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Abstract

As an alternative gravitational theory to General Relativity (GR), Conformal
Gravity (CG) can be verified through astronomical observations. Currently,
{Mannheim and Kazanas have provided vacuum solutions for cosmological and
local gravitational systems, and these solutions may resolve the dark matter and
dark energy issues encountered in GR, making them particularly valuable}. For
static, spherically symmetric systems, CG predicts an additional linear poten-
tial generated by luminous matter in addition to the conventional Newtonian
potential. This extra potential is expected to account for the observations of
galaxies and galaxy clusters without the need of dark matter. It is characterized
by the parameter v*, which {corresponds to the linear potential generated by a
unit solar mass, and it is thus a universal constant}. The value of v* was deter-
mined by fitting the rotation curve data of spiral galaxies. These predictions of
CG should also be verified by the observations of strong gravitational lensing.
To date, in the existing literature, the observations of strong lensing employed
to test CG have been limited to a few galaxy clusters. It has been found that
the value of v* estimated from strong lensing is several orders of magnitude
greater than that obtained from fitting rotation curves. In this study, building
upon the previous research, we tested CG via strong lensing {statistics}. We
used a well-defined sample that consisted of both galaxies and galaxy clusters.
This allowed us to test CG through statistical strong lensing in a way similar
to the conventional approach in GR. As anticipated, our results were consistent
with previous studies, {namely that the fitted v* is much larger than that from
rotation curves}. Intriguingly, we further discovered that, in order to fit the
strong lensing data {of another sample}, the value of 4* cannot be a constant,
as is required in CG. Instead, we derived a formula for v* as a function of the
stellar mass M, of the galaxies or galaxy clusters. It was found that v* decreases
as M, increases.
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Abstract: As an alternative gravitational theory to General Relativity (GR),
Conformal Gravity (CG) can be verified through astronomical observations.
Currently, Mannheim and Kazanas have provided vacuum solutions for cosmo-
logical and local gravitational systems, and these solutions may resolve the dark
matter and dark energy issues encountered in GR, making them particularly
valuable. For static, spherically symmetric systems, CG predicts an additional
linear potential generated by luminous matter in addition to the conventional
Newtonian potential. This extra potential is expected to account for the obser-
vations of galaxies and galaxy clusters without the need for dark matter. It is
characterized by the parameter «*, which corresponds to the linear potential
generated by a unit solar mass, and it is thus a universal constant. The value of
v was determined by fitting the rotation curve data of spiral galaxies. These
predictions of CG should also be verified by the observations of strong gravi-
tational lensing. To date, in the existing literature, the observations of strong
lensing employed to test CG have been limited to a few galaxy clusters. It has
been found that the value of y* estimated from strong lensing is several orders
of magnitude greater than that obtained from fitting rotation curves. In this
study, building upon previous research, we tested CG via strong lensing statis-
tics. We used a well-defined sample that consisted of both galaxies and galaxy
clusters. This allowed us to test CG through statistical strong lensing in a way
similar to the conventional approach in GR. As anticipated, our results were
consistent with previous studies, namely that the fitted v* is much larger than
that from rotation curves. Intriguingly, we further discovered that, in order to
fit the strong lensing data of another sample, the value of v* cannot be a con-
stant, as is required in CG. Instead, we derived a formula for y* as a function
of the stellar mass Mx of the galaxies or galaxy clusters. It was found that ~x
decreases as Mx increases.

Keywords: conformal gravity; statistical strong gravitational lensing; dark
matter

1. Introduction

According to General Relativity (GR), gravity can be characterized by the cur-
vature of spacetime. The curvature of spacetime is dictated by the matter
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distribution within it. Test objects, and even light, traverse along geodesics in
the curved spacetime. As a result, if light passes near a massive object, such as
a star, a galaxy, or a galaxy cluster, the bending of light will occur. This phe-
nomenon is known as gravitational lensing. Gravitational lensing has evolved
into an independent and powerful tool for constraining or examining the matter
distribution profile and cosmological parameters in the standard ACDM cosmol-
ogy [?]. On the other hand, GR turns out to be accurate only at the scales of
a solar system, including its successful prediction of the deflection angle when
distant light rays pass the edge of the sun. This prediction, also known as one
of the three classic tests of GR, represents the earliest successful application of
gravitational lensing [?]. At larger scales, including the whole universe, dark
matter (DM) and dark energy (DE) must be introduced to ensure that GR
remains a valid theory of gravity. However, as DM and DE still lack credible
theoretical underpinnings and direct empirical evidence, numerous alternative
gravity theories to GR have been developed.

These alternative theories must undergo the scrutiny of astronomical and cosmo-
logical observations, including gravitational lensing. Conformal Gravity (CG)
[?] is one such alternative theory. Conformal Gravity has gained increasing
attention as a potential alternative to dark matter and dark energy, with its
predictions being actively tested against astronomical observations [?]. As a
relativistic theory extending beyond General Relativity, CG offers solutions to
both the cosmological constant problem inherent in ACDM cosmology [?, 7, ?]
and demonstrates consistency with Type Ia supernova data [?, ?].

In the non-relativistic limit, CG predicts a modified linear gravitational poten-
tial that supplements the Newtonian potential [?], potentially explaining galac-
tic rotation curves without invoking DM. Recent studies have extensively tested
this framework through detailed fits to the observed rotation curves of spiral
galaxies [?, 7, ?]. These results consistently indicate a universal constant y* =
5.42 x 1073 m~!, corresponding to the linear potential generated by a solar-
mass (M ) point source. For an arbitrary mass M, the linear potential scales as
v = (M/M )v*, where v parametrizes the strength of this contribution.

Strong gravitational lensing has emerged as a valuable test for Conformal Grav-
ity, attracting growing research interest. While several studies [?, ?, 7, 7, 7, 7]
have derived light deflection angle expressions and performed lensing analyses
in Mannheim—Kazanas spacetimes, the reported bending angle formulae show
significant discrepancies and fail to converge. To date, tests of CG through
strong lensing have been limited to individual galaxy clusters. In this work, we
expanded the analysis to some well-defined samples of both galaxies and galaxy
clusters. This approach enables systematic constraints on the ~y* parameter via
strong lensing statistics, while probing for potential correlations between ~y* and
the lens mass (M).

This paper is organized as follows: Section 2 reviews key Conformal Gravity
results relevant to our analysis. Section 3 derives the CG deflection angle for
lensing systems. In Section 4, the parameter yx is re-fitted using strong gravita-
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tional lensing data. We then present the galaxy stellar mass function in Section
5, which is followed by the lensing probability distribution fits for v+ in Section
6. Finally, Section 7 provides the conclusions and discussion.

2. Cosmology and Galactic Dynamics in CG

Similar to General Relativity, Conformal Gravity is formulated by taking the
metric g as the gravitational field. Nevertheless, it bestows an extra local
symmetry upon gravity, namely the conformal symmetry g (x) — e?a(x)g (x),
which surpasses ordinary coordinate invariance. The Weyl tensor CA , defined
by [?] as

1

1
C)\/u/n = R)\uun_§ (g)\uR/,u{ - g/\NRy,l/ - g/,LVR/\K + gunR/\V>+6 (g)\ugp,n - g)\mguu> R

is conformally invariant. It is constructed by a particular combination of the
Riemann tensor RA , Ricci tensor R, and the Ricci scalar Ra”«. The partic-
ular property of the Weyl tensor is that it has the kinematic relation g CA =
0. In other words, the Weyl tensor is traceless.

By imposing the principle of local conformal invariance as the requisite principle
to restrict the choice of action for the gravitational field in curved spacetime,
one requires the uniquely selected fourth-order gravitational action [?]

1
Iy, = —ozg/d‘lx,/—gC)\NWC)‘“”" = —Qag/d‘lx\/—g [R/\WKRA“”” — 2R, R" + g(Rg)Q

to remain invariant under any local metric transformation, where ag is a dimen-
sionless coupling constant. Variation of the action of Equation (2) with respect
to the metric yields

V=9 09"

2 2

where W is the Bach tensor.

Conformal gravity requires the energy-momentum tensor T to be traceless,
i.,e., T~ = 0. On the other hand, elementary particle masses are not kinematic
but rather acquired dynamically by spontaneous breakdown. Hence, consider
a massless, spin-% matter field fermion (x), which obtains its mass through a
massless, real spin-0 Higgs scalar boson field S(x). The required matter field
action IM can be defined, as was done by [?], as
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Iy =— / d*z\/—g Esmsw — %5233 + AS* ipy (2)(0, + Ty () — hSW}

where h and A are dimensionless coupling constants, v (x) are the Dirac matrices,
and I' (x) are the fermion spin connection. Variation of the matter action IM

with respect to the metric yields the matter source energy—-momentum tensor
T

1

. 1 1 1 1 - 1
T;Au:“;[}’ylu(x)[au+ru(m)]w—’_és;ys;u_ﬁgpvs;asy _ég#uASLl—’_E“Z)’Y (x)[aa+ra(x)]¢_6hsw¢gpy+gss;u;u_

The variation of the total action IW + IM with respect to the metric yields the
equation of motion for CG:

da,W,, =T,,.
To date, however, exact solutions to Equation (7) can only be obtained for
scenarios where W = T = 0. The difficulty stems from the fact that, in
CG, when W = 0, we require an explicit dynamical model to describe how the
gravitating system acquires its mass [?, ?]. Therefore, in what follows, we will
restrict our focus to the vacuum solutions where T = 0.

To test Conformal Gravity using galaxy observations and gravitational lensing
data, we must solve Equation (7) for both cosmological scenarios and a static,
spherically symmetric system.

In applying CG to cosmology, the Weyl tensor vanishes in a Robertson—Walker
metric [?]

dr?

e +72dH? + r2 sin® Odg?

ds? = c?dt?> — R(t)
Thus W = 0, and we can see from Equation (7) that T = 0. It turns out that
conformal symmetry forbids the presence of any fundamental cosmological term
and is thus a symmetry that is able to control the cosmological constant. Even
after the spontaneous breaking of conformal symmetry (which is required for
particle mass generation), the induced cosmological constant’s contribution to
cosmology remains controlled [?]. The full content of the theory can be obtained
by choosing a particular gauge in which the scalar field takes the constant value
So- As a result, the energy—momentum tensor of Equation (6) becomes [?]

. 1 1
Tm/ = Z?wb')/u(x)[au + Fu(m)]w - 6 (RNV - igul/Ra> Sg - guu)‘Sg =0.
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The averaging of iy (x)[ 4+ I' (x)] over all the fermionic modes propagating
in a Robertson—Walker background reduces the fermionic contribution to T to
that of a kinematic perfect fluid

(107, ()10, + T, (@)1 kin = (P + Pon)ULU,y + PGy

Thus, the conformal cosmology equation of motion can be written as [?]

1 1
6 (Ruy - igung) = [(pm +pm)UuUu +pmguu] - guuASg'

When comparing with the standard Einstein equation in the ACDM model

1 1
% (RHV - iguuRg) = T/,Ll/ - g;uJA7

we only need to replace the gravitational constant G by an effective, dynamically
induced

3c3 ) 9
Gcff = _m (Wlth SO < O)

We define the conformal analogs of the standard QM(t), QA(t), and QK(t) via

(1) = emnll)
- 81G 4
A():36H26(1;f) 0
= Kc?
Hel = "

where H(t) = R(t)/R(t) is the Hubble parameter, and A = AS,*. As usual, a
Robertson-Walker geometry Equation (7) yields, at redshift z, the expression
of the Hubble parameter

H(2) = Ho\/ Qo1+ 2) + QoL+ 2)2 + Q.

where QM = OM(t = 0), etc. In subsequent calculations, we adopted the values
OK, = 0.67, QA, = 0.33, and Hy = 69.3 km s~! Mpc™!, as per reference [?].

For future reference, we defined the angular diameter distance as

chinarxiv.org/items/chinaxiv-202506.00141 Machine Translation


https://chinarxiv.org/items/chinaxiv-202506.00141

where
sin(y/Qxox)/ 1/ Qo for Qo > 0,
k() = qx for Qpep = 0,
sinh(1/]250 1)/ /0| for Qe <0,
and

2 cdy
xX(21, 23) :/ H(Z/)

1

The proper distance is

#2 cdz
Dolera) = [
L, (1+2)H(2)

For a static, spherically symmetric gravitational system, it turns out that the
full kinematic content of CG is contained in the line element [?]

d 2
" r2(d6? + sin® 0d¢?).

ds?> = —B(r)dt? + B0

Calculating W for this line element leads to

1
WS_W:_2<

e o ) I -2
72 r3 ot 2\ r2 3 pd

B” B B) 1<B” B’ B) 1
2

where ? is the biharmonic operator. Defining a source function

1

f(T):m(Tg*Tf)a

the equations of motion of Equation (7) can be written as

VAB(r) = f(r).

The exterior solution to Equation (21), with a radius of 1, is extremely impor-
tant for the applications of CG to strong lensing and galactic dynamics [?, ?]:
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1 "o ;7 12 / r "o //4 /7 2
B(r>r0)=—§ dr'r f(r)—i dr'r”” f(r") + w — kr?,

0 0

where the w - r? term is the general solution to the homogeneous equation
iB(r) = 0.

On defining

ignoring the kr? term, and setting w = 1, the metric of Equation (22) can be
written as

2
B(r > ry) :—goozl—Tﬂ—i-W“.

When compared with the Schwarzschild solution in General Relativity, the S
term corresponds to the conventional Newtonian potential. The vy term, on
the other hand, represents an additional linear potential that is characteristic
of Conformal Gravity. The presence of this v term enables CG to predict the
rotation curves of spiral galaxies and the deflection angle of gravitational lensing
without the need to invoke dark matter.

It is convenient to rewrite Equation (24) in terms of the potential V(r). The
rewritten form is as follows:

2V (r)
B(r>ry) =1+ e
with V(r) = VB + Vv and
Bc? ~elr
VB - —7, V'Y - 2 .

In the region where 23/r 4r, when 8 = GM/c?, the Schwarzschild solution
B(r > ry) = 1 - 2GM/(c?r) can be recovered. Departures from this solution,
specifically the linear potential Vy = vc?r/2, only occur at large distances. For
a typical star of solar mass M , we write its potential as

2 2
Vv (’f‘) _ _ﬂ*c + V€T

* r 9 ’
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where 3* = GM /c? = 1.48 x 103 m and +* can be determined by observations.
If we denote N* = M/M , 8 = Ng, and v = Ny + ~,, then, for any point mass
M, the expression for its potential shown in Equation (25) can be rewritten as

N*B*C2 + N*’Y*CQT + 700274

V(r)=Vy+V, = —== ; 5

Here, 7, is a universal constant introduced through the fitting of spiral galaxy
rotation curves. It does not depend on the mass distribution of any particular
galaxy and is interpreted as the effective manifestation of the global geometry
of the universe—especially the negative spatial curvature—within a local coor-
dinate system. This corresponds to a universal linear gravitational potential
term arising from the Hubble flow. Its physical origin reflects the global prop-
erties of the universe under the conformal metric, rather than the gravitational
contribution from individual matter sources [?].

We would like to point out that since v* represents the linear potential associated
with a unit of luminous mass, its value ought to be a universal constant. In fact,
through fitting the rotation curves of spiral galaxies, as reported in reference
[?], it has been found that

v, =542 x 1073 m™t, 5, =3.06 x 1072 m~L.

Furthermore, as demonstrated in the above analysis, v, is regarded as a fixed
constant across all galaxies. Throughout the remainder of this paper, we consis-
tently adopt the value of ~, as specified earlier. Consequently, unless otherwise
noted, all references to the MK parameter in this work specifically refer to v*.

In the subsequent analysis, we aim to estimate the value of v* using a statistical
strong lensing approach.

3. Deflection Angle and Lensing Equation

The deflection angle of the light path in a given metric of Equation (18) around
a point mass is derived by solving the null geodesic equation in the equatorial
plane = 7/2 of the lensing object:

Pu, 1 B B,
dg? b2 2p2 b2

where u = 1/r, and the integration constant b can be expressed in terms of the
distance of closest approach r(, which satisfies dr/d | {r=ry} = 0. The function
B(r) is provided in the combined Equations (25) and (27). The deflection angle
& is derived by integrating d from the closest approach of the light path ry =
1/ug to the horizon r = 1/u. The closest point is defined by du/d = 0, and
the horizon is defined by B(u ) = 0. Thus, the deflection angle is given by
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The integral can be evaluated after a series expansion of the integrand to the
second order in GMu,?/c?. We thus obtain [?]:

&:

4GM 15w G2M?  2G M~ G?M?~

2 A 42 - T0 4 )

Ty 4 ctrg c c

In Conformal Gravity, the lensing equation has the same form as in General
Relativity. For a point mass lens, we have

D
9) =6 — —LSAa0
8(0) = 0 — 7600,
where 8( ), =r,/D_S, and &( ) are the source position angle, image position

angle, and deflection angle of Equation (31), respectively; r, is the closest ap-
proach of the light path from the lens; D_L, D_S, and D_ {LS} are the angular
diameter distances from the observer to the lens, to the source, and from the
lens to the source, respectively. Specifically, by setting () = 0 in the lensing
Equation (32), one can solve for the critical angular solution , which is known
as the Einstein radius _E. This angle corresponds to the formation of a ring-
like image when the background source, the lens, and the observer are perfectly
aligned, satisfying the critical condition for multiple imaging.

4. Fitting +* via Strong Gravitational Lensing

Mannheim [?] determined the standard value of the linear potential parameter
~* by fitting the rotation curves of spiral galaxies (see Equation (28)). How-
ever, without invoking dark matter, Ghosh et al. [?] applied this parameter to
analyze the strong lensing phenomena observed in the galaxy clusters Abell 370
and Abell 2390. They found that CG, under the standard value of v, fails to
reproduce the observed lensing effects. This discrepancy suggests that the value
of v obtained from rotation curve fits may not be sufficient to account for strong
gravitational lensing, thereby motivating the need to refit v* within lensing sys-
tems. As can be seen from the deflection angle Formula (31) and the lensing
Equation (32), if the observational data provide the redshifts of the background
source z_ S and the lensing object z_ L, the Einstein radius _E, and the lumi-
nous mass enclosed within this radius M(__E), then the corresponding value of
v can be inferred. In this direction, related investigations have already been
conducted by Cutajar and Zarb Adami [?].

After calculating the total linear potential parameter - for each lensing system
in their strong lensing galaxy cluster sample—where v = Ny + ~,—they per-
formed a fit to explore the correlation between v and the gas mass M {gas}.
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The results revealed a pronounced negative correlation between v and M_ {gas}.
More critically, the magnitude of v was found to be several orders of magnitude
larger than the values obtained from rotation curve fits (for instance, the min-
imum value of v* obtained from their fitting satisfied the relation v* = 0.33
x (M/M )=t - 164 m~1) However, it is worth noting that all deflection angle
expressions adopted in that study omitted the crucial second-order term 2M-y,
as compared to Equation (31). This omission could be a key factor contributing
to the overestimated fit results. To further assess the impact of this missing
term, we adopted the more complete deflection angle expression given by Equa-
tion (31), and we refitted the relation between v* and the mass. The use of v*
here was intended to allow for a direct comparison with the values derived from
rotation curve analyses.

We performed the fitting using the strong gravitational lensing sample compiled
by Oguri et al. [?] (see Table 1 ). This sample provides key observational
quantities, including the effective radius _ e, the Einstein radius _ E, and the
total stellar mass M, which are estimated under the assumption of a Salpeter
initial mass function (IMF). Since the deflection angle & calculated in the point-
mass model (see Equation (31)) includes the Schwarzschild term 4M/r,, where
M denotes the stellar mass enclosed within radius 1, we restricted our fitting
of v to the luminous mass enclosed within the Einstein radius, M(_FE). This
approach is consistent with the treatment in Cutajar and Zarb Adami [?], who
also considered only the mass within the Einstein radius. It is important to
emphasize that, unlike the Newtonian potential, the linear potential term in
Conformal Gravity exhibits a non-local character. Specifically, the luminous
mass located outside the Finstein radius _E does not produce mutually canceling
gravitational effects at __FE; instead, it continues to contribute to light deflection.
Therefore, by fitting v using only the mass within _ E, the gravitational effects
of the external mass are effectively absorbed into an elevated value of v, leading
to an overestimation of this parameter. Nevertheless, such an overestimation
does not alter the order of magnitude of v. Thus, the fitted values obtained
through this method remain valid for subsequent analyses.

Table 1. The original parameters and fitting parameters in strong gravitational
lens systems. From Column 1 to Column 7: galaxy name, source redshift z_ S,
lens redshift z_ L, effective angular radius _ e, Finstein radius _ E, stellar mass
log;o M(_E), and the MK parameter .

Galaxy _e _E log,, M*( _E) log, 7v*
Name z_S 7z_L [arcsec]| [arcsec] [log;o(M )] [log;o(m~1)]
SDSSJ0008—0004. —30.85
SDSSJ0029-—-0055. —31.00

In the framework of Conformal Gravity, where dark matter is not introduced,
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we modeled the distribution of luminous matter in the lensing object using the
Hernquist density profile. The volume mass density was given by

M

*

(=5
P = on r(r+ry)3’

where M* denotes the total stellar mass of the system, and r_s is the scale
radius, which is empirically related to the effective radius R_ e of the lensing
galaxy by r_s 0.551R_e [7].

By adopting the transformation r = D_ L, the three-dimensional mass distri-
bution can be recast in terms of angular coordinates. The stellar mass enclosed
within an angular radius is then given by

92
M(0) = m”&

where _s=r_s/D L 0.551 e and _e denotes the effective angular radius
of the lensing object.

Using the observational data listed in Table 1, we calculated the value of ~+*
for each lensing system by substituting into the lensing Equation (32) under
the condition 5 = 0. Given that 7, is a universal constant determined by the
cosmological background and remains the same across all systems, we fixed its
value as 7, = 3.06 x 10728 m~1. The computed values of v* were plotted
in Figure 1 [Figure 1: see original paper|. Following the method adopted by
Cutajar and Zarb Adami [?], we performed a least-squares fit to examine the
empirical relation between v* and the stellar mass M*( __E) enclosed within the
Einstein radius. The resulting fitting formula was given by

M(@) —1.51
P =457 x 10710 [ £ :
Y =457 x 10 ( A )

To distinguish this result from the standard parameter value derived from spiral
galaxy rotation curves, we denoted the fitting result from strong lensing as v .
Compared to the findings of Cutajar and Zarb Adami [?], our obtained ~"t
was significantly lower, yet it still remained substantially higher than the value
inferred from galactic rotation curve fitting.

Figure 1. A plot showing the relation between the Mannheim—Kazanas linear
potential parameter v* and the stellar mass M*( __E) within the Einstein radius,
which was derived from strong gravitational lensing observations. The data
points represent individual lensing systems, and the dotted line denotes the
empirical best-fit result.

In the following section, we will perform a statistical analysis of the lensing
probability distribution based separately on 7* and 7*”t in order to further
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assess the explanatory power of different parameterizations with respect to the
observational sample.

5. Galaxy Stellar Mass Function

To obtain the lensing probability within the framework of Conformal Gravity,
the galaxy stellar mass function (GSMF) is needed. It has been shown that, in
different redshift ranges, choosing either a Schechter function [?],

M\ MY\ dM

* *

or a double Schechter function [?],

MN\™ M\ M\ dM

can provide a good fit to the GSMF, where ®(M) denotes the comoving number
density of galaxies with mass between M and M + dM, ®* is the normalization
factor, and M* and « are the characteristic stellar mass of galaxies and the low-
mass slope, respectively. Relying on the photometric data in the near-IR bands
of the COSMOS2015 catalog and correcting for the Eddington bias, Davidzon
et al. [?] measured the GSMF in the redshift range of 0.2 < z < 5.5. This was
achieved using a Schechter function and double Schechter function, as presented
in Table 2 . For galaxies with redshift z < 0.2, Li and White [?] utilized a
complete and uniform sample of 486,840 galaxies from the Sloan Digital Sky
Survey to characterize the galaxy stellar mass function by fitting a Schechter
function. They reported two sets of resulting parameters: one set was fitted
in different stellar mass intervals, and the other was fitted across the entire
mass range. Although the latter approach might overestimate the abundances
of very massive galaxies, the number density of such galaxies is extremely low.
Consequently, it has little impact on the prediction of the lensing probability.
For convenience, in this study, we adopted the GSMF fitted across the entire
mass range to describe galaxies with z < 0.2. The specific parameter values are
also presented in Table 2.

Table 2. The Schechter parameters across different redshift ranges. The pa-
rameter values for z < 0.2 are cited from Li and White [?]. These values were
obtained by fitting a Schechter function, and the reduced Hubble constant hy
= 0.73 was adopted. For the redshift range 0.2 < z < 5.5, the parameter values
were sourced from Davidzon et al. [?]. Specifically, for 0.2 < z < 3.0, the values
were fitted using a double Schechter function, while for 3.0 < z < 5.5, a single
Schechter function was used for fitting. In this case, the corresponding value of
h,, = 1.0.
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Redshift log;o(M*/h;y2M )  « log,o(®*/ho3Mpc—3)
z < 0.2 10.72 -1.16 -2.67
02<z<05 10.84 -1.38,-0.08 -3.43,-2.73

6. Lensing Probability

As previously mentioned, within the framework of Conformal Gravity, we can
only model the lens as a point mass. Despite the additional linear potential,
namely the 7 term, the lensing equation for a point mass in CG does not differ
significantly from that in General Relativity, as can be seen from Equations (31)
and (32). In Figure 2 [Figure 2: see original paper], we present a typical lensing
equation for a point luminous mass of M = 10*' M . The source and the lens
are located at redshifts z_ S = 1.57 and z_ L = 0.1, respectively. As depicted,
analogous to the situation in GR, a point-mass lensing system always has two
images. We also found that, when — 0, 5() — oo. Since the brightness of an
image decreases as it gets closer to the lens and vice versa, the flux density ratio
q_r between the two brighter and fainter images increases as 3 increases. On
the other hand, any strong lensing sample has an allowed upper limit for q_r,
which leads to a corresponding upper limit of 5_ {qr} for each lensing system.

Figure 2. The lensing Equation (32) for a point luminous mass of M = 101!
M . The parameters were set as v* = 1.5 x 1073 m™!,z S=1.57,andz L =
0.1. The horizontal dashed line represents the allowed value of _ {qr} = 0.82,
which is constrained by the largest flux density ratio q_r = 3.16 of the sample
that was used in ref. [?].

In this study, we utilized the strong lensing sample presented in Inada et al. [?].
In this sample, the magnitude difference between the two brighter and fainter
images in the i-band was restricted to Ai < 1.25 mag, which implies q r =
107(0.4$x$1.25) 3.16.

The magnifications of the two images are defined by

0(8) dp(o)|”"

Fe=1a0(8) a0

)

0.

where + are the two solutions of the lensing equation 8( ) = 0, corresponding
to the angular positions of the two images. The flux density ratio q_r is defined
by g _r = / . Specifically, we have

/qu = /6<00—)7

where  represents the solution of the lensing equation 8( ) = 0 on the negative
half-axis. Thus, 5_{qr} can be obtained by solving the combined Equations (39)
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and (32).

In addition, gravitational lensing can magnify the brightness of background
sources, such as quasars or galaxies. As a result, sources that would otherwise
lie below the detection threshold (i.e., too faint to be observed) may be magni-
fied above that threshold, thereby increasing their probability of being detected
in survey samples. This leads to an observed number of lensing systems that
exceeds the statistical expectation in the absence of lensing. On the other hand,
magnification also stretches the image of the background object, effectively en-
larging the observed area on the sky and thus reducing the surface number
density of sources per unit solid angle. The net effect, known as magnification
bias, is a combination of these two competing influences [?]. The expression
for the magnification bias B(z_S, L) for a source at redshift z_S and intrinsic
luminosity L, under the effect of gravitational lensing, is given by [?, ?]:

> B dm®(zg, L)

where ®(z_S, L) is the luminosity function of the source population at redshift
z_S, () is the lensing magnification factor, and _ r characterizes the radial scale
of the strong lensing region. A CLASS survey found that the number density of
background sources follows a simple power-law relation ®(z_S, L) L™(-§). By
fitting the number-flux relation of flat-spectrum sources with flux densities in
the range 30 mJy < f < 200 mJy at a frequency of 5 GHz, Rusin and Tegmark
[?] determined the best-fit slope to be ¥ = 2.07 4 0.11. In general applications,
this parameter is typically taken as 4 = 2.1. With this simplification, Equation
(40) reduces to the following:

where = | | + denotes the total magnification factor [?, ?].

The lensing cross section is a central concept in the theory of statistical gravita-
tional lensing, and it is used to quantify the effective area covered by a lensing
system under specific imaging conditions. More precisely, it describes the area
on the source plane in which a source satisfies a given imaging criterion—such
as the production of multiple images, an image separation larger than a cer-
tain threshold, or a flux ratio below a specified value—for a fixed lens-source
geometry. The cross section on the source plane for systems producing image
separations greater than A is defined as

os(> A8) = 732, O[A6(M) — Ad],

where 5_ {cr} is the caustic radius on the source plane corresponding to multiple
imaging, A (M) is the image separation produced by a lens with mass M, and
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O(x) is the Heaviside function, which is defined as ©(x) = 1 for x > 0 and O(x)
=0 for x < 0.

For practical purposes, the lensing cross section is often transformed from the
source plane to the lens plane. Using geometric relations, one obtains the fol-
lowing:

Di,
s
which leads to the expression for the lensing cross section on the lens plane

(> Af) = 62, 0[A0(M) — AF].

This expression is of fundamental importance in the statistical prediction of
strong gravitational lensing probabilities.

A lensing cross section with an image separation larger than A and a flux

density ratio less than q_r, when combined with the amplification bias B(g), is
7, ?):

2D} [ B3 (B)dp, for A9 < A,
op(> A0, < q.) =4 20D} ([T Bui N (B)dB — [ BN (B)dB] L for AG, < AD < AG,,.,
0, for A0 > AG,,,

where SA is the source position at which a lens produces the image separation
A; Ay = A (0)is the separation of the two images that are just on the Einstein
ring; A {qr} = A (B_{qr}) is the upper limit of the separation above which the
flux ratio of the two images will be greater than q_r; and o_ B is defined as the
product of the lensing cross section ¢ and the magnification bias B(j5).

At last, in Conformal Gravity, the lensing probability for QSOs at a mean
redshift z_ S, which is lensed by foreground point-mass objects with image sep-
arations greater than A and flux density ratios below q_r, is given by

zg oo
P(> A6, < q,) = / dD,(z;) / AM(1+ 2 Po(M, 2 )op(> MG, < q,),
0 0

where the proper distance D_p(z_L) is provided in Equation (17), and the
comoving number density (M, z_L) can be selected from the galaxy stellar
mass function fitted using a single Schechter function (Equation (36)) or double
Schechter function (Equation (37)).
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We utilized the final statistical sample of gravitationally lensed quasars from the
Sloan Digital Sky Survey (SDSS) Quasar Lens Search (SQLS) [?]. This well-
defined sample comprises 26 lensed quasars, with i-band magnitudes brighter
than 19.1 and redshifts between 0.6 and 2.2, and they were selected from 50,826
spectroscopically confirmed quasars in SDSS Data Release 7 (DR7). The sam-
ple is restricted to systems with image separations of 1”7 < A < 20” and i-band
magnitude differences of less than 1.25 mag between the two images. For this
lensed quasar sample, we adopted a mean source redshift of z_ S = 1.57 and con-
strained the flux density ratio to q_r = 107(0.4$x$1.25) 3.16 (corresponding
to i-band magnitude differences < 1.25 mag) in our lensing probability calcula-
tions.

The parameter v* was constrained by fitting the lensing probability distribution
predicted by Equation (44) to observations. Figure 3 [Figure 3: see original pa-
per] presents the fitting results. The observed probability (thick histogram) was
derived from the Inada et al. [?] sample through P_ {obs}(> A, < q r) =N(>
A, < q_r)/N_{total}. The thin solid line shows the lensing probability predic-
tion using the rotation-curve-derived standard value v* = 5.42 x 10739 m~* [?].
This significantly underestimates the observed distribution (thick histogram),
and it is consistent with single-cluster studies [?].

Figure 3. Lensing probability with image separations > A and flux density
ratios < q_r = 3.16. The thick histogram shows the observed distribution
from the Inada et al. [?] sample. The theoretical predictions are shown for the
following: a standard rotation-curve-derived v* = 5.42 x 1073 m~! (thin solid
line; [?]); vt = 4.57 x 107 (M( _E)/M )~! 51 m~! obtained from strong
gravitational lensing fits (dash-dotted line); and a best-fit constant v* ¢ = 3.50
x 10732 m~! (dashed line).

The dot-dashed line represents the predicted probability distribution of strong
gravitational lensing under Conformal Gravity when the MK parameter is set to
the best-fit value v7¢t. It can be seen that, in the region of small image separa-
tions A 8", the theoretical prediction lies above the observed distribution. This
behavior is consistent with our earlier analysis: since the point-mass lens model
neglects the non-local contribution of stellar mass located outside the Einstein
radius to the linear potential term, the fitted value of ~y is naturally elevated
to compensate for the missing contribution. As a result, the predicted lensing
probability is overestimated in the small-separation regime. In addition, a more
important factor is the negative correlation between vt and the lens mass:
lower-mass lenses tend to yield larger fitted values of v~ t. This enhances the
contribution of the linear potential term in the deflection angle, increases the
lensing cross section, and consequently amplifies the lensing probability for low-
mass systems in the small-separation regime. In contrast, for image separations
A 3", the theoretical prediction from Conformal Gravity falls significantly
below the observed distribution. A major reason for this discrepancy lies in
the fact that the fitted v*”t decreases with increasing lens mass. For massive
galaxies or galaxy clusters, the corresponding linear potential coefficient v be-

chinarxiv.org/items/chinaxiv-202506.00141 Machine Translation


https://chinarxiv.org/items/chinaxiv-202506.00141

ChinaRxiv [$X]

comes smaller, thereby weakening the deflection angle and reducing the lensing
probability.

For further comparison, we also plotted the predicted lensing probability distri-
bution by assuming a constant v, which is shown as the dashed line in the figure.
The assumption of a constant -y is consistent with the fundamental premise of
Conformal Gravity, wherein v* is taken to be the linear potential coefficient
associated with a unit solar mass (for a detailed discussion, see Mannheim [?]).
The best-fit constant MK parameter was found to be v* ¢ = 3.50 x 10732 m~1.

As shown in Figure 3, when the image separation is A 2.5”, the strong lens-
ing probability predicted by Conformal Gravity with a constant MK parameter
~*_c is lower than that based on v7t. In contrast, for A  2.5”, the prediction
obtained using v__c exceeds that of v7t. This trend is consistent with our earlier
analysis. However, when compared with the observational data, it is evident that
Conformal Gravity under-predicts the strong lensing probability that occurs at
large image separations, regardless of the form of v adopted. Even when ~* is
tuned to its best-fit constant value from the data, the current formulation of
Conformal Gravity remains insufficient to fully account for the observed strong
lensing probability distribution. Wang et al. [?] systematically investigated the
strong lensing probability distributions corresponding to different dark matter
halo density profiles within the framework of General Relativity. When using
the same observational sample, SQLS [?] (the commonly used SIS+ NFW com-
posite model), as was adopted in this study, showed good agreement with the
observations in the small-separation regime, but it significantly underestimated
the occurrence rate of strong lensing events at large image separations. This
trend is consistent with our findings under the Conformal Gravity framework:
whether adopting the mass-dependent MK parameter v ¢ or the constant form
~__c, the theoretical predictions agree reasonably well with observations at small
image separations, but they also, likewise, exhibit a noticeable underestimation
in the large-separation regime.

7. Conclusions and Discussions

Cutajar and Zarb Adami [?] derived an empirical relation between the total
linear potential parameter v (where v = N7y + 7,) and the visible matter mass
of the lens M(__E), and this was based on strong lensing observations of galazy
clusters. However, the deflection angle formula employed in their analysis lacked
the crucial second-order correction term 2M~y, which likely led to an overesti-
mation of the fitted results. To address this issue, we adopted a more accurate
deflection angle expression &, incorporated it into the lens equation, and per-
formed a new fit to the MK parameter vt using the strong lensing sample
compiled by Oguri et al. [?]. As theoretically expected, the resulting value of
7t was significantly lower than that reported by Cutajar and Zarb Adami [?],
yet it remained several orders of magnitude higher than the standard ~y value
obtained from galaxy dynamics in the non-relativistic limit. This result is con-
sistent with previous findings based on galaxy clusters, such as Abell 370 and
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Abell 2390 [?]. Moreover, the parameter exhibited a clear mass dependence,
and it decreased with increasing lens mass.

Subsequently, we performed, considering different values of the MK parameter
v, a statistical analysis of the lensing probability distribution using the expression
given in Equation (44). The results were then compared with the complete strong
lensing observational sample provided by Inada et al. [7]. Our analysis shows
that, when ~ is fixed at the standard value obtained from fitting the rotation
curves of spiral galaxies, the theoretical prediction falls significantly below the
observational data across the entire range of image separations. As a result, it
fails to effectively reproduce the strong lensing events observed in reality. This
finding suggests that, although Conformal Gravity performs well in explaining
the dynamical behavior of spiral galaxies—thereby successfully reproducing the
observations without invoking dark matter—it encounters difficulties in remain-
ing consistent with strong lensing observations when assuming a constant linear
potential parameter. This also poses certain challenges to the universality of
Conformal Gravity across different physical scales and phenomena, suggesting
that its current formulation may be insufficient to fully accommodate the di-
verse observational constraints ranging from internal galactic dynamics to grav-
itational lensing.

When the MK parameter is taken as the mass-dependent value vt that is
obtained from strong gravitational lensing fits, the prediction slightly exceeds the
observational results in the image separation range A  8”. This overestimation
arises from two key factors: first, vt decreases with increasing lens mass;
second, the point-mass lens model neglects the contribution of matter outside
the Einstein radius to the linear gravitational potential at _ E. However, as
the image separation increases, the theoretical prediction rapidly declines and
falls significantly below the observed values, thereby failing to account for the
strong lensing events at large separations. In addition, we obtained a best-
fit constant parameter v*_c from the observational data, which is consistent
with the requirement that v* be a constant, as determined from the galaxy
rotation curve fits by Mannheim [?]. The fitted value of v*_c exceeded the
standard value derived from spiral galaxy rotation curves by approximately
seven orders of magnitude. Although this constant improved the prediction in
certain parameter ranges, it still failed to reproduce the observed statistics at
large image separations. This result indicates that even adopting a constant ~*
is insufficient to resolve the discrepancy currently faced by Conformal Gravity
in the context of strong lensing statistics. This conclusion is consistent with the
predictions made under General Relativity when assuming a dark matter halo
distribution modeled by the SIS+NFW combination [?].

In summary, our results indicate that Conformal Gravity faces certain diffi-
culties in providing a self-consistent explanation for multi-scale observational
phenomena, ranging from galactic dynamics to strong gravitational lensing.
Moreover, the quantum gravity theory proposed by Chen and Wang [?] and
Chen [?] also incorporates a linear potential term similar to that in Conformal

chinarxiv.org/items/chinaxiv-202506.00141 Machine Translation


https://chinarxiv.org/items/chinaxiv-202506.00141

ChinaRxiv [$X]

Gravity. A systematic investigation of this theory at galactic scales and in the
context of gravitational lensing may provide further insights into the viability
of explaining observational phenomena without invoking dark matter through
linear gravitational potentials. Such studies would also allow for a comparative
assessment of the performance of linear potentials across different gravitational
frameworks, potentially offering new perspectives for understanding the funda-
mental nature of gravity.
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