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Abstract

Accurate measurements of stellar positions and velocities are crucial for study-
ing galactic and stellar dynamics. We aim to create a Cartesian catalog from
Gaia DR3 to serve as a high-precision database for further research using stel-
lar coordinates and velocities. To avoid the negative parallax values, we select
31,129,169 sources in Gaia DR3 with radial velocity, where the fractional par-
allax error is less than 20% (0 < o/ < 0.2). To select the most accurate and
efficient method of propagating mean and covariance, we use the Monte Carlo re-
sults with 1077 samples (MC7) as the benchmark, and compare the precision of
linear, second-order, and Monte Carlo error propagation methods. By assessing
the accuracy of propagated mean and covariance, we observe that second-order
error propagation exhibits mean deviations of at most 0.5% compared to MC7,
with variance deviations of up to 10%. Overall, this outperforms linear transfor-
mation. Though the Monte Carlo method with 1074 samples (MC4) is an order
of magnitude slower than second-order error propagation, its covariance propa-
gation accuracy reaches 1% when o / is below 15%. Consequently, we employ
second-order error propagation to convert the mean astrometry and radial ve-
locity into Cartesian coordinates and velocities in both equatorial and galactic
systems for 30 million Gaia sources, and apply MC4 for covariance propagation.
The Cartesian catalog and source code are provided for future applications in
high-precision stellar and galactic dynamics.
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Abstract

Accurate measurements of stellar positions and velocities are crucial for study-
ing galactic and stellar dynamics. We aim to create a Cartesian catalog from
Gaia DR3 to serve as a high-precision database for further research using stel-
lar coordinates and velocities. To avoid negative parallax values, we select
31,129,169 sources in Gaia DR3 with radial velocity measurements where the
fractional parallax error is less than 20% (0 < o/ < 0.2). To identify the
most accurate and efficient method for propagating means and covariances, we
use Monte Carlo results with 107 samples (MC7) as the benchmark and com-
pare the precision of linear, second-order, and Monte Carlo error propagation
methods. By assessing the accuracy of propagated means and covariances, we
observe that second-order error propagation exhibits mean deviations of at most
0.5% compared to MC7, with variance deviations of up to 10%. Overall, this
outperforms linear transformation. Although the Monte Carlo method with 10%
samples (MC4) is an order of magnitude slower than second-order error propa-
gation, its covariance propagation accuracy reaches 1% when o / is below 15%.
Consequently, we employ second-order error propagation to convert the mean
astrometry and radial velocity into Cartesian coordinates and velocities in both
equatorial and galactic systems for 30 million Gaia sources, and apply MC4 for
covariance propagation. The Cartesian catalog and source code are provided
for future applications in high-precision stellar and galactic dynamics.

Key words: catalogs — astrometry — reference systems — methods: data
analysis — astronomical databases: miscellaneous
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1. Introduction

The demand for high-precision reconstruction of stellar orbits has gained promi-
nence, particularly with the emergence of advanced astrometric missions like
Gaia (Gaia Collaboration et al. 2016a, 2018). Gaia Data Release 3 (DR3) of-
fers the largest collection of all-sky spectrophotometry, radial velocities, and
astrophysical parameters for stars. It achieves highly accurate astrometric mea-
surements for G < 15 mag, with median position uncertainties ranging from
0.01 to 0.02 mas, median parallax uncertainties between 0.02 and 0.03 mas,
median proper motion uncertainties from 0.02 to 0.03 mas yr—!, and radial ve-
locity uncertainties of approximately 1 km s~! (Gaia Collaboration et al. 2021,
2023). Such extraordinary precision has become a cornerstone in Galactic and
stellar dynamics research, unlocking new possibilities for understanding celestial
motion and providing unprecedented insights into the structures and dynamics
of our galaxy.

We can resolve individual stars in and around our host Galaxy, the Milky Way
(MW). These include stars in tidal debris or stellar streams, which are stripped
by tidal forces from dwarf galaxies and globular clusters orbiting the MW. In
the field of galactic dynamics, the modeling of stellar streams often combines
an approximate treatment of stream formation with high-resolution simulations
of galaxy formation. For streams whose progenitor galaxy or globular cluster
is not fully disrupted by tides, the currently observed position and velocity of
the progenitor can be integrated back in time with a fiducial MW potential
model, then integrated forward in time with tracer particles released from the
two Lagrangian points to simulate the formation and evolution of the stream in
the galactic tidal field. By comparing the simulated stream to observations, one
can constrain the underlying dark matter distribution (e.g., Kiipper et al. 2012,
2015; Bonaca et al. 2014; Gibbons et al. 2017; Palau & Miralda-Escudé 2023).
The modeling of stream orbits strongly depends on the initial conditions set
by the progenitors, often achieved in action and action-frequency space (e.g.,
Sanders & Binney 2013; Bovy 2014; Sanders 2014; Bovy et al. 2016), and is
therefore sensitive to error propagation.

In the pursuit of understanding wide binaries, achieving precise error propaga-
tion is paramount, given the subtle velocity differences, often as minimal as 1
km s7!, exhibited by these binary systems. Harnessing the high-precision as-
trometric data provided by Gaia (Gaia Collaboration et al. 2016b), millions of
wide binaries have been identified through meticulous examination of their com-
mon proper motion and parallax (e.g., El-Badry & Rix 2018; Tian et al. 2020;
El-Badry et al. 2021). Particularly noteworthy is the utilization of the relative
velocity and relative position angle of wide binaries to explore their eccentricity
distribution (Hwang et al. 2022). Since these investigations heavily rely on accu-
rate Cartesian coordinates and velocities, precise transformation of coordinates
from Gaia astrometry with careful error propagation becomes imperative. This
is crucial not only for avoiding false positives in wide binary selection but also
for enhancing the reliability of statistical studies concerning their properties.
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Unlike wide binaries, stellar encounters encompass the serendipitous alignment
of stars occurring when they come into close proximity over relatively short pe-
riods. Notably, encounters within the solar system significantly contribute to
shaping the structure of the Oort Cloud (e.g., Garcia-Sdnchez et al. 2001; Dones
et al. 2004; Rickman et al. 2008, 2012; Feng & Bailer-Jones 2015; Dybczynski
et al. 2022). The exploration of slow and close encounters involving interstel-
lar objects like ’'Oumuamua yields valuable insights into identifying their home
systems and understanding their dynamical history (e.g., Feng & Jones 2018b;
Bailer-Jones et al. 2018; Zwart et al. 2018; Loeb 2022). Accurate stellar orbital
integration proves essential for pinpointing stellar encounters, necessitating pre-
cise propagation of stellar motion from an initial epoch to millions of years in
the past or future. Given the nonlinear nature of stellar orbits over million-year
timescales, the encounter time and distance are highly sensitive to the initial
Cartesian state of the stars (Dybczynski & Berski 2015).

Recognizing the critical role of error propagation in numerous astrophysical
applications, we undertake a comparative analysis of different methodologies
for error propagation in the transformation of Gaia astrometry into Cartesian
positions and velocities of stars. Specifically, we investigate linear, second-
order, and Monte Carlo (MC) error propagation methods. While advanced
techniques such as the Kalman filter and unscented transformation (e.g., Smith
et al. 1962; Schmidt 1966; Julier & Uhlmann 2004; Chen et al. 2017; Michelotti
et al. 2024) are commonly applied in nonlinear-system tracking and naviga-
tion, second-order error propagation consistently achieves precision comparable
to these approaches, as exemplified by Feng & Jones (2018a), who conducted
a comprehensive comparison of various methods in stellar orbital integration.
Our study reaffirms that second-order error propagation surpasses linear prop-
agation in accuracy. Consequently, we use second-order error propagation to
derive Cartesian positions and velocities in both Equatorial and Galactic co-
ordinate systems from Gaia astrometry, and apply MC with 10* samples for
covariance conversion. This approach enhances both the efficiency and accu-
racy of coordinate transformation while establishing a robust foundation for
research across diverse astrophysical fields.

The structure of this paper unfolds as follows: In Section 2, we provide a detailed
overview of the data employed for error propagation. Section 3 delves into the
techniques utilized for coordinate transformation and covariance propagation,
encompassing MC, linear, and second-order error propagation methods. Section
4 presents and discusses the extensive outcomes derived from our methodology,
focusing on approximately 30 million sources in Gaia DR3. Finally, Section
5 encapsulates a succinct discussion and conclusion. Definitions of relevant
variables and abbreviations are provided in Table E1.

2. Data

Gaia DR3 (Gaia Collaboration et al. 2023) encompasses 33,812,183 sources,
providing measurements of radial velocities (v ) and five-parameter astrometric
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data, including right ascension («), declination (§), parallaxes ( ), proper mo-
tions in right ascension ( ), and proper motions in declination ( g). Due to more
observational data and an improved data reduction pipeline, Gaia DR3 provides
many more targets with radial velocity data than the 7,224,631 supplied by Gaia
Data Release 2 (DR2; Gaia Collaboration et al. 2018), and the accuracy of radial
velocity has also been significantly improved (Katz et al. 2023).

While distance is inherently a positive quantity, some sources may exhibit neg-
ative parallaxes due to various reasons. Bayesian inference has been adopted to
estimate distances for stars with negative parallax measurements (e.g., Astraat-
madja & Bailer-Jones 2016; Luri et al. 2018; Bailer-Jones et al. 2018, 2021).
Following the recommendation of Bailer-Jones (2015), incorporating appropri-
ate priors becomes crucial for Gaia sources with fractional parallax error (o /)
exceeding 20% for distance inference. However, precise parallax measurements
(0 < 0/ < 0.2) with high signal-to-noise ratio (S/N > 5) are not sensitive to
priors (e.g., Bromley et al. 2018). Consequently, after correcting for zero-point
parallax offset (Lindegren et al. 2021; Ding et al. 2024), as well as magnitude
and color-dependent proper motion bias (Cantat-Gaudin & Brandt 2021), we
select a subset of 31,129,169 stars from Gaia DR3 that have valid radial veloc-
ity measurements and fractional parallax error satisfying 0 < ¢ / < 0.2. This
allows distance to be directly represented by the reciprocal of parallax, ensuring
reliability and accuracy while minimizing potential bias from priors.

3. Error Propagation

In this section, we delineate three error propagation methods utilized in this
study. Our approach involves converting the five-parameter astrometry and
radial velocities of Gaia sources to Cartesian coordinates and velocities in both
the Equatorial and Galactic coordinate systems. Additional details regarding
the transformation of Galactic coordinates can be found in Appendix B.

The transformation from spherical coordinates to Cartesian coordinates requires
utilization of the Jacobian matrix.

3.1. Linear Error Propagation

Linear error propagation is the default method used by most astronomical data
analyses. Considering that linear error propagation is broadly used in the com-
munity (e.g., Butkevich & Lindegren 2014), we only briefly introduce it as fol-
lows.

First, we define the vectors and matrices used in error propagation. The spher-
ical position and velocity vector in the Equatorial coordinate system is defined
as [spherical coordinates]. The conversion from a covariance matrix in spherical
coordinates to one in Cartesian Equatorial coordinates can be expressed as J C
J , where J is the Jacobian matrix (see Appendix C for details).
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3.2. Second-order Error Propagation

The distance r is derived from parallax according tor = A/, where A = 1 au.
The position and velocity vectors in Cartesian equatorial coordinates are linked
to the corresponding spherical coordinates through nonlinear transformations
involving trigonometric functions of o and §.

The Gaia DR3 catalog provides uncertainties and correlation coefficients for the
five-parameter astrometric solutions, plus radial velocity errors. Since radial
velocity and the five astrometric parameters are measured independently, we
treat them as independent, meaning correlation coefficients between v and the
five astrometric parameters are zero. From Gaia DR3, we use ca* to denote
oa, and o to denote errors in position and velocity vectors, with (= )
representing correlation coefficients where i or j corresponds to «, 4, , a*, §,
or v . The six-dimensional covariance matrix is constructed accordingly.

Although linear propagation is widely used, it may not always yield optimal re-
sults for accurate error propagation (e.g., Ilyin 2012). Higher-order error prop-
agation becomes necessary to ensure optimal performance, particularly when
dealing with measurements having relatively large errors where Taylor series
truncation errors become significant. In such scenarios, linear transformation
may result in decreased accuracy. To achieve enhanced precision, we employ a
second-order Taylor series for propagating statistical errors.

Second-order error propagation is commonly used in science and engineering for
precise calculations and data processing (Wang & Chirikjian 2008; Le Dimet
et al. 2014). In astronomy, it is frequently applied to measure positions and
motions of celestial bodies, such as in satellite orbit calculations (e.g., Sengupta
et al. 2007; Li & Sang 2020).

Following Putko et al. (2001), the second-order mean and variance of the output
vector F, transformed from the input vector b, can be expressed as:

F=f_b)+%tr(HC)C_F=JCJ + % t(HCHC)

where _ b and C are the first-order mean and variance respectively. When the
Hessian matrix H and covariance matrix C are available, calculations of second-
order moments can be performed using matrix operations (see Zhang et al. 2011
for detailed definitions and derivation).

In matrix form, the second-order terms can be expressed as:
[Second-order terms in matrix form]

Performing a Taylor series expansion at a particular point provides results valid
only in the immediate proximity of that point. Consequently, approximation
precision tends to diminish as deviation from the mean grows, particularly with
non-Gaussian output distributions. While it is feasible to analytically derive
higher moments of a non-Gaussian distribution, reconstructing the distribution
uniquely from these moments poses considerable challenges. Given that many
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astronomical applications primarily focus on mean and covariance, we opt not
to undertake error propagation for higher moments in this study.

3.3. Monte Carlo (MC) Error Propagation

To determine the precision of linear and second-order error propagation meth-
ods, we use the MC error propagation method as our reference standard. Instead
of directly sampling absolute positions (¢, d,), we sample deviations relative
to observed positions according to observational errors. To prevent bias toward
the equatorial poles, we generate samples of coordinate and velocity deviations
(Aa, AS, , «, 6§, v ) from six-dimensional joint Gaussian distributions centered
on observed values (0, 0, o, a*y, Jy, v). The covariance matrix is defined
using standard deviations and correlation coefficients.

To obtain samples of spherical positions, we add sampled position deviations to
observed positions: @ = o, + Aa* and § = §, + AJ. This avoids rounding
errors because observational errors (o, 0d) are very small compared to o and
0y themselves.

For Gaia DR3 sources with radial velocity and fractional parallax error satisfy-
ing 0 < o/ < 0.2, only about 0.001% of data show negative parallaxes in MC
samples. We resample until achieving positive parallaxes, which has minimal
impact on mean and covariance as the fractional bias is approximately 0.01%.
We calculate Cartesian coordinates for each MC sample according to the trans-
formation equations, obtaining the distribution of Cartesian coordinates.

To more accurately evaluate error propagation methods, we generate a reference
set of 10 million MC samples (MCT7) for comparison. Additionally, we employ
MC simulations with 103 (MC3), 10* (MC4), 10° (MC5), and 105 (MC6) sam-
ples. Transforming each sample from spherical to Cartesian coordinates in the
Equatorial system and using their means as MC propagation results, we define
fractional deviations of coordinates and velocities (D) and fractional deviations
of their variances (s) relative to MC7 for various methods.

4. Results

To investigate the dependence of error propagation on fractional parallax error,
we evenly divide o / (range 0-0.2) into 10 bins and randomly select 1000 stars
from Gaia DR3 for each bin. We employ linear, second-order, and MC error
propagation methods with different sample sizes to transform stars from spher-
ical coordinates and velocities to Cartesian coordinates and velocities in the
Equatorial system. We compare fractional deviations of means and variances
relative to MC7 in Figure 1 [Figure 1: see original paper].

Analysis reveals the following features:

o« Propagation of coordinates and velocities: According to the top
panels of Figure 1, linear error propagation leads to >1% fractional devia-
tions in mean coordinate and velocity for targets with ¢ / > 0.11. Mean
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coordinate and velocity propagation using second-order error propagation
and MC with >10,000 samples achieves <0.2% precision for sources with
0 <o/ <0.15. Second-order error propagation achieves <0.5% precision
for sources with 0 < o/ < 0.2.

e Propagation of variance: As seen in the bottom panels of Figure 1,
linear and second-order variance propagation can achieve 10% precision
for sources with <15% fractional parallax error. In contrast, MC with
>10,000 samples propagates variance with <1% precision for sources with
0 <o/ <0.15. While second-order error propagation achieves higher pre-
cision for mean transformation than MC4 for sources with small fractional
parallax error, it fails to propagate variance as precisely as MC4. This
occurs because Gaussian distributions in spherical coordinates transform
into non-Gaussian distributions in Cartesian coordinates. Since higher
moments are not accounted for when calculating variance of non-Gaussian
distributions, second-order error propagation is less accurate in propagat-
ing variance (and covariance) than in propagating the mean.

To evaluate the efficiency of various propagation methods, we calculate compu-
tational time for each method in Figure 2 [Figure 2: see original paper]. MC
method time consumption is linearly proportional to the number of samples,
while second-order error propagation execution time is one order of magnitude
lower than MC4. Although MC3 requires comparable time to second-order error
propagation, the latter exhibits significantly higher precision, as illustrated in
Figure 1.

Therefore, considering both efficiency and precision, we recommend second-
order error propagation for mean transformation with ~0.5% precision and for
covariance propagation with 10% precision. If higher variance propagation preci-
sion is needed, we recommend the MC4 method. Combining advantages of both
methods, we apply second-order error propagation to convert means and employ
MC4 to propagate covariances of astrometric parameters and radial velocities
for 30 million Gaia sources with 0 < ¢ / < 0.2 into Cartesian coordinates and
velocities in both Equatorial and Galactic coordinate systems. This approach
requires only 0.0065 s average CPU time per calculation for a complete set of
Cartesian catalog data (including both coordinate systems).

Figure 3 [Figure 3: see original paper] shows the galactocentric Cartesian coordi-
nate distribution of 31,066,855 stars from Gaia DR3 with radial velocity, where
parallax satisfies 0 < o / < 0.2 and duplicated sources are removed. Although
the face-on view (XY plane) is similar to Figure 2 in Katz et al. (2023), Figure
3 lacks elongated features in face-on and edge-on views because the catalog ex-
cludes Large and Small Magellanic Cloud stars due to their fractional parallax
errors exceeding 20% (as discussed in Bailer-Jones et al. 2021).

The Hertzsprung—Russell (HR) diagram of the Cartesian catalog is displayed
in Figure 4 [Figure 4: see original paper], including only data with M_G and
G_{BP} — G_{RP}. The figure shows the catalog contains stars with absolute
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magnitudes ranging from 15 to —5, including numerous red giants and main-
sequence stars, but no white dwarfs. The Gaia spectroscopic pipeline lacks ap-
propriate templates for white dwarfs, and mismatch between observed spectra
and templates can lead to significant systematic errors in radial velocity mea-
surements (Katz et al. 2023). Consequently, white dwarfs lack radial velocity
data and are not included in this catalog.

The Cartesian catalog in Appendix A (Table Al) contains mean Cartesian coor-
dinates determined by second-order error propagation and covariance of Carte-
sian coordinates determined by the MC4 method. We also include transversal
velocity and distance values in the catalog.

5. Discussion and Conclusion

In our Gaia DR3-based study, we compare various error propagation methods
and identify second-order error propagation as the most efficient for achieving
nearly 0.5% precision in propagating mean coordinates and velocities. Linear
propagation, commonly used, fails to achieve 1% precision in coordinate and
velocity means when fractional parallax error exceeds 10%.

However, second-order error propagation precision for variance is inferior to
that for mean transformation. This discrepancy arises because nonlinear coordi-
nate transformation introduces non-Gaussian errors in new coordinate systems.
Although MC4 is about 10 times more computationally expensive than the
second-order method, it achieves more accurate covariance propagation. There-
fore, for propagating covariance with nearly 1% precision, we suggest employing
MC propagation with a minimum of 10,000 samples.

Balancing efficiency and precision, we employ second-order error propagation
for mean values of 31,129,169 Gaia sources with radial velocity and fractional
parallax error below 20%, and utilize MC4 for covariance conversion. We present
Cartesian coordinates, velocities, and their covariances in both Equatorial and
Galactic coordinate systems. This catalog offers highly precise mean coordinates
and velocities, facilitating applications such as accurate integration of stellar
orbits and studies of wide binaries.

Subsequent investigations into precise error propagation should address the non-
Gaussian nature of errors and incorporate higher moments, including skewness
and kurtosis, in the propagation process. Advanced techniques such as Kalman
and unscented filters (mentioned in Section 1) may offer more efficient and
accurate results for error propagation in stellar motions.
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Appendix A Data Sample

This appendix presents a sample of the data catalog in Table Al, including
mean Cartesian coordinates derived from second-order error propagation, the
covariance matrix obtained using the MC4 method, and transversal velocity and
distance for each source.

Table A1 Examples of the Catalog of Coordinates and Velocities in Equatorial
and Galactic Coordinate Systems Based on Second-order Error Propagation and
their Covariances Based on MC4

[Table A1 content preserved exactly as in original]

Note: The correlation coefficients between Cartesian coordinates are explained
in Appendix D.

Appendix B Transformation from Equatorial to (Galactic
Coordinate System

The following relationship exists between coordinates in Equatorial and Galactic
coordinate systems:

cos b cos(1-1_{NGP}) = cos d cos(a - a{ NGP})
cos b sin(l - {NGP}) = cos § sin(a - a{ NGP}) cos i + sin § sin i
sin b = -cos § sin(a - a{NGP}) sin i 4 sin § cos i

During calculation, the galactic pole coordinates are consistent with those in

the Python package astropy, where a{NGP} = 192.85947789°, 6{NGP} =
27.12825118°, and i = 122.93192526°.

The position coordinate matrices in Equatorial (eqt) and Galactic (gal) coordi-
nate systems are defined as:

P_{eqt} = [x_{eqt}, y_{eqt}, z_{eqt}]
P_{gal} = [x_{gal}, y_{gal}, z_{gal}]
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By separating position coordinate matrices from the transformation equations,
we extract the rotation matrix R:

R = [rotation matrix elements]

The velocity coordinate matrix V_ {eqt} is the derivative of the equatorial po-
sition coordinate matrix with respect to time. Therefore, for both position and
velocity propagation, we simply multiply by the rotation matrix:

P_{gal} = R P_{eqt}
V_{gal} =R V_{eqt}

Hence, linear and nonlinear calculation of Galactic coordinates depends only
on Cartesian coordinate matrices P and velocities V in the Equatorial system.
The Galactic variance-covariance matrix is calculated as:

C_{gal} =R C_{eqt} R

Appendix C Jacobian Matrix
The elements of the Jacobian matrix are given below, where A = 1 au:

x/a=-Asina/ cosé

x/ 6 =-Acosasind /

x/ =-Acosacosd/ 2

[Additional Jacobian elements preserved as in original]

Appendix D Correlation Coefficient

In the covariance transformation, the correlation coefficient of x and y is _ {xy}
= C_{xy} / (6_x o_y). This coefficient depends only on «, ¢, and r (where r
= A/, A =1 au), so the variablesb_i,b_j =, 9, .

Because oo and 00 are extremely small compared to « and ¢ values, as oca, 0d
— 0, the correlation coefficient of x and y simplifies to _ {xy} -sin a cos «
/ (lsin «| |cos ) = $£81. The same applies to correlation coefficients _ {xz}
and _ {yz}. Consequently, many x, y, and z correlation coefficients approach
$£8$1 in the resulting Cartesian catalog.

Figure D1 shows sample distributions from the MC4 method. For Gaia DR3
2149392370122774528 and Gaia DR3 2070799897454308224, correlation coeffi-
cients between x, y, and z are approximately $+$1 regardless of fractional par-
allax errors. Higher fractional parallax errors lead to more skewed distributions
of six-dimensional parameters, indicating significant impact on higher-order mo-
ments.

Figure D1. Cornerplots showing distributions from the MC4 method for Equa-
torial Cartesian coordinates for Gaia DR3 2149392370122774528 (top) and Gaia
DR3 2070799897454308224 (bottom), which have fractional parallax errors of
0.001 and 0.199, respectively. Blue dots represent MC4 samples while contours
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represent 0.5, 1, 1.5, and 20 confidence levels. The mean is shown by horizontal
and vertical gray lines.

Appendix E Acronyms and Variables

Definitions of all key variables and abbreviations referenced in this work are
provided in Table E1.

Table E1 Glossary of Main Acronyms and Variables

[Table E1 content preserved exactly as in original]

References
[References section preserved exactly as in original]
Note: Figure translations are in progress. See original paper for figures.

Source: ChinaXiv — Machine translation. Verify with original.
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