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Abstract

Pulsar candidate identification is an indispensable task in pulsar science. Based
on the characteristics of imbalanced and diverse pulsar data sets, and the lack
of a unified processing framework, we first used dimensionality reduction and
visualization to analyze potential deficiencies caused by the incompleteness of
current data set extraction methods. We found that the limited use of non-
pulsar data may lead to bias in the result, which may limit the generalization
ability. Based on the dimensionality reduction results, we propose a Grid Group
Uniform Sampling (GGUS) method. This data preprocessing method improves
the performance of Random Forest, Support Vector Machine, Convolutional
Neural Network, and ResNet50 models on Lyon’s features, diagnostic plots,
and period-dispersion measure (period-DM) plots in the HTRU1 data set. The
average recall increased by approximately 0.5%, precision by nearly 2%, and F1
score by around 1.2% for all models and in all data sets. In the period-DM plots
testing, the high-performance ResNet50 algorithm achieved over 98% F1 score
using random sampling. GGUS demonstrated further improvements in this test,
enhancing the average F1 score, precision, and recall by approximately 0.07%,
0.1%, and 0.03%, respectively.
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Abstract

Pulsar candidate identification is an indispensable task in pulsar science. Based
on the characteristics of imbalanced and diverse pulsar data sets, and the lack
of a unified processing framework, we first used dimensionality reduction and
visualization to analyze potential deficiencies caused by the incompleteness of
current data set extraction methods. We found that the limited use of non-
pulsar data may lead to bias in the result, which may limit the generalization
ability. Based on the dimensionality reduction results, we propose a Grid Group
Uniform Sampling (GGUS) method. This data preprocessing method improves
the performance of Random Forest, Support Vector Machine, Convolutional
Neural Network, and ResNet50 models on Lyon’s features, diagnostic plots,
and period-dispersion measure (period-DM) plots in the HTRU1 data set. The
average recall increased by approximately 0.5%, precision by nearly 2%, and
F1 score by around 1.2% for all models and in all data sets. In the period-DM
plots testing, the high-performance ResNet50 algorithm achieved over 98% F1
using random sampling. GGUS demonstrated further improvements in this test,
enhancing the average F1 score, precision, and recall by approximately 0.07%,
0.1%, and 0.03%, respectively.
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1. Introduction

In recent years, the rise of artificial intelligence has led to the application of ma-
chine learning methods across a wide range of research and industries, aiming
to solve frontier problems and drive innovation in both projects and technology
(Camastra & Vinciarelli 2015; Zantalis et al. 2019). In the field of astronomy,
for example, machine learning has been widely used in pulsar candidate iden-
tification (e.g., Wang et al. 2018). Given the significance of pulsar research in
detecting gravitational waves (e.g., Abbott et al. 2017; Xu et al. 2023), navigat-
ing in deep space (e.g., Deng et al. 2013), and providing an exceedingly accurate
timing system (e.g., Hobbs et al. 2020), discovering new pulsars is also one of
major focuses (e.g., Nan et al. 2006; Wang et al. 2023). Identifying new pul-
sars requires filtering genuine pulsar signals from large numbers of candidates
from observational data processing results, making the application of machine
learning algorithms to assist in candidate identification essential.

Different from typical computer vision tasks, pulsar candidate data sets are
characterized by class imbalance, with pulsars representing only a very small
fraction of the data, while the majority consists of background noises and ra-
dio frequency interferences (RFI). Special algorithm designs are needed to find
pulsar signals and make the algorithms more robust and transferable. Recent
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advancements in image recognition algorithms have led to notable successes in
pulsar candidate identification. For instance, Yin et al. (2022) achieved 100%
accuracy on the High Time Resolution Universe (HTRU) survey data set us-
ing Generative Adversarial Networks (GANs) and Residual Neural Networks
(ResNet). Liu et al. (2024b) employed a semi-supervised method to reduce man-
ual labeling efforts, which achieved over 90% accuracy on both the FAST and
HTRU data sets with 100 labeled samples. Liu et al. (2024a) addressed the
imbalance in pulsar data by using ResNet, achieving over 97.5% performance
across various metrics on both FAST and HTRU data sets. These studies show
the challenges of data imbalance and potential labeling issues in pulsar searches.

Consequently, many researchers have explored data augmentation techniques to
expand pulsar candidate data sets to counteract data set imbalance problem.
The augmentation ratios vary widely, from several times (e.g., Liu et al. 2023)
to dozens of times (e.g., Agarwal et al. 2020; Liu et al. 2024a), and even up to
50 times (e.g., Wang et al. 2019). While there is no precise metric to determine
when data augmentation may lead to overfitting, extreme levels of augmenta-
tion may be hazardous. Excessive data augmentation may result in models
learning limited characteristics of the specific data set, resulting in a lack of
generalizability (Shorten & Khoshgoftaar 2019).

Analyzing existing data sets can give us an understanding of the distribution
of pulsars and non-pulsars, as well as the impact of non-pulsar signal selection
on algorithmic outcomes. Moreover, when dealing with large-scale candidate
data sets, it is necessary to evaluate whether the training data set is sufficient
to ensure the algorithm’s robustness and generalization capability. To help al-
gorithms use the pulsar and non-pulsar data sets comprehensively, we proposed
a method called Grid Group Uniform Sampling (GGUS) for data extraction.

Section 2 introduces the characteristics of pulsar candidate data sets. Section
3 explains the rationale for dimensionality reduction and presents a comparison
of the results in the HTRU1 data set. Section 4 proposes and refines the GGUS
method for training and testing data extraction. Section 5 presents the experi-
mental results, and Section 6 discusses our results, summarizes our findings and
future research directions.

2. Pulsar Dataset

In the field of pulsar candidate classification, data sets like HTRU1 (Morello
et al. 2014), HTRU2 (Thornton 2013), and FAST (Wang et al. 2019) are two-
class classification data sets with pulsars and non-pulsars. In this paper, we
selected the HTRU1 data set, one of the most commonly used data sets, for
analysis. The HTRU1 data set comprises a subset of preprocessed data from
the HTRU survey, including 1,196 pulsar instances coming from 521 pulsars and
their harmonic data, along with 89,996 non-pulsar instances.

Based on Lyon et al. (2016)’s review of pulsar candidate identification and recent
studies in the field (e.g., Yin et al. 2022; Liu et al. 2024b), pulsar data sets for
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machine learning classification can be divided into two types: numerical data
based on pulsar features and visual image data sets.

The feature-based numerical data are derived from parameters that have been
designed by researchers (e.g., Lee et al. 2013; Morello et al. 2014; Tan et
al. 2018). Parameters such as the signal-to-noise ratio (S/N), pulse profile,
dispersion measure (DM), pulsar period, and acceleration search are commonly
selected as features for analysis. Among the manually designed pulsar features,
we selected the features proposed by Lyon et al. (2016) as one of the test data
sets in this study. Details of Lyon’s features are presented in Table 1.

Pulsar candidate samples in image format provide data details, with each fea-
ture value that can be learned by algorithms. In this article, we selected the
pulsar diagnostic plots and the period-dispersion measure (period-DM) plots for
analysis and testing.

The pulsar diagnostic plot consists of four sub-plots. Figure 1 illustrates diag-
nostic plot examples of a pulsar signal, a typical RFI, and a background noise.
As one of commonly used data set formats, researchers such as Zhu et al. (2014),
Wang et al. (2019), Guo et al. (2019) selected and extracted specific features
from these diagnostic plots for training and testing in their algorithms.

The period-DM plots, shown in Figure 2, reflect how the S/N of a signal varies
with different periods of folding and different dispersion values. In period-DM
plots, the most notable distinction between RFI and pulsar signals is that RFI
usually does not exhibit significant dispersion, and its S/N often peaks at zero
dispersion. In contrast, noise typically shows relatively low S/N values and lacks
distinctive periods and dispersion characteristics.

This paper will apply Lyon’s features, diagnostic plots, and period-DM plots
obtained from HTRU1 for processing and testing.

3. Data Preprocessing and Visualization

Wang et al. (2018) argued that although manually designed features are compact
and concise, their reliance on human design may lead to bias. In contrast, image-
based data sets tend to yield more precise results, though they are large and
challenging to train. We also found that, with increasing computational power
advancing, most recent approaches are result-oriented (e.g., Lyon et al. 2016;
Wang et al. 2019). However, few researchers (e.g., Wang et al. 2019) have
conducted in-depth analyses of the intrinsic features of pulsar data. Hence,
the first objective of this paper is to analyze the features of pulsar data sets
from a macro perspective. We aim to provide a comprehensive and quantitative
understanding of the overall characteristics of pulsar data.

For algorithm selection, dimensionality reduction (Garzon et al. 2022) is chosen
as the basis for visualization analysis. Compared to the original data set, di-
mensionality reduction offers advantages such as improving data set usability,
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reducing computational overhead, removing noise, and making results easier to
interpret and visualize (Garzon et al. 2022).

Common dimensionality reduction algorithms include Principal Component
Analysis (PCA; Abdi & Williams 2010), Linear Discriminant Analysis (LDA;
Tharwat et al. 2017), Local Linear Embedding (Roweis & Saul 2000), Multi-
dimensional Scaling (Torgerson 1952), t-distributed Stochastic Neighbor
Embedding (Van der Maaten & Hinton 2008), and Isomap (Tenenbaum et
al. 2000), which cover various methods including linear, nonlinear, and manifold
learning approaches.

When dealing with large data sets, nonlinear and manifold learning algorithms
experience exponential increases in computational complexity as the data set
size grows. This phenomenon may lead to the “curse of dimensionality.” There-
fore, efficient and interpretable linear dimensionality reduction algorithms are
preferred. Among linear algorithms, we selected PCA as the method for dimen-
sionality reduction and visualization. PCA is an unsupervised method, which
can reduce data dimensions while preserving essential information, facilitating
subsequent visualization and analysis.

3.1. Principal Component Analysis (PCA)

PCA is one of the most well-known linear dimensionality reduction algorithms.
It projects high-dimensional data onto a lower-dimensional subspace while re-
taining most of the variance in the original data. The core idea of PCA is
to identify the directions in which the variance of the data is maximized and
project the data onto these directions, which are known as principal components
(Abdi & Williams 2010).

Let the original data that needs to be reduced be represented as an m xn matrix,
where m represents the dimensions of each data point, and n is the number of
data points. The goal of the PCA algorithm is to reduce the m-dimensional
data to k-dimensions (m > k).

The PCA algorithm (Abdi & Williams 2010) can be divided into the following
steps:

1. Perform decentering to make the data set’s mean zero:
X=X-x
where X is the mean of the data.

2. Compute the covariance matrix:

1
n—1

C= xXxXT

3. Find the eigenvectors and their corresponding eigenvalues $ = (
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Note: Figure translations are in progress. See original paper for figures.

Source: ChinaXiv — Machine translation. Verify with original.
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