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Abstract
Planetary surfaces, shaped by billions of years of geologic evolution, display nu-
merous impact craters whose distribution in size, density, and spatial arrange-
ment reveals the celestial body’s history. Identifying these craters is essential for
planetary science and is currently mainly achieved with deep learning-driven de-
tection algorithms. However, because impact crater characteristics are substan-
tially affected by the geologic environment, surface materials, and atmospheric
conditions, the performance of deep learning models can be inconsistent between
celestial bodies. In this paper, we first examine how the surface characteristics
of the Moon, Mars, and Earth, along with the differences in their impact crater
features, affect model performance. Then, we compare crater detection across
celestial bodies by analyzing enhanced convolutional neural networks and U-
shaped Convolutional Neural Network-based models to highlight how geology,
data, and model design affect accuracy and generalization. Finally, we address
current deep learning challenges, suggest directions for model improvement, such
as multimodal data fusion and cross-planet learning, and list available impact
crater databases. This review can provide necessary technical support for deep
space exploration and planetary science, as well as new ideas and directions
for future research on automatic detection of impact craters on celestial body
surfaces and on planetary geology.

Keywords: Crater detection algorithms; Deep learning; Different celestial bod-
ies; Impact crater databases
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1. INTRODUCTION
Impact craters are among the most prevalent geological features in the solar
system, formed sporadically on long timescales by asteroid impacts on the sur-
faces of planets or moons and by collisions with other celestial bodies. The
formation of impact craters not only constitutes a prominent geomorphological
feature on the surface of many planets but also profoundly influences the pro-
cess of planetary formation and evolution [?]. Whether on the Moon, Mars, or
other terrestrial bodies, the impact craters on their surfaces record the results
of celestial interactions, and the morphological features, formation mechanisms,
and distribution patterns of impact craters provide valuable insights for study-
ing planetary geological evolution, atmospheric history, and celestial collisions
[?]. Additionally, they are crucial for understanding the origin and evolution of
planets in the solar system, planning deep space exploration missions, and in-
vestigating potential conditions for the origin of life [?]. Therefore, the study of
impact crater detection holds an essential place in the field of planetary science.

Established impact crater detection methods are divided into manual labeling
methods and automated algorithms relying on the geometric features of impact
craters. Manual labeling is the earliest detection method, in which researchers
manually mark the boundaries of impact craters in images and calculate relevant
parameters such as diameter and depth by observing remote sensing images or
digital elevation models (DEMs) [?] of planetary surfaces. Most of the early im-
pact crater databases for objects such as the Moon and Mars were constructed
manually [?, ?], and although this method has been successful in initial re-
search, there are often notable differences in the labeling results from different
researchers because of the extraordinarily time-consuming and subjective na-
ture of the manual labeling process [?, ?], with discrepancies reaching as high
as 40% \cite{8–10}. Automated methods have gradually been introduced to
address these problems and improve research efficiency. Traditional automated
methods are typically based on the morphological features of impact craters,
such as annular boundaries and depressed topography, which are recognized
using image processing techniques such as edge detection and morphological op-
erations [?, ?]. Additionally, techniques combining DEMs and optical imagery
can improve detection accuracy by analyzing terrain undulation and slope fea-
tures [?, ?]. However, these methods have high requirements regarding the shape
of impact craters and have room for improvement when dealing with complex
backgrounds, such as Martian dust-covered areas and in identifying small impact
craters, which are easily affected by light variations and noise. As a result, they
are not effective in dealing with overlapping craters or eroded impact craters
[?]. Overall, traditional methods have limitations in terms of efficiency, accu-
racy, and adaptability, which make it challenging to handle the large volumes
of high-resolution data generated by current planetary exploration missions and
to adapt to the notable geological differences across different celestial surfaces
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[?, ?]. Because deep learning methods offer a high degree of automation and
adaptability to diverse environments, they can effectively overcome the limita-
tions faced by earlier methods in impact crater detection. Consequently, deep
learning has gradually become an essential tool in impact crater detection.

In recent years, researchers have developed many impact crater detection algo-
rithms (CDAs) based on deep learning techniques, which have proven effective
at solving many problems associated with more traditional methods for iden-
tifying impact craters on planetary surfaces. Compared with manual labeling
methods and automated methods based on the geometric features of impact
craters, deep learning possesses powerful feature extraction and nonlinear mod-
eling capabilities, which enable the automatic detection of impact craters from
complex and diverse data, markedly improving the efficiency and accuracy of
detection [?, ?]. For example, deep learning models based on system architec-
ture such as convolutional neural networks (CNNs) can automatically capture
the boundaries, shape features, and background environment of impact craters,
accurately identifying craters of different scales and morphologies through multi-
layer feature extraction [?, ?]. Additionally, deep learning models can flexibly
adapt to different data sources (e.g., optical images, DEMs, and multispectral
data) and geological conditions on a variety of celestial surfaces, effectively ad-
dressing the adaptability issues of previous methods in cross-celestial studies
[?, ?]. Thanks to their efficient end-to-end learning capability, the training
and inference speed of deep learning techniques on large-scale datasets is con-
siderably faster than that of older algorithms, enabling quick processing of a
large number of high-resolution images generated by planetary exploration mis-
sions [?, ?]. Furthermore, through the use of data augmentation, multimodal
data fusion, and transfer learning, deep learning further extends the application
scenarios and adaptability of impact crater detection, making it more robust
in dealing with complex backgrounds, secondary crater detection, and multi-
object comparison studies [?, ?]. Consequently, deep learning plays a central
role in automating and improving the accuracy of impact crater detection and
provides more efficient technical solutions with broader application scenarios for
planetary science research.

CDAs demonstrate excellent efficiency and accuracy in data processing on a
single celestial body. They provide technical support and new research per-
spectives for the study of impact craters on different celestial bodies, owing
to their automation and ability to adapt to diverse environments. Studying
impact craters on a variety of celestial bodies is of foremost importance in
planetary science, because the geological environment, gravitational field, and
atmospheric conditions of each body strongly affect the formation mechanism,
feature preservation, and distribution patterns of impact craters. These differ-
ences offer valuable insights into the formation, evolution, and interaction of
planets [?]. For example, the Moon, whose impact craters remain clear and
intact for long periods because of the lack of atmospheric and geological ac-
tivity, is ideal for studying impact dynamics and secondary crater distribution
[?, ?]. By contrast, the thin atmosphere and active wind and sand erosion on
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Mars lead to the erosion or masking of crater edges, and its complex sediment
cover and geomorphological changes make the morphological characteristics of
impact craters and the distribution patterns of secondary craters appear more
diverse [?, ?]. On Earth, the preservation of impact craters is severely limited
by geological processes such as plate tectonics, erosion, and deposition, with
only a few larger impact craters remaining recognizable [?, ?]. Saturn’s moon
Titan has few surface impact craters, mainly owing to its active geological and
climatic features, such as liquid methane rivers, lakes, and wind-formed land-
forms, which can mask or erode impact craters. Titan’s thick atmosphere also
reduces the impact of many small meteors, decreasing the number of craters.
Many other objects with complex surface features and unique atmospheric envi-
ronments can provide new perspectives for studying the formation and evolution
of impact craters [?].

Through cross-body comparative studies, researchers can uncover universal pat-
terns in geological processes while identifying phenomena unique to different
celestial bodies, thus advancing CDA automation. For example, Herd et al. [?]
and Xiao et al. [?] demonstrated the notable environmental effects of surface
deposition and gravity on crater morphology by comparing Martian and lunar
impact craters [?, ?, ?]. However, challenges remain in cross-body comparative
studies, including differences in the resolution and quality of remote sensing
data, the complexity of crater morphology, and the diversity of geological en-
vironments and formation mechanisms [?, ?]. In recent years, the introduction
of deep learning techniques has provided powerful tools for the automated de-
tection and analysis of impact craters on various celestial bodies, enhancing
detection efficiency and supporting the development of cross-celestial compara-
tive studies [?, ?].

The study of impact craters on different celestial bodies is essential to plane-
tary science, not only for understanding the geological evolution and surface
chronology of planets but also for providing technical support and a scientific
foundation for future deep space exploration missions. This field of research
will lead to new discoveries and insights into geological history, material cy-
cles, and celestial interactions, offering more opportunities to understand the
evolutionary processes of the solar system [?, ?].

In this paper, we explore the application and performance of deep learning tech-
niques in impact crater detection on the surfaces of different celestial bodies
and evaluate the adaptability and detection capabilities of deep learning models
in multi-planet environments by analyzing impact crater detection studies on
typical celestial bodies such as the Moon, Mars, and Mercury. Specifically, we
compare the performance of various models across different celestial bodies and
analyze the key factors affecting the generalization ability of the models. At
the same time, we summarize the technical challenges in detection tasks across
different celestial bodies and propose potential directions for improvement. By
reviewing and summarizing existing research, we aim to provide technical sup-
port and theoretical references for future deep space exploration missions and
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planetary geology studies.

2. SURFACE FEATURES AND CRATER UNIQUENESS
ON DIFFERENT CELESTIAL BODIES
The characteristics of impact craters on planets and moons can be influenced
by various geological and physical factors, including the surface geological envi-
ronment, atmospheric conditions, gravitational field strength, and the history
of geological activity. Owing to marked differences in the geological conditions
and physical properties of different celestial bodies, the preservation state, mor-
phological features, and distribution patterns of impact craters also vary. This
diversity can provide valuable information for studying the formation and evo-
lution of planetary surfaces, but it also presents a challenge to the development
of more accurate crater detection techniques.

2.1. Surface Features on Different Celestial Bodies

In this study, we have examined the Moon, Mars, Earth, Mercury, Enceladus,
and Titan, all of which have impact craters with unique characteristics. The
Moon possesses one of the largest distributions of well-preserved impact craters
in the solar system. Because of its lack of atmosphere and limited geological
activity, its impact crater morphology has remained largely intact, with well-
defined and regular boundaries, typically round or oval. A typical example of
an impact crater on the Moon is the Copernicus Crater, located on the near
side of the Moon with a diameter of approximately 93 km, known for its well-
defined ejecta system. Additionally, the lunar surface is extensively covered with
secondary craters, originating from the secondary impacts of ejecta from large
primary craters. The impact craters on the Moon record the history of effects
from the early formation of the solar system to the present, making it an ideal
subject for studying impact dynamics and planetary surface chronology [?, ?].

Impact craters on Mars show complex and diverse morphological features influ-
enced by its thin atmosphere and active wind and sand processes. The surface
of Mars is covered with sandy sediments and ice, and the edges of some impact
craters are indistinct or obscured, with their interiors often covered by deposits
[?]. In addition, the Martian atmosphere can form secondary craters, but the
distribution pattern of these craters is influenced by geological conditions and
depositional processes. These characteristics of Martian impact craters pro-
vide essential insights into depositional environments and the distribution of
secondary craters [?]. A representative impact crater on Mars is Gale Crater,
located near the equator, with a diameter of approximately 154 km. At its cen-
ter is Mount Sharp, rising approximately 5.5 km in height. The NASA Curiosity
rover landed there in 2012 and continues to explore.

The number of impact craters on Earth is small and they are poorly preserved
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because of the heavy atmosphere and intense geologic activity. Plate movement,
erosion, and deposition have destroyed most impact craters on the Earth’s sur-
face, and only a few of the larger impact craters are recognizable, such as the
Barringer Crater and Lake Manicouagan. The residual morphology of Earth’s
impact craters is primarily complex, irregularly shaped, and often covered by
sediments [?, ?].

Mercury has no atmosphere, weak surface geology, and a dense and well-
preserved distribution of impact craters. Its weak gravitational field facilitates
the formation of multi-ring craters and secondary craters, with the Caloris
Basin being a typical example. Mercury’s impact craters have clear morphology
with regular boundaries and are primarily circular or elliptical, suitable for
studying secondary craters, impact mechanisms, and generation laws [?, ?].

The polar regions of Enceladus and Titan are characterized by geologic activity
and liquid hydrocarbon lakes, respectively, rather than by impact craters. The
surface of Enceladus is covered by a thick crust of ice, and its impact craters
are sparse, but some of them show noteworthy ice-filled and frozen structures
inside. Substantial geologic activity on Enceladus’s surface, such as possible
cryovolcanism, has resulted in some impact craters having degraded or unrecog-
nizable morphologies. In addition, Enceladus may have a deep subsurface ocean,
suggested by the presence of distinctive “tiger stripe” fissures in the south polar
region, which are the source of jet plumes. Its impact crater distribution could
provide clues for exploring subsurface ice and liquid water [?].

Titan has a thick atmosphere, surface rivers composed of liquid hydrocarbons
(primarily methane and ethane), and its impact craters are sparse and diverse.
Hydrocarbon deposits and erosion cover most impact craters, and only a sparse
distribution of impact craters remains in localized areas. The NASA Cassini
probe has observed Titan’s north polar region in detail, finding it to be char-
acterized by large hydrocarbon lakes and seas. Impact crater studies on Titan
have provided essential data for understanding methane cycling and deposition
processes [?].

Remote sensing images of typical impact craters on each planet are shown in
Fig. 1 [Figure 1: see original paper]. In addition, Table 1 summarizes a compar-
ison of the impact crater characteristics for each celestial body, including the
atmospheric environment, geological activity, surface impact crater morphol-
ogy, distribution of secondary craters, and the names of representative impact
craters on each planet.

Fig. 1. Comparison of typical impact craters on various planets.
(A) Moon: Copernicus Crater1. (B) Mars: Gale Crater in August 20122. (C)
Earth: Barringer Crater (Arizona, USA)3. (D) Mercury: Caloris Basin4. (E)
Enceladus: polar tiger stripes (close-up view)5. (F) Titan: north polar “Land
of Lakes” (bird’s eye view)6.
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2.2. Impact Crater Uniqueness Analysis

The geological environment of planets and satellites has a profound influence
on the formation, evolution, and preservation of impact craters. Geological age,
geological structure, and atmospheric conditions are the central factors deter-
mining the morphology and distribution of impact craters, and these variables
have diverse manifestations on different celestial bodies. The following is an
in-depth discussion on how these three geological differences have shaped the
characteristics of impact craters on other celestial bodies.

Regarding geological age, the history of geological activity on different celestial
bodies has influenced the distribution pattern and preservation state of impact
craters. Because of their low geologic activity, the Moon and Mercury have
a dense distribution of well-preserved impact craters on their surfaces, which
record an impact history from the early formation of the solar system to current
times. The impact craters present on these objects range from small craters
with diameters of only a few meters to large impact basins with diameters
of more than 2,500 km, providing a rich database for planetary chronology
studies [?, ?]. In contrast, impact craters on Mars are predominantly found in
ancient upland areas with shorter period depositional environments, reflecting
the effects of recent geologic activity. The covering effect of Martian regolith
affects the distribution pattern of secondary craters, giving them complex spatial
distribution characteristics in localized areas [?]. Most impact craters on Earth
have been affected by dynamic processes such as plate tectonics, erosion, and
deposition, and only a few large complex craters have been preserved [?, ?]. In
addition, dynamic processes on the surfaces of Enceladus and Titan have also
affected the preservation of impact craters. Enceladus’s ice-shell motion masks
some impact craters, while Titan’s sedimentary cover reduces the number of
identifiable small craters, resulting in a sparse distribution [?].

In terms of geological structure, the structural composition and nature of the
surfaces of celestial bodies have a strong influence on the morphology and state
of preservation of impact craters. The surfaces of the Moon and Mercury are
composed of stable rock, such as basalt, with well-defined and morphologically
intact impact crater boundaries, making them ideal for studying impact dy-
namics. The surface of Mars has a relatively complex composition of materials,
including ice, regolith, and volcanic rock, and its heterogeneity makes its impact
craters show diverse morphological characteristics. Enceladus’s impact craters
are mostly filled with icy material and show a unique frozen structure, a char-
acteristic that reflects the role of icy crust layers in shaping the morphology of
impact craters. Titan’s impact craters are mainly eroded and covered by hydro-
carbon lake and river sediments, and their morphology is complex and varied,
which further increases the difficulty in identifying impact craters.

The presence or absence of an atmosphere is an essential factor influencing the
formation and distribution of impact craters. The lack of atmospheric layers
on the Moon and Mercury has allowed their impact craters to maintain their
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original morphology for a long time, with clear and regular boundaries. The
thin atmosphere of Mars enables the formation of some small impact craters,
but surface deposition and wind erosion have a strong impact on the morphol-
ogy of impact craters, making their edges poorly defined and their morphology
irregular. Titan’s thick atmosphere markedly reduces the probability of small
impact crater formation; atmospheric deposition and erosion have resulted in a
complex and varied impact crater distribution pattern, with some areas of the
craters almost wholly obscured.

A combination of geological and environmental conditions on different celestial
bodies influences the shape, size distribution, and sediment characteristics of
their impact craters. Craters on the Moon and Mercury have regular shapes
and clear boundaries, mostly circular or elliptical. In contrast, impact craters
on Mars have indistinct or asymmetric edges due to sedimentation and wind
erosion. The morphology of Enceladus’s impact craters has been shaped by de-
position of ice and shows unique frozen structures, while Titan’s impact craters
show morphological diversity due to sedimentary cover. Generally, crater char-
acteristics reflect the geology and environment of the different celestial bodies.

Impact craters on the Moon and Mercury have a wide range of sizes, and small
secondary craters are densely and strongly distributed. Martian impact craters
cover a wider range of scales, but the sedimentary cover makes it more challeng-
ing to recognize small and secondary craters, which are densely distributed only
in certain regions. Titan’s impact craters are fewer in number, dominated by
large craters, with smaller craters substantially obscured by sedimentation and
erosion, and their distribution pattern shows a higher spatial sparsity.

Sediment characteristics further exacerbate the difficulty of impact crater classi-
fication and detection. Martian regolith deposits often form stacked structures
at the base and edges of impact craters, which clearly interferes with CDAs.
Liquid methane deposits on the surface of Titan mask the boundaries of impact
craters, potentially making detection a challenge. These depositional features
not only reflect the geological dynamics of the object’s surface but also place
higher demands on automated detection techniques.

Analysis of the geological properties of the Moon, Mars, Earth, Mercury, Ence-
ladus, and Titan shows that the geological age, geological structure, and atmo-
spheric conditions of different celestial bodies have a defining influence on the
morphology and distribution of impact craters. This variety of impact crater
morphology and distribution in different celestial bodies provides a rich scien-
tific basis for the study of planetary impact craters and at the same time poses
a new challenge to automated detection technology.
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3.1. Deep Learning Concepts
Deep learning, a branch of machine learning based on artificial neural networks,
automatically learns and extracts features from data using multi-layer networks.
These models build hierarchical data representations, from simple to complex,
mimicking the structure of biological neural systems.

In impact crater detection, common deep learning models include CNNs, U-
Net, and Faster Region-based CNNs (Faster R-CNN). CNNs automatically ex-
tract hierarchical features through multi-layer convolution and pooling, making
them effective for analyzing crater edges and structures. However, because of
their simple structure, they struggle with complex backgrounds or overlapping
craters, reducing detection accuracy. U-Net, known for image segmentation,
captures multi-scale features and excels at extracting fine crater boundaries.
However, it may not perform well with very small or large craters and can un-
duly smooth or miss boundaries in overlapping or eroded cases. Here, “unduly
smooth” refers to the model’s tendency to produce segmentation masks with
softened crater edges—rather than sharp, well-defined contours—due to factors
such as interpolation or loss of fine details during prediction, particularly when
distinguishing overlapping or eroded craters is challenging. The Faster R-CNN,
a target detection model, is well suited for detecting craters of various sizes
by combining region proposal networks and convolutional layers. However, the
preset anchor size impacts results, and fine-tuning may be needed for craters at
varying scales. Additionally, Faster R-CNN may face false and missed detections
when handling dense or overlapping targets. In summary, each of these deep
learning models has its own advantages in impact crater detection, and through
flexible model selection and combination, the accuracy and efficiency of detec-
tion can be effectively improved to promote the research and development of
automatic impact crater detection.

Commonly used evaluation metrics in CDAs include precision, recall, F1-score
(the harmonic mean of precision and recall), accuracy, mean average preci-
sion (mAP), and intersection-over-union (IoU). These metrics apply to different
datasets, unbalanced samples, and detection scenarios and can comprehensively
evaluate the performance of the model.

Precision is the proportion of predicted impact craters that are correctly identi-
fied. This metric is used to assess the accuracy of the positive samples predicted
by the model and is particularly applicable to the assessment of scenarios that
reduce false detections. The precision (P) can be calculated as

𝑃 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑃 ; (1)

where true positive (TP) is the number of actual impact crater samples and
false positive (FP) is the number of non-crater samples misidentified as impact
craters.
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Recall (R) is the proportion of all actual crater samples correctly detected by
the model. It is used to assess the detection rate of the model and is a good
measure of its performance in terms of completeness. This can be calculated as

𝑅 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑁 ; (2)

where false negative (FN) is the number of impact craters not detected by the
model. A high recall rate ensures that more impact craters are recognized,
which is useful in scenarios more sensitive to missed detections.

The F1-score is the harmonic mean of precision and recall, used to find a bal-
ance between precision and recall, especially for impact crater detection with
unbalanced positive and negative samples. This can be determined as

𝐹1 = 2𝑃𝑅
𝑃 + 𝑅 ; (3)

A higher F1-score indicates that the model is better balanced regarding detec-
tion accuracy and recall.

Accuracy (A) is the ratio of the number of samples with all correct predictions
to the total number of samples. In impact crater detection, Accuracy is used
to assess the overall performance of the model on the entire dataset, but the
metric may be less representative when the samples are unbalanced. This can
be determined as

𝐴 = 𝑇 𝑃 + 𝑇 𝑁
𝑇 𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇 𝑁 ; (4)

where true negative (TN) is the number of samples correctly identified as non-
impact craters.

The mAP is the mean accuracy across all detection categories and is particu-
larly suitable for multi-target detection tasks. mAP values indicate the average
detection capability of the model at different IoU thresholds and are often an-
alyzed by generating Precision-Recall curves. Higher mAP values indicate a
more substantial overall performance of the model for multi-scale impact crater
detection.

IoU calculates the intersection and concurrency ratio of the predicted frame to
the proper frame to assess the model’s accuracy in predicting the bounding box.
It can be determined as

𝐼𝑜𝑈 = 𝐴 ∩ 𝐵
𝐴 ∪ 𝐵 ; (5)
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Here, A and B represent two bounding boxes, which can be either predicted by
the model or manually labeled as ground truth. We employ the IoU value with
a threshold setting (e.g., 0.5 or 0.75) to evaluate the degree of overlap between
predicted and actual results. It is widely applied in target detection scenarios,
especially in impact crater detection, where accurate labeling is required.

The above evaluation indices provide a detailed way of evaluating the impact
crater detection model using multi-dimensional measurements of its perfor-
mance. This enables the model to be optimized under different conditions,
such as unbalanced samples, low false-detection rate, and high recall rate, to
improve its accuracy and robustness.

3.2. Comparison with Traditional Methods
In impact crater detection, the limitations of traditional methods are increas-
ingly highlighted in practical applications. Such methods rely on manually
designated features, such as edges, shapes, and textures, which require exten-
sive expertise in the specific field and are difficult to generalize to different
datasets [?]. When dealing with complex impact crater features, these methods
face many challenges, such as limited ability to cope with illumination varia-
tions, overlapping impact craters, and degradation phenomena [?]. In addition,
traditional methods could improve in detecting impact craters with indistinct
boundaries or severe erosion, while resolution limitations hinder the detection of
small impact craters [?]. Traditional methods are more sensitive to noise, espe-
cially when there is more noise in high-resolution images, causing the detection
accuracy to decrease substantially [?, ?]. In addition, manual feature extraction
and selection processes are inconvenient and susceptible to subjective influence,
which can be inefficient and may lead to insufficient features or overfitting.
When confronted with large-scale datasets, traditional methods have a greater
time requirement, lower capacity for automation, and lack of transparency in
the results, which further limits their practical applications [?, ?].

By contrast, deep learning methods show clear advantages in feature extraction,
robustness, multi-scale adaptation, and automated processing. Deep learning
models strongly reduce the reliance on manually determined features and im-
prove the generalization ability of the models by automatically learning hierar-
chical features [?]. In addition, these models can efficiently cope with complex
conditions such as illumination variations, noise, and low resolution, while be-
ing able to adapt to changes in the size of impact craters through a multi-scale
feature extraction framework [?]. Deep learning can also address the problem
of scarcity of labeled data by applying pretrained models to impact crater de-
tection on different celestial bodies using transfer learning techniques [?].

In terms of efficiency, the deep learning model relies on Graphics Processing
Unit (GPU) acceleration and an end-to-end detection framework to achieve
efficient processing and real-time detection of large-scale data, whereas the tra-
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ditional approach performs poorly with large data volumes [?]. In summary, the
advantages of deep learning in the task of impact crater detection are undeni-
able, especially in terms of automation, robustness, and multi-scale adaptation.
However, deep learning also faces challenges, such as data labeling dependency,
high computational resource requirements, and further optimization of model
structure. Training strategies are needed to meet the needs of a broader range
of applications.

3.3. Deep Learning Models
In impact crater detection, common deep learning models include CNNs and
U-Net, which have been applied and improved in various studies to enhance
accuracy, generalization, and efficiency.

CNNs are widely used for impact crater detection because of their ability to
extract features from image data, and Cohen et al. [?] demonstrated their ef-
fectiveness in this task. A CNN extracts local features through convolutional
operations, preserving spatial relationships. Its basic structure includes a con-
volutional layer, a pooling layer, and a fully connected layer. The convolutional
layer creates feature maps by sliding a convolution kernel over the image, while
the pooling layer reduces the feature map size to lower computational complex-
ity. The fully connected layer combines the extracted features for classification
or regression tasks. Non-linear activation functions, such as a Rectified Lin-
ear Unit (ReLU), are used to enhance the expressive power of the model. By
stacking convolutional, pooling, and activation layers, CNNs build hierarchical
representations of image features, from low-level edges to high-level semantic
features, enabling effective image classification and target detection.

In the case of the 16-layer Visual Geometry Group (VGG-16), it is a classic
representative model of CNNs, which is very influential in the development
history of deep learning and is often used as a baseline model for tasks such as
image classification, feature extraction, and transfer learning. The input is a 224
× 224 image in RGB color. The network consists of several stacked convolutional
layers, each with a 3 × 3 kernel, followed by ReLU activation functions. The
feature maps are downsampled by max pooling to extract higher-level features.
Three fully connected layers at the end produce the final classification output
through a Softmax layer (the specific structure is shown in Fig. 2 [Figure 2: see
original paper]).

The convolutional and pooling layers in the structure are stacked in multiple
layers to construct a hierarchical representation of the image features, layer by
layer, from low-level edges to high-level semantic features. This makes VGG-16
perform well in tasks such as image classification and target detection. The de-
sign of the VGG-16 structure, which uses multiple smaller convolutional kernels
instead of larger ones, helps to reduce the number of parameters and enhances
the model’s expressive ability.

chinarxiv.org/items/chinaxiv-202506.00142 Machine Translation

https://chinarxiv.org/items/chinaxiv-202506.00142


U-Net is a family of semantic segmentation models, widely used for pixel-level
classification of high-resolution images, including impact crater detection. It
features a U-shaped symmetric structure with an encoding path (downsampling)
and a decoding path (upsampling). As shown in Fig. 3 [Figure 3: see original
paper], the encoder (left half) consists of multiple convolutional and pooling
layers that reduce spatial resolution and increase feature channels, extracting
deep image features. During encoding, the feature map resolution is halved,
and each pooling layer increases feature dimensionality.

The decoder (right half) recovers spatial resolution through upsampling. Each
upsampling step “jump-connects” the corresponding encoder feature map to
the decoder, using a “copy and crop” operation that preserves high-resolution
shallow features, helping to restore segmentation details. Finally, a 1 × 1 convo-
lutional layer generates the segmentation map, matching the input resolution.

The key advantage of U-Net lies in its use of jump-connections to combine
encoder and decoder features, allowing effective multi-level feature utilization.
This structure is ideal for fine segmentation tasks, such as medical image seg-
mentation, and is also well suited for impact crater segmentation.

In impact crater detection, the application of deep learning models has made
notable progress and has been continuously improved to meet the needs of differ-
ent detection tasks. Established deep learning models, such as CNN and U-Net,
have demonstrated excellent performance in feature extraction, localization, and
segmentation tasks for impact crater detection. Wang et al. [?] reported that
the detection rate of the CNN-based improved model exceeds 97% for images
of complex terrain, and Hong et al. [?] determined that the recall rate of the
U-Net-based improved model can reach 90.17%.

In recent years, transformer-based models have shown great potential because of
their advantages in processing sequence data, enabling more accurate detection
of impact craters. Guo et al. [?] introduced the Transformer structure and
constructed the Crater Detection Transformer (Crater-DETR) model through
dense supervision and multi-scale fusion techniques, which achieved an accuracy
of 88.13% and enhanced the detection of small impact craters. Zhang et al. [?]
constructed the Lunar Complex Crater Retrieval Network (LC2R-Net) model by
introducing the Swin Transformer and using a deep feature fusion strategy. The
image retrieval accuracy of this method reached 83.75%, achieving remarkable
results in the image retrieval of complex impact craters on the Moon.

Self-supervised learning (SSL) is another technique which is gradually emerging
in the field of planetary science, where labeled data are scarce. Using SSL, mod-
els are able to self-learn using unlabeled data, which reduces the dependence on
labeled data and improves the generalization ability on unknown data. Tejas et
al. [?] applied SSL to automatic classification of unlabeled Martian topographic
images and improved the accuracy of identifying topographic features and the
efficiency of scientific classification through a self-supervised deep clustering al-
gorithm. This achieved an overall accuracy of 83.6% and a retrieval accuracy
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of 100% in some cases.

Xiang et al. [?] used SSL to improve the processing of Mars images under the
influence of dust storms, which improved the clarity and color fidelity of the
images, enabling the model to achieve an average gradient and edge intensity
metrics of 7.94 and 55.47, respectively, which effectively improved the quality
of the images.

In the future, with the increasing amount of high-resolution data available for
the surface of celestial bodies such as the Moon and Mars and the continu-
ous advancement of deep learning techniques, improved models based on basic
methods will provide a solid foundation for more accurate and efficient auto-
matic impact crater detection. In turn, this will promote further research and
development in planetary science.

3.4. Deep Learning Applications
Deep learning applications are mainly classified into three categories: semantic
segmentation, image classification, and object detection. Table 2 provides a
detailed comparison and analysis of these three tasks, including the datasets
used for pretraining the models, their respective strengths and weaknesses, and
their applications in impact crater detection. The aim is to help new researchers
understand the differences between deep learning applications for different tasks
so that they can develop deep learning-based CDAs more purposefully.

In summary, deep learning has become a core technical tool for impact crater
detection with its powerful automatic feature extraction capability, robustness,
and high efficiency. However, the geological environments, surface properties,
and diversity of data sources of different celestial bodies lead to differences in
the performance of deep learning models on these bodies. To further explore
these differences and the causes behind the study, an in-depth analysis of the
application of impact crater detection to celestial bodies such as the Moon,
Mars, and Mercury is needed. This will help to reveal the applicability and
limitations of the models on different planets and provide important references
for future model optimization and cross-body transfer learning.

Table 2. Comparative analysis of deep learning applications on dif-
ferent tasks
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Task type Differences Advantages Disadvantages Applications
Semantic
segmenta-
tion

Semantic
segmentation
focuses on
pixel-level
classification,
assigning
each pixel in
the image to
a specific
object or
background.

Semantic
segmenta-
tion offers
pixel-level
precision in
impact
crater
detection,
clearly
delineating
crater
boundaries
and interior
regions. Its
advantage
lies in
capturing
detailed
spatial
shapes and
distribution
of each
crater.

Semantic
segmentation
models are
resource-
intensive and
require
high-quality
annotated data
during training.
Challenges
remain in
detecting small
craters or those
with unclear
boundaries.

Segmentation
models are
widely used in
detecting
impact
craters on
different
celestial
bodies, geo-
morphological
studies, and
geological age
inference.
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Task type Differences Advantages Disadvantages Applications
Image
classifica-
tion

Image
classification
only outputs
a category
label
indicating
whether or
not the
image
contains an
impact
crater.

Image
classification
methods in
impact
crater
detection
distinguish
whether a
crater exists
in the
image. They
are mainly
applied in
more
straightfor-
ward crater
detection
tasks. Their
advantage is
that the
model
structure is
relatively
simple, with
lower com-
putational
costs,
enabling
fast
classification
of
large-scale
images.

Image
classification
only provides
overall category
information for
the image,
lacking
descriptions of
crater
locations, sizes,
and shapes. It
is unsuitable
for tasks that
require precise
location and
description.

Image
classification
methods are
suitable for
preliminary
screening of
high-
resolution
remote
sensing
images, such
as quickly
identifying
potential
impact crater
regions on
planetary
surface
images.
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Task type Differences Advantages Disadvantages Applications
Object
detection

Object
detection lies
between
semantic
segmentation
and image
classification.
It outputs
category
labels and
location
information
(typically
bounding
boxes) for
the objects.

Object
detection
methods in
impact
crater
detection
have the
advantage of
providing
both crater
category
and location
information,
generating
bounding
boxes for
each
detected
crater.
With the
development
of object
detection
algorithms
like YOLO
and Faster
R-CNN,
object
detection
models
balance high
accuracy
and faster
processing
speed.

Object
detection
models have
performance
limitations in
detecting small
or overlapping
craters,
especially in
complex
terrains and
environments
with
substantial
lighting
changes.
Additionally,
they typically
require
large-scale
annotated
datasets,
especially those
with precise
bounding box
information.

Widely used
in real-time
planetary
exploration,
surface
navigation,
and terrain
monitoring
tasks.

4. ANALYSIS OF SIMILARITIES AND DIFFERENCES
IN IMPACT CRATER DETECTION ON DIFFERENT
CELESTIAL BODIES
With the wide application of deep learning in planetary science, various deep
learning-based models have been widely used for automatic impact crater de-
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tection on a variety of celestial bodies such as the Moon, Mars, and Mercury.
However, the performance of the same model on different celestial bodies varies
considerably owing to the differences in geological environments, surface mate-
rial properties, and data resolution. In this section, we combine the research
results of Blanco-Rojas et al. [?], Silburt et al. [?], Chen et al. [?], Jia et al. [?],
and DeLatte et al. [?]. We analyze in detail the performance of the CNN-
improved-based model and the model based on the U-Net variant on the detec-
tion performance on different celestial bodies such as the Moon, Mars, Mercury,
and Enceladus. We also assess their generalization ability and their influencing
factors for different performance of various models under complex geomorpho-
logical conditions.

4.1. Comparison of Model Performance

4.1.1. Comparison of CNN performance To compare the performance
of CNN-based improved models in recognizing impact craters on different ce-
lestial bodies, we select three celestial bodies, namely the Moon, Mercury, and
Enceladus. The Moon’s atmosphere-free surface and its clear and widely dis-
tributed morphology of impact craters made it an ideal object for studying
impact dynamics and secondary crater distribution. Silburt et al. [?] improved
the extraction of spatial and semantic features on the basis of an improved CNN
method using lunar DEM data in conjunction with a multilevel jump-connect
module. The model achieved 92% recall using the test data and could detect
many craters with smaller diameters (15% below the minimum for the original
dataset). In addition, the model discriminated well between nested and over-
lapping crater distributions. However, the complex topographic structure of
the lunar surface, especially overlapping regions of impact craters, still caused
some interference in the boundary detection of some craters. The study further
optimized the detection accuracy by normalizing the image data with cropping,
downsampling, and contrast enhancement, also introducing jump-connections
to capture multi-scale features.

Mercury’s low-gravity environment results in a denser distribution of secondary
craters, and its impact crater morphology is similar to that of the Moon to a
certain extent. Silburt et al. [?] tested the migration learning performance of a
CNN model trained on lunar data by using its migration learning performance
on Mercury data. Although the generalization performance of the model on
Mercury is slightly lower than that of the Moon, the detection of substantial
impact crater boundaries remains more stable. The high-density distribution
and complex morphology of Mercury’s secondary craters markedly increase the
detection difficulty for the model, and it is especially weak in detecting small
craters. In addition, because of the difference between Mercury and the Moon
in terms of distribution characteristics, the model’s accuracy is degraded during
the model migration process. The study proposes to improve performance by
combining multi-planet data for cross-domain migration training and adapting
the multi-scale feature detection module for Mercury’s low-gravity environment.
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The surface of Enceladus is covered by an icy crust with complex geological
activities, such as ice-shell flow and crack formation, resulting in sparse impact
craters with indistinct boundaries. Blanco-Rojas et al. [?] proposed a CNN-
based multi-level feature extraction model, which utilizes the high-contrast prop-
erties of Enceladus’s icy surface and substantially improves detection efficiency
and accuracy through deep learning. The model achieved approximately 85%
detection accuracy on high-resolution image data of Enceladus and especially ex-
celled in the detection of small craters (less than 10 km in diameter). However,
because of the geologic activity of the dynamic ice crust and sediment masking,
some of the secondary pits have high boundary ambiguity, which affects the
detection. The study employs data enhancement techniques to optimize high-
contrast imagery while incorporating a template matching algorithm to improve
boundary segmentation accuracy and address these challenges.

The performance of CNN-based models on the Moon, Mercury, and Enceladus
reveals the differences in the properties of impact crater detection on different
celestial bodies and their impact on the models (summarized in Table 3 ). By
adapting to the geological and data properties of other celestial bodies, the
models achieve high detection efficiency while at the same time exposing the
deficiencies in the cross-domain generalization capability of the CNN-based deep
learning models. These studies provide important directions for future crater
detection improvements on other celestial bodies.

Table 3. Summary of the performance of improved CNN-based model
impact crater detection on the Moon, Mercury, and Enceladus

Celestial
body

Data
characteristics

Model im-
provements

Detection
performance

Main
challenges

Moon [?] No
atmosphere,
clear crater
morphology

Skip
connection
to capture
multi-scale
features

Recall rate 92% Nested
crater
complexity,
boundary
interference
from
overlapping
craters

Mercury
[?]

Low gravity,
dense
secondary
craters

Generalization
testing, lunar
transfer
learning

Lower accuracy
than the Moon

Data
distribution
differences,
complex
secondary
crater
morphology
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Celestial
body

Data
characteristics

Model im-
provements

Detection
performance

Main
challenges

Enceladus
[?]

Ice shell
coverage, high
contrast

Multilevel
feature
extraction

Accuracy is
around 85%

Dynamic
changes in
the ice shell
and blurry
boundaries
of
secondary
craters
Specific pre-
processing
require-
ments:
DEM data
augmenta-
tion,
boundary
optimiza-
tion;
Cross-
domain
learning,
feature op-
timization;
High
contrast op-
timization
and
template
matching

4.1.2. Comparison of U-net performance To compare the performance
of U-Net variant-based models for recognizing impact craters on different celes-
tial bodies, we look at Mars and the Moon. Impact craters on Mars are of great
importance in studying geological evolution and depositional environments, es-
pecially in regions where regolith deposition is more active. The studies of Chen
et al. [?] and DeLatte et al. [?] explored the application of the U-Net improved
model for Martian impact crater detection. The Martian Crater U-Net (MC-
UNet) model proposed by Chen et al. [?] achieves efficient detection of impact
craters of 2 to 32 km in diameter by increasing the network depth and embedding
an attention mechanism to focus on the semantic segmentation task in infrared
images from the Thermal Emission Imaging System (THEMIS). By contrast,
DeLatte et al. [?] designed a lightweight network based on Crater U-Net, which
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can better adapt to the fast processing of large-scale image data. Regarding
detection performance, MC-UNet achieved an F1-score of 0.8355 on the test
set, demonstrating superior precision and recall, being particularly reliable in
the detection of medium-sized (diameter > 5 km) impact craters. However,
the model’s detection performance deteriorates in areas with a large amount
of regolith deposition. Crater U-Net achieves 65%–76% matching accuracy in
pixel-level tests, and although it detects quickly, it needs further optimization
for detection in areas with dense secondary craters.

The lunar surface, with no atmosphere, clear morphology, and dense distribu-
tion of impact craters, is an ideal celestial body for studying impact dynamics.
Jia et al. [?] proposed Need-Attention-Aware U-Net (NAU-Net) on the basis
of the U-Net++ architecture, incorporating nested dense connectivity and an
attention mechanism to substantially improve the ability of the model to detect
overlapping craters and complex boundary regions. In detection performance,
NAU-Net achieves a recall of 0.791 and an accuracy of 0.856 on monthly DEMs,
which is superior to the traditional U-Net model. NAU-Net shows strong adapt-
ability in the tasks of secondary crater detection with a diameter of less than
1 km and segmentation of regions with fuzzy boundaries. In particular, to
improve the detection accuracy, the study adopts high-precision calibration of
DEM data for standardization and combines the template matching algorithm
for post-processing to optimize the boundary positioning and size correction
further.

The above analysis demonstrates the performance difference of the U-Net
variant-based models in Mars and Moon impact crater detection. Table 4
visualizes the advantages and disadvantages of the models as well as the
applicable scenarios. These studies provide technical support for impact crater
detection of different celestial bodies and point out the optimization direction
for future cross-domain applications.

Table 4. Summary of the performance of U-Net variant-based model
impact crater detection on Mars and the Moon
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Celestial Model
Data
type

F1-
score Recall Accuracy Advantages Challenges

Mars [?] MC-
UNet

THEMIS
infrared
images

0.8355 — — Accurate
detection
of
medium-
sized
impact
craters,
precise
bound-
ary
detection
for large
craters

Performance
degrada-
tion in
sand and
dust de-
position
areas

Mars [?] Crater
U-
Net

THEMIS
infrared
images

— — 65%–
76%

Fast
detection
of sec-
ondary
craters,
lightweight
network
suitable
for big
data pro-
cessing

Need for
more
detection
accuracy
in sec-
ondary
crater-
dense
areas

Moon
[?]

NAU-
Net

DEM
data

— 0.791 0.856 Strong
detection
capabil-
ity for
overlap-
ping
craters
and
blurred
bound-
ary areas

High
data res-
olution
and
relatively
high
model
complex-
ity

4.2. Key Factors Influencing Model Performance

The performance of impact crater detection models on celestial bodies such as
the Moon, Mars, Mercury, and Enceladus is influenced by a combination of
celestial body properties, data preprocessing requirements, and model architec-
ture design. The properties of the celestial bodies themselves determine the
preservation status and morphological characteristics of impact craters. For ex-
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ample, with no atmosphere and weak geological activity, the Moon has clear
and long-term stable impact crater boundaries, providing ideal detection con-
ditions for the model. At the same time, Mars shows wind-sand depositional
effects and sedimentary cover that make the edges of many craters indistinct,
rendering detection more difficult. Mercury, with its lower gravity, leads to
a dense distribution and complex morphology of secondary craters, which puts
higher demands on the generalization ability of the model. Enceladus’s ice-shell-
covered environment, however, creates unique detection challenges owing to the
dynamics of the ice mass and the high-contrast surface properties.

In addition, there are notable differences in the data preprocessing needs of dif-
ferent celestial bodies. For example, lunar impact crater detection relies mainly
on DEM data, which have higher resolution and are not affected by ambient
light. In contrast, Mars detection missions usually rely on multispectral infrared
images (e.g., THEMIS data), which require spectral separation and contrast en-
hancement to fit the modeling needs. For Mercury, the data distribution is
similar to that of the Moon, but the secondary crater detection of its small
craters is more difficult because of the different gravity environments. However,
Enceladus requires specific contrast enhancement and template matching algo-
rithms on the basis of its high-contrast characteristics to cope with indistinct
boundaries on icy surfaces.

The architectural design of a model inevitably impacts performance. The in-
troduction of an attention mechanism enhances the model’s ability to focus on
critical regions (e.g., crater edges and interior details), while a multiscale fea-
ture extraction module strongly affects the handling of sedimentary cover and
complex crater morphology. These techniques have yielded promising results
in impact crater detection on Mars and the Moon and have shown some adapt-
ability in detection missions on Enceladus and Mercury. Table 5 provides a
comparative summary of the key factors affecting model performance.

Table 5. Comparative summary of key factors affecting model per-
formance

Celestial
body

Planetary
characteristics

Data
type

Preprocessing
requirements

Model re-
quirements

Moon [?] Clear boundaries,
no atmosphere,
no sediment cover

DEM
data

Resolution
adjustment,
contrast
enhancement

Multi-scale
feature
extraction

Mars [?, ?] Fuzzy boundaries,
active sand and
dust deposition

THEMIS
in-
frared

Multispectral
separation,
illumination
correction, noise
reduction

Attention
mechanism
to enhance
the capture
of fuzzy
areas
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Celestial
body

Planetary
characteristics

Data
type

Preprocessing
requirements

Model re-
quirements

Mercury
[?]

Dense secondary
craters and clear
boundaries

DEM
data

A model transfer
on the basis of
Moon data
supplements
secondary crater
training.

Generalization
ability
optimization

Enceladus
[?]

Icy shell coverage,
high contrast,
dynamic
boundary changes

High-
resolution
im-
agery
data

High contrast
optimization and
template
matching

Dynamic
adaptation
to icy shell,
feature
extraction
optimization

4.3. Quantitative Comparison of the Performance of Different Mod-
els for Impact Crater Detection on the Surfaces of Various Celestial
Bodies

Here, we quantitatively compare the performance of different deep learning
models for impact crater detection on the surface of the Moon, Mars, and other
celestial bodies. These models include traditional CNN, U-Net variants, and
Faster R-CNN, which are applied to different datasets such as Lunar Reconnais-
sance Orbiter Camera (LROC), Thermal Emission Imaging System (THEMIS),
and High Resolution Imaging Science Experiment (HiRISE). Differences in the
morphology, size, and distribution of impact craters, as well as planetary sur-
face environments, affect the performance of the models, so we evaluate the
performance of different models on these datasets.

Table 6 shows the performance of different deep learning models in the task of
impact crater detection on the surface of the Moon, Mars, and other celestial
bodies. The table lists the precision, recall, and F1-scores of each model on
different datasets and provides the corresponding dataset source and resolution
information to clearly show the differences in the performance of each model on
different planetary datasets and better evaluate the effectiveness of each method.

5. EXISTING CHALLENGES AND FUTURE RE-
SEARCH DIRECTIONS
5.1. Existing Challenges

In the process of developing automatic detection of impact craters on planetary
surfaces, researchers have faced many challenges, especially in terms of data
scarcity, model generalization ability, algorithm efficiency, complexity of impact
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crater features, and data acquisition and processing. Here, we introduce the
specific problems one by one and discuss possible solutions.

5.1.1. Data scarcity Impact crater detection on planetary surfaces is a
typical data-intensive task, but the existing impact crater datasets are clearly
insufficient in terms of quantity and diversity. Currently, impact crater datasets
are mainly derived from satellite missions, such as the LRO and Kaguya, which
collect a large number of images of impact craters, particularly of large and ap-
parent craters. However, most of the labeled data in these datasets are limited
to large impact craters that are relatively clear, while labeled data are scarce
for smaller, blurred, or shadowed impact crater images. Consequently, the ques-
tion of how to construct effective deep-learning models in the presence of data
scarcity is a major challenge in current research.

There are many solutions given in recently published scientific literature. For
example, Giannakis et al. [?] proposed the use of the Segment Anything Model
(SAM) to solve the problem of data scarcity, which enhances the model’s learning
ability on a small amount of labeled data through a weakly supervised learning
strategy. This approach improves the detection accuracy of small impact craters
on the surface of celestial bodies by pretraining with large-scale unlabeled data.

To further address the challenge of insufficient data, Yang and Cai [?] employed
a migration learning technique to enhance the robustness of the impact crater
detection model. Migration learning is able to migrate models already trained
on other celestial bodies to another celestial body for impact crater detection, ef-
fectively alleviating the dilemma of scarce training data. The data enhancement
method, however, improves the generalization ability of the model by synthe-
sizing more variant samples through operations such as rotating, scaling, and
clipping.

To overcome the challenges posed by data scarcity and advance the field of
impact crater detection, it is crucial to use publicly available and standardized
impact crater datasets for model benchmarking. Such datasets currently used
for impact crater detection, including LROC, HiRISE, and THEMIS, are shown
in Table 7 , and provide rich impact crater image data on different celestial
bodies to help model training and evaluation.

When creating publicly available, annotated datasets of impact craters, they
should include craters identified manually by experts as well as craters identified
using CDAs. Such annotated datasets of impact craters, created for various
celestial bodies in recent years, are shown in Table 8 and Table 9 for the benefit
of new researchers to learn from.

5.1.2. Model generalization ability With the increasing application of
deep learning methods in impact crater detection, the generalization ability of
the model becomes another key issue. The shapes and features of planetary
impact craters are diverse, and the impact craters in different regions have dif-
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ferent scales, depths, shapes, and lighting conditions. Existing models often
perform well in specific datasets or environments but tend to substantially de-
grade in performance with different illumination conditions, resolutions, and
crater types. Improving the adaptability and accuracy of the model in different
scenarios has become a key issue in further enhancing the accuracy of impact
crater detection.

To solve the problem of insufficient generalization ability of the model, Jia et
al. [?] used the Split-Attention network combined with self-calibrated convolu-
tion to capture the complex features of the lunar surface. The advantage of this
method is that the model can adaptively adjust the weights of the convolution
kernel in multiple environments, which improves the generalization ability to
different scenarios.

In addition to the improvement of model architecture, Jia et al. [?] proposed the
Attention-Enhanced Transformer U-Net Plus (AE-TransUNet+) model, which
combines the Transformer and U-Net architectures to further enhance the adapt-
ability of impact crater detection across different environments. The Trans-
former structure can focus on key features through the self-attention mechanism,
which enables the model to accurately recognize impact craters in complex and
noisy environments.

For the extension of domain adaptation methods, some recent studies have
explored bridging the differences between impact crater images from different
objects using synthetic dataset enhancement techniques, i.e., generating syn-
thetic image data that simulate impact crater features from different objects
to enhance the generalization ability of the model. Wang et al. [?] proposed
a novel active machine learning approach by combining Two-Dimensional (2D)
images and Three-Dimensional (3D) data from DEM to collect training samples
semi-automatically. The method first co-aligns the image and DEM datasets,
then actively requests annotations on 2D features derived from the image and
inputs 3D features derived from the DEM during the training process to update
the training pool and retrain the model. This process can be performed multi-
ple times to obtain a sufficient number of training samples with good quality,
which in turn improves the performance of the classifier and applies it to au-
tomatic impact crater detection in other regions. The test results of the final
trained model on the lunar and Martian datasets show that the True Detection
Rate (TDR) and False Detection Rate (FDR) of the lunar dataset are 93.63%
and 10.74%, respectively, while those of the Martian dataset are 92.27% and
3.83%, respectively. TDR refers to the proportion of true positive detections
(correctly identified craters or features) out of all the actual positive instances
in the dataset. FDR refers to the proportion of false positives (incorrectly iden-
tified craters or features) out of all the instances that were predicted as positive
by the model. Both are good performances, demonstrating that the synthetic
dataset enhancement technique is able to effectively bridge the differences be-
tween the images of impact craters from different celestial bodies and to enhance
the generalization ability of the model.
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Through domain migration learning, a model that has been trained on one
celestial body can be applied to another celestial body, thus improving the
performance of the model on different celestial surfaces, by means of pretrained
models, fine-tuning, feature sharing, or multi-task learning. Silburt et al. [?]
applied a model based on a CNN model, pretrained on lunar data, to Mercury’s
dataset effectively. It performed well, identifying most of the impact craters in
all DEM data for Mercury, suggesting that the model can be effectively applied
to other celestial bodies with DEM data. This demonstrates that the strategy
of domain migration between planetary datasets improves the fitness of a model
in a variety of planetary surface environments.

5.1.3. Algorithm efficiency The automated detection of impact craters re-
quires not only high accuracy but also high efficiency. For large-scale planetary
surface data, such as LRO images, the processing speed and real-time perfor-
mance become difficult for impact crater detection. Especially in application
scenarios that require fast analysis and real-time feedback, deep learning models
often require a lot of computational resources and time. Complex deep learn-
ing models, such as CNNs and Transformer networks, usually require a large
amount of computational and storage resources, which requires improving accu-
racy while minimizing computational complexity, maintaining fast processing
speed and low resource consumption.

As deep learning models become more and more complex, the task of impact
crater detection causes great pressure on computational resources, especially in
tasks with high real-time requirements. For example, the Efficient Lunar Crater
Detection (ELCD) model proposed by Fan et al. [?] employs a multi-scale feature
fusion and attention mechanism, which allows the algorithm to considerably
reduce the computational complexity while guaranteeing higher accuracy. The
model is designed to process large-scale DEM data for efficient detection of
impact craters while ensuring real-time performance. As an alternate solution,
DeLatte et al. [?] proposed a CNN-based framework for impact crater detection
in response to the real-time problem of the algorithm, which further reduces
the computational burden through the embedded feature selection and boosting
technique. This method is capable of accomplishing accurate detection of impact
craters in a shorter time while maintaining a low FP rate when processing large-
scale images of planetary surfaces.

5.1.4. Complexity of impact crater features Planetary impact craters
have different morphologies, with different scales, depths, shapes, and distribu-
tions, making their representation in images very complex. In particular, small
impact craters are often blurred because of low resolution or affected by factors
such as lighting, shadows, and dust. This makes them difficult to recognize
using traditional image processing methods. Most deep learning models tend
to perform poorly in detecting these small impact craters because they rely on
precise edges, contrast, and structural information, which are often insignificant
visual features.
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Another consideration is that the spatial heterogeneity of impact crater features
means that impact craters in different regions of a celestial body may have
marked differences in size, shape, and distribution, causing additional complex-
ity for model training and prediction. For example, the impact crater densities
and morphological features in the polar and equatorial regions of the Moon dif-
fer notably. Ensuring that the model can accurately detect different types of
impact craters across geographic regions and scales is an issue that should not
be ignored.

The shape, size, distribution, and other features of impact craters pose a great
challenge to automatic detection. In particular, small impact craters and fuzzy
impact craters usually make it difficult to extract effective features directly
from images owing to insufficient resolution or poor image quality. Fairweather
et al. [?] proposed a method, capable of handling impact craters at different
scales and accurately recognizing small and indistinct craters, to automatically
calibrate lunar impact craters using LRO-Narrow Angle Camera (LRO-NAC)
images. However, despite the high detection accuracy of the method, it still
faces the problem of distinguishing small impact craters in low-contrast envi-
ronments. To solve this problem, Emami et al. [?] introduced the combination
of unsupervised learning and CNNs and proposed a novel framework for impact
crater detection. The framework deals with blurred images of impact craters
on the lunar surface by convex packet grouping of the images. This method
is able to effectively recognize small impact craters even without labeled data.
In addition, Hashimoto et al. [?] used a deep learning method based on grid
segmentation to detect impact craters and proposed processing low-resolution
images using an improved CNN. In this way, the method improves the detection
accuracy of blurred regions and low-contrast, small-impact craters.

5.1.5. Data acquisition and processing Satellite missions such as LRO
and Kaguya have provided a large amount of valuable image data, but there are
many difficulties in processing these data. For example, images of impact craters
on the lunar surface are often noisy and of low resolution, and there are substan-
tial differences in image quality and resolution between different sensors, which
makes it challenging to ensure the uniformity and consistency of the data. In
addition, because the labeling of lunar impact craters is exceptionally tedious, it
is often necessary to rely on experts to manually label the data, and the manual
labeling of data faces the problem of time, cost, and accuracy. Therefore, the
problem of efficiently processing and labeling these data, especially for practical
training without labeled data, still requires an urgent solution.

To address this problem, Fairweather et al. [?] discussed how to integrate the
LRO-NAC and Kaguya TC image datasets to improve the accuracy of impact
crater detection by combining automated and manual labeling. The preprocess-
ing of image data (e.g., denoising, image alignment) becomes a major challenge
in this process. Ghilardi [?] proposed a deep learning model based on semantic
segmentation for automated calibration of impact craters when processing low-
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quality images. This method accurately calibrates the impact crater regions
in images using a semantic segmentation technique, which greatly reduces the
workload of traditional manual labeling. Additionally, Fan et al. [?] proposed
a framework for lunar impact crater detection based on multiscale feature fu-
sion, which showed good adaptability in processing image data with different
resolutions and noise interference.

Although there are some practical solutions, how to deal with large-scale, mul-
tisource heterogeneous planetary image data is still an important direction for
future research.

5.2. Future Research Directions

With the wide application of deep learning techniques in crater detection, fu-
ture research should further enhance the generalization capability of the models,
strengthen data fusion techniques, and explore a wider range of scientific appli-
cation directions to cope with the complexity and diversified needs in diverse
celestial environments. To that end, we offer some suggestions here for future
research directions.

First, multimodal data fusion is a key strategy to improve model detection accu-
racy and adaptability. Combining multisource data such as DEM, multispectral
images, infrared images, and radar data, the model can be provided with richer
feature information. For example, in the wind–sand deposition regions of Mars,
the superposition processing of hyperspectral data with infrared images can ef-
fectively make up for the interference of the depositional mask on the detection
of impact crater boundaries. On the ice-shell surface of Enceladus, the segmen-
tation accuracy of indistinct crater boundaries can be improved by combining
the high-contrast images with the ice-shell dynamic model. Multimodal data
fusion not only enhances the ability of the model to capture detailed features
but also provides technical support for cross-domain studies in multiplanet en-
vironments.

In current impact crater detection tasks, SSL with physics-informed deep learn-
ing provides an important technological way to improve the performance and
adaptability of models. SSL, as an innovative learning paradigm, can utilize a
large amount of unlabeled data for pretraining in the absence of labeled data.
Through this pretraining process, the model is able to learn rich feature represen-
tations and optimize the learning process through a self-supervised mechanism,
effectively improving adaptability on different datasets, especially in the case
of data scarcity. Specifically, through SSL, the model is able to automatically
generate labeling information or construct learning objectives and conduct deep
feature learning on this basis. Therefore, in impact crater detection, the use
of SSL can effectively extend the training dataset of the model and improve
its generalization ability to unseen images, especially in planetary datasets for
which it is difficult to obtain a large amount of labeled data.
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Physics-informed deep learning is another technique which combines the advan-
tages of physical modeling and deep learning to further improve the accuracy
and reliability of impact crater detection. In the impact crater detection task,
physics-informed deep learning can help the model better understand and cap-
ture the features of impact craters by incorporating the physical properties of
the planetary surface (such as albedo, thermal properties, and surface structure)
into the deep learning framework. By introducing these physical models, deep
learning networks are able to constrain the output of the model to make more
accurate predictions with physical consistency. For example, by using surface
reflectance or thermal radiation properties as input features, physics-informed
deep learning can substantially improve the accuracy of impact crater detection
in complex environments such as different lighting conditions or environments.

Terrain data, such as DEMs, can provide 3D topographic features of impact
craters, further optimizing the model’s detection of impact crater depth and
shape. Through multimodal learning, the model is able to consider both the
visual information of the image and the geometric information of the terrain, con-
sequently performing more accurately and robustly in the task of impact crater
detection for multiple celestial objects. Combining these data, the deep learn-
ing model is not only able to recognize impact craters from a single viewpoint
but also synthesize various types of information to improve the adaptability to
diverse environments and complex situations.

In summary, SSL and physics-informed deep learning provide new ideas and
technological breakthroughs for impact crater detection, especially in the case
of data scarcity and diverse data sources, while multimodal data fusion further
enhances the accuracy and generalization ability of the model. These techniques
will play an important role in future research on planetary impact crater detec-
tion.

A second possible direction uses domain adaptation and cross-body migration
learning to provide a means to improve the cross-domain generalization abil-
ity of models. There are clear differences in the geologic properties and data
distributions of different planets, such as the densities of secondary craters on
Mercury versus the Moon, and the clarity of the boundaries of impact craters on
Enceladus and Mars. These differences often pose challenges to model perfor-
mance. By introducing unsupervised domain adaptation techniques, the impact
of data distribution differences can be effectively reduced; combining the shared
characteristics of multiplanet data can optimize the model’s detection capabil-
ity. In addition, the cross-body migration learning technique can utilize existing
high-quality data to extend the model to data-scarce celestial bodies, further
improving the efficiency of deep space exploration missions.

The effective use of high-resolution observational data will improve the efficiency
of impact crater detection. With high-resolution remotely sensed data available,
models can more accurately capture detailed features of impact crater bound-
aries. For example, high-resolution radar data allow precise detection of impact
craters on icy objects and in sediment-covered regions, while in the atmosphere-
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free environments of the Moon and Mercury, smaller secondary craters can be
detected using ultrahigh-resolution optical imagery. Future research could focus
on developing automated preprocessing processes for high-resolution data and
designing effective data fusion strategies to maximize their scientific value.

Finally, deep learning-based impact crater detection techniques can be extended
to a broader range of scientific applications, including geological evolution anal-
ysis and impact crater age estimation. For example, recognizing the morphology
and distribution pattern of impact craters can not only improve the accuracy of
planetary chronology but also reconstruct the geological evolution history of ce-
lestial bodies. Additionally, combining the geometric features of impact craters
with hyperspectral data can be used to analyze the sediment and tectonic prop-
erties of craters, revealing the dynamic processes of planetary material cycling
and environmental changes. The expansion of these applications will further
highlight the great potential of deep learning in planetary science research.

In addition, to facilitate subsequent research, we summarize the databases of
impact craters on the surfaces of the Moon, Mars, and Mercury, as shown in
Table 8 , which were manually identified and compiled by experts in planetary
sciences to assist new researchers. Table 9 shows databases of new impact craters
identified using automated CDA techniques. This table can provide a valuable
resource for new researchers to create new impact crater databases.

6. SUMMARY AND OUTLOOK
In this paper, we summarized the application of deep learning to the detection
of impact craters on different celestial bodies and analyzed the differences in
the features of planets such as the Moon, Mars, and Earth, and their impact
on model performance. The straightforward impact crater morphology of the
Moon can be preserved for an extended period, making it suitable for model
training. By contrast, the boundaries of impact craters on Mars, Enceladus, and
Mercury are more ambiguous owing to processes such as wind-sand deposition
and ice-shell dynamics, which make detection more difficult. The differences in
the morphology and preservation status of impact craters on different celestial
bodies also have different impacts on the adaptability and accuracy of the model.

The deep learning models we have examined, based on CNN improvement and
U-Net variants, have made good progress in impact crater detection, but the
performance in cross-body migration and complex geological environments still
needs to be improved. Future research can improve the generalization ability
and detection accuracy of the models through techniques such as multimodal
data fusion and cross-body migration learning. Combining multisource data
such as DEM, multispectral images, and radar data can also provide richer
features for the model and help solve the problem of variability among different
planets.
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Applying deep learning technology can also extend beyond impact crater detec-
tion. It can also be expanded to the analysis of planetary evolution, estimating
the age of impact craters, and other fields, providing more scientific data for
deep space exploration. With the continuing advancement of technology, deep
learning will play an increasingly important role in planetary science and provide
more substantial technical support for future deep space exploration.
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