
AI translation ・View original & related papers at
chinarxiv.org/items/chinaxiv-202507.00014

Extracting Transport Properties of Quark-Gluon
Plasma from the Heavy-Quark Potential With
Neural Networks in a Holographic Model
Authors: Dai, Mr. Wen-Chao, Luo, Mr. Ou-Yang, Chen, Bing, Chen, Dr. Xun,
Zhu, Dr. Yan Xiao, Li, Dr. Xiao-Hua, Chen, Dr. Xun

Date: 2025-06-27T23:54:35+00:00

Abstract
Using Kolmogorov-Arnold Networks (KANs), we construct a holographic model
informed by lattice QCD data. This neural network approach enables the deriva-
tion of an analytical solution for the deformation factor 𝑤(𝑟) and the determi-
nation of a constant 𝑔 related to the string tension. Within the KANs-based
holographic framework, we further analyze heavy quark potentials under finite
temperature and chemical potential conditions. Additionally, we calculate the
drag force, jet quenching parameter, and diffusion coefficient of heavy quarks in
this paper. Our findings demonstrate qualitative consistency with both experi-
mental measurements and established phenomenological model.

Full Text
Preamble
Extracting Transport Properties of Quark-Gluon Plasma from the
Heavy-Quark Potential With Neural Networks in a Holographic
Model

Wen-Chao Dai,1 Ou-Yang Luo,1 Bing Chen,1 Xun Chen,1,2,3,∗ Xiao-Yan Zhu,4,†
and Xiao-Hua Li1,2,‡
1School of Nuclear Science and Technology, University of South China, No. 28,
West Changsheng Road, Hengyang City, Hunan Province, China
2Key Laboratory of Advanced Nuclear Energy Design and Safety, Ministry of
Education, Hengyang, 421001, China
3INFN – Istituto Nazionale di Fisica Nucleare – Sezione di Bari, Via Orabona
4, 70125 Bari, Italy

chinarxiv.org/items/chinaxiv-202507.00014 Machine Translation

https://chinarxiv.org/items/chinaxiv-202507.00014
https://chinarxiv.org/items/chinaxiv-202507.00014


4School of Mathematics and Physics, University of South China, No. 28, West
Changsheng Road, Hengyang City, Hunan Province, China

(Dated: June 27, 2025)

Abstract
Using Kolmogorov-Arnold Networks (KANs), we construct a holographic model
informed by lattice QCD data. This neural network approach enables the deriva-
tion of an analytical solution for the deformation factor 𝑤(𝑟) and the determi-
nation of a constant 𝑔 related to the string tension. Within the KANs-based
holographic framework, we further analyze heavy quark potentials under finite
temperature and chemical potential conditions. Additionally, we calculate the
drag force, jet quenching parameter, and diffusion coefficient of heavy quarks in
this paper. Our findings demonstrate qualitative consistency with both experi-
mental measurements and established phenomenological models.

∗ chenxunhep@qq.com
† xyzhu0128@163.com
‡ lixiaohuaphysics@126.com

Introduction
High-energy nuclear collisions conducted at facilities such as the Relativistic
Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC) provide a
unique opportunity to study the properties of the quark-gluon plasma (QGP),
a deconfined state of matter formed under extreme temperatures and densi-
ties. The QGP offers a window into the fundamental aspects of QCD, and
understanding its dynamics is crucial for advancing our knowledge of strong in-
teractions. However, the computational and theoretical resolution of QCD still
faces many challenges in practical applications and complex environments. To
address these challenges, the Anti-de Sitter/conformal field theory (AdS/CFT)
correspondence provides a powerful framework. Through this dual relationship,
strong interactions can be explored in higher-dimensional spaces [?, ?, ?], offer-
ing new perspectives on the complex behavior of QGP.

Experimental and theoretical studies have found that heavy quarks are an im-
portant tool in the study of finite-temperature QCD matter due to their unique
behavior under extreme conditions [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?].
Under these conditions, the dissociation of heavy quark-antiquark pairs serves
as a key indicator of strong interaction deconfinement, and thus it is critical
to investigate the heavy quark potential within holographic QCD frameworks.
Early work has tentatively revealed the characteristics of the holographic quark-
antiquark pair potential energy [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?,
?, ?, ?, ?, ?, ?]. However, as research progresses, understanding the dynamics
of the potentials between quarks becomes essential to reveal the complexity of
QCD matter.
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Jets and heavy quark diffusion are among the most useful probes for investi-
gating the properties of the QGP at different scales. Jets, produced from high-
energy partons in collisions, undergo complex processes such as energy loss,
medium-induced radiation, and medium response as they traverse the QGP.
The substructure of jets, particularly observables like the Energy-Energy Corre-
lator (EEC), provides detailed insights into the interaction between jets and the
QGP. The EEC is highly sensitive to the angular distribution of energy within
jets, revealing the interplay of mass effects, energy loss, and medium response.
Studies have shown a clear flavor hierarchy in the EEC for both vacuum and
QGP environments, driven by the mass effect of heavy quarks (e.g., charm and
bottom quarks). By analyzing heavy-flavor jets, researchers can probe the mass
dependence of jet substructure and jet-medium interactions, offering a deeper
understanding of QGP dynamics [?, ?, ?, ?, ?, ?, ?, ?, ?].

In parallel, the diffusion of heavy quarks in the QGP is a critical aspect of
understanding the hydrodynamic behavior of the plasma. Heavy quarks, such
as charm and bottom quarks, are produced in the early stages of collisions and
participate in the entire evolution of the QGP. The spatial diffusion coefficient
quantifies the momentum transfer from the QGP to heavy quarks and provides
insights into the hydrodynamization process. Recent lattice QCD calculations
with dynamical quarks have revealed that the heavy quark diffusion coefficient
is significantly smaller than previous estimates from quenched lattice QCD and
phenomenological models. This suggests that heavy quarks hydrodynamize very
quickly in the QGP, highlighting the near-perfect fluidity of the medium [?, ?,
?, ?, ?, ?, ?, ?].

In recent years, machine learning techniques, especially multilayer perceptrons
(MLPs), have shown unprecedented potential in solving complex scientific prob-
lems [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?]. According to the Universal
Approximation Theorem, MLPs are able to approximate arbitrarily complex
functions by increasing the number of neurons in the hidden layers, a feature
that makes them perform well in solving partial differential equations (PDEs).
Recently, Kolmogorov-Arnold Networks (KANs) have been proposed in Refs.
[?, ?]. Unlike traditional MLPs, KANs fundamentally eliminate the reliance on
linear weight matrices by using learnable functions instead of fixed activation
functions. For small-scale AI and scientific tasks, KANs may offer advantages in
terms of accuracy and interpretability [?, ?]. When compared with conventional
methods such as polynomial fitting, KANs may exhibit a difference. Polynomial
fitting essentially performs data interpolation through linear combinations of ba-
sis functions, where the coefficients {𝑎𝑛} merely capture local data curvature
without physical interpretability.

With the rapid development of machine learning technology [?, ?, ?, ?, ?, ?,
?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?], deep learning has received pioneering
attention in the study of holographic QCD [?, ?, ?, ?, ?]. In addition, the
combination of machine learning and holography has been deeply explored in
a series of recent studies [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?]. In contrast to
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traditional holographic models, this new approach first utilizes experimental or
lattice QCD data to determine metrics and other model parameters with the
help of machine learning. These acquired metrics are then applied to compute
other physical QCD observables and are used as predictive outputs of the model.
This interdisciplinary integration not only simplifies the complex computational
process but also improves the prediction accuracy and reliability of the model,
thereby opening up new directions in the study of strong interactions.

In our recent work [?], we utilized an emergent metric constructed by Neural
Ordinary Differential Equations with QCD data of the chiral condensate to cal-
culate real and imaginary potential of heavy quarkonium. Ref. [?] employs a
machine learning-assisted Einstein-Maxwell-Dilaton (EMD) model, using auto-
matic differentiation to determine six parameters based on the equation of state,
to calculate the transport properties of heavy quarks. Ref. [?] primarily focuses
on comparing MLPs and KANs for the inverse problem of the heavy quark po-
tential, confirming the validity of the constructed model at finite temperature
and chemical potential. These works inspire us to incorporate more physical
quantities into a single holographic model. In this study, we want to establish
a connection between the heavy-quark potential and transport properties.

This paper is organized as follows: Section II will detail the calculation of the
heavy quark potential using the Andreev-Zakharov model. In Section III, we
construct a holographic model based on KANs and calculate the heavy-quark
potential at finite temperatures and chemical potentials. Our analysis will de-
termine the critical temperature 𝑇𝑐 and provide an analytical solution for 𝑤(𝑟).
In Section IV, the drag and jet quenching parameters, as well as the diffusion
coefficients of heavy quarks at finite temperature and finite chemical potential,
will be calculated for both regimes based on the analytic form of the function
𝑤(𝑟). Finally, Section V will summarize the main results and conclusions of the
whole paper.

II. Holographic Heavy Quark Potential
The Andreev-Zakharov model allows for an accurate description of the potential
of heavy quarkonium [?, ?] and exotic hadron states [?, ?, ?, ?, ?, ?, ?] by
introducing an ad hoc deformation factor for the AdS5-RN black hole. The
background metric can be expressed as

𝑑𝑠2 = 𝑤(𝑟) (−𝑓(𝑟)𝑑𝑡2 + 𝑑 ⃗𝑥2 + 𝑓−1(𝑟)𝑑𝑟2) .

The blackening factor is given by

𝑓(𝑟) = 1 − 𝑟4
ℎ

𝑟4 + 𝑞2𝑟2
ℎ ( 1

𝑟2 − 𝑟2
ℎ

𝑟6 ) .
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Here, 𝑤(𝑟) is the deformation factor, which determines the deviation from con-
formality, 𝑞 is the black hole charge, 𝑟ℎ is the position of the black hole horizon,
and 𝑟 is the coordinate of the fifth dimension. The Hawking temperature of the
black hole is defined as

𝑇 = 𝑟ℎ
𝜋 (1 − 𝑄2

2 ) ,

where 𝑄 = 𝑞𝑟3
ℎ and 0 ≤ 𝑄 ≤

√
2.

The relationship between the chemical potential 𝜇 and black hole charge 𝑞 is
given by

𝜇 = 𝑘 𝑄𝑟ℎ
√1 + 𝑄2

.

In this paper, we fix the parameter 𝑘 to 1. Thus, we get

𝜇 = 𝑄𝑟ℎ
√1 + 𝑄2

.

If we choose the static gauge 𝜏 = 𝑡 and 𝜎 = 𝑥, then a static quark-antiquark
pair located at 𝑥 = − 𝐿

2 and 𝑥 = 𝐿
2 can be described by a U-shaped string. The

Nambu-Goto action of this string can be expressed as

𝑆𝑁𝐺 = − 1
2𝜋𝛼′ ∫ 𝑑𝜏𝑑𝜎√− det(𝑔𝛼𝛽),

where 𝑔𝛼𝛽 = 𝐺𝜇𝜈𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜈 is the induced metric on the worldsheet and 𝐺𝜇𝜈
is the metric of AdS spacetime. Therefore, the action becomes

𝑆𝑁𝐺 = −𝑔
2 ∫ 𝑑𝑡𝑑𝑥 𝑤(𝑟)√𝑓(𝑟) + (𝜕𝑥𝑟)2,

where 𝑔 = 1
𝛼′ is related to the string tension and 𝛼′ is the square of the string

length parameter in string theory. We now define the Lagrangian density as

ℒ = 𝑤(𝑟)√𝑓(𝑟) + (𝜕𝑥𝑟)2.

Since the Lagrangian does not explicitly depend on 𝑥, we have the conserved
quantity

𝑤(𝑟)𝑓(𝑟)
√𝑓(𝑟) + (𝜕𝑥𝑟)2 = constant.
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At the maximum position of the U-shaped string 𝑟0, we have

𝑤(𝑟)𝑓(𝑟)
√𝑓(𝑟) + (𝜕𝑥𝑟)2 = 𝑤(𝑟0)

√𝑓(𝑟0)
.

As mentioned before, 𝜕𝑥𝑟 can be solved as

𝜕𝑥𝑟 = √ 𝑤2(𝑟)𝑓2(𝑟)
𝑤2(𝑟0)𝑓(𝑟0) − 𝑓(𝑟).

Therefore, 𝜕𝑟𝑥 is

𝜕𝑟𝑥 = 𝑤(𝑟0)√𝑓(𝑟0)
√𝑤2(𝑟)𝑓2(𝑟) − 𝑤2(𝑟0)𝑓(𝑟0)𝑓(𝑟)

.

The separation distance 𝐿 between the quark and antiquark is defined as

𝐿 = 2 ∫
∞

𝑟0

𝜕𝑟𝑥 𝑑𝑟 = 2 ∫
∞

𝑟0

𝑤(𝑟0)√𝑓(𝑟0)
√𝑤2(𝑟)𝑓2(𝑟) − 𝑤2(𝑟0)𝑓(𝑟0)𝑓(𝑟)

𝑑𝑟.

The heavy-quark potential can be written as

𝐸 = 2𝑔 ∫
∞

𝑟0

( 𝑤(𝑟)𝑓(𝑟)
√𝑓(𝑟) + (𝜕𝑥𝑟)2 − 𝑤(𝑟0)

√𝑓(𝑟0)
) 𝑑𝑟 − 2𝑔 (𝑤(0) + 2𝑔𝑤′(0) ln(𝑟0)) .

In the Andreev-Zakharov model, the parameter 𝑔 (related to the string tension)
is fixed as 𝑔 = 0.176, while the deformation factor takes the form 𝑤(𝑟) = 𝑒𝑠𝑟2

with 𝑠 = 0.45. These values are determined from fits to the meson spectrum
[?, ?] and the Cornell potential [?, ?]. At zero temperature, we only need to
set 𝑓(𝑟) = 1. In the next section, we will first use KANs to construct the
holographic model at vanishing temperature.

III. Construction of a KANs-Based Holographic Model
Based on KANs, we reconstruct the deformation factor 𝑤(𝑟) in this section.
We assume that 𝑤(𝑟) is a specific function derived from lattice data, with the
string tension 𝑔 used as a free parameter. The loss function integrates four
essential components to achieve both physical fidelity and mathematical robust-
ness. First, it incorporates a deviation term, specifically the mean absolute
error, which quantifies the discrepancy between model predictions and target
values from lattice QCD. Second, regularization constraints are imposed through
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specialized mathematical mechanisms to prevent overfitting and preserve gen-
eralization capabilities. Third, an ultraviolet boundary condition rigorously
enforces 𝑤(0) → 1, a fundamental requirement ensuring the metric transitions
asymptotically to AdS5 spacetime at short distances. Finally, a monotonicity
preservation term employs custom-designed penalties to strictly maintain 𝑤(𝑟)’s
increasing behavior across its domain, thereby eliminating unphysical imaginary
solutions in subsequent computations. These elements are synthesized through
weighted combination into a unified optimization objective.

The structure of the KANs we designed is shown in Fig. 1 [Figure 1: see original
paper]. We performed a reconstruction with the parameter 𝑔 = 0.2425 related
to the string tension. The trained function 𝑤(𝑟) is

𝑤(𝑟) = 5.32 − 4.53 sin (11.16 − 3.11𝑒−0.04(−0.93𝑟−1)2) ,

which is substituted into Eq. (17) for potential energy calculations. These
calculations are combined with the lattice QCD data [?], and the results are
shown in Fig. 2 [Figure 2: see original paper].

From Fig. 2 (a), it can be clearly observed that the reconstructed function
satisfies the boundary condition 𝑤(0) → 1 and that the function 𝑤(𝑟) increases
with 𝑟. Fig. 2 (b) illustrates the fitting performance of the neural network
to the training dataset. These curves clearly demonstrate the excellent ability
of the network in modeling the function 𝐸(𝐿) with an accuracy that highly
matches the theoretical expectation. This result further supports the validity
of the model and verifies the reliability of the KANs.

In the subsequent stage of this study, we obtain an analytical solution of 𝑤(𝑟).
From this solution, we calculate the heavy quark potential under finite temper-
ature and chemical potential conditions by adding the function 𝑓(𝑟). Fig. 3
[Figure 3: see original paper] (a) shows that the linear component of the po-
tential energy exhibits a decaying trend under finite temperature conditions.
This decay may be attributed to the temperature-induced shielding effect. In
contrast, the Coulombic component of the potential energy shows remarkable
robustness to temperature changes and is almost unaffected by temperature
increase. As the temperature increases, the coupling strength of the strong
interactions weakens, leading to weaker inter-quark binding and the potential
energy tends to vanish on a smaller spatial scale. Ref. [?] employs lattice QCD
simulations to analyze static quark-antiquark interactions at finite temperature
using four complementary methods: spectral model fits, HTL-inspired fits, Padé
rational approximation, and Bayesian reconstruction (BR). Among these, only
the HTL-inspired fits exhibit significant temperature dependence. Our results
are consistent with the other three methods, indicating that the screening effect
is not significant at finite temperature. We further verify the reliability of the
analytic solution of 𝑤(𝑟) obtained through neural networks.

Fig. 3 (b) shows a similar trend. However, by comparison with (a), we find
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that the chemical potential affects the potential energy to a significantly lesser
extent than temperature does. These observations reveal the differential effects
of temperature and chemical potential on the strong interaction potential energy.

At larger distance scales, the interaction between quarks and antiquarks is sig-
nificantly weakened so that they behave as free particles. This phenomenon
suggests that when the separation distance between quarks and antiquarks is
large enough, they can be regarded as independently existing states and are no
longer bound by strong interactions. The expectation value of the Polyakov
loop can be defined as [?, ?]

⟨𝑃 ⟩ = exp (−𝐸(𝑟 = ∞, 𝑇 )
𝑇 ) .

With this choice, the Polyakov loop expectation value takes the form shown in
Fig. 4 [Figure 4: see original paper] (a). From Fig. 4 (b), it can be clearly seen
that at 𝑇𝑐 = 0.17 GeV, the slope of the Polyakov loop expectation value is the
largest.

IV. Transport Properties of QGP
In this section, we extend the calculation of analytic solutions of the function
𝑤(𝑟) with string tension 𝑔 to the drag force, diffusion coefficient, and jet quench-
ing parameter of heavy quarks at finite temperature and finite chemical poten-
tial. To facilitate the study of holographic probes, we define 𝐴𝑠(𝑟) = 1

2 log(𝑤(𝑟)).
Following Ref. [?], the drag force can be obtained by

𝐹drag = 𝑒2𝐴𝑠(𝑟𝑠)𝑣
𝜋2𝑇 2𝑟2𝑠

,

where 𝑟𝑠 satisfies 𝑓(𝑟𝑠) − 𝑣2 = 0. In this context, we first need to solve Eq.
(5) numerically to obtain 𝑟𝑠, and subsequently employ Eq. (18) to compute the
drag force. In Fig. 5 [Figure 5: see original paper], we show the variation of drag
force with temperature at vanishing chemical potential. As can be seen from
the figure, the drag force increases significantly with increasing temperature.

According to Eq. (19), the energy loss can be deduced to be equal to the
drag force, which allows us to plot the relationship between energy loss and
momentum in different systems. We have

𝑑𝐸
𝑑𝑥 = 𝑒2𝐴𝑠(𝑟𝑠)

𝜋2𝑇 2𝑟2𝑠

𝑣
1 − 𝑣2 .

Fig. 6 [Figure 6: see original paper] illustrates the energy loss of bottom quark
(𝑚𝑏 = 4.7 GeV) and charm quark (𝑚𝑐 = 1.3 GeV) at vanishing chemical poten-
tial. From Fig. 6, it is clear that the energy loss increases with momentum. In
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addition, higher temperatures lead to an increase in energy loss. The qualitative
results are similar to Refs. [?, ?, ?].

Next we proceed to study the diffusion coefficient, which in the AdS/Schwarzschild
context can be written as [?]

𝐷 = 1
2𝜋𝑇

𝑒2𝐴𝑠(𝑟𝑠)

𝜋2𝑇 2𝑟2𝑠

1
1 − 𝑣2 .

According to Eq. (21), we calculate the diffusion coefficients of heavy quarks
normalized by 2𝜋𝑇 , as shown in Fig. 7 [Figure 7: see original paper]. As
can be seen from the figure, the diffusion coefficient of heavy quarks gradually
increases with increasing temperature, and this behavior is consistent with ref-
erence [?], indicating that the analytic solution of 𝑤(𝑟) obtained by KANs is
reliable. Besides, the qualitative behavior of diffusion coefficient is consistent
with Ref. [?].

Now we turn to the study of jet quenching parameter and we obtain the following
expression for the jet quenching parameter in the holographic model [?]

̂𝑞 = 8
√

2
𝜋

𝑎0
𝐿2

𝑒2𝐴𝑠(𝑟𝑠)

𝜋2𝑇 2𝑟2𝑠
.

Here 𝑎0 is defined as

𝑎0 = ∫
∞

𝑟ℎ

𝑑𝑟
𝑟2𝐿−2𝑒−2𝐴𝑠(𝑟)√𝑓(𝑟)(1 − 𝑓(𝑟))

.

To obtain the jet quenching parameters in the holographic QCD model, we nu-
merically solve using Eq. (22), comparing ̂𝑞/𝑇 3 as a function of temperature,
as shown in Fig. 8 [Figure 8: see original paper]. From Fig. 9 [Figure 9: see
original paper], it can be observed that temperature leads to an enhancement of
the jet quenching parameter, indicating that in the considered model, a denser
or hotter medium results in increased energy loss, which aligns with the physical
intuition that jets passing through a higher-temperature (i.e., higher-density or
more particle-rich) medium encounter more scattering centers and therefore ex-
perience greater energy loss. The results of our model calculations are consistent
with the experimental results of RHIC and LHC [?].

V. Summary
In this study, we employ KANs to extract data from QCD to construct a holo-
graphic model. In order to verify the validity of the reconstruction results, we
first apply the obtained function 𝑤(𝑟) to the heavy-quark potential and compare
with lattice data. The results show that KANs exhibit effectiveness in solving
inverse problems. It is worth emphasizing that KANs have the ability to provide
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analytical solutions. Moreover, we further examine the heavy quark potential
and its relationship at finite temperature and chemical potential. In addition,
based on the constructed function 𝑤(𝑟), we study the relationship between the
drag force of heavy quarks, the diffusion coefficient, and the jet quenching pa-
rameter under the conditions of finite temperature and finite chemical potential,
which reveals the accuracy of the KANs-based holographic model. This finding
lays the foundation for understanding the complementarity of different models
in dealing with complex physical phenomena, and also provides new perspectives
for future research.

The findings not only provide an effective paradigm for utilizing machine learn-
ing methods to solve complex physics problems, but also point to new directions
for subsequent research. These new directions include an in-depth exploration
of the interactions between different physical fields, and the use of holographic
models in combination with machine learning methods, with a view to a more
comprehensive understanding of the dynamic behavior of complex systems.

Finally, we want to emphasize that our results focus on qualitative behavior.
On the one hand, we can develop a holographic model derived from the Einstein
equation with KANs. On the other hand, this work could inspire future efforts
to incorporate additional data (e.g., meson spectra, equations of state) into the
holographic model. Ultimately, this may enable us to build a comprehensive
framework for describing broader aspects of QCD physics.
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