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Abstract

The study of carbon-enhanced metal-poor (CEMP) stars is of great significance
for understanding the chemical evolution of the early universe and stellar forma-
tion. CEMP stars are characterized by carbon overabundance and are classified
into several subclasses based on the abundance patterns of neutron-capture ele-
ments,including CEMP-s, CEMP-no,CEMP-r,and CEMP-r/s. These subclasses
provide important insights into the formation of the first stars,early stellar nu-
cleosynthesis,and supernova explosions. However, one of the major challenges in
CEMP star research is the relatively small sample size of identified stars, which
limits statistical analyses and hinders a comprehensive understanding of their
properties. Fortunately, a series of large-scale spectroscopic survey projects have
been launched and developed in recent years, providing unprecedented opportu-
nities and technical challenges for the search and study of CEMP stars. To this
end, this paper draws on the progress and future prospects of existing methods
in constructing large CEMP data sets and offers an in-depth discussion from a
technical standpoint, focusing on the strengths and limitations. In addition,we
review recent advancements in the identification of CEMP stars,emphasizing the
growing role of machine learning in processing and analyzing the increasingly
large data sets generated by modern astronomical surveys. Compared to tra-
ditional spectral analysis methods,machine learning offers greater efficiency in
handling complex data,automatic extraction of stellar parameters,and improved
prediction accuracy. Despite these advancements,the research faces persistent
challenges,including the scarcity of labeled samples,limitations imposed by low-
resolution spectra,and the lack of interpretability in machine learning models.
To address these issues,the paper proposes potential solutions and future re-
search directions aimed at advancing the study of CEMP stars and enhancing
our understanding of their role in the chemical evolution of the universe.
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Abstract

The study of carbon-enhanced metal-poor (CEMP) stars is of great significance
for understanding the chemical evolution of the early universe and stellar forma-
tion. CEMP stars are characterized by carbon overabundance and are classified
into several subclasses based on the abundance patterns of neutron-capture
elements, including CEMP-s, CEMP-no, CEMP-r, and CEMP-r/s. These sub-
classes provide important insights into the formation of the first stars, early
stellar nucleosynthesis, and supernova explosions. However, one of the major
challenges in CEMP star research is the relatively small sample size of identified
stars, which limits statistical analyses and hinders a comprehensive understand-
ing of their properties. Fortunately, a series of large-scale spectroscopic survey
projects have been launched and developed in recent years, providing unprece-
dented opportunities and technical challenges for the search and study of CEMP
stars. To this end, this paper draws on the progress and future prospects of ex-
isting methods in constructing large CEMP data sets and offers an in-depth dis-
cussion from a technical standpoint, focusing on the strengths and limitations.
In addition, we review recent advancements in the identification of CEMP stars,
emphasizing the growing role of machine learning in processing and analyzing
the increasingly large data sets generated by modern astronomical surveys. Com-
pared to traditional spectral analysis methods, machine learning offers greater
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efficiency in handling complex data, automatic extraction of stellar parameters,
and improved prediction accuracy. Despite these advancements, the research
faces persistent challenges, including the scarcity of labeled samples, limitations
imposed by low-resolution spectra, and the lack of interpretability in machine
learning models. To address these issues, the paper proposes potential solutions
and future research directions aimed at advancing the study of CEMP stars
and enhancing our understanding of their role in the chemical evolution of the
universe.

Key words: stars: carbon — stars: abundances — methods: data analysis —
methods: observational — surveys

1. Introduction

Metal-poor stars ([Fe/H] < —1.0) are stars with low metal abundance in their
chemical composition (Beers & Christlieb 2005). They formed in the early uni-
verse when heavy elements had not yet been widely enriched, serving as chemi-
cal relics of the early universe. Their elemental abundance patterns record the
characteristics of early stellar nucleosynthesis and supernova explosions, pro-
viding valuable clues for studying the chemical evolution and dynamic history
of the Milky Way (Frebel & Norris 2015). In their study of very metal-poor
(VMP) stars, Beers and Christlieb (2005) discovered that approximately 20%
of stars with [Fe/H] < —2.0 exhibit carbon overabundances. These stars are
defined as carbon-enhanced metal-poor (CEMP) stars, characterized by low
metallicity and relatively high carbon abundance (Beers & Christlieb 2005;
Aoki et al. 2007). Subsequent studies have found that as metallicity decreases,
the fraction of CEMP stars increases: approximately 20% in VMP ([Fe/H] <
—2.0) stars, around 40% in extremely metal-poor (EMP, [Fe/H] < —3.0) stars,
and about 80% in ultra metal-poor (UMP, [Fe/H] < —4.0) stars (Lucatello et
al. 2005; Placco et al. 2014; Banerjee et al. 2018; Yoon et al. 2018). Because
CEMP stars play an important role in the formation and evolution of the early
Milky Way, studying their abundance patterns and origins is crucial for under-
standing the chemical evolution of the early universe (Bonifacio et al. 2012).

Based on the overabundance characteristics of neutron-capture elements, CEMP
stars can be divided into different types, such as CEMP-no (no significant
neutron-capture element enrichment), CEMP-r (r-process enriched), CEMP-s
(s-process enriched), and CEMP-r/s (enriched in both r-process and s-process
elements) (Beers & Christlieb 2005). This classification reflects the different nu-
cleosynthesis processes and environmental influences stars undergo during their
evolution. It helps us understand the evolutionary history of the stars them-
selves and provides crucial information about the chemical history of the early
universe (Bonifacio et al. 2012; Norris et al. 2012b; Hansen et al. 2016). For
example, Shejeelammal & Goswami (2023) conducted a study on two CEMP-
no stars discovered in the Hamburg/ESO Survey and performed chemical and
kinematic analyses using high-resolution spectra. This work explored the origin
of these two stars by determining fundamental stellar parameters (including ra-
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dial velocity and atmospheric parameters such as effective temperature, surface
gravity, and metallicity), combined with analysis of the abundances of various
elements. These investigations provide important insights into the formation
mechanisms and evolutionary history of such stars.

In recent years, with the development of large-scale survey projects such as
the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST,
also called the Guo Shou Jing Telescope) (Cui et al. 2012; Luo et al. 2015),
astronomers have obtained vast amounts of photometric and spectral data. On
this basis, significant progress has been made in the search for CEMP stars
using both photometric and spectroscopic data.

In the search for CEMP stars based on photometric data, the application of
filter systems has played a key role, significantly improving the ability to iden-
tify CEMP stars and estimate their carbon abundance ([C/Fe]). For example,
Whitten et al. (2021) used the mixed-bandwidth (combining narrow-band and
wide-band) photometric technique provided by S-PLUS Data Release 2 to es-
timate stellar parameters, including Teff, [Fe/H], [C/Fe], and absolute carbon
abundances (A(C)), identifying 364 CEMP candidate stars. In addition, Perot-
toni Hélio et al. (2024) utilized the S-PLUS Ultra-Short Survey (USS), which
collects multi-band photometric data through narrow, medium, and broad-band
filters, targeting prominent stellar spectral features with the aim of identify-
ing bright EMP and UMP stars. Huang et al. (2024) used J-PLUS DR3 and
Gaia EDR3 data to determine the parameters and chemical abundances of over
5 million stars, providing an important photometric foundation for exploring
the structure and evolution of the Milky Way. Although Perottoni Hélio et
al. (2024) and Huang et al. (2024) did not directly involve the search for CEMP
stars, they fully demonstrate the broad application potential of photometric
stellar parameters and chemical abundance data in the study of stellar popu-
lations. Alternatively, an approach is to initially select metal-poor star candi-
dates using photometric data, followed by subsequent spectral follow-up obser-
vations. Jacobson et al. (2015) utilized the unique photometric filter system
of the SkyMapper Southern Sky Survey to select metal-poor star candidates in
the Galaxy by focusing on the Ca II K line at 3933 A. They conducted detailed
studies of 122 metal-poor stars using high-resolution spectroscopy. Based on
the 1D Local Thermodynamic Equilibrium (1D LTE) method, abundances of
various elements, including [C/Fe], were determined, and seven of these stars
were ultimately identified as CEMP-no stars.

Compared to photometric data, spectroscopic data is like a star’s “fingerprint,”
containing a wealth of diverse spectral line features. By analyzing in detail the
position, shape, intensity, and relative relationships of spectral lines, we can gain
deeper insights into the chemical composition and physical parameters of stars
(Beers et al. 1985, 1992; Frebel et al. 2006; Christlieb et al. 2008). Traditional
methods for identifying CEMP stars primarily rely on stellar spectral features,
especially the intensity of carbon-related molecular bands. For instance, studies
such as Aoki et al. (2007) and Norris et al. (2012a) analyzed the strength of the
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CH molecular band in high-resolution stellar spectra to measure [C/Fe], thereby
determining whether the star is a CEMP star. However, a notable drawback of
these studies is the limited number of stars involved, typically ranging from a
few hundred to a few thousand. This limitation arises because traditional iden-
tification methods require specialized knowledge and significant manual effort,
consequently limiting the utilization of stellar spectra and analytical efficiency.

In contrast, with the advancement of machine learning technologies, researchers
have increasingly adopted machine learning methods to process large volumes
of spectral data. These methods allow models to automatically extract spectral
features without the need for manually defining molecular band characteris-
tics or measuring band intensities, thereby improving spectral utilization and
analytical efficiency. For example, Li et al. (2018b) applied machine learning
techniques to identify 2651 carbon stars from over 7 million stellar spectra in
LAMOST DR4 and reported 17 CEMP candidates. In the search process, adopt-
ing a multi-stage strategy can greatly improve search efficiency (Li & Lin 2023;
Song et al. 2024; Zhang et al. 2024b), especially given the scarcity of CEMP star
samples. High-resolution spectroscopic data, such as those obtained from sur-
veys like APOGEE (Majewski et al. 2017) and the Gaia-ESO Survey (Gilmore
et al. 2012), provide detailed insights into stellar properties. However, these
data suffer from limited spatial and spectral coverage—meaning that only spe-
cific regions of the sky are targeted and a restricted range of wavelengths is
observed due to instrumental and operational constraints. In addition, the
overall quantity of high-resolution spectra remains relatively small compared to
lower-resolution surveys. Consequently, searches based on such data may strug-
gle to achieve efficient large-scale screening for specific targets. Therefore, an
effective strategy is to first perform preliminary screening on medium- and low-
resolution spectral data. Compared to high-resolution spectral data, medium-
and low-resolution spectral data encompass a larger sample of celestial objects,
enabling the identification of more potential CEMP candidate stars. After the
initial screening, high-resolution spectral data can be used for further analysis,
providing more detailed information that helps confirm and distinguish CEMP
stars from other types of stars.

2. Carbon-enhanced Metal-poor Stars

Metal-poor stars exhibit significant differences in metallicities and chemical sig-
natures. For instance, while the fraction of CEMP stars increases at lower
metallicities, most metal-poor stars with [Fe/H] > —3.0 remain carbon-normal.
Beers & Christlieb (2005) defined stars with [C/Fe] > +1.0 among metal-poor
stars as CEMP stars. Subsequently, Aoki et al. (2007) adjusted this classifica-
tion criterion to [C/Fe] > +0.7 (see Equation (1)), a change that reflects the
influence of stellar evolution, such as internal mixing and dredge-up processes,
on the surface carbon abundances of stars.

where Figure 1 [Figure 1: see original paper]. Elements abundance distribution
on the Sun (Lugaro et al. 2023). Se (selenium), Te (tellurium), Xe (xenon), and
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Pt (platinum) are characteristic elements formed through the r-process, while
Sr (strontium), Y (yttrium), Zr (zirconium), and La (lanthanum) are typical
s-process elements. Le, Re, Me, ge, and Teffe represent the luminosity, radius,
mass, surface gravity, and effective temperature of the Sun, respectively.

2.1. Classification of CEMP Stars

The neutron-capture process is a nucleosynthesis process in which atomic nuclei
inside stars capture neutrons to produce heavier elements. If the timescale of a
nucleosynthesis reaction is longer than the timescale of § decay, it is defined as
the slow neutron-capture process (s-process), whereas if the timescale is shorter
than the [ decay timescale, it is defined as the rapid neutron-capture process
(r-process) (Wan-qiang et al. 2024). Initially, Beers & Christlieb (2005) classi-
fied CEMP stars into four subclasses based on the abundances of two neutron-
capture elements—barium (Ba, representing s-process elements) and europium
(Eu, representing r-process elements). Subsequently, many studies (Frebel 2018;
Hansen et al. 2019; Goswami et al. 2021) have identified many other elements
that can serve as representative elements of the s-process and r-process (Figure
1), and proposed different criteria for identifying and classifying CEMP stars.

Based on the relative enrichment of neutron-capture elements, four main sub-
classes are defined as follows: CEMP-s, CEMP-r, CEMP-r/s, and CEMP-no
(see Table 1 ). These diverse abundance patterns reflect significant differences
in the formation processes of various subclasses, highlighting the complexity of
chemical evolution in the early universe and providing an important window
into understanding chemical enrichment and star formation processes in ancient
stellar populations.

The carbon enhancement phenomenon observed in CEMP stars likely originates
from one of the following sources: (1) a primordial mechanism from massive stel-
lar progenitors, (2) intrinsic internal production by low-mass stars of extremely
low [Fe/H], or (3) extrinsic production of carbon by stars of intermediate mass,
which can be prodigious manufacturers of carbon during their Asymptotic Giant
Branch (AGB) stages, followed by mass transfer to a surviving lower-mass com-
panion. It remains possible that all three sources have played a role (Beers &
Christlieb 2005). The first source suggests that the carbon in some CEMP stars
is primordial or close to primordial, possibly produced by the first generation
of stars in the early universe. These stars undergo nucleosynthesis in a zero-
metallicity environment and release large amounts of carbon during their super-
nova explosions, which then become the carbon source for subsequent CEMP
stars (Woosley & Weaver 1995). The second source proposes that, in the early
universe, when heavy elements were scarce, low-mass stars experienced unusu-
ally effective mixing processes during the helium core flash phase. This process
dredges up the internally produced carbon and deposits it on the surface of the
star (Fujimoto et al. 1999; Schlattl et al. 2002; Picardi et al. 2004; Weiss et
al. 2004). The third source suggests that intermediate-mass stars in the early
Galaxy produce large amounts of carbon during their AGB evolution. If these
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stars are part of binary systems, carbon-rich material could be transferred to
the lower-mass companion via Roche-lobe overflow or stellar winds, causing the
companion star to become a CEMP star (Lucatello et al. 2005).

Goswami et al. (2024) pointed out that most CEMP-s stars are binaries (Lu-
catello et al. 2005; Starkenburg et al. 2014; Hansen et al. 2016; Jorissen et
al. 2016). By comparing the observed abundances of these stars with theoretical
model predictions, it is possible to confirm binary mass transfer from the AGB
companion (Bisterzo et al. 2011; Placco et al. 2013; Hollek et al. 2015). Cowan
& Rose (1976) proposed the intermediate neutron-capture process (i-process),
in which the neutron density is intermediate between the s-process and the r-
process. This process can simultaneously produce both s-process and r-process
elements within a single star. Therefore, many studies have used the yield of the
i-process model for low-mass, low-metallicity AGB stars to explain the observed
abundance patterns in CEMP-r/s stars (Hampel et al. 2016; Shejeelammal &
Goswami 2021, 2022).

However, CEMP-r stars are extremely rare among all the CEMP subclasses.
Hansen et al. (2011, 2015) found that the abundance anomalies of CEMP-r stars
are not caused by binary mass transfer but are instead due to the enrichment of
their birth clouds by r-process elements from external sources. These external
sources may include core-collapse supernovae (Argast et al. 2004; Arcones &
Thielemann 2012), fallback supernovae (Fryer et al. 2006), neutron-star mergers
(Drout et al. 2017; Lippuner et al. 2017), or neutron star-black hole mergers
(Surman et al. 2008).

As for CEMP-no stars, they are believed to be the most chemically primitive
stars known, directly reflecting the chemical composition of the early universe
(Norris & Yong 2019; Yoon et al. 2020). The exact origin of CEMP-no stars re-
mains unclear, but several hypotheses have been proposed to explain the source
of their carbon overabundance, including rotating massive stars (Maeder et
al. 2015), faint supernovae (Umeda & Nomoto 2005), and inhomogeneous metal
mixing (Hartwig & Yoshida 2019). These hypotheses provide valuable clues for
studying the chemical evolution of the early universe and the formation of the
first generation of stars.

2.2. Spectral Characteristics of CEMP Stars

Spectroscopy is an important tool in astronomy and stellar physics for studying
the properties of celestial bodies. By analyzing the absorption lines of differ-
ent elements and molecules in a spectrum, we can directly reveal the abundance
characteristics of elements in stars. CEMP stars are a special class of metal-poor
stars, characterized by low metal abundances and high carbon abundances. As
a result, the spectra of these objects exhibit distinctive features. For example,
two early survey projects—the HK survey (Beers et al. 1985, 1992) and the Ham-
burg/ESO Survey (Frebel et al. 2006; Christlieb et al. 2008)—used the strength
of the Ca Il H & K lines (CaHK lines) to identify metal-poor candidate stars.
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The basic idea of using the CaHK lines is to check their relative strength, as
these two lines are significantly stronger than Fe lines and can still be detected in
stars with the lowest metallicity, even when Fe lines are completely absent. By
measuring the equivalent width of this spectral line and comparing it with theo-
retical spectra or template spectra with known metallicity, potential metal-poor
stars can be selected, which in turn helps in identifying CEMP stars. Christlieb
et al. (2001) published a list of HES stars with strong carbon molecular lines
(such as CN, C,, and CH), based on the total strength of these lines, measured
using line indices defined as the ratios of the mean photographic densities in the
carbon molecular absorption features to those in the continuum bandpasses.
However, both of these search methods have limitations: the CaHK lines-based
method misses many CEMP stars with [Fe/H] > —2.5, while the method based
on strong carbon molecular lines tends to identify cool stars (Placco et al. 2010).
Therefore, these methods are likely to miss a large number of CEMP stars.

To address the limitations of the above methods, Placco et al. (2010) designed a
line index GPE (GPHES Extended) for the CH G-band. This index has a wide
wavelength coverage, effectively avoiding the decrease in accuracy caused by the
influence of carbon features on the band edges. As a result, it can precisely iden-
tify CEMP stars that may have been overlooked in previous screening processes
due to their unique temperature and carbon characteristics. The CEMP star
search technique based on the CH G-band is an important direction for explo-
ration. In addition to the GPE index, the G-band index (GP; Beers et al. 1999)
and the GPHES (GP index, measured in HES spectrum) index (Christlieb et
al. 2008) existed earlier. However, the wavelength coverage of these two indices

is relatively narrow, which prevents them from fully capturing all the details of
the CH G-band.

Subsequently, Placco et al. (2011) optimized the GPE and proposed a line index
EGP. With its unique calculation method, the EGP index can avoid interference
from strong Hy lines and CN bands on the blue side of the line in cool stars,
greatly enhancing its resistance to contamination. Using this method, they
yielded a list of 5288 new CEMP candidates. Li et al. (2018a) used a combina-
tion of the line index G1 and EGP to select 636 CEMP candidate stars from
the LAMOST DR3 VMP (Very Metal-Poor) sample set, within the effective
temperature range of 4000 K < Teff < 7000 K.

In addition, the Swan bands, as characteristic absorption features of the C,
molecule, are one of the spectral signatures of stars with excessively high carbon
abundance. They can also be used to estimate carbon abundance and identify
CEMP stars. Mikolaitis et al. (2011) used the Swan bands to derive the carbon
abundances of two first-ascent giants and two core-helium-burning “clump” stars
in the NGC 2506 cluster. Cotar et al. (2018) used the Swan band features and
employed both supervised and unsupervised classification algorithms to search
for carbon-enhanced stars in the GALAH data set, thereby identifying CEMP
candidate stars.

Figure 2 [Figure 2: see original paper]. A comparison of the spectral features
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between CEMP stars and Carbon-Normal Metal-Poor (CnMP) stars in the 4000
4800 A range. The solid lines at the top represent the normalized spectra of
CEMP stars, the dashed lines in the middle represent the spectra of CnMP stars,
and the dashed—dotted lines below show the difference between the spectra of
some CEMP stars and their corresponding CnMP stars. The shaded region in
the figure represents the wavelength range involved in the EGP (see Equation
(2) for details).

3. Current Status of CEMP Star Searches

In-depth study of the properties and origin of the oldest CEMP stars is crucial
for revealing the characteristics of the first generation of stars and the chemical
evolution of the early universe. Currently, CEMP star searches based on spectral
data can be roughly divided into three categories: line index methods, template
matching methods, and machine learning methods.

3.1. Line Index Methods

The line index method is a commonly used spectral analysis technique that can
be employed to quantify and extract the characteristics of specific spectral lines.
This method quantifies the intensity, width, shape, or other related characteris-
tics of spectral lines by integrating, taking the weighted average, or calculating
ratios over specific wavelength ranges, and defining an “index” to reflect the
intensity or characteristics of the line. For example, one might calculate the full
width at half maximum (FWHM) or equivalent width (EW) for a specific wave-
length range. In the search for CEMP stars, since these stars typically exhibit
low metallicity and high carbon abundance, the line index method is used to
quantify spectral line features related to elements such as carbon. In particular,
certain spectral lines (such as the CH G-band, CN band, C, band, etc.) often
exhibit abnormal intensities in CEMP stars. These features can effectively help
distinguish CEMP stars from normal stars or other types of celestial objects.

For example, the GP index and GPHES index mentioned in Section 2.2 are line
indices designed based on the CH G-band. These line indices, by quantifying
the intensity of the CH G-band, assist in the identification and classification of
CEMP stars, playing a crucial role especially in the study of their relationships
with other chemical compositions such as metallicity and carbon abundance.
The advantage of the line index method lies in its ability to extract spectral infor-
mation even at low resolution by measuring the ratio of mean spectral densities
within specific wavelength bands, making it commonly used in low-resolution
or slitless spectroscopy. However, this method may be limited by wavelength
selection, signal-to-noise ratio, and its dependence on empirical calibrations or
theoretical templates.
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3.2. Template Matching Methods

The template matching method is a widely used spectral analysis technique in as-
tronomy, where theoretical or empirically generated standard spectra (i.e., tem-
plates) are compared with observed spectra to derive the physical parameters of
celestial objects, such as effective temperature, surface gravity, and metallicity.
For example, Li et al. (2018a) aimed to identify extremely metal-poor stars and
CEMP stars in the LAMOST DR3 data set by using SPECTRUM (Gray & Cor-
bally 1994) to generate a set of synthetic spectra, and employed two methods
to derive the physical parameters of the stars. One method involves calculating
the line indices of the synthetic and observed spectra, and then matching these
indices with a grid of synthetic spectra to derive the physical parameters of the
star. Another method is to compare the observed spectra with the synthetic
spectra in the wavelength range from 4360 A to 5500 A in order to derive the
physical parameters of the star.

Hansen et al. (2016) used the spectral synthesis code MOOG (Sneden 1973) to
derive the [C/Fe] abundance ratio of stars by fitting synthetic spectra of the CH
G-band and Swan band to the observed data. They employed the 2 minimiza-
tion method to match the synthetic spectra with the observed spectra in the
selected wavelength range. Through this process, they successfully derived the
carbon abundances of 27 metal-poor stars and further classified these stars into
CEMP-no stars and CEMP-s stars in subsequent analysis. Molaro et al. (2023)
aimed to investigate whether four known metal-poor stars belong to the CEMP-
no class. They used a synthetic spectrum grid generated with the SYNTHE
code (Kurucz 2005) and the ATLAS model, and combined it with the Markov
chain Monte Carlo method to derive the 12C/*3C isotope ratios of these objects.

To improve the accuracy of parameter determination, many studies that use
template matching have also incorporated other star parameter measurement
techniques. For example, the star parameter measurement program SSPP from
the Sloan Extension for Galactic Understanding and Exploration (SEGUE) of
the SDSS survey (Lee et al. 2008) combines various measurement methods, in-
cluding the 2 minimization spectral fitting method based on theoretical spectral
libraries and multiple line index methods. The template matching method com-
pares the observed spectrum with a set of known template spectra to find the
template that best matches the observed spectrum. As a result, the template
matching method relies on the quality of the templates, and the choice and qual-
ity of the templates determine the effectiveness of the matching. In addition, the
effectiveness of template matching is also constrained by the signal-to-noise ra-
tio and resolution of the observed spectrum. With low-quality data, significant
measurement errors are more likely to be introduced.

3.3. Machine Learning Investigations for CEMP Candidate Searching

With the rapid increase in astronomical observation data, machine learning
(ML) techniques have been applied in astronomy. Due to its ability to handle
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large-scale, high-dimensional data and uncover underlying patterns, machine
learning has become an important tool for spectral data analysis. Depending on
the task, machine learning methods in the search for CEMP star candidates can
be divided into unsupervised learning, supervised classification, and regression
methods.

The unsupervised learning method is used to automatically discover the struc-
ture, patterns, or regularities in unlabeled data by analyzing the intrinsic struc-
ture of the data to automatically cluster it into different categories or uncover
hidden patterns within it. Common methods include dimensionality reduc-
tion and clustering. Typically, astrophysical features are interrelated, so we
can create a mapping between the sparse high-dimensional space and a lower-
dimensional space that captures most of the information in the data. Cotar et
al. (2018) used the t-SNE method to visualize spectral data containing CEMP
stars and other types of stars. By projecting these high-dimensional data onto
a two-dimensional plane, the researchers were able to more intuitively identify
the distribution patterns of different types of stars. Clustering methods auto-
matically assign stars to different groups or categories, thereby further revealing
the similarities and differences between stars. Zhang et al. (2024) and Shank et
al. (2022) performed clustering analysis on several metal-poor stars using the
Friends-of-Friends (FoF) algorithm and the HDBSCAN algorithm, respectively.
By comparing the clustering results with the distribution of known CEMP stars,
they revealed the distribution characteristics of CEMP stars in different Galac-
tic substructures. The contribution of these studies lies in identifying potential
aggregation regions for CEMP stars, further uncovering possible associations
between CEMP stars and specific substructures.

The advantage of the unsupervised learning method lies in its ability to un-
cover potential patterns or structures within unlabeled data, without relying on
manually labeled data sets. This is particularly valuable in astronomy, where
data volumes are immense and labeling costs are high. Notably, unsupervised
learning methods demonstrate unique flexibility when exploring unknown sam-
ple categories, making them an excellent foundation for subsequent supervised
learning tasks. However, these methods have limitations, including their sen-
sitivity to the quality of input features and parameter settings. Poor feature
selection or improper parameter configurations can result in outcomes that devi-
ate from actual physical meanings. Additionally, unsupervised methods cannot
provide explicit classification labels, meaning the patterns or structures they
identify require further validation through other approaches, which adds to the
complexity and uncertainty of the analysis.

The supervised classification method is a machine learning technique that learns
from labeled data. It aims to classify new data by learning the relationship be-
tween the features and labels of existing samples. In supervised classification,
the model is “trained” to predict the label of each data point. The principle is
to construct a function or model that can map input features to corresponding
class labels. For example, Lucey et al. (2023) trained an XGBoost classifica-
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tion model using the stellar spectrum catalog provided by SDSS/SEGUE, and
after training, applied the model to the BP/RP spectral data from Gaia DR3
to identify CEMP stars. In addition, the study also validated the feasibility of
using machine learning methods to process spectral data with a resolution as
low as R = 50. The advantage of the supervised classification method lies in
its ability to leverage labeled data for learning the mapping between input fea-
tures and class labels, thereby achieving accurate classification of new samples.
This approach is particularly well-suited for tasks with abundant labeled data
sets. Compared to unsupervised learning, supervised classification provides re-
sults with explicit class labels, making them easier to interpret and validate.
However, its limitations include a reliance on large labeled data sets. For rare
targets such as CEMP stars, the lack of labeled data can limit the model’s ability
to recognize small-sample classes. More importantly, supervised classification
methods typically output only class information and are unable to provide de-
tailed parameters of samples (e.g., stellar atmospheric parameters and elemental
abundances), which hinders further research and scientific interpretation.

The regression method transforms the search for CEMP stars into a parame-
ter estimation problem, where the goal is to analyze the stellar spectrum to
estimate atmospheric parameters and elemental abundances. Based on these
estimated parameters, CEMP stars can then be identified. In this process, the
regression model learns the relationship between the spectral data of known
stars and their corresponding parameters in order to predict the parameters of
new stars. For example, Ardern-Arentsen et al. (2025) used artificial neural
networks (ANNSs) to predict metallicity and carbon content from low-resolution
stellar spectra. The work first constructed a training set based on LAMOST
spectra and high-resolution samples. Then, the trained network was applied
to the identification of CEMP candidate stars and giant star samples. Fi-
nally, around 2000 high-confidence CEMP stars ([Fe/H] < —2.0 and [C/Fe]
> +0.7) were successfully identified. To quantitatively assess the impact of UV
band spectra on EMP ([Fe/H] < —3.0) and Carbon-Enhanced EMP (CE-EMP,
[Fe/H] < —3.0 and [C/Fe] > +1.0) stars, and to provide theoretical basis and
methodological support for the effective identification of EMP and CE-EMP
stars in future China Space Station Telescope (CSST) observations, Zhang et
al. (2024b) developed a dual-branch model based on spectral transformer (SPT)
(Zhang et al. 2024a) to predict the stars’ [Fe/H] and [C/Fe], while also exploring
the stellar classification problem. Xie et al. (2021) used the S-shaped folding
technique to convert the observed spectra into a 64 x 64 matrix form, and
employed a convolutional neural network (CNN) to estimate the stellar spec-
tral parameters [Fe/H] and [C/Fe]. The S-shaped folding technique converts
one-dimensional data into a two-dimensional matrix by arranging the data in
a serpentine pattern—alternating between left-to-right and right-to-left across
rows. This allows the data to be processed by a CNN as if it were an image. In
the subsequent analysis, the model successfully identified 260 out of 414 known
CEMP stars based on the criteria of [Fe/H] < —2 and [C/Fe] > —1, achieving
a recall rate of 62.80%.
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Regression methods play a significant role in the study of identifying CEMP star
candidates, with their primary advantage being the ability to directly predict
stellar atmospheric parameters and elemental abundances. This provides fine-
grained information crucial for subsequent scientific research. Such methods
are particularly suited for scenarios requiring parameterized analysis of stellar
spectra, enabling the rapid identification of potential CEMP star candidates.
The use of ANNs or CNNs to process low-resolution spectral data for parameter
prediction has proven effective in numerous studies. However, regression meth-
ods also have certain limitations. First, these models require large, high-quality
training data sets that include both spectral information and precise parameter
annotations. The availability of high-resolution, well-annotated samples is often
limited, which may constrain model performance. Second, regression methods
are sensitive to the quality and distribution of input data. Low signal-to-noise
ratios or noisy spectra can result in prediction biases. Additionally, the com-
plexity of regression models increases the risk of overfitting, particularly when
training data is insufficient or parameters are not appropriately configured. Fi-
nally, regression methods tend to have lower interpretability, especially for deep
learning models, where it is often unclear how specific spectral features influ-
ence the model’s outputs. This lack of transparency can limit their broader
application in scientific research.

In conclusion, the application of machine learning methods in stellar spectral
data analysis has shown great potential. From unsupervised learning methods
to supervised classification methods and regression methods, each approach has
provided new ideas and methods for the identification and analysis of CEMP
stars. In particular, regression methods, through neural networks and other deep
learning models, can accurately estimate stellar parameters such as metallicity
and carbon abundance, helping us effectively distinguish between different types
of stars.

4. Challenges in Searching for CEMP Stars

The line index method and template matching method are commonly applied to
low-resolution or slitless spectroscopy, where individual spectral lines are diffi-
cult to resolve, making direct metallicity and carbon abundance determinations
challenging. In high-resolution spectroscopy, individual spectral lines can be di-
rectly measured, reducing the need for such methods. However, low-resolution
spectra often suffer from broadened or even indistinguishable spectral features,
which can impact the accuracy of parameter extraction. The line index method,
in particular, is highly dependent on the definition of spectral bandpasses, mak-
ing it sensitive to noise and spectral resolution. Furthermore, in large-scale low-
resolution spectral surveys, significant variations in signal-to-noise ratio (SNR)
introduce additional uncertainties. The template matching method, widely used
in such surveys, is especially vulnerable to noise-induced mismatches between
the observed spectra and the template library, ultimately affecting parameter es-
timation reliability. For instance, the official stellar spectral processing pipeline
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of LAMOST, LASP, employs template matching. However, in the LAMOST
DR release, out of 11.22 million low-resolution spectra, stellar parameters were
published for only 6.18 million spectra.

Unsupervised learning and supervised classification methods, while effective for
categorization, do not directly yield detailed stellar parameters. These methods
are thus more suitable for preliminary selection of potential CEMP candidates,
serving as a reference for subsequent precise measurements. Although these
methods perform well in classification tasks, they have inherent limitations in
deriving comprehensive stellar physical properties. Moreover, the scientific po-
tential of low-resolution spectral data remains underexplored. In contrast, re-
gression models can predict key parameters, facilitating precise identification
of CEMP stars. When applying regression methods to CEMP star searches,
several challenges must be considered:

1) Sparsity of CEMP Star Samples. Although CEMP stars make up a
significant proportion of metal-poor stars, metal-poor stars are relatively
rare in the Milky Way, accounting for less than 0.1% of the total stellar
population in the Galaxy (Zhang et al. 2024b). The sparsity of such
samples can lead to poor performance of the model in identifying CEMP
stars during the training process.

2) Limitations of Low-Resolution Spectra. Low-resolution spectra may
obscure the subtle differences between CEMP stars and other metal-poor
stars, making feature extraction more challenging (Figure 3(a)). Com-
pared to low-resolution spectra, high-resolution spectra can clearly resolve
individual spectral lines, which are associated with accurate atomic physics
data (such as energy levels, transition probabilities, etc.), allowing for
more precise extraction of stellar atmospheric properties. At low resolu-
tion, each “feature” is actually a mixture of multiple spectral lines, making
it difficult to accurately distinguish between meaningful information and
noise in the model’s spectrum. As a result, the robust information con-
tent in low-resolution spectra may be affected by the imperfections of the
model (Ting et al. 2017).

3) Noise Issues. In real spectral data, noise is inevitable, especially for
spectra with low SNR. A decrease in SNR means that useful information in
the signal is drowned out by background noise (Figure 3(b)), significantly
reducing the detectability and accuracy of spectral lines. This makes
it difficult for the model to learn accurate patterns during training and
increases the likelihood of overfitting (Wu et al. 2020b).

4) Model Interpretability Issues. Machine learning methods have demon-
strated strong potential in the search for CEMP stars. However, these
models are often “black-box” models, lacking interpretability. For small-
sample targets like CEMP stars, astronomers want to understand which
spectral features the model is using to make predictions and which fea-
tures are most important for the model’s decision-making. However, the
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interpretability of learning models has not yet been well addressed.

Looking ahead, addressing the challenges in CEMP star searches will require
multifaceted efforts. First, to address the issue of sample sparsity, researchers
can increase the training sample size by using data augmentation and synthetic
data generation techniques. For example, synthetic spectra can be generated
using existing CEMP star data, and recent CEMP star samples can be compiled
and aggregated to expand the sample size. A feasible solution to the limitation
of low-resolution spectra is to use the attention mechanism. The attention mech-
anism is a computational method in deep learning that mimics human cognitive
attention, allowing models to dynamically focus on the most relevant parts of
input data (e.g., specific spectral features in stellar spectra) while suppressing
less important information. In recent years, the attention mechanism has been
widely applied in deep learning tasks due to its outstanding performance and
flexible applicability. For example, models like SE-Net (Hu et al. 2018), ECA-
Net (Wang et al. 2020), and CBAM (Woo et al. 2018) have achieved automatic
focus and enhancement of important features in the input data through differ-
ent methods. In low-resolution spectral analysis, the attention mechanism can
help the model effectively focus on key wavelength regions within the limited
resolution information, enhancing the ability to recognize important features
and reducing the impact of feature blurring caused by low resolution. In ad-
dition, the emergence of Spectra-GANs (Wu et al. 2020a) has provided a new
breakthrough for denoising using deep learning models.

To address the issue of model interpretability, interpretable machine learning
techniques such as LIME (Ribeiro et al. 2016) and SHAP (Lundberg & Lee
2017) can be introduced. These methods help us understand how the model
makes decisions and identify which spectral features are most crucial for the
predictions. Using attention mechanisms in deep learning, such as Grad-CAM
(Selvaraju et al. 2019), can visualize the spectral regions that the model focuses
on when making predictions. This enhances the model’s transparency and inter-
pretability, assisting astronomers in understanding the features of CEMP stars.
These improvements not only help enhance the detection accuracy of CEMP
stars but also expand the application of machine learning methods in other as-
tronomical data analyses, driving the entire field of astronomy toward greater
automation and efficiency.

Figure 3 [Figure 3: see original paper|. Spectrum comparisons. (a) Compar-
ison of spectra of the same star at different resolutions; the spectrum with R
= 1800 is provided by LAMOST DR5, while the spectrum with R = 200 is
obtained by degrading the resolution using iSpec (Blanco-Cuaresma et al. 2014;
Blanco-Cuaresma 2019). (b) Comparison of high and low signal-to-noise ratio
(SNR) spectra of the same star. Both spectra are from LAMOST DR5, with
a wavelength range selected from 4000 to 8096 A. The spectral data have been
normalized; the target star’s celestial coordinates are R.A. 57.°033750 and decl.
49.°865000. The high SNR spectrum has an SNRg value of 101.72, while the
low SNR spectrum has an SNRg value of 3.67.
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5. Conclusion

In summary, this paper summarizes and analyzes the research progress on
CEMP stars. We review the importance of CEMP stars in the study of the
origin and evolution of the Milky Way, as well as their classification and unique
spectral features, emphasizing their distinctive role in understanding the chem-
ical evolution of the early universe and stellar formation. We highlight the
search techniques for CEMP stars, with a particular focus on the significant de-
velopment of machine learning methods in CEMP star identification, driven by
the rapid increase in astronomical data. Despite the significant advantages of
modern machine learning methods in detecting CEMP stars, challenges remain,
including sample scarcity, limitations of low-resolution spectra, noise interfer-
ence, and insufficient model interpretability. This paper proposes potential
solutions to these issues, including increasing training samples through data
augmentation, incorporating advanced denoising techniques, enhancing model
performance by integrating attention mechanisms, and utilizing explainable ma-
chine learning techniques to improve model transparency, helping astronomers
better understand the characteristics of CEMP stars.
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