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Abstract

The surface particle size and distribution characteristics of celestial bodies (e.g.,
the Moon, asteroids, etc.) will affect the interpretation of hyperspectral remote
sensing data and the implementation of sampling missions. Currently, the esti-
mation of the surface particle sizes is mainly focusing on interpreting the thermal
inertia with the infrared spectral data from ground-based or space telescopes,
but this method show distinct errors compared with the imaging results of
the orbiter. By analyzing some thermal infrared spectral data, a relationship
between the particle sizes of the main rock-forming minerals (e.g. pyroxene,
feldspar, olivine) and the slopes of their thermal infrared spectrum was found.
Based on this relationship, a preliminary model for estimating the grain sizes
(30-300 m) of lunar or S-type asteroids’ surfaces which are silicate minerals
dominated was established, and the correlation coefficients (R2) for most of the
rock-forming minerals were better than 90%. Six observational datasets of natu-
ral lunar and terrestrial samples are used to validate the model, and the results
show a systematical overestimation of the ground-truth particle sizes, the po-
tential causes are analyzed and an additional correction is used to eliminate the
overestimation of the particle size prediction. These results are expected to pro-
vide guidance for interpretation of lunar and S-type asteroid surface sampling
and spectral data.
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Abstract

The surface particle size and distribution characteristics of celestial bodies such
as the Moon and asteroids significantly affect the interpretation of hyperspectral
remote sensing data and the implementation of sampling missions. Currently,
estimation of surface particle sizes primarily focuses on interpreting thermal in-
ertia using infrared spectral data from ground-based or space telescopes, but
this method shows significant errors when compared with imaging results from
orbiters. By analyzing thermal infrared spectral data, we identified a relation-
ship between the particle sizes of main rock-forming minerals (e.g., pyroxene,
feldspar, olivine) and the slopes of their thermal infrared spectra. Based on this
relationship, we established a preliminary model for estimating the grain sizes
( 30-300 m) of lunar or S-type asteroid surfaces dominated by silicate minerals,
achieving correlation coefficients (R?) better than 90% for most rock-forming
minerals. Six observational datasets of natural lunar and terrestrial samples
were used to validate the model. The results show systematic overestimation
of ground-truth particle sizes; potential causes were analyzed and an additional
correction was applied to eliminate this overestimation. These results are ex-
pected to provide guidance for interpreting lunar and S-type asteroid surface
sampling and spectral data.

Key words: infrared: planetary systems — minor planets, asteroids: general —
techniques: imaging spectroscopy

1. Introduction

The surface particle size and distribution characteristics of celestial bodies such
as the Moon and asteroids play an important role in surface landing, roving,
and sampling operations. The surfaces of celestial bodies are covered with a
thick layer of loose dust, which is unfavorable for landing probes and rover
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maneuvering due to its low load-bearing capacity (Yue et al. 2020). Further-
more, particle size plays a pivotal role in the identification and quantification of
material composition through visible and near-infrared (VIS-NIR) spectroscopy
(Poulet et al. 2007; Ody et al. 2013) and thermal infrared (TIR) spectroscopy
(Logan & Hunt 1970; Hunt & Logan 1972; Logan et al. 1973; Mustard & Hays
1997; Shirley & Glotch 2019).

For example, the 1 m absorption position and width of olivine are strongly
affected by particle size and become difficult to recognize (Poulet et al. 2007).
Previous studies have also shown that particle size significantly impacts ther-
mal infrared spectral Reststrahlen bands (RBs) and transparency features (TFs)
(Lyon 1962), causing changes in spectral contrast as well as shifts in positions
of Christiansen features (CFs), RBs, and TFs (Logan & Hunt 1970; Shirley
& Glotch 2019). Information regarding particle sizes on the surfaces of celes-
tial bodies can also facilitate deeper comprehension of geological environments,
surface-related processes, and the formation and evolution of these bodies (No-
ble et al. 2001; Hamilton et al. 2021).

Currently, the mainstream method for predicting particle size on celestial body
surfaces involves detecting and determining thermal inertia (Kieffer et al. 1973;
Presley & Christensen 1997). Thermal inertia measures how strongly surface
materials resist temperature change under varying solar insolation conditions
and is strongly affected by regolith particle size, porosity, and composition.
Therefore, it has been used as an indicator of particle size for celestial bodies
(Emery et al. 2006; Okada et al. 2020; Cambioni et al. 2021). However, due to
uncertainties in thermal inertia modeling involving various physical parameters
(Presley & Christensen 2010; Gundlach & Blum 2013), this approach has limi-
tations. According to imaging results from the U.S. OSIRIS-REx mission, the
surface of C-type asteroid Bennu is composed mainly of boulders larger than 1
m in diameter (DellaGiustina et al. 2019), contradicting predictions of a surface
dominated by 0.5-5 cm particles derived from thermal inertia data from OTES.
The particle sizes on Bennu’s surface exceeded the design specifications of the
OSIRIS-REx spacecraft and posed significant challenges for sampling (Lauretta
et al. 2019).

TIR spectroscopy has played an important role in particle size prediction and
composition identification on celestial body surfaces. Silicate minerals are the
main constituents of rocky celestial bodies. The presence of RB, CF, and TF fea-
tures in the TIR spectral range is closely related to silicate composition and can
be used as an indicator to discriminate their composition. The CF is generally
considered to be caused by rapid changes in the refractive index (i.e., anomalous
dispersion) of a single molecule prior to its fundamental vibrational band, which
is close to that of the refractive index of the surrounding medium, minimizing
backward scattering. Characterized spectroscopically as a reflectance minimum
or emissivity maximum, CF can be used as a diagnostic indicator for minerals
even when RB is attenuated (Conel 1969). The RB is caused by stretching of
the Si-O bonds in silicate minerals and is related to the mineral’s composition.
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The TF exists in the volume scattering region between Si-O stretching and bend-
ing fundamental vibration bands and is characterized as emissivity minima or
reflectivity maxima (Salisbury et al. 1991). Shirley & Glotch (2019) detailed the
effect of particle size on TIR spectra under simulated lunar environment con-
ditions, demonstrating that the spectral contrast of RBs and TFs is enhanced
as particle size decreases, and that CF positions shift to longer wavelengths
as particle size decreases (Logan & Hunt 1970; Hunt & Logan 1972; Logan et
al. 1973; Mustard & Hays 1997; Shirley & Glotch 2019).

TIR spectrometers have been employed in many space exploration missions.
As early as the 1990s, Mariners 6, 7, and 9 carried TIR spectrometers (Hanel
et al. 1972a, 1972b; Conrath et al. 1973; Pimentel et al. 1974), providing pio-
neering information on the composition and properties of the Martian surface
and atmosphere. The OSIRIS-REx Thermal Emission Spectrometer (OTES)
remotely detected mineral and thermophysical properties of C-type asteroid
Bennu (Hamilton et al. 2021). China will launch its first asteroid exploration
and sample return mission in 2025. As one of the scientific payloads, the As-
teroid Thermal Emission Spectrometer (ATES) will perform TIR spectroscopic
surveys on the surface of near-Earth S-type asteroid 2016 HO3 at different al-
titudes and local times (Zhang et al. 2021). Based on the requirements of this
first asteroid sampling mission and the uncertainties in particle size prediction,
we developed a new method to predict particle sizes based on TIR spectroscopy.
For the same mineral, the slopes of the spectrum near the longer wavenumber
side of the CF increase with decreasing particle size (Logan & Hunt 1970; Hunt
& Logan 1972; Logan et al. 1973; Mustard & Hays 1997; Shirley & Glotch
2019). According to this relationship, we can derive particle size information
by calculating spectral slopes near the longer wavenumber side of the CF. This
method is expected to be useful for future remote sensing and sampling of lunar
or S-type asteroid surfaces dominated by silicate minerals.

2. Samples and Data Description

The asteroid 2016 HO3 is thought to be an S-type asteroid with a silicate-
dominated composition (Sharkey et al. 2021). Therefore, this study prepared
samples of three common silicate minerals (olivine, pyroxene, and feldspar) and
their mixtures (Table 1). Each sample was ground into seven distinct particle
sizes. Additionally, three groups of mixed samples with varying particle sizes
and mass ratios of pyroxene and labradorite were prepared as simplified analogs
of gabbro: (1) a mixture of 10wt% augite and 90wt% labradorite, (2) a mixture
of 30wt% augite and 70wt% labradorite, and (3) a mixture of 50wt% augite and
50wt% labradorite.

We note that the average grain size of lunar soils is 60 m, and grain size
is also related to depth, with material at the top of the space-weathered layer
exhibiting smaller average grain sizes (King et al. 1971; King et al. 1972; McKay
et al. 1972, 1974; Carrier 1973; Heiken et al. 1973). Opportunity’s exploration
of Meridiani Planum on Mars revealed a dark weathering layer near the landing
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site approximately 1 m thick with grain sizes no larger than 125 m (J. Q. Li et
al. 2016). Shirley & Glotch (2019) investigated the effect of particle size on TIR
spectral features of different minerals in a simulated lunar environment using
seven particle size ranges: <32 m, 32-63 m, 63-90 m, 90-125 m, 125-250 m,
and >250 m. However, there remains a lack of data for larger particle sizes,
particularly in the 250-450 m range. We therefore ground and wet-sieved all
samples to seven different particle sizes with a wider range ( 30450 m): 30-54
m, 54-76 m, 76-100 m, 100-150 m, 150-200 m, 200-300 m, and 300-450 m.
Due to humid summer weather, two mixture samples with particle sizes of 30-54
m and 54-76 m experienced agglomeration prior to spectral measurement. We
dried these mixture samples in an oven at 60°C for more than 24 hours before
spectral testing to ensure accuracy.

The process for acquiring TIR emissivity spectral data was as follows: Sam-
ples were poured into aluminum cups with a diameter of 3 cm to maintain a
rough surface similar to natural regolith. Spectral measurements were carried
out using a Bruker 80v Fourier Transform Infrared (FTIR) spectrometer, and
reflectance data were first collected using an integrating sphere accessory. The
infrared beam enters the integrating sphere and illuminates a deflector mirror
mounted inside the sphere, which directs the beam to the lower sample port and
illuminates the samples at an incidence angle of 13°. The reflected and scattered
light inside the sphere is then collected by a detector located behind the exit
port to obtain reflectance data (R). The integrating sphere is gold-plated with
a gold plate serving as the calibration target.

Since the powder samples are thick enough to neglect transmission, the mea-
sured reflectance (R) can be converted to emissivity (E) according to Kirchhoff’s
law of thermal radiation (E = 1 - R). Each sample’s spectrum was acquired
over the range of 4000-400 cm ™' at ambient temperature and pressure using
128 scans with a resolution of 8 cm™! and a total scanning time of 5 minutes.
The spectrum was then normalized by setting the maximum emissivity value to
1. The position of the CF for each sample was obtained by fitting the maximum
emissivity (Donaldson Hanna et al. 2012).

3. Prediction Method for Particle Size

We plotted all TIR emissivity spectra of samples with different particle sizes
(Figure 1). From Figure 1, we identified a relationship between particle size and
spectral slopes: for the same sample, spectral slopes on the longer wavenumber
side of the CF gradually become steeper with decreasing particle size. Based
on this relationship, we developed a new method to predict particle sizes by
calculating spectral slopes near the longer wavenumber side of the CF. This
requires determining the emissivities and corresponding wavenumbers at two
data points.

One data point is undoubtedly the position of the CF and its corresponding emis-
sivity value. According to TIR spectral characteristics of different minerals, we
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find that there is usually a steep increase in emissivity between wavenumbers of
2250-1333 cm ™! and 1176-870 cm ™! as wavenumbers decrease. The 2250-1333
cm~! region is dominated by volume scattering, while the 1176-870 cm ™! region
is dominated by surface scattering and RBs. This sharp increase in emissivity
marks the transition from volume to surface scattering and is referred to by
Doug Nash as the “transition edge,” which clearly indicates the CF feature po-
sition (Salisbury et al. 1991). To determine the CF position for each mineral,
we defined it by fitting a second-order polynomial to the emissivity maxima of
each mineral spectrum following Donaldson Hanna et al. (2012). The CF posi-
tion is generally located in the wavenumber range of 1100-1400 cm™!. If more
than one emissivity maximum appears in the spectrum, we followed Salisbury
& Walter (1989) and Cooper et al. (2002) in selecting the emissivity maximum
at the longest wavenumbers to fit the CF position.

The other data point should be selected in the wavenumber range of 1700-1400
cm™!, which is dominated by volume scattering. Typical particulates of igneous
rocks on planetary surfaces often contain hydrated or hydroxylated minerals
that exhibit an H-O-H bending vibration feature near 1613 cm™! (Salisbury &
Walter 1989). For olivine and pyroxene, there are also prominent features at
1333.3 cm™! caused by absorption from overtone and combination tone vibra-
tions (Salisbury et al. 1991). To avoid these spectral features, we selected a
wavenumber of 1500 cm™! and its corresponding emissivity value as the second
data point for spectral slope calculation. The equation for calculating spectral
slope is defined as:

K — SCF ~ €1500
wep — 1500

where K represents the slope between 1500 cm~! and the CF position, _{CF}
is the emissivity at the CF position, _ {1500} is the emissivity at 1500 cm ™!,
and w_{CF} is the wavenumber of the CF position.

4.1. Particle Size Estimation Model

Following the method described in Section 3, we first calculated the CF positions
of all samples (Table 2). The CF positions of olivine vary between 1114 and
1130 cm™! as grain size changes, with a mean value of 1122 cm™'. The CF
positions of mixed sample 1 (90wt% labradorite) fluctuate between 1249 and
1281 cm™!, with a mean value of 1268 cm™!. The CF positions of mixed sample
2 (70wt% labradorite) fluctuate between 1238 and 1281 cm ™!, with a mean value
of 1258 cm™!, while the CF positions of mixed sample 3 (50wt% labradorite)
fluctuate between 1238 and 1249 cm™!, with a mean value of 1249 cm™'. The
CF positions in mixed samples move toward shorter wavenumbers as labradorite
content decreases, whereas minerals with higher magnesium-iron content, such
as olivine, have even shorter wavenumbers at the CF position, consistent with
previous observations (Logan & Hunt 1970; Shirley & Glotch 2019).
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After calculating CF positions for all samples, we derived spectral slopes (K-
values) using Equation (1). As shown in Table 3, the calculated K-values are
consistent with observed patterns, with the absolute value of spectral slope
increasing as particle size decreases.

We further used exponential function fitting to explore the relationship between
K-values and grain sizes (Figure 2). Results show that K-values initially increase
with particle size, reach maximum values when particle sizes increase to 300 m,
and then tend to stabilize with further particle size increases. The exponential
function is modeled as y = aexp(bx) + ¢, where the fitting coefficients a, b, ¢
and correlation coefficient (R?) are listed in Table 4. The results demonstrate
that exponential function fits achieve R? > 0.90 for all samples, with olivine
showing the best fit.

It should be noted that each particle size range has a width, and we employed
the mean grain size when plotting the relationship between K-values and particle
sizes. For example, for the range of 54-76 m, 65 m was used as the horizontal
coordinate value.

As illustrated in Figure 1, spectral curves on the longer wavenumber side for
particle sizes of 200-300 m and 300-450 m overlap, making their K-values
indistinguishable. There are even cases where K-values for larger particle sizes
are smaller than those for smaller sizes, contrary to the observed pattern. For
example, the K-value for mixture 1 with particle size 300450 m is less than
that for the 200-300 m case. We therefore speculate that our proposed method
may not be applicable for grain sizes exceeding 300 m.

From Figure 2, the fitted curves and their corresponding coefficients for the
three mixture groups demonstrate striking similarity. With increasing mafic
component content (e.g., pyroxene), the curves become progressively flattened
(reduced curvature). Notably, the curve for olivine is even more flattened, in-
dicating that enhanced mafic components correlate with gradual flattening of
fitted curves, consistent with observed CF position shifts toward longer wave-
lengths at higher mafic concentrations.

4.2. Effects of Moisture

Mixture samples in both the 30-45 m and 45-76 m particle size classes experi-
enced agglomeration due to wet weather, with the 30-45 m size class showing
more serious agglomeration, resulting in effective particle sizes larger than the
45-76 m class. To ensure measurement accuracy and avoid moisture effects, we
dried the two mixture samples at 60°C for more than 24 hours. Oscillation was
also applied after drying to further disperse agglomerates.

TIR spectral measurements were conducted on both mixture sample classes be-
fore and after drying (Figure 3). As illustrated in Figure 3, TIR spectra of the
three mixture groups within the 54-76 m particle size range exhibit minimal
variation before and after drying, indicating no moisture-induced agglomera-
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tion occurred. In contrast, emissivity on the longer wavenumber side of the
CF for the three mixture groups in the 30-45 m particle size range decreased
significantly after drying, and spectral slopes became steeper, suggesting that
moisture agglomeration was substantially mitigated by drying.

4.3. Physical Mechanism Discussion

We have established the relationship between thermal spectral slope and par-
ticle size: as particle size decreases, the absolute value of the spectral slope
on the longer wavenumber side of the CF feature increases. This phenomenon
may be explained as follows: volume scattering dominates for all particle sizes
in wavenumber regions close to the CF feature. As particle size gradually de-
creases, sample particles transition from optically thick to thin, and the degree
of volume scattering increases, leading to lower emissivity or higher reflectiv-
ity and ultimately greater spectral contrast on the longer wavenumber side of
the CF (Cooper et al. 2002). In weak absorption regions of the TIR range,
spectral contrast increases with decreasing particle size due to increased vol-
ume scattering (Bishop et al. 2019). Therefore, as particle size becomes larger,
spectral contrast decreases and spectral slope K-values converge slowly toward
zero, a trend that aligns with the intrinsic convergence behavior of exponential
functions.

This result also explains why K-values for mixture samples with 200-300 m and
300-450 m particle sizes are not well differentiated.

4.4. Model Validation and Limitation Discussion

We selected TIR spectra of four typical samples from the RELAB spectral li-
brary to validate our particle size prediction model. Typical samples included
lunar olivine, mare basalt, and two terrestrial gabbros. To better approximate
test data from celestial regolith surfaces, we additionally selected two Apollo
lunar soil spectral datasets (data source: Morlok et al. 2022). Particle size char-
acteristics and sample descriptions are detailed in Table 5. Apollo lunar soil
spectral data include modal mineralogy estimates (Table 6).

Following Kirchhoff’s law (E = 1-R), reflectance data were converted to emis-
sivity spectra (Figure 4). These emissivity data were normalized using the
methodology described in Section 2, with subsequent CF position calculations
(Table 7). Figure 4 reveals a consistent trend across lunar and terrestrial sam-
ples: finer particle sizes correlate with increasingly steep spectral slopes on the
long-wavenumber side of the CF.

We calculated spectral slope K for all test samples (Table 7) and subsequently
predicted particle sizes using our model, with results visualized in Figure 5.
Notably, predictions for specimens AN-GIM-011-C (200-500 m) and AN-G1M-
011-D (500-2000 m) were excluded from Figure 5 as they exceeded the model’s
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applicable particle size range, as evidenced by their anomalously elevated pre-
dictions.

Figure 5 demonstrates that predicted particle sizes for two Apollo lunar soil
groups match measured values better than other samples, though most pre-
dictions remain systematically higher. This discrepancy may stem from two
factors.

First, the analog samples used in our modeling are common silicate minerals
ground to single-mineral grains or mixtures of single-mineral grains. However,
actual lunar or S-type asteroid regolith compositions are more complex. Studies
on Chang’e-5 returned samples indicate that lunar regolith typically consists of
multi-mineral aggregates, basaltic fragments, breccia components, glass, and ag-
glutinates (Cao et al. 2025). The freshly ground samples used in our model have
brighter surfaces, whereas natural terrestrial and lunar samples used for valida-
tion are multi-mineral aggregates that experience weathering effects that darken
surfaces and reduce reflectance (Nimura et al. 2008; Wang et al. 2017; Shirley
2018). This weathering particularly diminishes spectral contrast between near-
infrared and mid-infrared regions (Yang et al. 2022), leading to higher emissivity
values in our study. Consequently, emissivity at 1500 cm™! (__{1500}) exceeds
modeled values, increasing the K-value. This is likely the primary factor affect-
ing model accuracy.

Second, CF position variations contribute to the discrepancy. Comparative
spectral analyses between model and test samples (e.g., lunar versus terrestrial
olivine in Figure 6, augite-labradorite mixtures versus rock spectra in Figure 7)
show that test samples exhibit CF positions either matching or shifted toward
lower wavenumbers, which leads to a slight increase in the K-value for iron-
enriched, magnesium-depleted compositions. CF positions intrinsically depend
on mineral composition, with natural samples displaying greater complexity due
to heterogeneous mineral proportions (Cooper et al. 2002; Salisbury et al. 1991).
Even within mineral groups, CF positions shift with chemical composition. Lu-
nar olivines in Figure 6 exhibit CF positions shifted toward longer wavelengths
compared to terrestrial counterparts, attributable to their higher Fe/(Fe+Mg)
ratios. Laboratory studies show that higher forsterite content shifts CF posi-
tions to higher wavenumbers (Hamilton 2010; Lane et al. 2011), consistent with
lunar olivine composition (Yang et al. 2022). Based on CF position ranges for
pyroxene and feldspar (two main constituents of lunar and S-type asteroids), we
estimate that CF positions of lunar and S-type asteroids could only be located
in the wavenumber range of 1180-1288 cm ™!, and particle size prediction errors
induced by CF position variations could be less than 20%.

The combined effects of weathering and CF position shifts synergistically elevate
K-values, ultimately resulting in systematic overestimation of particle sizes. To
enhance model reliability and practical application, we fitted predicted particle
size values against ground truth and derived a correction formula to eliminate
this systematic bias (Figure 5). The formula is y = 0.79x - 17.5, where x denotes
values predicted by the particle size estimation model and y represents corrected
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values. The calibrated model demonstrates optimal predictive performance for
silicate-dominated regolith surfaces with particle sizes ranging from 30-300 m.

Most extraterrestrial rock fragments may also contain other minerals such as
sulfides, phosphates, or glass phases. Glass phases may constitute a significant
proportion of lunar regolith and cause “broad and smooth” morphologies in
RB features of reflectance spectra, but they likely do not affect diagnostic CF
positions (Nash & Salisbury 1990; see Figure 2 in Morlok et al. 2022). Simi-
larly, some phosphate minerals exhibit distinct spectral features in the 1200-900
cm ! range due to P-O stretching vibrations (Lane et al. 2011b), but their low
abundance in lunar regolith means spectral characteristics remain dominated
by silicate minerals (see Figure 2 in Morlok et al. 2022). Sulfides only show
significant spectral features below 450 cm~! (Bishop et al. 2019), thus their
influence on the particle size estimation model is negligible.

Although our intimate mixtures of binary mineral particles (augite-labradorite)
cannot fully replicate the spectral characteristics of actual regolith surfaces with
complex mineralogical scenarios, these synthetic mixtures allow controlled iso-
lation of specific physical properties—particularly the relative proportions of
mafic versus felsic components—to systematically evaluate their impacts on CF
positions. This approach facilitates quantitative assessment of factors driving
spectral variations. Furthermore, spectra from simple binary mixtures of augite
and labradorite provide meaningful analogs for immature lunar regolith particles
(Crown & Pieters 1987).

Our particle size estimation model currently demonstrates optimal applicability
under two specific scenarios: (1) silicate-dominated surfaces with substantial
pyroxene-feldspar assemblages (higher pyroxene-feldspar abundances correlate
with enhanced model performance), and (2) regolith-covered terrains where par-
ticle sizes fall below 300 m. The model is inapplicable to bare bedrock boulders.

5. Summary and Future Work

Laboratory studies have demonstrated that mineral particle size significantly
affects TIR spectra, which in turn influences the ability to identify and interpret
surface composition of celestial bodies. Particle size is also an important factor
for mission planning, including landing site selection and sampling. However,
methods for predicting particle sizes on target object surfaces are currently
scarce and imperfect. In this study, analysis of TIR spectral data from terrestrial
minerals and mixtures revealed a correlation between particle size and TIR
spectral slopes. Based on this relationship, we established a new model for
predicting particle sizes of minerals and mixtures, providing a novel approach
for predicting particle sizes on celestial body surfaces.

Our new method predicts particle sizes by analyzing particle size influence on
TIR spectra. However, TIR spectral characteristics are also affected by many
other factors, particularly the presence or absence of atmosphere. Previous ex-
periments have demonstrated that spectral contrast of RBs and TFs is enhanced
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and CF feature positions shift to longer wavelengths as particle size decreases
on airless body surfaces (Logan & Hunt 1970; Shirley & Glotch 2019). Other in-
fluencing factors include porosity (Logan et al. 1973; Salisbury & Eastes 1985),
surface roughness (Bandfield 2009; Bandfield et al. 2015; Davidsson et al. 2015),
and space weathering (Hapke et al. 1975; Glotch et al. 2015; Lucey et al. 2017).
These factors are not currently considered in our particle size prediction model
and require further investigation. Nevertheless, our study provides a new idea
and useful attempt for predicting particle sizes on silicate-dominated celestial
surfaces.
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