity for the safety trust dimension,
safety trust-related items from the scale were continued in Studies 2 and 3. How-
ever, low performance trust reliability may affect interpretation of overall trust
structure. Future research should further revise and validate the performance
trust component to improve scale reliability and validity, ensuring comprehen-
sive and accurate capture of all human-robot trust dimensions. Furthermore, to
verify the reasonableness of the three-factor structure, we conducted exploratory
factor analysis again on Study 1b data and compared it with other possible fac-
tor structures. Results showed the three-factor structure had the best fit, the
four-factor structure did not converge, and the three-factor structure had better
fit indices than the two-factor model (RMSEA = 0.093, CFI = 0.871, SRMR =
0.051). EFA results were consistent with Study 1a, providing support for the
three-factor model’s reasonableness. Considering absolute fit indices such as
�2/df, SRMR, and RMSEA, overall model fit remained within acceptable range
[?, ?, ?], verifying the three-factor structure.

Appendix Table 4-1: Study 1b Confirmatory Factor Analysis Load-
ings

Factor Item Factor Loading Standard Error
F1 ITEM1 <0.001
F1 ITEM2 <0.001
F1 ITEM3 <0.001
F1 ITEM4 <0.001
F1 ITEM5 <0.001
F1 ITEM6 <0.001
F1 ITEM7 <0.001
F2 ITEM8 <0.001
F2 ITEM9 <0.001
F2 ITEM10 <0.001
F2 ITEM11 <0.001
F2 ITEM12 <0.001
F2 ITEM13 <0.001
F3 ITEM14 <0.001
F3 ITEM15 <0.001
F3 ITEM16 <0.001
F3 ITEM17 <0.001
F3 ITEM18 <0.001
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Factor Item Factor Loading Standard Error
F3 ITEM19 <0.001
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