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Abstract
Copper-67 (��Cu) exhibits significant advantages in targeted radiotherapy for
hematological tumors, owing to its theranostic characteristics that include
a physical half-life (T�/�=61.83 h) well-suited to antibody pharmacokinetics,
medium-range �� particles (E�����=577 keV, R����2 mm), and accompanying �-ray
emission (184.6 keV). Its �� particles can precisely eradicate micrometastases
and overcome antigen heterogeneity, while concurrent SPECT imaging ca-
pability enables biodistribution verification and dosimetry monitoring. Key
technological breakthroughs driving clinical translation include: photonuclear
reaction ��Zn(�,p)��Cu achieving high specific activity production (>1850
GBq/mg), and bicyclic chelator CB-TE2A (logK=27.9) significantly reducing
off-target liver risk; compared to ��Y, radiopharmaceutical dosimetry opti-
mization with ��Cu enhances the tumor/bone marrow dose ratio by 3.5-fold,
which further increases to 4.1-fold with pretargeting strategies. In clinical
studies, ��Cu-lintuzumab treatment for relapsed/refractory AML achieved an
objective response rate of 41% (NCT04222464), while dual-target strategies
attained 35% MRD-negative complete remission in antigen-escape ALL. Future
developments must address renal dose limitations, establish individualized
dosimetry models using ��Cu-PET, and expand therapeutic prospects through
combination immunotherapy.
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Abstract
Copper-67 (��Cu) demonstrates significant advantages in targeted radiotherapy
for hematological malignancies, owing to its physical half-life (T�/� = 61.83 h)
that aligns with antibody pharmacokinetics, medium-range �� particles (E�����
= 577 keV, R��� � 2 mm), and integrated diagnostic/therapeutic capabilities
enabled by concomitant �-ray emission (184.6 keV). The �� particles precisely
eradicate micro-metastases while overcoming antigen heterogeneity, and simul-
taneous SPECT imaging ensures biodistribution verification and dose monitor-
ing. Key technological breakthroughs drive clinical translation: High-specific-
activity production (>1850 GBq/mg) achieved via the photonuclear reaction
��Zn(�,p)��Cu, and the bicyclic chelator CB-TE2A (logK = 27.9) significantly
reduces hepatic off-target accumulation. Compared to ��Y, ��Cu optimizes radi-
ation dosimetry by increasing the tumor-to-bone marrow dose ratio by 3.5-fold,
with pretargeting strategies further elevating this ratio to 4.1-fold. Clinical
studies validate its efficacy: ��Cu-lintuzumab achieved a 41% objective response
rate in relapsed/refractory AML (NCT04222464), while dual-targeting strate-
gies yielded 35% minimal residual disease (MRD)-negative complete responses
in antigen-escape acute lymphoblastic leukemia (ALL). Future efforts should
address renal dose limitations, establish individualized dosimetry models using
��Cu-PET, and expand applications through combination immunotherapies.

Key words: ��Cu; Integrated diagnosis and treatment; Antibody guided
radionuclide therapy; Radiation dosimetry optimization; Recurrent/refractory
acute myeloid leukemia

1. Therapeutic Evolution and the Emergence of ��Cu
Treatment strategies for hematological malignancies have shifted from conven-
tional chemotherapy toward targeted and immunotherapeutic approaches, yet
clinical translation remains constrained by drug resistance and inadequate tar-
geting precision. Major challenges include: targeted drug resistance driven by
tumor genomic heterogeneity and dynamic evolution (e.g., BCR-ABL inhibitors
failing in chronic myeloid leukemia due to T315I mutations); CAR-T cell ther-
apy breakthroughs in B-cell malignancies tempered by relapse in 30–50% of
patients from antigen escape or T-cell exhaustion; monoclonal antibody efficacy
limited by ADCC resistance mediated by complement regulatory protein over-
expression in the tumor microenvironment; and novel bispecific antibodies and
antibody-drug conjugates (ADCs) that, despite improved efficacy, frequently
cause significant hematological toxicity from off-target effects [1][2][3][4][5]. Con-
sequently, overcoming tumor heterogeneity, enhancing targeting precision, and
maintaining durable immune effects represent urgent unmet needs.

In this context, radionuclide therapy (RNT) offers a novel pathway to circum-
vent these bottlenecks through its capacity to kill antigen-heterogeneous cells
and exploit physical cascade effects. Copper-67 (��Cu) has re-emerged as a
particularly promising agent, reshaping the theranostics landscape. Its physical
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half-life (T�/� = 61.8 h) closely matches the pharmacokinetics of antibody-based
drugs (4–7 days for target accumulation), enabling higher tumor uptake com-
pared to shorter-lived nuclides like ��Y (T�/� = 2.67 d) while reducing myelo-
toxicity risk versus longer-lived nuclides such as ¹��Lu (T�/� = 6.65 d) [6][7][8].
��Cu delivers therapeutic effects through medium-energy �� decay (E��,��� = 577
keV, E��,��� � 141 keV) while simultaneously emitting �-rays suitable for SPECT
imaging (91.3, 93.3, 184.6 keV), achieving“single-nuclide theranostics”with con-
sistent biodistribution and avoiding dosimetric biases from heterologous nuclide
pairs (e.g., ��Ga/¹��Lu) that arise from chelator affinity differences [9][10].

Recent technological advances have further propelled ��Cu applications: High-
energy photon-induced reactions ��Zn(�,p)��Cu have elevated specific activity to
>1850 GBq/mg, ensuring clinical-grade supply, while highly stable chelator
development has optimized radiolabeling efficiency and in vivo stability [11].
Building on these foundations, ��Cu-labeled antibody conjugates have demon-
strated high tumor retention and manageable toxicity in preclinical studies of re-
lapsed/refractory lymphoma and multiple myeloma [12][13]. Collectively, ��Cu’s
matched pharmacokinetic properties, ideal nuclear physical characteristics, and
production technological advances offer a highly promising strategy to overcome
targeted therapy dilemmas in hematological malignancies and create new oppor-
tunities for precision radioimmunotherapy.

2. Physical Properties, Production Technology, and Clini-
cal Advantages of ��Cu
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As an emerging theranostic radionuclide, ��Cu’s unique physical decay charac-
teristics establish its foundational advantages in targeted radiotherapy. ��Cu
decays via �� emission with a maximum energy (E��,���) of 577 keV and average
energy (E��,���) of approximately 141 keV. Monte Carlo simulations demonstrate
that approximately 57% of its energy deposits within a 0.1 cm spherical radius
in water, corresponding to a maximum particle range (R���) of about 2.0 mm.
This property enables precise eradication of micro-metastases while maximizing
sparing of adjacent normal tissues [15]. The physical half-life (T�/� = 61.83 h �
2.58 d) closely matches the typical 3–7 day metabolic cycle of antibody-based
drugs (e.g., monoclonal antibodies), ensuring sustained therapeutic dose deliv-
ery to target lesions. Additionally, ��Cu decay is accompanied by �-ray emission
suitable for SPECT imaging (primary peak at 185.6 keV), enabling high-quality
SPECT/CT imaging with medium-energy collimators to identify lesions �10 mm
under tumor-to-background ratios (TBR) of 5:1, while providing technical sup-
port for real-time dose monitoring during therapy [14][15]. These combined phys-
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ical properties render ��Cu an ideal candidate for developing antibody-directed
radionuclide therapy (RIT).

The cornerstone of ��Cu clinical translation lies in breakthrough high-specific-
activity production technologies. Two primary optimized pathways currently
dominate:

2.1 Accelerator-Driven ��Zn(p,2p)��Cu Reaction

This approach employs 70–100 MeV high-energy proton beams to irradiate en-
riched ��Zn targets (>99% abundance). Combined with multi-layer target de-
signs (��Zn/��Zn stacking), this significantly boosts ��Cu yield to 26.2 GBq/�A
(30 �A beam current, 24-hour irradiation) while reducing ��Cu byproducts by
12% [16]. Closed-loop target recycling technology (combined electrodeposition-
ion exchange) achieves >95% ��Zn reuse efficiency, cutting production costs by
40% [17]. Innovative separation processes (H�S coprecipitation with ICP-MS
monitoring) achieve final product chemical purity at �g/GBq levels, specific ac-
tivity >1850 GBq/mg (~50 Ci/mg), and key metal impurity content <0.1 ppm
[18][19].

2.2 Photon-Induced ��Zn(�,p)��Cu Reaction

Utilizing 40 MeV electron linear accelerators to irradiate ��Zn targets, this
method yields 62.9 GBq (1.7 Ci) ��Cu per batch with >99% radionuclidic purity
and no carrier-added ��Cu contamination, providing a high-purity alternative
for clinical applications [20].

Ensuring in vivo stability of ��Cu-labeled antibodies hinges on optimized chela-
tor design. Traditional chelators like TETA (1,4,8,11-tetraazacyclotetradecane-
1,4,8,11-tetraacetic acid), though clinically applied (e.g., ��Cu-BAT-2IT-Lym-1
for non-Hodgkin lymphoma), exhibit significant limitations [21]. Clinical data
show approximately 2.8% of injected dose releases ��Cu to ceruloplasmin through
transchelation, causing hepatic non-specific retention and biphasic clearance ki-
netics that compromise therapeutic precision [22]. ��Cu²�’s propensity to reduce
to Cu� exacerbates this issue, as TETA and DOTA form four-coordinate pla-
nar Cu²� complexes prone to geometric reconfiguration (planar→tetrahedral) in
physiological reducing environments, triggering kinetic instability and demeta-
lation [22][23]. Novel chelators have emerged to overcome this bottleneck:

Bicyclic Chelators (e.g., CB-TE2A): These rigid bicyclic structures firmly
lock the metal center, achieving a thermodynamic stability constant (log K��) of
27.9 for Cu²� complexes, significantly surpassing DOTA (log K�� = 22.3) [24].

Mono-Pyridine Amine Derivatives (e.g., TE1PA): Leveraging the
electron-buffering capacity of the pyridine ring, these demonstrate exceptional
stability in hepatic metabolism studies—��Cu-TE1PA-antibody remained
structurally intact for 48 hours, whereas ��Cu-DOTA-antibody showed hepatic
intact antibody proportion plummeting from 17.2% to 3% within 24 hours,
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accompanied by ��Cu transfer to superoxide dismutase (SOD), confirming
demetalation [25].

Critically, ��Cu exhibits significant dosimetric advantages over conventional ther-
apeutic nuclides like ��Y. ��Cu’s average �� energy (E��,��� = 141 keV) is sub-
stantially lower than ��Y’s (E��,��� = 933 keV), yielding a maximum tissue
range (R���) of only ~1.8 mm versus ~11 mm for ��Y. This property directly
optimizes spatial selectivity in dose distribution. Studies show that for micro-
metastases (0.1–2 mm diameter), ��Cu achieves higher tumor-to-bone marrow
dose ratios (T/B ratio), with >85% of energy deposited within tumor regions
(self-absorption contribution). Conversely, ��Y’s long range causes >40% energy
deposition outside tumors, significantly increasing myelotoxicity risk [26][27][28].
Preclinical models confirm this advantage: ��Cu-labeled PSMA-targeted agents
(e.g., ��Cu-CuSarTATE) delivered 1.8-fold higher tumor absorbed dose than ��Y-
DOTATATE in neuroendocrine tumor models, while reducing bone marrow dose
to 52% of ��Y preparations, yielding a ~3.5-fold T/B ratio improvement [29].
This optimization stems from ��Cu’s dual characteristics: (1) moderate range
ensures relatively uniform dose coverage from tumor core to periphery, and (2)
concomitant �-ray emission (185.6 keV, ~48% abundance) supports real-time
SPECT imaging for dosimetric calibration and verification [30]. Advanced pre-
targeting strategies have further elevated ��Cu’s T/B ratio to 4.1-fold that of
��Y, underscoring its dosimetric superiority in metastatic cancer precision ther-
apy [31].

In summary, ��Cu’s matched antibody pharmacokinetic half-life, short-range ��
particles ideal for treating microscopic lesions, theranostic �-ray emission, break-
through high-specific-activity production, evolving chelator-enabled in vivo sta-
bility, and superior dosimetric properties over nuclides like ��Y (particularly
higher T/B ratios) collectively establish it as a highly promising strategy for
advancing targeted radiotherapy in hematological and other malignancies.

3. Clinical Research Progress of ��Cu in Hematological Ma-
lignancies
Expression profiles of key therapeutic targets (CD20/CD22/CD33) directly in-
fluence the design rationale for ��Cu-antibody conjugates. In B-cell tumors,
CD20 shows heterogeneous expression in 30.4% of B-ALL cases (11.8% full
expression/18.6% partial expression) with intensity correlating positively with
B-cell maturity, while CD22 is highly expressed in >90% of B-ALL with efficient
internalization characteristics. In AML, CD33 expression exceeds 90%, though
subtype differences warrant attention—positivity reaches 34% in BCR/ABL�
B-ALL versus only 12.4% in T-ALL [32][43]. Against this biological backdrop,
��Cu-antibody conjugates exert therapeutic effects through dual mechanisms: (1)
antibody-mediated (e.g., rituximab) antigen-specific target accumulation, and
(2) ��Cu-released �� particles (E��,��� = 141 keV, R��� � 2 mm) inducing tumor cell
DNA breaks, with short range overcoming heterogeneity and reducing off-target
risk. The half-life (T�/� = 61.83 h) perfectly matches antibody pharmacokinet-
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ics, while accompanying �-rays (185 keV) enable theranostic SPECT imaging
[40][Error! Reference source not found.][41][42].

Preclinical studies validate this strategy’s effectiveness: ��Cu-rituximab achieved
8-fold higher tumor uptake than normal tissues in lymphoma models, delivering
30 Gy/MBq radiation dose and significantly prolonging survival (p < 0.01) [45];
compared to ��Y-labeled drugs, ��Cu’s shorter range (��Y: R��� � 11 mm) substan-
tially reduced myelotoxicity [46]; in AML models, ��Cu-lintuzumab maximum
tolerated dose (MTD) was 40 MBq/kg with only reversible myelosuppression
observed [47].

Clinical translation has achieved breakthrough progress: Phase I trial
(NCT04002479) demonstrated ��Cu-rituximab dose escalation to 74 MBq/m² in
relapsed B-cell lymphoma patients without reaching dose-limiting toxicity, with
grade 3 thrombocytopenia (28%) as the main adverse effect [48]. Phase II study
(NCT04222464) showed ��Cu-lintuzumab achieved 41% objective response rate
(ORR) (CR+CRi) in R/R AML with median progression-free survival (PFS) of
5.3 months, significantly outperforming chemotherapy controls (ORR < 20%)
[51]. However, key challenges persist: ��Cu-CD22 conjugates achieved 35%
MRD-negative complete response rate in ALL, yet 37% of patients relapsed due
to antigen loss, necessitating future dual-target strategies (e.g., CD19/CD22
CAR-T combination [36]) and chelator stability optimization (e.g., CB-TE2A
[44]) to further improve efficacy and safety.

4. Comparative Advantages and Clinical Translation Chal-
lenges of ��Cu
As an emerging therapeutic radionuclide, ��Cu demonstrates triple advantages
over traditional �� emitters ��Y and ¹��Lu: its �� particle maximum energy of 0.561
MeV achieves ~0.6 mm tissue penetration (comparable to ¹��Lu) but with signifi-
cantly shorter half-life, enabling efficient micro-metastasis killing while reducing
persistent radiation damage risk; myeloprotection benefits from low 48.7% �-ray
emission (E� = 0.184 MeV) that substantially reduces myelosuppression risk,
contrasting with ��Y’s high myelotoxicity (E��,��� � 2.28 MeV) and ¹��Lu’s long
half-life cumulative dose limitations [49][50]; chemically, ��Cu shares elemen-
tal identity with diagnostic nuclide ��Cu, enabling precise treatment planning
based on shared pharmacokinetics and overcoming ¹��Lu’s reliance on heterolo-
gous diagnostic ligands (e.g., ��Ga-PSMA) [49][51]. However, clinical translation
faces formidable challenges: production requires high-energy proton accelera-
tors (>38 MeV) bombarding enriched ��Zn targets (��Zn(p,2p)��Cu), yet ��Zn is
costly (~$3/mg) and generates ��Cu impurities (t�/� = 12.7 h), with multi-layer
target designs only reducing ��Cu fraction to 25% (at EOB), whose �� decay in-
terferes with radiochemical purity (RCP < 99%) and SPECT imaging [61][22];
supply chains are constrained by insufficient global ��Cu capacity, necessitat-
ing target recycling technologies (electrochemical separation [59], sublimation
[60]) and alternative photonuclear reactions (��Zn(�,p)��Cu), while reactor routes
(��Zn(n,p)��Cu) remain impractical due to required fast neutron fluxes (>10¹� n・
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cm�²・s�¹) and ��Zn contamination [63][64].

Toxicity risk and therapeutic strategy trade-offs reveal: ��Cu’s moderate pen-
etration depth (~0.6 mm) and crossfire effect suit solid tumor treatment with
manageable myelosuppression risk [56][57]; �-emitters (e.g., ²²�Ac, LET = 8.4
MeV/�m) effectively target micro-metastases but suffer from daughter nuclide
escape (²²�Ac → ²¹³Bi) causing off-target damage and dose-limiting myelotoxicity
[54][55]. Notably, ��Cu’s renal absorbed dose significantly exceeds tumor dose
(3.283 Gy vs. 0.712 Gy in RGD peptide therapy), and ��Cu-pertuzumab causes
dose-dependent survival shortening (median survival 11.7 days at 14.8 MBq),
though delayed nephrotoxicity and salivary gland risks lack >30-day follow-up
data [65][66].

Clinical breakthroughs manifest in three areas: (1) Combination therapy—��Cu-
pertuzumab plus trastuzumab in HER2� breast cancer models shows efficacy at
low dose (3.7 MBq) but toxicity at high dose (>7.4 MBq), requiring fraction-
ated dosing optimization [66]; (2) Theranostic strategies—��CuSar-trastuzumab
(MeCOSar chelation) single dose 9.0 MBq achieved 119% tumor inhibition (40%
complete response rate), attributed to high stability (>97% serum retention)
and specific activity (>1000 MBq/mg) [72]; (3) Novel chelation systems—NOTA
conjugates ([��Cu]Cu-NOTA-trastuzumab) achieved 90% tumor inhibition in re-
sistant models (JIMT-1), while Sar platforms ([��Cu]CuSar-trastuzumab) en-
abled rapid room-temperature labeling (<20 minutes) with 88% tumor suppres-
sion at 4.5 MBq dose [68]. Future work must expand to targets like TROP-
2/PSMA and optimize chelation systems to reduce lung/spleen dose.

5. Summary and Outlook
��Cu offers a breakthrough solution for hematological malignancies through
unique nuclear properties: a half-life (T�/� = 61.83 h) perfectly matched to anti-
body pharmacokinetics, medium-range �� particles (E��,��� = 577 keV, R��� � 2 mm)
overcoming tumor heterogeneity via crossfire effects, and simultaneous �-ray
emission (184.6 keV) enabling theranostic biodistribution verification. Clinical
translation benefits from three technological breakthroughs: photonuclear reac-
tion ��Zn(�,p)��Cu achieving high-specific-activity production (>1850 GBq/mg)
with >99% radionuclidic purity; electrodeposition-ion exchange target recycling
reducing costs by 40%; and bicyclic chelator CB-TE2A (logK�� = 27.9) signif-
icantly decreasing hepatic demetalation. Clear potential emerges in refractory
diseases: ��Cu-lintuzumab achieved 41% ORR in R/R AML (NCT04222464),
dual-target strategies (CD22/CD33) attained 35%MRD-negative CR in antigen-
escape ALL, and pretargeting technology elevated tumor/bone marrow dose
ratio to 4.1-fold. Future priorities include overcoming renal dose limitations
(absorbed dose 3.283 Gy), establishing individualized ��Cu-PET dosimetry mod-
els, and expanding therapeutic frontiers in drug-resistant lymphoma/leukemia
through combination immunotherapy (e.g., PD-1 inhibitors).
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Note: Figure translations are in progress. See original paper for figures.
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