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Abstract
The cognitive characteristics and neural mechanisms of multi-channel category
learning are of critical importance for elucidating the principles of cross-modal
knowledge representation. This study combines event-related potential (ERP)
technology with the drift-diffusion model to systematically investigate the cog-
nitive characteristics and neural mechanisms of multi-channel category learning.
Behavioral results showed that, compared to the early learning stage, the middle
and late learning stages exhibited significant increases in accuracy and drift rate,
significant decreases in response time, and a shift in the decision starting point
toward the correct option. At the neural level, the middle and late learning
stages elicited changes in the amplitudes of N1, P1, N250, FSP (Frontal Selec-
tion Positivity), and LPC (Late Positive Component); time-frequency analysis
revealed significant attenuation in Theta, Alpha, and Delta frequency bands.
Regression analysis indicated that N250-FSP amplitude and Theta oscillations
jointly explained variance in drift rate, while P1, N250-FSP, and LPC could
predict shifts in the decision starting point. The study demonstrates that learn-
ing training optimizes decision efficacy through dual mechanisms: (1) enhanced
information accumulation rate is associated with reduced N250-FSP amplitude
and attenuated Theta band power; (2) shifts in the decision starting point are
driven by the synergistic interaction of early perceptual encoding (P1), feature
discrimination (N250-FSP), and memory retrieval (LPC).
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Abstract
Multisensory category learning represents a fundamental cognitive function that
is crucial for understanding the principles of cross-modal knowledge represen-
tation. This study systematically investigated the cognitive characteristics and
neural mechanisms underlying multisensory category learning by integrating
event-related potential (ERP) techniques with drift-diffusion modeling. Behav-
ioral results demonstrated that compared with the early learning stage, both
middle and later stages exhibited significantly improved accuracy and drift rates,
reduced reaction times, and a decision starting point biased toward correct op-
tions. At the neural level, middle and later learning stages elicited amplitude
changes in N1, P1, N250, FSP (Frontal Selection Positivity), and LPC (Late
Positive Component) components. Time-frequency analysis revealed significant
power attenuation in the Theta, Alpha, and Delta frequency bands. Regression
analyses indicated that N250-FSP amplitude and Theta oscillations jointly ex-
plained variance in drift rates, while P1, N250-FSP, and LPC predicted shifts in
decision starting points. These findings suggest that learning training optimizes
decision efficiency through dual mechanisms: (1) enhanced information accumu-
lation rates correlate with reduced N250-FSP amplitudes and Theta band power
attenuation; (2) decision starting point shifts are driven by the synergistic in-
teraction of early perceptual encoding (P1), feature discrimination (N250-FSP),
and memory retrieval (LPC).
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Introduction
Category learning in multisensory environments constitutes a foundational hu-
man cognitive function that integrates cross-modal information to classify ob-
jects and form stable memory representations (Li et al., 2012). This cognitive
mechanism extracts common features across multisensory inputs, transforming
concrete experiences into abstract conceptual frameworks that significantly op-
timize cognitive resource allocation efficiency. Leveraging these advantages,
individuals can transfer existing category knowledge to novel objects and envi-
ronments, thereby enhancing task performance in new situations and improving
environmental adaptability (Seger & Miller, 2010). Empirical research demon-
strates that category learning plays a pivotal role in higher-order cognitive ac-
tivities including object recognition, logical reasoning, and complex problem-
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solving. In clinical medicine, precise disease classification systems form the basis
of diagnostic and treatment decisions, while in ecological conservation, scientific
waste classification mechanisms represent crucial practices for sustainable devel-
opment. Therefore, systematically revealing the acquisition mechanisms and
formation principles of multisensory category knowledge holds not only theoret-
ical value for understanding the essence of human cognitive processing but also
significant practical implications for enhancing individual survival capabilities
and optimizing social decision-making practices.

Multisensory category learning differs fundamentally from unisensory category
learning. The former requires not only independent processing of modality-
specific representations (e.g., visual, auditory, and olfactory information) but
also hierarchical integration of cross-modal information to ultimately achieve
categorical decisions through intermodal synthesis. Notably, its cognitive mech-
anisms diverge from basic processing stages such as multisensory information
detection, memory, and associative learning, transcending memory encoding at
the level of single features or exemplars. The core challenge lies in extracting
common features across multisensory objects and elevating concrete experiences
to abstract conceptual representations (Li et al., 2012). This cognitive-level tran-
sition implies that principles derived from unisensory learning paradigms and
memory encoding mechanisms revealed in multisensory processing studies can-
not be directly extrapolated to multisensory category learning (Seger & Miller,
2010). This research domain requires an independent theoretical framework to
uncover its unique neurocognitive mechanisms.

Unisensory Category Learning

Neuroimaging studies of visual category learning have revealed that classifica-
tion processing primarily involves two stages: perceptual encoding and cate-
gorical feature discrimination (Freedman et al., 2003; Jiang et al., 2007; Jiang
et al., 2018; Scholl et al., 2014). The N1 component, emerging as the first
negative deflection 150–200 ms post-stimulus, is significantly associated with
stimulus detection (Busse et al., 2005) and feature encoding (Sinnett et al.,
2007), providing direct evidence for early shape and feature perception in cate-
gory learning (Scholl et al., 2014). Freedman et al. (2003) employed intracranial
recordings in macaque categorization tasks, finding that the inferior temporal
cortex exhibited stimulus-specific activation within 100 ms for shape features,
while the prefrontal cortex selectively processed abstract categorical dimension
information within 200 ms—temporal dynamics that corroborate hierarchical
model assumptions.

During advanced cognitive processing stages, the N250 and FSP (Frontal Se-
lection Positivity) components are closely linked to semantic concept process-
ing. Experimental evidence demonstrates that category-relevant stimuli elicit
stronger N250 and FSP components at 250 ms compared with irrelevant stim-
uli (Folstein, Monfared, et al., 2017). Scholl et al. (2014) further observed
that between-category stimuli evoked significantly more negative potentials in
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the parietal cortex than within-category stimuli during the 200–300 ms time
window. These electrophysiological features collectively indicate that category
judgment follows a hierarchical processing pattern from primary feature percep-
tion to high-level categorical decision-making.

Previous research evidence indicates that unisensory category learning comprises
early feature perception and late categorical decision stages (Freedman et al.,
2003; Jiang et al., 2007; Jiang et al., 2018; Scholl et al., 2014). Unlike unisensory
category learning, multisensory category learning additionally involves a criti-
cal stage of perceiving and integrating information across different modalities.
However, which specific ERP components correlate with this processing stage
remains unclear.

Multisensory Information Integration, Memory, and Paired Associa-
tion Learning

ERP studies of multisensory information processing have revealed that, at the
detection level, multisensory stimuli elicit significantly enhanced early evoked
potentials within 100 ms compared with unisensory stimuli (Cappe et al., 2012;
Ghazanfar & Schroeder, 2006; Giard & Peronnet, 1999; Senkowski et al., 2011;
Van der Burg et al., 2011), with semantically congruent information producing
larger amplitudes in the 180–210 ms time window (Hu et al., 2012). Memory re-
search demonstrates that multisensory encoding enhances recognition accuracy,
with neural manifestations of amplitude enhancement in 100–130 ms and 270–
316 ms time windows (Thelen et al., 2012; Thelen et al., 2014). In cross-modal
paired association learning, visuo-tactile associative learning modulates N400
and Late Posterior Negativity (LPN) amplitudes, with significant differences
between N400 and LPN components in the well-learned versus initial learning
stages (Gui et al., 2017).

Neural oscillation studies of multisensory information processing have shown
that, at the detection level, verbal cues preceding odor delivery induce phase
locking between low-frequency (<30 Hz) oscillations in auditory and olfactory
cortices (Zhou et al., 2019). At the multisensory attention level, research exam-
ining attention across visual, auditory, and audiovisual conditions found that
Theta band (4–7 Hz) activity is associated with multisensory attention, while
Alpha band (8–13 Hz) activity correlates with auditory attention (Keller et
al., 2017). Another study employing an audiovisual semantic discrimination
task requiring attention to both modalities demonstrated that Theta band ac-
tivity contributes to early attention allocation regulation, whereas Delta band
activity facilitates later attention allocation in audiovisual integration (Yang
et al., 2024). In multisensory memory research, manipulating Theta phase
synchronization across visual and auditory stimuli revealed that synchronous
conditions produced significantly superior multisensory associative memory per-
formance compared with asynchronous conditions (90°, 180°, 270° phase dif-
ferences). This finding demonstrates that Theta oscillations enhance memory
integration by coordinating temporal windows of cross-modal neural activity
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(Clouter et al., 2017).

Multisensory research demonstrates that information detection primarily cor-
relates with early components (N1/P1), while higher-order cognitive processes
such as memory and learning involve coordinated activity of late components
(e.g., N400 and LPN). Furthermore, multisensory attention and memory are as-
sociated with Alpha, Theta, and Delta frequency bands. However, multisensory
information detection, memory, and paired association learning have focused
on detecting, memorizing, or jointly processing specific individual stimuli, with
less emphasis on abstract information summarization such as rule extraction.
In contrast, multisensory category learning represents a more complex cognitive
process that encompasses not only perception and memory of individual stimuli
but also integration of abstract rules and concepts. Therefore, investigating
the cognitive characteristics and neural mechanisms of multisensory category
learning holds significant theoretical importance.

Drift-Diffusion Model and Multisensory Category Learning

Behavioral studies of multisensory category learning indicate that learning pro-
gression significantly improves task accuracy and shortens reaction times (Wu
et al., 2021). Although this pattern resembles most learning tasks, it cannot
reveal which psychological processes underlie accuracy improvements and RT
reductions—whether from shortened non-decision time, enhanced information
integration rates, more liberal decision thresholds, or initial bias toward correct
options at the decision outset. The Drift-Diffusion Model (DDM) deconstructs
decision processes into four core parameters: drift rate (evidence accumulation
rate), decision boundary (response caution), non-decision time (stimulus encod-
ing duration), and starting point (response bias) (Yuan et al., 2023; Mąka et
al., 2023). These parameters reflect psychological processes in category learning:
drift rate correlates with behavioral performance and represents the rate of inte-
grating visual and auditory features; decision boundary reflects conservatism in
categorical judgments; non-decision time maps onto early perceptual processing
efficiency or motor response time; and starting point manifests prior experience
modulation of category judgments. Empirical research shows that for difficult
tasks, younger adults exhibit superior evidence accumulation efficiency and de-
cision speed compared with older adults in multisensory tasks; for easy tasks,
multisensory advantages in evidence accumulation increase with age (Bolam et
al., 2024). Cross-modal (visual vs. auditory) category learning research found
slower learning rates for visual than auditory learning in early stages (Roark
et al., 2021), with age-related cognitive strategy differentiation—adults’ overall
advantage over children attributed to enhanced information processing capac-
ity, while their superior performance in explicit visual and implicit auditory
category learning related to less cautious correct responses (Roark et al., 2023).

However, existing research has not clarified the dynamic associations between
category knowledge acquisition and specific cognitive parameters, necessitat-
ing systematic investigation of plastic changes in decision mechanisms during
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learning progression. At the neural mechanism level, although studies have con-
firmed that N1 (shape and feature perception), N250/FSP (categorical feature
discrimination), N400/LPN (cross-modal paired learning), and Alpha, Theta,
and Delta bands (cross-modal information processing) show specific representa-
tions in unisensory category learning and multisensory processing, how different
ERP components and band power influence information accumulation rates and
decision caution during multisensory category learning remains unknown.

This study integrates high-temporal-resolution EEG technology with cognitive
modeling (DDM) to systematically parse the cognitive characteristics and neural
mechanisms of multisensory category learning by constructing dynamic associa-
tion models between ERP components/band power and DDM parameters from
dual dimensions of neural oscillation and computational cognitive modeling.
Based on evidence that unisensory category learning involves shape perception
and categorical decision stages, and that multisensory information detection,
memory, and learning involve multiple ERP components, we propose a hierar-
chical neural computational model hypothesis: multisensory category learning
involves three stages—shape and feature perception, categorical feature integra-
tion, and categorical decision-making—with early ERP components associated
with shape/feature perception and late components linked to categorical feature
integration and decision-making. Additionally, considering that Theta, Alpha,
and Delta bands are closely related to attention and memory processes, we hy-
pothesize that power in these bands changes with learning progression, and that
changes in ERP amplitudes and band power can predict dynamic variations in
core DDM parameters such as drift rate.

2.1 Participants
Sample size was determined a priori using G*Power 3.1 software (Faul et al.,
2007). Based on a repeated-measures design (effect size f = 0.25, 𝛼 = 0.05, power
= 0.80), the minimum required sample size was 21 participants. Following com-
parable research designs (Folstein, Fuller, et al., 2017; Folstein, Monfared, et
al., 2017; Liu et al., 2024), we recruited 30 healthy university students (7 males,
mean age 20.6 ± 1.32 years). To ensure data validity and accurate cognitive
characterization, we excluded 6 participants who failed to achieve $�$80% accu-
racy in the final experimental block (Wu et al., 2021; Liu et al., 2021), retaining
24 valid datasets. All participants reported normal or corrected-to-normal vi-
sion and normal hearing, with no prior experience in similar experiments. The
experimental protocol was approved by the Ethics Committee of the School
of Psychology, Fujian Normal University (Approval No.: PSY240073). Partici-
pants provided written informed consent prior to the experiment and received
¥50 compensation upon completion.
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Experimental Design
This study employed a single-factor within-subjects design with learning stage
as the independent variable, comprising three conditions: early, middle, and
late learning stages. Dependent variables systematically included behavioral
and neurophysiological metrics: at the behavioral level, we collected accuracy
and reaction time data and extracted four core cognitive parameters from the
drift-diffusion model (drift rate, non-decision time, starting point position, de-
cision boundary); at the neurophysiological level, we simultaneously recorded
event-related potential (ERP) component characteristics and EEG band power
changes.

2.3 Experimental Materials
Visual and auditory stimuli were selected from the multisensory material library
constructed by Wu et al. (2021). Visual stimuli generation followed the dual-
prototype morphing paradigm proposed by Folstein et al. (2013), using two ve-
hicle images as prototype stimuli. Through GTK morph software, we generated
continuous visual stimulus sequences by morphing the prototype images. As
shown in [Figure 1: see original paper], the two prototype images were divided
into N corresponding grid units, and morphing parameters were controlled to
generate continuous stimulus sequences from Prototype A (100% morph) to Pro-
totype B (0% morph). The final visual material library comprised 99 morphed
images with morph levels ranging from 1% to 99% in 1% increments. All images
maintained a resolution of 600$×$400 pixels, corresponding to horizontal and
vertical visual angles of 9.9° and 9.1°, respectively, ensuring image clarity and
precise detail presentation.

Auditory stimuli were synthesized using the STRAIGHT speech synthesis tool-
box (Kawahara & Matsui, 2003), constructing continuous acoustic spaces based
on two vehicle horn prototypes selected from a standard sound effects library
(http://sc.chinaz.com/yinxiao/). After extracting fundamental frequency pa-
rameters (F01 and F02) via the STRAIGHT system, we employed linear inter-
polation algorithms to generate 99 auditory stimuli with morph gradients syn-
chronized to visual materials (1%–99%). All auditory stimuli underwent sound
pressure level normalization using MP3Gain, with final presentation intensity
uniformly set at 50 dB SPL using binaural balanced output. This processing
protocol effectively controlled physical feature variations in auditory stimuli,
ensuring perceptual comparability.

The experiment constructed a four-category task through visuo-auditory dual-
channel integration. As illustrated in [Figure 1: see original paper], we estab-
lished a two-dimensional classification coordinate system based on visual and
auditory stimulus dimensions, using median values (50%) in both dimensions
as the origin to divide four decision quadrants, each corresponding to an in-
dependent category. This generated four categories through full factorial com-
bination, producing 2,304 total stimuli. Category generation rules were: (1)
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Category A combined Visual Prototype A (51%–99% morph) with Auditory
Prototype A (51%–99% morph); (2) Category B combined Visual Prototype B
(1%–49% morph) with Auditory Prototype A (51%–99% morph); (3) Category
C combined Visual Prototype B (1%–49% morph) with Auditory Prototype
B (1%–49% morph); (4) Category D combined Visual Prototype A (51%–99%
morph) with Auditory Prototype B (1%–49% morph). The experiment em-
ployed a blocked design, with each block containing 40 trials randomly selected
from the stimulus library. Each participant completed 9 blocks (360 trials total),
with all stimuli presented equally across blocks.

[Figure 1: see original paper]. Example stimuli for the four categories in multi-
sensory category learning.

Experimental Procedure
The trial structure is illustrated in [Figure 2: see original paper]. A single trial
comprised: (1) Fixation phase: a central cross presented for 700–900 ms (ran-
dom duration); (2) Stimulus presentation: 600 ms bimodal stimulus (visual +
auditory compound); (3) Response phase: following stimulus offset, a 400 ms
blank screen preceded a free-response period during which participants classi-
fied stimuli via four-key responses (Categories A–D mapped to D/F/J/K keys,
counterbalanced across participants); (4) Feedback phase: 1000 ms correctness
feedback after keypress, followed by a 500 ms intertrial interval. Instructions ex-
plicitly informed participants to accumulate categorical rules across trials, with
initial random guessing acceptable but feedback utilization required to gradually
form stable category representations.

[Figure 2: see original paper]. Experimental procedure for the learning process.

2.5 EEG Data Collection and Analysis
EEG signals were recorded using a NeuroScan 64-channel system with electrode
placement following the international 10–20 system. Data were synchronized
via SCAN software, referenced to the left mastoid (M1) with AFz as ground.
All electrode impedances were maintained below 5 kΩ. Vertical and horizon-
tal electrooculograms were simultaneously recorded for artifact detection, with
signals amplified and digitized at 1,000 Hz sampling rate.

Data preprocessing was conducted using EEGLAB (Delorme & Makeig, 2004)
and FieldTrip (Oostenveld et al., 2011) toolboxes: (1) Re-referencing: converted
reference to averaged bilateral mastoids (M1/M2); (2) Filtering: 0.1–120 Hz
bandpass filter removed high-frequency noise (>120 Hz) and low-frequency drift
(<0.1 Hz), with a 50 Hz notch filter (49–51 Hz) eliminating power-line interfer-
ence; (3) Epoching: data segments from –200 ms to 1,000 ms relative to stimulus
onset were extracted, with baseline correction using the –200 to 0 ms prestim-
ulus interval; (4) Artifact correction: independent component analysis (ICA)
removed ocular and blink-related components.
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Statistical analysis employed FieldTrip for condition-wise averaging. To investi-
gate neural mechanism changes induced by multisensory category learning, we
contrasted EEG signals across early, middle, and late learning stages. Cluster-
based permutation tests (Maris & Oostenveld, 2007) were applied, conducting
paired two-tailed t-tests on amplitudes and band power across all electrode-
time points within a 1,000 ms post-stimulus window. A null distribution was
generated via 5,000 permutations, with 𝛼thresh = 0.025 as the cluster-forming
threshold to control for multiple comparisons and identify statistically signifi-
cant spatiotemporal clusters.

2.6 Model Fitting
We employed the Python-based Hierarchical Drift-Diffusion Model toolbox
HDDM (Wiecki et al., 2013) to construct hierarchical Bayesian DDMs analyzing
behavioral differences across early, middle, and late learning stages. Core
parameters included drift rate (v), decision boundary (a), non-decision time
(t), and starting point bias (z), which were allowed to vary across experimental
conditions. To improve model fit, we also estimated drift rate variability (sv),
non-decision time variability (st), and starting point variability (sz) as free
parameters, with 5% extreme RT data trimmed to control outlier interference.

Parameter estimation employed Markov Chain Monte Carlo (MCMC) Bayesian
inference, executing 5,000 iterations with the first 500 as burn-in to ensure chain
convergence. Convergence was assessed via visual inspection of trace plots,
posterior distribution histograms, and autocorrelation functions. Model fit was
compared using Deviance Information Criterion (DIC), selecting the optimal
model with minimal DIC value, which offers statistical advantages in balancing
model complexity and fit.

Based on the optimal model, we extracted posterior distributions of four key
parameters for each participant across three learning stages. Condition differ-
ences were tested using Bayesian inference on posterior distributions, directly
computing posterior probability differences to avoid limitations of frequentist
statistics. All analyses were implemented via HDDM’s built-in Bayesian com-
putation methods, ensuring robust and reliable parameter estimation.

3.1 Behavioral Results
To examine performance changes across learning stages, we conducted repeated-
measures ANOVA on accuracy and reaction time for early (first 3 blocks, 120
trials), middle (middle 3 blocks, 120 trials), and late (final 3 blocks, 120 trials)
learning stages, as shown in [Figure 3: see original paper]. Statistical analysis
revealed significant main effects for accuracy, F(2, 46) = 132.30, p < 0.001,
�2 = 0.85, and reaction time, F(2, 46) = 7.58, p = 0.001, �2 = 0.25. Post-
hoc simple effects analysis indicated that middle and late stage accuracy was
significantly higher than early stage accuracy (ps < 0.001), with late stage
accuracy significantly exceeding middle stage accuracy (p < 0.001). Reaction
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times in middle (p = 0.001) and early (p = 0.05) stages were significantly longer
than in the late stage. These results demonstrate that systematic learning
enabled participants to successfully establish effective discrimination among four
categories.

To further investigate the psychological mechanisms underlying accuracy im-
provements, we examined whether these effects stemmed from decision bound-
ary adjustments (changes in decision caution), enhanced information accumula-
tion rates, or reduced non-decision time (stimulus encoding duration). Given
that traditional behavioral metrics (accuracy/RT) cannot effectively distinguish
these potential mechanisms, we employed drift-diffusion modeling to quantify
dynamic changes in cognitive parameters during learning.

[Figure 3: see original paper]. Accuracy and reaction time across early, middle,
and late learning stages.

3.2 HDDM Model Analysis
We constructed seven computational models with different parameter combina-
tions, with the full-parameter model including v (drift rate), a (decision bound-
ary), t (non-decision time), z (starting point), and sv, st, sz variability parame-
ters demonstrating optimal fit. Using this optimal model architecture, we fitted
behavioral data (accuracy and RT) across early, middle, and late conditions, suc-
cessfully estimating individual participant values for four core parameters (v,
a, t, z) under each condition. Group difference tests based on direct posterior
distribution estimation ([Figure 4: see original paper]) yielded key findings:

First, regarding information processing efficiency, drift rates in the early stage
were significantly lower than in middle (p < 0.001) and late (p < 0.001) stages,
with middle stage drift rates also significantly lower than late stage (p < 0.001).
This indicates that as learning progressed, individuals integrated more effective
information per unit time, achieving significant enhancement in information ac-
cumulation rates. Second, regarding decision starting point position, early stage
differed significantly from middle (p = 0.03) and late (p = 0.008) stages, with
middle and late stages showing significant bias toward correct options. This find-
ing mechanistically corresponds to the behaviorally observed accuracy improve-
ments, revealing systematic modulation of decision bias by learning progression.
Notably, no significant differences emerged across conditions in decision bound-
ary or non-decision time, suggesting that learning-induced changes primarily
affected information processing efficiency and decision bias rather than decision
caution or non-decision time.

[Figure 4: see original paper]. Probability density distributions of four DDM
parameters in multisensory category learning. Panel (A) represents drift rate;
(B) non-decision time; (C) decision boundary; (D) starting point position.
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3.3.1 Time-Domain Results
We used permutation tests to contrast EEG amplitude differences across early,
middle, and late learning stages ([Figure 5: see original paper]). In early pro-
cessing, significant differences between early and late stages emerged in 100–180
ms (N1 and P1, p = 0.01) across electrodes CZ, C2, CP3, CP1, CPZ, CP2, CP4,
CP6, TP8, P7, P5, P3, P1, PZ, P2, P4, P6, P8, PO7, PO5, PO3, POZ, PO4,
PO6, PO8, O1, OZ, O2. Early versus middle stages differed significantly in
100–167 ms (N1 and P1, p = 0.03) across electrodes C5, C3, C1, CZ, C2, CP5,
CP3, CP1, CPZ, CP2, CP4, CP6, TP8, P7, P5, P3, P1, PZ, P2, P4, P6, P8,
PO7, PO5, PO3, POZ, PO4, PO6, PO8, O1, OZ, O2. Middle versus late stages
differed in 128–172 ms (N1 and P1, p = 0.05) across electrodes CP6, P1, PZ,
P2, P4, P6, PO7, PO5, PO3, POZ, PO4, PO6, PO8, O1, OZ, O2.

In late processing, early versus late stages differed significantly in 210–326 ms
(FSP, p = 0.04) across electrodes TP8, P6, P8, PO4, PO8, OZ, O2; 240–492 ms
(N250, p < 0.001) across frontal, frontocentral, central, and parietal electrodes;
and 493–1000 ms (LPC, p < 0.001) across central, centroparietal, and parietal
electrodes. Early versus middle stages showed marginal significance in 231–328
ms (FSP, p = 0.056) and significant differences in 198–495 ms (N250, p < 0.001)
and 496–1000 ms (LPC, p < 0.001).

[Figure 5: see original paper]. ERP waveforms and topographic difference maps
across learning stages. (A) Mean amplitudes at CZ, CPZ, PZ, POZ, and OZ;
(B) Mean amplitudes at FZ, FCZ, CZ, CPZ, PZ, and POZ; (C) Mean amplitudes
at TP8, P8, PO8, and O2; (D) Mean amplitudes at CZ, CPZ, PZ, and POZ.

3.3.2 Frequency-Domain Results
Time-frequency analysis revealed significant power differences in the 3–13 Hz
range between early versus middle and late learning stages ([Figure 6: see origi-
nal paper]). Specifically, compared with the early stage, the late stage exhibited
significant power attenuation in Delta (3 Hz), Theta (4–7 Hz), and Alpha (8–13
Hz) bands (p = 0.002), with this power reduction distributed globally across
electrodes. Similarly, the middle stage showed significant power attenuation in
Delta, Theta, and Alpha bands (p = 0.009) compared with the early stage, also
with widespread topographical distribution.

[Figure 6: see original paper]. Band power changes across learning stages: (A)
Late minus early stage power differences; (B) Middle minus early stage power
differences.
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3.4 EEG Signals Predicting Drift Rate and Starting Point
Bias
ERP Signals Predicting Drift Rate and Starting Point Bias

Integrating time-domain analysis with computational modeling, we systemati-
cally examined neurocomputational associations between ERP components and
decision dynamics parameters. Time-domain analysis revealed significant dif-
ferences across learning stages in early perceptual components (P1, N1), cate-
gorical feature processing components (N250, FSP), and memory retrieval com-
ponents (LPC). DDM analysis further demonstrated significant dissociations
across stages in information accumulation rate (drift rate) and response bias
(starting point) parameters.

Drawing on previous theoretical frameworks (Cavanagh et al., 2011; Herz et
al., 2016) and integrating time-domain and DDM results, we constructed multi-
ple regression models to examine ERP prediction of decision parameters: Drift
Rate/Starting Point = 𝛼 + eP1×P1 + eN1×N1 + eN250×N250 + eFSP×FSP
+ eLPC×LPC. Regression weights eP1, eN1, eN250, eFSP, and eLPC tested the
effects of P1, N1, N250, FSP, and LPC on drift rate and starting point, with 𝛼
as intercept. Analyses of component means and peaks revealed that N250 (peak:
p = 0.001; mean: p < 0.001) and FSP (peak: p < 0.001; mean: p < 0.001) sig-
nificantly negatively predicted drift rate, indicating that amplitude reductions
in these components covaried with enhanced information accumulation rates.
P1 (peak: p = 0.06; mean: p = 0.07), N1 (peak: p = 0.07; mean: p = 0.93),
and LPC (peak: p = 0.06; mean: p = 0.06) showed non-significant predictive
effects. In the starting point prediction model, P1 (peak: p = 0.03; mean: p =
0.005), N250 (peak: p = 0.008; mean: p = 0.007), FSP (peak: p = 0.001; mean:
p < 0.001), and LPC (peak: p = 0.03; mean: p = 0.016) all reached significance,
while N1 (peak: p = 0.90; mean: p = 0.90) was non-significant. These results
suggest that early perceptual processing (P1), categorical feature discrimina-
tion (N250/FSP), and late memory retrieval (LPC) jointly shape response bias
formation mechanisms. These findings indicate that multi-stage ERP compo-
nents influence decision dynamics through hierarchical information processing:
N250-FSP co-modulation may reflect regulation of information accumulation
efficiency by categorical representation precision, while P1-LPC dynamic cou-
pling represents the joint effect of perceptual encoding and memory retrieval on
response bias.

[Figure 7: see original paper]. Effects of ERP components and band power on
drift rate and starting point position. (A) ERP effects on drift rate; (B) Band
power effects on drift rate; (C) ERP effects on starting point; (D) Band power
effects on starting point.

Frequency Band Power Predicting Drift Rate and Starting Point Bias

Time-frequency analysis revealed significant differences in Delta (3 Hz), Theta
(4–7 Hz), and Alpha (8–14 Hz) oscillations between early versus middle and late
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stages. To examine each band’s influence on DDM parameters, we constructed
regression models following previous literature (Cavanagh et al., 2011): Drift
Rate/Starting Point = 𝛼 + e𝜏×𝜏 + e�×� + e𝛼×𝛼, where e𝜏 , e�, and e𝛼 tested
Delta, Theta, and Alpha band effects. Statistical analysis revealed that Theta
band activity significantly predicted drift rate (p = 0.03), while Delta (p =
0.07) and Alpha (p = 0.76) effects were non-significant. In the starting point
bias regression model, no bands showed significant predictive effects (Theta: p
= 0.45; Delta: p = 0.52; Alpha: p = 0.17). Regression weights and statistical
significance are illustrated in [Figure 7: see original paper].

These results demonstrate that during multisensory category learning, partic-
ipants showed significant progressive accuracy improvements and reduced re-
action times in later stages. DDM-based cognitive modeling revealed that
compared with early learning, middle and late stages exhibited significantly in-
creased drift rates and starting point shifts toward correct options, with no con-
dition differences in decision boundary or non-decision time. This suggests that
learning-induced behavioral improvements primarily stemmed from enhanced
evidence accumulation efficiency and adaptive adjustment of decision bias. Com-
pared with early learning, middle and late stages elicited significant amplitude
changes in N1, P1, N250, FSP, and LPC components, along with power reduc-
tions in Delta, Theta, and Alpha bands. Notably, N250-FSP complex and Theta
band changes significantly predicted drift rate variance, while P1, N250-FSP,
and LPC jointly predicted starting point shifts.

General Discussion
Hierarchical Processing Stages in Multisensory Category Learning

Synthesizing existing research (Jiang et al., 2007, 2018; Scholl et al., 2014),
unisensory category learning follows a hierarchical processing pattern from sim-
ple to complex, primarily involving progressive transformation from perceptual
encoding to categorical selection. In contrast, multisensory category learning
involves more complex multimodal information integration mechanisms. Our
ERP analysis revealed that multisensory learning progression induced signifi-
cant changes in multiple characteristic EEG components (N1, P1, N250, FSP,
LPC), with ERP components and band power significantly predicting core pa-
rameters such as drift rate. Based on multidimensional evidence, we propose
that multisensory category learning may involve three progressive processing
stages: initial perceptual encoding, feature refinement discrimination, and mem-
ory system activation. This multi-stage model reveals the hierarchical dynamic
neural processing mechanisms in multisensory category learning.

Perceptual Encoding Stage Compared with early learning, middle and late
stages induced significant N1 and P1 amplitude changes. As early perceptual
processing markers (Cappe et al., 2012; Ghazanfar & Schroeder, 2006; Giard
& Peronnet, 1999; Senkowski et al., 2011; Van der Burg et al., 2011), N1 and
P1 likely reflect shape and feature perception of multisensory stimuli. Previous
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visual category learning research found that high stimulus variability conditions
elicited early amplitude changes compared with low variability conditions (Scholl
et al., 2014), with N1 amplitude changes significantly associated with stimulus
detection (Busse et al., 2005) and feature encoding (Sinnett et al., 2007). Other
studies demonstrated that enhanced early P1 amplitude reflects refined encod-
ing of multisensory features in primary sensory cortex (Mück et al., 2020). In
this study, N1 and P1 amplitude changes may relate to altered shape and feature
perception induced by multisensory category learning. Furthermore, multiple
regression revealed that P1 significantly predicted correct-option bias shifts as
learning progressed. These combined results demonstrate that early perceptual
stages also play important roles in adaptive adjustments for correct respond-
ing. Notably, differences between early and later learning stages may reflect
that participants initially employed separate information processing strategies,
while post-learning enabled efficient classification through cross-modal integra-
tion. This transition theoretically aligns with the multisensory enhancement
effect (Stevenson et al., 2014) and carries important theoretical implications for
understanding multisensory information integration mechanisms.

Feature Discrimination Stage The N250-FSP complex serves as a core neu-
ral marker for categorical feature-specific discrimination (Folstein, Monfared, et
al., 2017). The amplitude reduction observed in middle and late learning stages
provides crucial evidence for a feature discrimination stage in multisensory cate-
gory learning progression. Previous research has established N250’s specific asso-
ciation with complex object recognition (e.g., faces, animal categories) (Petrov,
2011; Tanaka et al., 2006). ERP studies further confirm that category-relevant
stimuli elicit enhanced N250 and FSP amplitudes compared with irrelevant stim-
uli, reflecting refined processing of perceptual features (Folstein, Monfared, et
al., 2017). Additionally, FSP demonstrates linear correlation with target feature
learning level, particularly prominent in high-level classification tasks (Scott et
al., 2006; 2008). Based on this evidence, we infer that N250-FSP may serve as
an important index for multisensory categorical feature discrimination.

Moreover, the N250-FSP complex amplitude reduction, coupled with Delta,
Alpha, and Theta band power attenuation, carries important theoretical sig-
nificance. Reduced N250-FSP amplitude may indicate automation of categor-
ical feature representations. Synchronized Delta, Alpha, and Theta power re-
ductions suggest decreased attentional resource demands (Cavanagh & Frank,
2014; Keller et al., 2017), particularly Theta attenuation correlating with re-
duced memory load (Clouter et al., 2017). These power reductions collectively
confirm optimized cognitive resource allocation. Our novel finding is that mul-
tisensory category learning induced N250/FSP amplitude suppression (rather
than enhancement) and Theta band power attenuation, which systematically
correlated with enhanced drift rates and correct-option bias. This inverse rela-
tionship indicates that as learning proficiency increased, individuals gradually
formed automated processing patterns for cross-modal stimulus classification,
manifested as reduced neural resource consumption during feature recognition
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(N250/FSP amplitude reduction), decreased reliance on attentional monitoring
and working memory maintenance during categorical decisions (Theta power re-
duction), and optimized information accumulation efficiency (drift rate enhance-
ment). This finding provides new evidence for “perceptual learning compression
theory” (Goldstone, 1998), suggesting that multisensory category training may
enhance decision system processing efficiency by reducing cognitive load during
feature discrimination.

Notably, this study reveals Theta oscillation’s specific role in multisensory cat-
egory learning. Theta band power significantly negatively predicted drift rate.
This finding creates theoretical tension with Theta’s classic functional roles in
attentional resource allocation (Keller et al., 2017) and working memory mainte-
nance (Itthipuripat et al., 2013; Rutishauser et al., 2010), where Theta enhance-
ment rather than reduction typically predicts performance. Previous research
shows that cross-modal attention tasks induce enhanced frontal Theta synchro-
nization (Keller et al., 2017), and working memory load positively correlates
with Theta power (Itthipuripat et al., 2013; Rutishauser et al., 2010). Our
study, by establishing a negative coupling between Theta power and drift rate,
reveals learning training’s regulatory mechanism on cognitive resource demands:
as multisensory categorical representations consolidate, individuals gradually
reduce dependence on attention and working memory during classification deci-
sions, thereby achieving more efficient feedforward information processing (en-
hanced drift rate). This finding provides new evidence for the “neural efficiency
hypothesis” (Neubauer & Fink, 2009), indicating that multisensory learning
may enhance decision system computational efficiency by optimizing neural os-
cillation patterns to reduce cognitive load.

Memory Retrieval Stage The Late Positive Component (LPC), as a neural
index of memory retrieval, shows amplitude enhancement closely associated with
precise memory representation retrieval (Kwon et al., 2023; Sun et al., 2024).
Research also links LPC to sustained attention and deep-level information pro-
cessing (Gable & Harmon-Jones, 2013). Our study found that middle and late
stages elicited LPC amplitude changes compared with early learning. Multiple
regression further revealed that LPC significantly predicted correct-option bias
shifts. At advanced cognitive stages, LPC dynamics reveal that individuals op-
timize decisions by accessing categorical representations in long-term memory
systems for deep-level information processing. This process may reflect dynamic
balancing mechanisms between neural resource reallocation and cognitive con-
trol. These results suggest that LPC may serve as an important neural indicator
for memory retrieval and categorical decision-making in multisensory category
learning.

Integrating ERP-DDM modeling results revealed that as learning progressed,
the early perceptual system (P1) enhanced perceptual encoding specificity,
thereby reducing downstream categorical feature discrimination load (N250-
FSP). Simultaneously, activation patterns in the late long-term memory system
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(LPC) indicated that individuals maintained optimal decision strategies by
extracting effective features from long-term memory as learning advanced. The
significant prediction of correct-choice bias by all three components provides
a novel computational neural framework for understanding how learning
experience promotes cognitive control optimization, revealing hierarchical
interactive mechanisms among perceptual encoding, feature discrimination,
and memory retrieval in decision dynamics.

Limitations and Future Directions

This study has several limitations that future research should address. First,
six participants were excluded from final data analysis due to significant dif-
ficulties in category knowledge acquisition, indicating cognitive heterogeneity
across individuals. Future studies should construct graded task difficulty sys-
tems to systematically examine how task difficulty parameters modulate multi-
sensory category learning performance, thereby revealing dynamic associations
between cognitive load and learning efficiency. Second, although the current
paradigm effectively controlled irrelevant variables, its ecological validity could
be enhanced. We plan to develop a VR-based multimodal interactive paradigm
that simulates real learning scenarios while maintaining experimental control
precision, simultaneously recording eye movements, gestures, and other multi-
modal behavioral data to deeply analyze cross-modal information integration
mechanisms in dynamic contexts. Third, due to limited sampling range, the
current study could not examine age effects. Future research should adopt
cross-age longitudinal designs combined with fNIRS and other neuroimaging
techniques to investigate developmental trajectories of multisensory category
learning neural representations across the lifespan, constructing an integrated
theoretical model incorporating cognitive development and neuroplasticity.

Conclusion
This study, using EEG and computational modeling methods, reveals the cog-
nitive characteristics and neural mechanisms of multisensory category learning.
Behavioral results demonstrate that as learning progressed, participants’ infor-
mation accumulation rates increased significantly, driving systematic improve-
ments in task accuracy. Time-domain ERP analysis found that early perceptual
component (P1) and late memory component (LPC) amplitudes increased with
learning proficiency, while the N250-FSP complex associated with feature dis-
crimination showed significant amplitude reduction.

Bayesian modeling based on the drift-diffusion model revealed a dual optimiza-
tion mechanism: (1) enhanced information accumulation rates significantly cor-
related with reduced N250-FSP amplitudes and Theta band power; (2) starting
point shifts toward prior experience were jointly predicted by P1, N250-FSP,
and LPC.

These findings construct a three-stage theoretical framework of “perceptual

chinarxiv.org/items/chinaxiv-202507.00049 Machine Translation

https://chinarxiv.org/items/chinaxiv-202507.00049


encoding-feature discrimination-memory retrieval”: multisensory training opti-
mizes the decision system hierarchically by reducing N250-FSP feature discrim-
ination load while enhancing P1 perceptual representation and LPC memory
retrieval efficiency. This study provides the first evidence for Theta oscillation’s
mediating role in linking neural activity with computational model parameters,
offering a novel theoretical framework for understanding learning-induced cog-
nitive resource reallocation.
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