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Abstract

The full configuration interaction quantum Monte Carlo (FCIQMC) method,
originally developed in quantum chemistry, has also been successful in both
molecular and condensed matter systems. Another natural extension of this
methodology would be its application to nuclear structure calculations. We
have developed the FCIQMC approach for studying nuclear systems. To vali-
date the method, we applied FCIQMC to a small model space where standard
shell model remain computationally feasible. Specifically, we performed calcu-
lations for Fe isotopes using pf-shell GXPF1A interaction and compared the
results with those obtained from standard shell model calculations. To further
demonstrate the capabilities of FCIQMC, we investigated its performance in sys-
tems exhibiting strong correlations, where conventional nuclear structure models
are less effective. Using an artificially constructed strongly correlated system
with a modified GXPF1A interaction, our calculations revealed that FCIQMC
delivers superior results compared to many existing methods. Finally, we apply
FCIQMC to Mg isotopes in the sdpf-shell model space, showing its potential to
perform accurate calculations in large model spaces that are inaccessible to the
shell model due to the limitations of current computational resources.
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The full configuration interaction quantum Monte Carlo (FCIQMC) method,
originally developed in quantum chemistry, has also proven successful for both
molecular and condensed matter systems. A natural extension of this methodol-
ogy is its application to nuclear structure calculations. We have developed the
FCIQMC approach for studying nuclear systems. To validate the method, we
applied FCIQMC to a small model space where standard shell model calcula-
tions remain computationally feasible. Specifically, we performed calculations
for Fe isotopes using the pf-shell GXPF1A interaction and compared the results
with those obtained from standard shell model calculations.

To further demonstrate the capabilities of FCIQMC, we investigated its per-
formance in systems exhibiting strong correlations, where conventional nuclear
structure models are less effective. Using an artificially constructed strongly cor-
related system with a modified GXPF1A interaction, our calculations revealed
that FCIQMC delivers superior results compared to many existing methods.

Finally, we apply FCIQMC to Mg isotopes in the sdpf-shell model space, demon-
strating its potential to perform accurate calculations in large model spaces that
are inaccessible to the shell model due to limitations of current computational
resources.

Introduction

Atomic nuclei are self-bound quantum many-body systems, and a key goal in
modern nuclear physics is to solve these systems from first principles. To achieve
this, one can compute the ground-state and excited-state energies, along with
their corresponding wavefunctions, either in coordinate space or within a specific
basis, such as the harmonic oscillator basis.

Methods in coordinate space are typically represented by various quantum
Monte Carlo (QMC) techniques, including diffusion Monte Carlo (DMC) and
the related Green’s function Monte Carlo (GFMC) [1-4]. These methods have
proven successful for accurately solving the properties of light nuclei. How-
ever, a major obstacle for these methods is the Fermion sign problem: due to
the antisymmetry property of the many-body wavefunction, the wavefunction
necessarily contains both positive and negative amplitudes, which cannot be
directly sampled using a probability distribution. To mitigate the sign prob-
lem, techniques such as the fixed-node approximation or the constrained-path
method are often employed [2, 4]. A key challenge in these methods is the need
for a trial wavefunction that approximates the true wavefunction as closely as
possible.
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The configuration interaction (CI) methods, including the configuration interac-
tion shell model (CISM) [5, 6] and no-core shell model (NCSM) [7, 8], provide
direct and accurate frameworks for solving quantum many-body systems in basis
space. However, the configuration space grows exponentially with the number
of particles, making it computationally infeasible to store all configurations in
memory. To address this issue, one can truncate the configuration space using
methods like particle-hole truncation or w truncation. Despite these techniques,
a large number of configurations is still required to achieve converged results,
which is impossible for large-dimension systems [9].

An alternative approach is the post-Hartree-Fock methods, which offer poly-
nomial complexity. These include perturbative approaches, such as many-body
perturbation theory (MBPT) [10-13], and non-perturbative approaches, such as
the in-medium similarity renormalization group (IMSRG) [14-16] and coupled
cluster (CC) [17, 18]. However, all of these approaches rely on some kind of
truncation scheme, which may introduce inaccuracies, particularly in strongly
correlated systems. Efforts to improve accuracy by going to higher-order trun-
cations [19, 20] are in progress, though computational cost remains a significant
challenge.

In 2009, Booth et al. developed the full configuration interaction quantum Monte
Carlo method for quantum chemistry calculations [21]. This method samples
wavefunctions in the configuration space, allowing the storage of only a small
subset of important configurations that is often several orders of magnitude
smaller than those in the full configuration space. Moreover, by utilizing signed
walkers and walker annihilation, FCIQMC can avoid the Fermion sign problem
and converge to the exact wavefunction without requiring prior knowledge of
its nodal structure.

FCIQMC has been successfully applied to a range of systems [21-23], including
both molecular and condensed matter systems, and has proven particularly
effective for strongly correlated systems [24, 25]. Given its strengths, it shows
promise for nuclear structure calculations. In this study, we have developed a
C++ code implementing FCIQMC, taking into account the symmetry properties
of nuclear systems.

Several other quantum Monte Carlo methods also operate in configuration space,
including the Monte Carlo shell model (MCSM) [26, 27], which constructs the
basis by evolving in the auxiliary field and then diagonalizes the Hamiltonian
using that basis; and the configuration interaction Monte Carlo (CIMC) [28,
29], which, despite its similar name to FCIQMC, uses a guiding wavefunction to
perform a “fixed-node approximation” in configuration space. It is important
to note that, although these methods share some similarities, they are funda-
mentally distinct from one another.

This article is organized as follows: In Sec. II, we introduce the theory and
algorithm of FCIQMC and its enhanced variant. In Sec. III, we present bench-
marking results with shell model calculations for Fe isotopes in the pf-shell, and

chinarxiv.org/items/chinaxiv-202507.00009 Machine Translation


https://chinarxiv.org/items/chinaxiv-202507.00009

ChinaRxiv [$X]

for an artificially constructed strongly correlated system. We have also tested
large-space calculations with the examples of Mg isotopes in the full sdpf shell.

II. The Full Configuration Interaction Quantum Monte
Carlo

The CI methods aim to solve the Schrodinger equation H¥, = E,¥, in a
configuration space. A configuration is a Slater determinant constructed from
the single-particle basis. Considering a system of N particles with M single-
particle orbitals, al (i=1,2,..., M), we can express all possible configurations
as |D;) = a'...a%|0), where |0) is the particle vacuum state. The Lanczos
algorithm is powerful for diagonalizing Hamiltonians in configuration space, as
used in the computational codes of Bigstick [30] and kshell [31], obtaining the
exact wavefunction Y C;|D,).

The dimension of the full configuration space is on the order of (%), which grows
exponentially with the number of particles. This makes it impossible to store
all the coeflicients C; in memory when the system is large.

The FCIQMC method, instead, samples wavefunctions in configuration space.
To achieve this, we use the projection method rather than diagonalization to
obtain the ground-state wavefunction ¥, by the following operator:

P(r) = eI Ely(r = 0) — W,
T—00
where E is the ground-state energy, and 7 indicates a time evolution. In this
process, excited states are projected out, and only the ground state remains.
This approach is achieved by the so-called imaginary time Schrédinger equation:

Y(7)
or

= —(H — Eo)p().
Expanding this differential equation in the configuration space, we obtain:

¢,
o =—D_(Hy; —56,,)C;.
J

Here, we replace the ground-state energy E;, with a self-adaptive shift S because
the ground-state energy is unknown before the calculation. The method of
adapting the shift S will be explained later.

Similar to the QMC methods in coordinate space, the coefficient C; can be ei-
ther positive or negative, making it impossible to sample them directly as a
probability distribution. In the FCIQMC method, this issue is addressed by in-
troducing so-called walkers, which are distributed across various determinants.
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The number of walkers in |D,) is denoted by N,. To represent negative coef-
ficients, every walker is assigned a sign, allowing IV, to be either positive or
negative. The total number of walkers is given by > . |N,].

We expect the walker number in a given determinant to be proportional to
the corresponding expanded coefficients. In this way, the imaginary time
Schrédinger equation can be discretized as:

:—Z )

A typical evolution of FCIQMC starts with a single determinant |D), which
can be the Hartree-Fock ground state or a determinant with the particles filling
the lowest orbitals of the basis used. We begin the evolution with N, walkers
in |D,), according to Eq. (7). The process of the imaginary time evolution can
be split into three periods: warm-up, projection, and statistics.

In the warm-up period, we keep a constant shift S = (D,|H|D,) > E,. The
ground-state wavefunction will grow with exp[—(E; — S)7], causing the total
walker number to increase exponentially. Once the total walker number reaches
a certain number, we enter the projection period. During this period, the shift
begins to vary according to the total walker number. The goal is to maintain
the total walker number at a constant level.

The shift S is updated every A steps, as suggested in Ref. [21]:

S(r) =S(r — AAT) — AZT In ( (JjwszT))

In this paper, we adapt the shift S every A = 10 steps, and set ¢ = 0.1 for all
calculations.

When the imaginary time evolution reaches equilibrium—which means that the
total walker number is almost stable and the shift S fluctuates only slightly
around the ground state—we begin the statistics period. We continue the equi-
librium evolution for several steps and perform statistical analysis to evaluate
the ground-state energy. The shift parameter S can be used to evaluate the
ground-state energy, and we can also use the local time energy:

(DolH|t(r ()
B(r) = <10)o|7/1 Z No(7)

where Ny(7) is the walker number in the |D,) determinant, and H,; is for
(Do|H|D;).
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Now, the remaining challenge is how to evolve the imaginary time Schrédinger
equation (Eq. 7) stably and effectively, which is the key to the FCIQMC calcu-
lation. Every A7 evolution is done in three steps [21] as follows.

The spawning step: For each walker in determinant |D;), we select a con-
nected |D;) with a probability of p,(j|i), and attempt to spawn walkers into
|D;) with the following probability:

Gjld) AT|H2‘]“
Pspawn\J[?) = T
P Pgen (J]7)

The sign of the newly spawned walker is opposite to sign(HijNi). Spawning
walkers with probability pg,..,(jli) means that we directly spawn |pg,aun]
walkers with a probability of 1, and spawn one walker with a probability of

pspawn - LpspawnJ :

Two determinants |D;) and |D;) are said to be connected if H;; # 0 and j # i.
For a system with only one-body and two-body interactions, there are two types
of connected determinants: single excitations and double excitations.

For a single excitation, we first select an occupied orbital (labeled by a) from
|D;) with an equal probability of 1/N, where N, is the number of the occupied
orbitals in |D;). Next, we identify all unoccupied orbitals in |D,) which have
the same parity, same spin projection m and same isospin projection ¢, as those
of the a orbital. From this set of unoccupied orbitals, we randomly select one
(labeled by b) with an equal probability of 1/N, where N, is the number of such
unoccupied orbitals. The |D,) is then constructed by removing the a orbital
and adding the b orbital to |D;). Finally, the generation probability p,, (j|i) is
determined as the product of the two probabilities, i.e., equal to 1/(N,N,).

For a double excitation, we first select two occupied orbitals labeled by a and
b. Similar to that in the single excitation discussed above, each selection of one
pair of occupied orbitals has equal probability. Then, we identify all pairs of
unoccupied orbitals which have the same parity, same total spin projection m,
and same total isospin projection t, as those of the two-body state formed by
the a and b orbitals. From this set of unoccupied orbital pairs, we randomly
select one pair with an equal probability. As in the single excitation case, the
generation probability p,, (j|i) is determined by the product of the probabilities
associated with selecting the pair of occupied orbitals and the pair of unoccupied
orbitals.

In each spawning attempt, we perform either a single excitation or a double
excitation, chosen with probabilities pge1e and Paouble = 1—Psingles TeSPECtively.
The final p,,, is multiplied by pg,.. When a single excitation is chosen, or
multiplied by pyouple When a double excitation is chosen. In the present work,
We Uuse Pgnge = 1/2 for all calculations. Our calculations have indicated that
this choice of probability assignment does not have a noticeable impact on the
outcomes.
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The diagonal death/cloning step: For each walker in determinant |D,), we
calculate pyoan (1) = AT(H,;; — S). If pyeaen(2) > 0, the walker will die with a
probability of pyeain (4). If Paearn (4) < 0, the walker will clone with a probability
of *pdeath(i)'

The annihilation step: Collect all the walkers in the same determinant (in-
cluding the spawned walkers), and annihilate pairs of walkers with opposite
signs until only walkers with the same sign remain in the determinant. This
step is necessary for preventing the exponential growth of walkers [21].

This algorithm can be extended to a Hamiltonian with three-body interactions
easily, although we have not incorporated it in the present computational code.
The only modification would be that the spawning step should include triplet
excitations.

The original FCIQMC [21], as described above, can work for some systems, but
it requires a minimum walker number that can be very large in certain cases.
For example, with our code we found that in sd and pf shells the converged
evolution requires a walker number almost the same as the dimension of a full
configuration calculation. This phenomenon is due to the sign problem. During
the Monte Carlo evolution, some determinants may randomly acquire a small
number of walkers with opposite signs to the main wavefunction [32]. These
components of the wavefunction can spread in subsequent steps, which requires
a large total walker number to suppress them adequately.

Deidre Cleland et al. showed that the walker number required for convergence
can be dramatically reduced by using the initiator truncation [24]. In this
method, one defines some important determinants as initiators, and restricts
non-initiator walkers from spawning into unoccupied determinants. In this way,
we align the sign of the walkers in the small walker-number determinants with
those in the large walker-number determinants, which helps to suppress the sign
problem. This method is referred to as the initiator FCIQMC (i-FCIQMC) [24].
Actually, it truncates the original Hamiltonian as follows:

H,;; otherwise.

g - {O if [D;) is not an initiator and N; = 0,
ij
In our calculations, we define initiators by the determinants | D,) with |N,| > n_,
where n,, is called the initiator threshold. This prescription approaches the
original FCIQMC algorithm when the total walker number goes to infinity. In
the present work, we take an initiator threshold of n, = 3.

Another improvement to the original FCIQMC method is the use of floating-
point walker numbers [33], which enhances the stability of the evolution and
reduces the statistical error of the results. However, the floating-point walker
approach can lead to a large number of determinants being occupied by a small

number of walkers. To reduce memory usage, a walker number cutoff, N__.,
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is introduced [33]. In this method, if the walker number N, is less than N,
it is either replaced by N,. with a probability of N,/N,.. or removed with
a probability of 1 — N;/N,... This same procedure is applied to the spawned
walkers with a separate cutoff parameter k. We use the floating-point walker
number method in the present work, and we take N .. =1 and x = 0.1 in all

calculations.

C

The i-FCIQMC method can also be used to obtain excited states [34]. In this
approach, several parallel imaginary-time evolutions are run. After each A7t
evolution, we use Gram-Schmidt orthogonalization to obtain the orthogonal
components of the wavefunction.

ITI. Calculations and Discussions

We first benchmark our computations with standard shell model calculations
for Fe isotopes with the pf-shell interaction GXPF1A [35] using the code kshell
[31]. As a detailed example, the Monte Carlo evolution for *Fe is shown in Fig.
1 [Figure 1: see original paper|. In the warm-up period, the total walker number
grows rapidly. When the total walker number reaches the preset limit (it is 107
in 56Fe), the shift S starts to vary according to Eq. (8). In the present work,
we have made a small modification based on that in Ref. [24], which is that we
do not apply the initiator truncation in the warm-up period, while the initiator
truncation is used in the subsequent periods. With the initiator truncation, the
total walker number drops temporarily but grows up again. As time progresses,
the system reaches equilibrium, and the shift S should be stable around the
expected ground-state energy. After that, we continue the evolution for a few
more steps and perform statistical analysis to extract the ground-state energy.
In the *6Fe calculation, we use AT = 5x 1074 zs in the evolution. The projection
period takes 3.5 zs, and the statistics period takes 1.5 zs.

The equilibrium walker number and evolution time can vary across systems, and
there is no fixed ratio between the equilibrium walker number and the preset
limit of the warm-up. The time required for the projection and statistical periods
can also vary from system to system. The preset walker number and evolution
time can be optimized through a trial run with a smaller walker number and
some empirical judgment.

Table I presents our i-FCIQMC calculations of the Fe isotopes with the GXPF1A
interaction, benchmarked against standard shell model calculations with the
same interaction. The i-FCIQMC calculations give almost the same results
as the full pf-configuration SM calculations, demonstrating the validity of i-
FCIQMC when applied to nuclear structure calculations. In Table I, we have
also shown the mean walker number in equilibrium, which is smaller than the
dimension of the full configuration SM calculation. Using our current implemen-
tation, the i-FCIQMC method achieves these results with a memory requirement
that is 1-2 orders of magnitude smaller than that of the SM calculations.

[Figure 1: see original paper]
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FCIQMC is applicable to strongly correlated systems, while other methods
would not work well. In Ref. [37], Horoi et al. demonstrated that for a strongly
correlated system, the CC calculation may give significantly unbound energies
compared to the full configuration SM calculation. In that work, the authors
enhanced correlations in °Ni by decreasing the shell gap between 0 f7/2 and
1ps/, orbitals. We apply the i-FCIQMC method to the same systems, and the
results are shown in Fig. 2 [Figure 2: see original paper], alongside results from
CC methods, CISDTQ (configuration interaction singles, doubles, triplets, and
quadruples), and full configuration SM. The calculated energies are given rela-
tive to the reference energy of —203.800 MeV, consistent with Ref. [37]. The
statistical uncertainties arising in the i-FCIQMC calculations are negligible and
are therefore not displayed in the figure. We use about 10® walkers for each
state, which is the current limit of our computations.

In the CC methods, the ground state is expressed as exp( I')|D,), where the
cluster operator T' is defined as T1 + T2 + T3 -+, and T is the n- partlcle n-
hole (np-nh) component of T. In practice, T is typically truncated to T1 + TQ,
corresponding to the CCSD (CC singles and doubles) method. The completely
renormalized (CR)-CC(2,3) method improves upon this by introducing a nonit-
erative contribution from T3, thereby including additional correlations [37-39)].
As illustrated in Fig. 2, the i-FCIQMC results for °Ni are close to the exact so-
lutions from the pf-shell full configuration SM calculations, even in the strongly
correlated case (i.e., with —2 MeV shell-gap shift). In contrast, both CCSD
and CR-CC(2,3) give less bound energies, and the CR-CC(2,3) calculations ap-
proximate the CISDTQ (aka SM with 4p-4h truncation), indicating that they
cannot account for correlations beyond the 4p-4h level in these systems [37]. The
i-FCIQMC method allows walkers to explore all possible determinants within
the full configuration space, enabling it to capture high-order correlations that
are inaccessible to CC methods.

We have also extended our calculations to a larger model space of the sdpf shell.
Using the sdpf-mu interaction [40], we have calculated Mg isotopes with a total
walker number of ~ 108. The results are shown in Fig. 3 [Figure 3: see original
paper]. Our present computing resources only allow us to perform the sdpf full
configuration SM calculation for the light isotopes 2426Mg of the Mg chain. For
heavier isotopes, the sdpf full configuration SM calculation exceeds our current
computational capability. Therefore, we performed the SM calculation with an
w truncation in which an N w truncation means that only the configurations
with excitation energies < N w are included in the SM calculation. In the
present work, we truncate the configuration space with 2 w and 4 w, as shown
in Fig. 3. (Note that 4 w calculations of isotopes heavier than **Mg remain
beyond our current computational resources). We see that the SM calculations
with the 2 w truncation give unbound results compared to other methods, due
to the truncation error. The i-FCIQMC and SM calculations with the 4 w
truncation provide similar results for the Mg isotopes, and are also in good
agreement with the full configuration SM calculations in ?426Mg.
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In i-FCIQMC calculations with approximately 10® total walkers, only 10-20 GB
of memory is required, demonstrating its significant potential for nuclear struc-
ture calculations in configuration space. One of the major challenges of shell
model calculations is the prohibitive memory cost in large model spaces. In con-
trast, i-FCIQMC requires a much smaller configuration space dimension com-
pared to full configuration shell model calculations. Furthermore, unlike shell
model calculations, i-FCIQMC does not require storing hundreds of Lanczos
vectors, which significantly reduces memory usage. The current i-FCIQMC im-
plementation is parallelized using OpenMP, and MPI parallelization has already
been implemented for electron calculations [42]. We plan to further optimize the
code with more efficient parallelization techniques in the future, enabling the
calculation of larger total walker numbers. Studies of unstable nuclei at driplines
and beyond [43-45] are attracting interest in current nuclear physics research.
The extension to the complex-energy plane should be another valuable develop-
ment of FCIQMC [46]. Furthermore, the calculation of other observables, such
as [ decays [47, 48], offers additional avenues for exploration.

IV. Summary

In this study, we applied the FCIQMC method to nuclear structure calculations,
demonstrating its effectiveness in nuclear many-body systems. According to
our code, the original FCIQMC method requires a large total walker number to
converge, making it impractical for nuclear structure calculations. However, we
show that the initiator FCIQMC method performs well in these calculations.

Our i-FCIQMC computations were benchmarked with full configuration shell
model calculations, with a focus on Fe isotopes in the pf shell. The results con-
firm the validity of our i-FCIQMC computations. For *°Ni, using the shell-gap-
shifted GXPF1A interaction, the i-FCIQMC method produced more accurate
results than those obtained with coupled cluster calculations, highlighting its
strength in handling strongly correlated systems. Additionally, we performed
large-space calculations for Mg isotopes in the sdpf shell, demonstrating the
capability of i-FCIQMC to calculate large-space many-body systems.
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