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Abstract
As an alternative gravitational theory to General Relativity (GR), Conformal
Gravity (CG) has recently been successfully verified by observations of Type Ia
supernovae (SN Ia) and the rotation curves of spiral galaxies. The observations
of galaxies only pertain to the non-relativistic form of gravity. In this context,
within the framework of the Newtonian theory of gravity (the non-relativistic
form of GR), dark matter is postulated to account for the observations. On the
other hand, the non-relativistic form of CG predicts an additional potential:
besides the Newtonian potential, there is a so-called linear potential term, char-
acterized by the parameter 𝛾∗, as an alternative to dark matter in Newtonian
gravity. To test CG in its non-relativistic form, much work has been done by
fitting the predictions to the observations of circular velocity (rotation curves)
for spiral galaxies. In this paper, we test CG with the observations from ellip-
tical galaxies. Instead of the circular velocities for spiral galaxies, we use the
velocity dispersion for elliptical galaxies. By replacing the Newtonian potential
with that predicted by non-relativistic form of CG in the Hamiltonian, we di-
rectly extend the Jeans equation derived in Newtonian theory to that for CG.
By comparing the results derived from the ellipticals with those from spirals,
we find that the extra potential predicted by CG is not sufficient to account
for the observations of ellipticals. Furthermore, we discover a strong correlation
between 𝛾∗ and the stellar mass 𝑀∗ in dwarf spheroidal galaxies. This finding
implies that the variation in 𝛾∗ violates a fundamental prediction of Conformal
Gravity (CG), which posits that 𝛾∗ should be a universal constant.
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Abstract
As an alternative gravitational theory to general relativity (GR), conformal
gravity (CG) has recently been successfully verified by observations of type Ia
supernovae (SN Ia) and the rotation curves of spiral galaxies. The observations
of galaxies only pertain to the non-relativistic form of gravity. In this context,
within the framework of the Newtonian theory of gravity (the non-relativistic
form of GR), dark matter (DM) is postulated to account for the observations.
On the other hand, the non-relativistic form of CG predicts an additional po-
tential: besides the Newtonian potential, there is a so-called linear potential
term, characterized by the parameter 𝛾, as an alternative to DM in Newtonian
gravity. To test CG in its non-relativistic form, much work has been done by
fitting the predictions to the observations of circular velocity (rotation curves)
for spiral galaxies. In this paper, we test CG with the observations from ellip-
tical galaxies. Instead of the circular velocities for spiral galaxies, we use the
velocity dispersion for elliptical galaxies. By replacing the Newtonian potential
with that predicted by the non-relativistic form of CG in the Hamiltonian, we
directly extend the Jeans equation derived in Newtonian theory to that for CG.
By comparing the results derived from the ellipticals with those from spirals,
we find that the extra potential predicted by CG is not sufficient to account
for the observations of ellipticals. Furthermore, we discover a strong correlation
between 𝛾 and the stellar mass M* in dwarf spheroidal galaxies. This finding
implies that the variation in 𝛾 violates a fundamental prediction of CG, which
posits that 𝛾 should be a universal constant.

Key words: gravitation – galaxies: dwarf – galaxies: elliptical and lenticular,
cD – Galaxy: disk

1. Introduction
Einstein’s general relativity (GR) has been verified very successfully on the scale
of the solar system, where the vacuum solutions of Einstein’s equation, known
as the Schwarzschild metric, are applied. On larger scales, in particular when

chinarxiv.org/items/chinaxiv-202506.00140 Machine Translation

https://chinarxiv.org/items/chinaxiv-202506.00140


it comes to the studies of galaxies and cosmology, dark matter (DM) and dark
energy (DE) are assumed to account for observations. Since both DM and
DE lack direct theoretical support and observational evidence, many efforts are
devoted to modified gravity alternatives to GR and its non-relativistic form,
Newtonian gravity.

For instance, one can enhance the standard Lagrangian in GR by incorporat-
ing higher-order curvature terms (Lovelock 1971, 1972; Boulware & Deser 1985;
Kobayashi 2005; Oikonomou 2021; Brassel et al. 2022), or formulate nonlinear
Lagrangians (Buchdahl 1970; Goswami et al. 2014). Other relevant theories
include modified Newtonian dynamics (MOND) (Milgrom 1983; Famaey & Mc-
gaugh 2012) and its relativistic version (Bekenstein 2004), conformal gravity
(CG; Mannheim 1997, 2006), as well as quantum effects on cosmic scales as an
alternative to DM and DE (Chen 2022; Chen & Wang 2024). Clearly, any mod-
ifications or extensions to GR should be verified by observations, in particular
by observations from the solar system. However, in the solar system, higher-
order corrections to GR should be negligible since on this scale, GR turns out to
be exact when predicting observations. On galactic scales, the non-relativistic
theory of gravity suffices. For Newtonian theory, DM is introduced to produce
extra gravitational potential so that when combined with the potential created
by the luminous matter, the total gravitational potential can account for the
observations of galaxies. On the other hand, in any modified theory of gravity,
it is required that, besides the usual Newtonian potential, the luminous matter
must produce extra gravitational potential to replace the potential produced by
DM in Newtonian theory.

In recent years, CG has attracted much interest in testing it as an alternative
to DM and DE with astronomical observations (for a review, see Mannheim
2006). As a relativistic theory alternative to GR, CG can solve the long-standing
cosmological constant problem encountered in the standard ΛCDM cosmological
model (Mannheim 1992, 2000, 2001), and the CG cosmology has been tested
with SN Ia data (Mannheim 2006; Yang et al. 2013). In its non-relativistic
limit, luminous matter generates additional gravitational potential beyond the
conventional Newtonian potential (Mannheim & Kazanas 1989). This could
potentially resolve the missing mass problem observed in galaxies and galaxy
clusters without the need for DM. To assess CG in its non-relativistic form, a
significant amount of research has been conducted. This involved fitting the
theoretical predictions to the observed circular velocities (rotation curves) of
spiral galaxies (Mannheim & O’Brien 2012, 2013; O’Brien & Moss 2015).

In this paper, we take a different approach. We test CG using the observations
from elliptical galaxies. Instead of relying on the circular velocities character-
istic of spiral galaxies, we utilize the velocity dispersion of elliptical galaxies.
Specifically, in the Hamiltonian, we substitute the Newtonian potential with
the one predicted by the non-relativistic form of CG. By doing so, we directly
extend the Jeans equation, which was originally derived within the framework
of Newtonian theory, to the context of CG.
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The remainder of this paper is structured as follows. In Section 2, we review the
fundamentals of CG and present the necessary formulas. In Section 3, we first
give a brief introduction to the test of CG using spiral galaxies. Subsequently, we
elaborate in detail on the procedures we adopted when applying CG to elliptical
galaxies. The conclusions and discussions are presented in Section 4.

2. Conformal Gravity
In comparison to GR, CG is formulated by maintaining the metric as the gravi-
tational field. However, it endows gravity with an additional symmetry, namely
conformal symmetry, which extends beyond ordinary coordinate invariance. By
imposing the principle of local conformal invariance as the requisite principle to
restrict the choice of action for the gravitational field in curved spacetime, one
requires the uniquely selected fourth-order gravitational action

𝐼𝑊 = −𝛼𝑔 ∫ 𝑑4𝑥 (−𝑔)1/2𝐶𝜆𝜇𝜈𝜅𝐶𝜆𝜇𝜈𝜅

to remain invariant under any local metric transformation 𝑔𝜇𝜈(𝑥) → 𝑒2𝛼(𝑥)𝑔𝜇𝜈(𝑥)
(called conformal transformation), and thus an action satisfying conformal sym-
metry. In Equation (1), 𝛼𝑔 is a dimensionless coupling constant, and 𝐶𝜆𝜇𝜈𝜅 is
the conformal Weyl tensor defined by

𝐶𝜆𝜇𝜈𝜅 = 𝑅𝜆𝜇𝜈𝜅− 1
2(𝑔𝜆𝜈𝑅𝜇𝜅−𝑔𝜆𝜅𝑅𝜇𝜈 −𝑔𝜇𝜈𝑅𝜆𝜅+𝑔𝜇𝜅𝑅𝜆𝜈)+ 1

6𝑅(𝑔𝜆𝜈𝑔𝜇𝜅−𝑔𝜆𝜅𝑔𝜇𝜈)

i.e., a tensor constructed by a particular combination of the Riemann and Ricci
tensors and the Ricci scalar. The particular property of the Weyl tensor is that
it has the kinematic relation 𝐶𝜇

𝜈𝜇𝜅 = 0. In other words, the Weyl tensor is
traceless.

CG requires the energy-momentum tensor 𝑇𝜇𝜈 to be traceless, i.e., 𝑇 𝜇
𝜇 = 0. On

the other hand, elementary particle masses are not kinematic, but rather are
acquired dynamically by spontaneous breakdown. Hence, consider a massless,
spin-1/2 matter field fermion 𝜓(𝑥) which is to get its mass through a massless,
real spin-0 Higgs scalar boson field 𝑆(𝑥). The required matter field action 𝐼𝑀
can be defined by

𝐼𝑀 = − ∫ 𝑑4𝑥 (−𝑔)1/2 [1
2ℎ𝑆2𝑅 + 1

12ℎ𝑆2𝑅 + 𝜆𝑆4 + 𝑖 ̄𝜓𝛾𝜇(𝑥)[𝜕𝜇 + Γ𝜇(𝑥)]𝜓 − ℎ𝑆 ̄𝜓𝜓]

where ℎ and 𝜆 are dimensionless coupling constants, 𝛾𝜇(𝑥) are the Dirac matrices
and Γ𝜇(𝑥) are the fermion spin connection.

Variation of 𝐼𝑀 with respect to the metric yields the energy-momentum tensor
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𝑇𝜇𝜈 = 2
(−𝑔)1/2

𝛿𝐼𝑀
𝛿𝑔𝜇𝜈

The total action is 𝐼 = 𝐼𝑊 + 𝐼𝑀 . Variation of the total action with respect to
the metric then yields

4𝛼𝑔𝑊𝜇𝜈 = 𝑇𝜇𝜈

where 𝑊𝜇𝜈 = 1
2 𝑔𝜇𝜈𝐶𝜆𝜇𝜈𝜅𝐶𝜆𝜇𝜈𝜅 − 2𝐶𝜇𝜆𝜈𝜅𝑅𝜆𝜅 + 2𝐶𝜇𝜆𝜅𝜎𝐶 𝜆𝜅𝜎

𝜈 .

2.1. Applying to Cosmology

In applying CG to cosmology, the Weyl tensor vanishes in a Robertson–Walker
metric. Thus 𝑊𝜇𝜈 = 0, and we see from Equation (5) that 𝑇𝜇𝜈 = 0. It turns out
that the conformal symmetry forbids the presence of any fundamental cosmolog-
ical term, and is thus a symmetry that is able to control the cosmological con-
stant. Even after the conformal symmetry is spontaneously broken (as is needed
to generate particle mass), the contribution of an induced cosmological constant
to cosmology will still be under control (Mannheim 2006). Consequently, CG
is potentially capable of solving the cosmological constant problem. The full
content of the theory can be obtained by choosing a particular gauge in which
the scalar field takes the constant value 𝑆0. In this case, the energy-momentum
tensor of Equation (4) becomes

𝑇𝜇𝜈 = ℎ𝑆2
0

6 (𝑅𝜇𝜈 − 1
2𝑔𝜇𝜈𝑅) + fermionic contributions

An averaging of over all the fermionic modes propagating in a Robertson–Walker
background will bring the fermionic contribution to 𝑇𝜇𝜈 to the form of a kine-
matic perfect fluid

𝑇𝜇𝜈 = (𝜌 + 𝑝)𝑈𝜇𝑈𝜈 + 𝑝𝑔𝜇𝜈

Thus the conformal cosmology equation of motion can be written as

3
8𝜋𝐺eff

( ̇𝑎2

𝑎2 + 𝑘
𝑎2 ) = 𝜌

For future reference, we define the angular diameter distance as

𝐷𝐴(0, 𝑧) = 𝑐
𝐻0(1 + 𝑧) ∫

𝑧

0

𝑑𝑧′

𝐸(𝑧′)

where 𝐸(𝑧) = 𝐻(𝑧)/𝐻0.
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2.2. Non-relativistic Limit

To conduct a test of CG using galaxy observations, it is necessary to derive
the non-relativistic limit of CG. Mannheim and Kazanas (1989, 1994) found an
exact CG analog of the Schwarzschild exterior and interior solutions to standard
gravity by solving the equation 4𝛼𝑔𝑊𝜇𝜈 = 𝑇𝜇𝜈 for a static, spherically symmetric
source. It turns out that the full kinematic content of CG is contained in the
line element

𝑑𝑠2 = −𝐵(𝑟)𝑑𝑡2 + 𝑑𝑟2

𝐵(𝑟) + 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2)

Evaluating the form that 𝑊𝜇𝜈 takes in this line element leads to the equation
of motion. Comparing with the standard Einstein equation, we only need to re-
place the gravitational constant 𝐺 by an effective, dynamically induced constant
𝐺eff. We define conformal analogs of the standard Ω𝑀(𝑡), ΩΛ(𝑡) and Ω𝐾(𝑡) via

Ω𝑀(𝑡) = 8𝜋𝐺eff𝜌(𝑡)
3𝐻2(𝑡) , ΩΛ(𝑡) = Λ(𝑡)

3𝐻2(𝑡) , Ω𝐾(𝑡) = − 𝑘
𝑎2(𝑡)𝐻2(𝑡)

where the Hubble parameter 𝐻(𝑡) = ̇𝑎/𝑎 and Λ(𝑡) is an effective cosmological
term.

As usual, in a Robertson–Walker geometry the expression of the Hubble param-
eter at redshift 𝑧 is

𝐻(𝑧) = 𝐻0√Ω𝑀(1 + 𝑧)3 + Ω𝐾(1 + 𝑧)2 + ΩΛ

In subsequent calculations, we adopt the values Ω̄𝑀 = 0.33, Ω̄Λ = 0.67, and
𝐻0 = 69.3 km s−1 Mpc−1, as per reference (Yang et al. 2013).

It is convenient to define a source function 𝑓(𝑟) via

∇4𝐵(𝑟) = 𝑓(𝑟)

so that the equations of motion can be written as

∇4𝐵(𝑟) = 𝑓(𝑟)

We are interested in the exterior solution for a static, spherically symmetric
source of radius 𝑟0, which is readily given by

𝐵(𝑟) = 𝑤 − 2𝛽
𝑟 + 𝛾𝑟 − 𝑘𝑟2
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where the −𝑘𝑟2 term is the general solution to the homogeneous equation
∇4𝐵(𝑟) = 0. On dropping the 𝑘𝑟2 term and setting 𝑤 = 1, the metric can
be written, without any approximation, as

𝑑𝑠2 = − (1 − 2𝛽
𝑟 + 𝛾𝑟) 𝑑𝑡2 + 𝑑𝑟2

1 − 2𝛽
𝑟 + 𝛾𝑟

+ 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2)

The Schwarzschild-like vacuum solutions of any modified theory of gravity offer
us an opportunity to verify the theory in its non-relativistic form. Specifically,
this verification can be carried out on the scales of solar systems, galaxies, and
galaxy clusters. In such scenarios, the metric 𝑔𝜇𝜈 is reduced to gravitational
potential 𝑉 . In terms of gravitational potential 𝑉 (𝑟), we can rewrite the metric
as

𝑑𝑠2 = −(1 + 2𝑉 /𝑐2)𝑑𝑡2 + (1 − 2𝑉 /𝑐2)(𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2)

with

𝑉 (𝑟) = −𝛽𝑐2

𝑟 + 𝛾𝑐2𝑟
2

In the region where 2𝛽/𝑟 ≫ 𝛾𝑟, when 𝛽 = 𝐺𝑀/𝑐2, the Schwarzschild solution
can be recovered. Departures from this solution, specifically the linear potential
𝑉𝛾 = 𝛾𝑐2𝑟/2, only occur at large distances. As a result, the standard solar
system Schwarzschild phenomenology is preserved.

3. Test of Conformal Gravity with Observations of Galaxies
As previously shown, when verifying a new relativistic theory of gravity through
galaxy observations, one must transition from the geometric perspective (utiliz-
ing the metric 𝑔𝜇𝜈) to that of Newtonian dynamics (employing the gravitational
potential 𝑉 ). Consequently, in the realm of galactic dynamics, the kinematic
aspects are determined by the gravitational potential. This holds true regard-
less of the form the potential assumes and its origin. The potential shown in
Equation (24) represents the potential generated by a point mass 𝑀 in CG. Be-
sides the conventional Newtonian potential 𝑉𝛽 = −𝛽𝑐2/𝑟, there is also a linear
potential 𝑉𝛾 = 𝛾𝑐2𝑟/2. This linear potential is proposed as an alternative to the
potential generated by DM in Newtonian theory and thus requires verification
through observations of galaxies. For a typical star of solar mass 𝑀⊙, we write
its potential as

𝑉∗(𝑟) = −𝛽∗𝑐2

𝑟 + 𝛾∗𝑐2𝑟
2
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where 𝛽∗ = 𝐺𝑀⊙/𝑐2 = 1.48 × 103 m and 𝛾∗ can be determined by observations.
If we denote 𝛾 = (𝑀/𝑀⊙)𝛾∗, then for any point mass 𝑀 , the expression for its
potential can be rewritten as

𝑉 (𝑟) = −𝛽𝑐2

𝑟 + 𝛾𝑐2𝑟
2 = −𝐺𝑀

𝑟 + 𝛾∗𝑀𝑐2𝑟
2𝑀⊙

3.1. Test with Spiral Galaxies

Up to now, the value of 𝛾 in Equation (26) has been uniquely determined by the
rotation curve observations of the circular velocity 𝑣𝑐(𝑅) of spiral galaxies. For
example, the total potential contributed by luminous matter in the equatorial
plane 𝑧 = 0 of an axisymmetric disk galaxy of surface mass density Σ(𝑅) is

𝑉LOC(𝑅) = 𝑉𝛽(𝑅) + 𝑉𝛾(𝑅)

with

𝑉𝛽(𝑅) = − ∫
∞

0

𝐺Σ(𝑅′)
𝑅′ 𝐽0(𝑘𝑅′)𝐽0(𝑘𝑅)𝑒−𝑘|𝑧|𝑑𝑘

𝑉𝛾(𝑅) = 𝛾∗𝑐2

2𝑀⊙
∫

∞

0
Σ(𝑅′)𝑅′𝐽0(𝑘𝑅′)𝐽0(𝑘𝑅)𝑒−𝑘|𝑧|𝑑𝑘

However, when fitting to the rotation curves of spiral galaxies, it has been found
that there exists a universal, galaxy-independent linear potential, 𝛾0𝑐2𝑟/2. This
potential can be ascribed to the effect of the potentials due to the rest of the
matter in the universe on any local galaxies (Mannheim 1997). Consequently,
around a point mass 𝑀 , the total potential on a test particle is

𝑉total(𝑟) = 𝑉𝛽(𝑟) + 𝑉𝛾(𝑟) + 𝑉𝛾0
(𝑟)

with

𝑉𝛾0
(𝑟) = 𝛾0𝑐2𝑟

2

By fitting rotation curves of spiral galaxies (Mannheim 2006), it is found that

𝛾∗ = 5.42 × 10−39 m−1, 𝛾0 = 3.06 × 10−28 m−1

In what follows, we will determine 𝛾∗ and 𝛾0 via a different approach, namely
by using the observations of elliptical galaxies.

chinarxiv.org/items/chinaxiv-202506.00140 Machine Translation

https://chinarxiv.org/items/chinaxiv-202506.00140


3.2. Test with Elliptical Galaxies: Theory

The observable quantities of elliptical galaxies that we can utilize are the surface
brightness and velocity dispersion. To validate CG using these observations,
we begin with the Jeans equation for static gravitational systems. Generally
speaking, for static systems, the modified Hamiltonian of any new gravitational
theory can be straightforwardly constructed by the replacement of 𝑉𝑁 → 𝑉CG.
In this paper, we make use of the potential presented in Equation (30).

The collisionless Boltzmann equation (CBE) is

𝜕𝑓
𝜕𝑡 + v ⋅ ∇𝑓 − ∇𝑉 ⋅ 𝜕𝑓

𝜕v = 0

where 𝑓 is the distribution function (DF) in phase space and the square bracket is
a Poisson bracket. In terms of inertial Cartesian coordinates, in which ∇ = 𝜕/𝜕x
and 𝜕/𝜕v is the gradient in velocity space, the CBE for a static system is

v ⋅ ∇𝑓 − ∇𝑉 ⋅ 𝜕𝑓
𝜕v = 0

The Jeans equation is derived from the CBE, and for static, spherical systems,
it reads (Binney & Tremaine 2011)

1
𝜌

𝑑(𝜌𝜎2
𝑟)

𝑑𝑟 + 2𝛽(𝑟)𝜎2
𝑟

𝑟 = −𝑑𝑉
𝑑𝑟

where 𝜌 is the matter density, 𝜎𝑟 is the radial velocity dispersion, and 𝛽(𝑟) is
the anisotropy parameter (not to be confused with the 𝛽 potential). Note that
the gravitational potential 𝑉 in Equation (34) is the one for CG, as shown in
Equation (30). For simplicity, we assume that the systems are isotropic (𝛽 = 0)
and that the velocity dispersion 𝜎∗ (the line-of-sight dispersion) is a constant
for each system. Thus, the Jeans equation is simplified as

𝜎2
∗

𝜌
𝑑𝜌
𝑑𝑟 = −𝑑𝑉

𝑑𝑟

What we actually observe is the surface brightness 𝐼(𝑅), so we must extract
𝜌(𝑟) from it. For dwarf spheroidal galaxies (dSphs), we employ the Plummer
profile (Walker et al. 2009; Moskowitz & Walker 2020)

𝐼(𝑅) = 𝐿
𝜋𝑅2𝑒

(1 + 𝑅2

𝑅2𝑒
)

−2
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where 𝐿 is the total luminosity and 𝑅𝑒 is the effective radius, i.e., the projected
radius encircling half of the total luminosity. The luminosity density 𝑗(𝑟) can
be extracted from 𝐼(𝑅) via an Abel transform (Binney & Tremaine 2011)

𝑗(𝑟) = − 1
𝜋 ∫

∞

𝑟

𝑑𝐼
𝑑𝑅

𝑑𝑅√
𝑅2 − 𝑟2

By considering the mass-to-light ratio Υ = 𝑀/𝐿, we obtain the mass density
for the Plummer profile

𝜌(𝑟) = 3𝑀
4𝜋𝑎3 (1 + 𝑟2

𝑎2 )
−5/2

where 𝑎 is related to the effective radius by 𝑎 = 𝑅𝑒/1.305.
For other general elliptical galaxies, we employ the Sérsic profile (Sérsic 1963;
Sersic 1968)

𝐼(𝑅) = 𝐼0 exp[−𝑏𝑛 ( 𝑅
𝑅𝑒

)
1/𝑛

]

where 𝐼0 is the central intensity, 𝑅𝑒 is the effective radius, 𝑛 is the Sérsic index,
and 𝑏𝑛 is the scale factor, the fitted approximate value of which is 𝑏𝑛 = 2𝑛 −
1/3+4/405𝑛+46/25515𝑛2 (Ciotti & Bertin 1999). By making use of the formula
𝐿 = 2𝜋 ∫∞

0 𝐼(𝑅)𝑅𝑑𝑅, one can derive the central intensity

𝐼0 = 𝐿
2𝜋𝑅2𝑒

𝑏2𝑛
𝑛

Γ(2𝑛)

Consequently, the Sérsic density profile can be computed once more through an
Abel transform of Equation (37) (Prugniel & Simien 1997)

𝜌(𝑟) = 𝜌0 ( 𝑟
𝑅𝑒

)
−𝑝

exp[−𝑏𝑛 ( 𝑟
𝑅𝑒

)
1/𝑛

]

where the parameter 𝑝 satisfies the relationship 𝑝 = 1 − 1.188/2𝑛 + 0.22/4𝑛2.

Substituting 𝜌(𝑟) from Equations (38) or (42) into Equation (35), we obtain the
Jeans equation for the Plummer profile

𝜎2
∗

𝜌(𝑟)
𝑑𝜌(𝑟)

𝑑𝑟 = −𝑑𝑉
𝑑𝑟

and for the Sérsic profile
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𝜎2
∗

𝜌(𝑟)
𝑑𝜌(𝑟)

𝑑𝑟 = −𝑑𝑉
𝑑𝑟

We now shift our focus to the right-hand side of Equations (35), (39) or (43)
and compute the derivatives of 𝑉𝛽 and 𝑉𝛾. The derivative of the Newtonian
potential 𝑉𝛽 is readily given by (Mannheim 2006)

𝑑𝑉𝛽
𝑑𝑟 = 𝐺𝑀(𝑟)

𝑟2

where 𝑀(𝑟) = 4𝜋 ∫𝑟
0 𝜌(𝑟′)𝑟′2𝑑𝑟′ is the total mass enclosed within radius 𝑟. For

the linear potential of the system, we have

𝑉𝛾(𝑟) = 𝛾∗𝑐2

2𝑀⊙
∫

𝑟

0
𝜌(𝑟′)𝑟′𝑑𝑟′

We thus obtain the derivative of the linear potential 𝑉𝛾 (Mannheim 2006)

𝑑𝑉𝛾
𝑑𝑟 = 𝛾∗𝑐2𝑟

2𝑀⊙
𝜌(𝑟)

By substituting Equations (44) and (46) into the right-hand side of Equation
(39), we can determine 𝛾∗ and 𝛾0 using the data of dSphs. Similarly, when
aiming to determine 𝛾∗ and 𝛾0 from the data of bright spheroidal galaxies, we
can perform the same procedure for the Sérsic profile of Equation (43).

On the other hand, it is intriguing to compare the results of our CG analysis with
those predicted by the conventional DM model. To carry out this comparison,
similar to the approach in Equation (35), we assume that the system is isotropic
and the velocity dispersion remains constant. The key distinction here is that
the gravitational potential 𝑉 follows the Newtonian form, which is generated
by the combined mass of DM and luminous matter, denoted as dynamic mass
𝑀dyn. So for Newtonian theory of gravity, Equation (35) becomes

𝜎2
∗

𝜌
𝑑𝜌
𝑑𝑟 = −𝐺𝑀dyn(𝑟)

𝑟2

Of course, this equation is valid only when we assume that mass distribution
follows the light distribution. However, this assumption is generally not true
because, in most cases, a significant portion of DM is distributed outside the
region of luminous matter, forming a dark halo (Walker et al. 2009; Moskowitz
& Walker 2020). Nevertheless, from the perspective of gravitational force, as a
toy model, such a simplification can help us verify whether CG has the ability to
account for the observations without invoking DM. Consequently, to compare
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the results of CG with those of Newtonian theory, we have to replace the po-
tential in Equations (39) and (43) with the Newtonian potential. Specifically,
Equation (39) is replaced by

𝜎2
∗

𝜌(𝑟)
𝑑𝜌(𝑟)

𝑑𝑟 = −𝐺𝑀dyn(𝑟)
𝑟2

for the Plummer profile assumed for dSphs, and Equation (43) is replaced by

𝜎2
∗

𝜌(𝑟)
𝑑𝜌(𝑟)

𝑑𝑟 = −𝐺𝑀dyn(𝑟)
𝑟2

for the Sérsic profile.

3.3. Test With Elliptical Galaxies: Fitting Data

To assemble a sample for dSphs, we choose 43 dSphs from the sample of all dwarf
galaxies in and around the Local Group, as presented in McConnachie (2012).
The sample we have selected includes information such as the effective radius
𝑅𝑒, velocity dispersion 𝜎∗, and stellar mass 𝑀∗. This information is required
when attempting to determine 𝛾∗ and 𝛾0 in accordance with Equation (39). We
denote this sample as sample dSphs.

Before proceeding further, it is essential to modify the effective radius 𝑅𝑒 for
future use in CG. In actual observations, the angular radius 𝜃𝑒 = 𝑅𝑒/𝐷𝐴(0, 𝑧)
is measured, where 𝐷𝐴(0, 𝑧) is the angular diameter distance to an object at
redshift 𝑧. This angular diameter distance is derived in CG, and its general
formula is given in Equation (13). Given that 𝐷𝐴(0, 𝑧) varies across different
theories of gravity, if the data is presented in the framework of GR, we should
modify the value of 𝑅𝑒 according to

𝑅CG
𝑒 = 𝑅GR

𝑒
𝐷CG

𝐴 (0, 𝑧)
𝐷GR

𝐴 (0, 𝑧)

where 𝑅GR
𝑒 and 𝐷GR

𝐴 (0, 𝑧) are the values evaluated in GR.

We employ the least-squares method to evaluate 𝛾∗ and 𝛾0. From Equation
(39), the 𝜒2 is defined by

𝜒2 =
𝑁

∑
𝑖=1

[𝜎2
obs − 𝜎2

model(𝑟𝑖)]2
𝜎4

obs

In actual calculations, we choose 𝜎obs = 1. Since both sides of Equation (39)
are functions of radius 𝑟, we evaluate 𝛾∗ and 𝛾0 at 𝑟 = 𝑅𝑒 for each galaxy.
The optimized fitted values are as follows: 𝛾dSph

∗ = 1.22 × 10−35 m−1, 𝛾dSph
0 =
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5.27 × 10−28 m−1. By comparing the results obtained from fitting dSphs with
those from fitting spiral galaxies, as presented in Equation (31), we find that 𝛾∗
is four orders of magnitude larger, while 𝛾0 is of the same order. The universal
value of 𝛾0 obtained from each dSph is anticipated. This is because it stems from
the cosmological effect on the local system and, consequently, is independent of
any specific local gravitational system. However, the fact that the fitted value
of 𝛾dSph

∗ is much larger than that obtained from spiral galaxies implies that if
the latter value is correct, it is insufficient to explain the dynamics of dSphs.
In other words, when it comes to dSphs, a certain amount of DM must be
introduced.

It should be noted that, as can be seen from the fitting results in reference
(Mannheim & O’Brien 2012), when the stellar mass 𝑀∗ < 1011𝑀⊙, the 𝛾0 term
dominates the linear potential. As 𝑀∗ increases, the 𝛾∗ term gradually becomes
dominant in the linear potential. In our sample of dSphs, the stellar mass of all
galaxies satisfies the condition 𝑀∗ < 1011𝑀⊙. Therefore, the linear potential
should be dominated by 𝛾0. On the other hand, in the conventional DM model,
it is widely acknowledged that DM dominates the potential of dwarf galaxies,
and this dominant tendency weakens as the stellar mass increases. In CG, the
Newtonian potential generated by DM is replaced by two linear potentials (i.e.,
𝛾0 and 𝛾∗ potentials). As shown in reference (Mannheim & O’Brien 2012), for
dwarf galaxies, there is a trend in CG that is similar to that in the DM model.

According to CG, both 𝛾0 and 𝛾∗ should be universal constants. However, as
we will demonstrate, for dSphs, 𝛾∗ is not a constant. Instead, it decreases with
an increase in the stellar mass 𝑀∗. This tendency resembles the one in the
DM model but violates the basic assumptions of CG. To achieve this, we fix
𝛾0 to be a smaller value of 3.97 × 10−29 m−1 (as opposed to the optimized
value of 𝛾dSph

0 = 5.27 × 10−28 m−1), and keep 𝛾∗ as a free parameter to be
determined. This fixed value of 𝛾0 is obtained by setting 𝛾∗ = 0 for all galaxies
and fitting the value of 𝛾0 according to the Jeans Equation (39), then finding
the smallest one. Such a fixed value of 𝛾0 would ensure that the fitted value of
𝛾∗ cannot be negative. The rationale behind choosing to fix 𝛾0 instead of 𝛾∗ is
as follows. 𝛾∗ represents the linear potential stemming from the local luminous
mass. It can imitate the distribution of DM in Newtonian gravity within any
local gravitational system. This enables us to draw a comparison between the
DM distribution in Newtonian gravity and the linear potential generated by the
luminous matter in CG.

Conversely, 𝛾0 measures the cosmological impact on local systems, and this
impact remains independent of any particular local system. We would like
to emphasize that, as is evident from Equation (30), for a given galaxy, the
combination of 𝛾0 and 𝑁𝛾∗ must remain a constant. Thus, a decrease in the
value of 𝛾0 necessarily implies an increase in the value of 𝛾∗. Nonetheless, fixing
𝛾0 at its smallest value will not impede our ability to draw a correct conclusion
regarding the correlation between 𝑀∗ and 𝛾∗. Meanwhile, we are aware that
the actual optimal value of 𝛾0 for dSphs is 5.27 × 10−28 m−1.
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In CG, 𝛾∗ characterizes the linear potential of a unit mass and should therefore
be a universal constant. However, the observed correlation between 𝛾∗ and the
stellar mass 𝑀∗ in galaxies closely resembles the correlation between 𝑀DM and
stellar mass 𝑀∗. This suggests that elliptical galaxies are better described by
Newtonian theory (requiring DM) than by CG.

Subsequently, we will set 𝛾0 to 3.97 × 10−29 m−1 and calculate 𝛾∗ and 𝑀∗
at 𝑟 = 𝑅𝑒 using the Jeans Equations. We define 𝜒2 between the stellar mass
𝑀∗(𝑅𝑒) and 𝛾∗(𝑅𝑒). For our selected sample of 43 dSphs, by applying Equations
(39) to (52) we find an empirical formula

log10 𝛾∗ = 𝑎 log10(𝑀∗/𝑀⊙) + 𝑏

We obtain the optimal parameters 𝑎 and 𝑏 using the least-squares method. By
doing so, we can establish the expected correlation

log10 𝛾∗ = −0.96 log10(𝑀∗/𝑀⊙) − 27.56

The results are shown in Figure 1. Evidently, 𝛾dSph
∗ is not a constant as predicted

by CG. Instead, it decreases as the stellar mass 𝑀∗ increases.

[Figure 1: see original paper]

It would be intriguing to explore the correlation between the DM mass 𝑀dyn and
the stellar mass 𝑀∗ in Newtonian gravity and to check whether this correlation
resembles that between 𝛾∗ and 𝑀∗ in CG. To accomplish this, we apply the
Jeans Equation (48) for dSphs. For simplicity’s sake, we calculate the total mass
𝑀dyn(𝑅𝑒) and stellar mass 𝑀∗(𝑅𝑒) within 𝑟 = 𝑅𝑒. Thus, the DM mass within
𝑅𝑒 is 𝑀DM(𝑅𝑒) = 𝑀dyn(𝑅𝑒) − 𝑀∗(𝑅𝑒). The correlation between 𝑀DM(𝑅𝑒) and
𝑀∗(𝑅𝑒) is depicted in Figure 2. Indeed, this figure reveals that the DM mass
𝑀DM(𝑅𝑒) decreases as the stellar mass 𝑀∗(𝑅𝑒) increases, following exactly the
same pattern as that of 𝛾dSph

∗ and 𝑀∗ as shown in Figure 1.

For ease of reference, we list in Table 1 the following parameters for each galaxy
in our selected sample, which is based on the sample in reference McConnachie
(2012): the total stellar mass 𝑀∗, effective radius 𝑅𝑒, velocity dispersion 𝜎𝑒,
fitted value of 𝛾dSph

∗ , dynamical mass 𝑀dyn(𝑅𝑒) within 𝑅𝑒, and the DM-to-
stellar mass ratio 𝑀dyn(𝑅𝑒)/𝑀∗(𝑅𝑒) within 𝑅𝑒.

We now shift our focus to the investigation of 𝛾∗ for bright elliptical galaxies. We
will apply our method used for dSphs to two samples of bright elliptical galaxies.
The first sample is composed of 76 compact, high-velocity-dispersion, early-type
galaxies from the Sloan Digital Sky Survey (SDSS) with 0.05 < 𝑧 < 0.2. We
denote this sample as SDSS DR 10. This sample was established in reference
(Saulder et al. 2015) by employing the de Vaucouleurs model (Sérsic profile with
𝑛 = 4). Therefore, for bright galaxies, we utilize the Jeans Equation (43) to
calculate 𝛾SDSS

∗ at 𝑟 = 𝑅𝑒. As proposed in reference (Saulder et al. 2015), in
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this scenario, 𝑛 = 4, 𝑏𝑛 = 7.66925, and 𝑝 = 0.854938. Meanwhile, the effective
radius 𝑅𝑒 is adjusted in accordance with Equation (50). Because of the large
velocity dispersion, a correction is required, and we take advantage of the work
of Shu et al. (2015) and Cappellari et al. (2005) to use the corrected velocity
dispersion at 𝑅𝑒,

𝜎2
𝑒 = 𝜎2

obs (1 + 𝜃2
fiber
𝜃2𝑒

)

where 𝜃fiber = 1.5 arcsec is the angular radius of the SDSS fiber, and 𝜃𝑒 is the
effective radius.

The results indicate that the correlation between 𝛾SDSS
∗ and 𝑀∗ can be described

by a fitted formula

log10 𝛾∗ = −1.64 log10(𝑀∗/𝑀⊙) − 17.79

𝛾∗ is not a constant; instead, it decreases as 𝑀∗ increases, as presented in Figure
3.

[Figure 3: see original paper]

Similar to the case of dSphs, 𝛾SDSS
∗ /𝛾0 decreases as 𝑀∗ increases. Meanwhile,

the mass of DM 𝑀DM(𝑅𝑒) is calculated according to Equation (49). The cor-
relation between 𝑀DM(𝑅𝑒) and 𝑀∗ is presented in Figure 4. As depicted, this
correlation is weak. However, in a certain sense, it is still similar to that between
𝛾SDSS

∗ and 𝑀∗.

The relevant original and derived parameters from sample SDSS10 are listed in
Table 2.

To extract more information about 𝛾∗ from bright galaxies, we use a new sample
based on the data set of the Sloan Lens ACS (SLACS) Survey (Auger et al. 2009)
to carry out the same procedure as we did for the sample SDSS DR 10. This
dataset was originally used for gravitational lensing analysis, but it provides us
with more information than we need to study the properties of 𝛾∗. We denote
this dataset as sample SLACS.

Compared with the sample SDSS DR 10, the galaxies in the sample SLACS are
brighter and have a larger effective radius. The correlation between 𝛾SLACS

∗ and
𝑀∗ based on sample SLACS is presented in Figure 5. As shown, the correlation
between 𝛾SLACS

∗ and 𝑀∗ is weaker than that for 𝛾SDSS
∗ and that for 𝛾dSph

∗ .
The correlation between 𝑀DM(𝑅𝑒) and 𝑀∗ for sample SLACS is also shown in
Figure 6. As is evident, the correlation is much weaker than that for sample
dSphs and that for sample SDSS DR 10. The parameters for sample SLACS
are also presented in Table 3.

[Figure 5: see original paper]
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[Figure 6: see original paper]

4. Conclusions and Discussions
An exact CG analog of the Schwarzschild exterior solution was found to predict
a linear potential 𝑉 = 𝑉𝛽 + 𝑉𝛾 besides the conventional Newtonian potential
(Mannheim & Kazanas 1989). It was also found that there exists a universal,
galaxy-independent linear potential, 𝑉𝛾0

= 𝛾0𝑐2𝑟/2, due to the rest of mat-
ter in the universe on any local galaxies (Mannheim 1997). The parameter
𝛾 = (𝑀/𝑀⊙)𝛾∗, where 𝑀 is the mass of luminous matter that generates the
corresponding linear potential 𝑉𝛾, and 𝛾∗ is the value of 𝛾 if 𝑀 = 𝑀⊙. Hence,
the values of 𝛾0 and 𝛾∗ should be universal constants independent of galaxies.
These predictions of CG can be verified through galaxy observations. To date,
in the literature, the tests have been successfully conducted only via the obser-
vations of spiral galaxies, specifically using the rotation curve data. The rich
data of this kind uniformly gives 𝛾∗ = 5.42 × 10−39 m−1 and 𝛾0 = 3.06 × 10−28

m−1.

In contrast, in this paper, we aim to test CG by utilizing the velocity dispersion
data from the observations of elliptical galaxies. It is well known that within el-
liptical galaxies, an extra gravitational force is required to balance the observed
velocity dispersion. The Jeans equation is a useful tool for describing the rela-
tionship between the velocity dispersion and the gravitational potential. The
Jeans equation was originally developed in Newtonian theory. In this context,
DM is introduced to account for the extra potential. To test CG, we extend the
Jeans equation by simply replacing the Newtonian potential with the potential
predicted by CG. In fact, when people apply CG to spiral galaxies, they follow
the same approach. That is, they replace the Newtonian potential with the
potential predicted by CG to explain the observed rotation curves.

We first select a sample, sample dSphs, consisting of 43 dSphs based on the
reference McConnachie (2012). We found that the value of 𝛾0 = 5.27×10−28 m−1

derived from the observations of the elliptical galaxies has the same order as that
derived from the observations of spiral galaxies. This result is not surprising,
since the 𝛾0 term in linear potentials originates from the cosmological effect on
any local gravitational systems, and thus should be independent of local systems.
However, our sample dSphs gives the optimum value of 𝛾dSph

∗ = 1.22 × 10−35

m−1, which is about four orders of magnitude larger than that fitted by spiral
galaxies (∼ 10−29 m−1). It suggests that the linear potential of luminous matter
estimated from spiral galaxies is negligible when applied to elliptical galaxies.
This inconsistent result between elliptical and spiral galaxies may indicate that
CG fails as an alternative to the DM model, at least for elliptical galaxies.

Furthermore, as depicted in Figure 1, we discover a strong correlation between
𝛾dSph

∗ (𝑅𝑒) and the stellar mass 𝑀∗(𝑅𝑒) for dSphs. This is accomplished by
fixing 𝛾0 and treating 𝛾∗ as a free parameter. As evident from Figure 1, 𝛾∗
decreases as 𝑀∗ increases. Interestingly enough, this situation is analogous to
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that in Newtonian gravity, where DM is introduced to provide the necessary
extra potential. In Newtonian gravity, it is a widely accepted notion that the
brighter the galaxy, the less DM is required. In fact, we applied Newtonian
gravity to the same sample and calculated the DM mass and the luminous
stellar mass within the effective radius for each galaxy. As shown in Figure
2, we found a correlation between DM mass 𝑀DM and stellar mass 𝑀∗ that
is similar to the correlation between 𝛾dSph

∗ and stellar mass 𝑀∗. These results
imply that, to explain the observations of dSphs, 𝛾dSph

∗ cannot be a constant.
Instead, it behaves more like the amount of DM, which can vary with the amount
of stellar matter. Regrettably, the varying value of 𝛾∗ violates the fundamental
prediction of CG, which requires 𝛾∗ to be a universal constant.

The dSphs are dominated by an extra gravitational potential. It would be
interesting to explore the correlations we discovered in dSphs using the data
sets of bright elliptical galaxies. To this end, we selected two samples: sample
SDSS DR 10 and sample SLACS. The galaxies in the sample SLACS are brighter
than those in the sample SDSS DR 10. We carried out the same procedure as we
did for dSphs. For sample SDSS DR 10, we found that the correlation between
𝛾SDSS

∗ and 𝑀∗ (as shown in Figure 3) and the correlation between 𝑀DM(𝑅𝑒)
and 𝑀∗ (as shown in Figure 4) are weaker than the corresponding correlations
for sample dSphs. We further found that the correlations for sample SLACS
(as shown in Figures 5 and 6) are even weaker than those for sample SDSS DR
10. This indicates that when less extra potential is needed, the correlations are
statistically more scattered, as expected.

For ease of reference, we list all the parameters of each sample in the correspond-
ing table.

As shown in Equations (25) and (26), 𝛾∗ characterizes the linear potential of a
unit mass and should therefore be a universal constant. However, the observed
correlation between 𝛾∗ and the stellar mass 𝑀∗ in galaxies closely resembles the
correlation between 𝑀DM and stellar mass 𝑀∗. This suggests that elliptical
galaxies are better described by Newtonian theory (requiring DM) than by CG.
Naturally, this does not necessarily mean that Newtonian gravity is correct
unless DM particles are directly detected in experiments. Alternatively, the
𝛾∗−𝑀∗ correlation could imply an additional scale-dependent quantum potential
in large scale structures, as proposed by Chen (2022), Chen & Wang (2024).
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