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Abstract
We present the application of a machine learning based galaxy group finder
to real observational data from the Sloan Digital Sky Survey Data Release 13
(SDSS DR13). Originally designed and validated using simulated galaxy sur-
veys in redshift space, our method utilizes deep neural networks to recognize
galaxy groups and assess their respective halo masses. The model comprises
three components: a central galaxy identifier, a group mass estimator, and an
iterative group finder. Using mock catalogs from the Millennium Simulation,
our model attains above 90% completeness and purity for groups covering a wide
range of halo masses from �1011 to �1015 h−1M�. When applied to SDSS DR13,
it successfully identifies over 420,000 galaxy groups, displaying a strong agree-
ment in group abundance, redshift distribution, and halo mass distribution with
conventional techniques. The precision in identifying member galaxies is also
notably high, with more than 80% of groups with lower mass achieving perfect
alignments. The model shows strong performance across different magnitude
thresholds, making retraining unnecessary. These results confirm the efficiency
and adaptability of our methodology, offering a scalable and accurate solution
for upcoming large-scale galaxy surveys and studies of cosmological formations.
Our SDSS group catalog and the essential observable properties of galaxies are
available at https://github.com/JuntaoMa/SDSS-DR13-group-catalog.git.

Full Text
Abstract
We present the application of a machine learning based galaxy group finder
to real observational data from the Sloan Digital Sky Survey Data Release 13
(SDSS DR13). Originally designed and validated using simulated galaxy surveys
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in redshift space, our method utilizes deep neural networks to recognize galaxy
groups and assess their respective halo masses. The model comprises three
components: a central galaxy identifier, a group mass estimator, and an iterative
group finder. Using mock catalogs from the Millennium Simulation, our model
attains completeness and purity above 90% for groups covering a wide range of
halo masses from �1011 to �1015 h−1Me.

When applied to SDSS DR13, it successfully identifies over 420,000 galaxy
groups, displaying strong agreement in group abundance, redshift distribution,
and halo mass distribution with conventional techniques. The precision in iden-
tifying member galaxies is also notably high, with more than 80% of lower mass
groups achieving perfect alignment. The model shows strong performance across
different magnitude thresholds, making retraining unnecessary. These results
confirm the efficiency and adaptability of our methodology, offering a scalable
and accurate solution for upcoming large-scale galaxy surveys and studies of
cosmological formations. Our SDSS group catalog and the essential observ-
able properties of galaxies are available at https://github.com/JuntaoMa/SDSS-
DR13-group-catalog.git.

Key words: (cosmology:) large-scale structure of universe – Galaxy: halo –
methods: data analysis

1. Introduction
Current models of cosmic structure formation depict galaxies not as isolated en-
tities but as integral components of larger gravitationally bound systems, known
as galaxy groups. Galaxy groups typically comprise a few to dozens of galaxies
residing within a dark matter halo, playing an essential role in galaxy evolution
through interactions such as mergers, tidal forces, and ram pressure stripping.
Understanding galaxy groups is therefore critical for elucidating galaxy forma-
tion processes, environmental influences on galaxy properties, and the broader
context of the cosmic web, where groups represent key structural elements link-
ing individual galaxies to clusters and large-scale filaments.

Over past decades, researchers have developed numerous algorithms for galaxy
group identification in large redshift surveys. Early pioneering works intro-
duced the Friends-of-Friends (FoF) algorithm (e.g., Huchra & Geller 1982; Eke
et al. 2004; Knobel et al. 2009), a percolation-based method widely applied due
to its simplicity and effectiveness. In FoF, galaxies within a predefined linking
length are iteratively grouped, creating clusters based purely on spatial prox-
imity. Halo-based group finders, such as the algorithm developed by Yang et
al. (2005), utilize physical models of dark matter halos (e.g., the Navarro–Frenk–
White profile) to iteratively assign galaxies to host halos according to estimated
halo mass and galaxy distributions. These classical methods have successfully
generated group catalogs from numerous redshift surveys, including CfA red-
shift survey (Huchra & Geller 1982), the Two Degree Field Galaxy Redshift
Survey (2dFGRS; e.g., Eke et al. 2004; Yang et al. 2005; Tago et al. 2006), the
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Two Micron All Sky Redshift Survey (2MRS; e.g., Crook et al. 2007; Lavaux &
Hudson 2011; Tully 2015), the Sloan Digital Sky Survey (SDSS; e.g., Goto 2005;
Miller et al. 2005; Berlind et al. 2006; Yang et al. 2007; Lim et al. 2017), the
zCOSMOS (Wang et al. 2020) and the DESI Legacy Imaging Surveys (Yang et
al. 2021).

Despite their widespread use, classical group-finding methods have notable lim-
itations. Primarily, these algorithms are sensitive to the choice of parameters,
such as linking lengths or halo mass-to-light ratios, and often require extensive
calibration against simulations. To address these challenges, recent studies have
begun incorporating machine learning techniques, particularly artificial neural
networks (ANNs), into galaxy group identification. ANNs can effectively learn
intricate patterns directly from observational data, reducing reliance on man-
ually tuned parameters. Various network architectures—including multilayer
perceptrons, convolutional neural networks (CNNs; Arbib 1995), graph neu-
ral networks (GNNs; Bronstein et al. 2017), and recurrent neural networks
(RNNs; Hochreiter & Schmidhuber 1997)—have demonstrated robust perfor-
mance across diverse astrophysical applications.

CNNs have shown significant success in object detection tasks in astronomical
imaging, while graph neural networks effectively handle spatially related data.
For example, Mao et al. (2021) introduced an innovative convolutional neural
network framework for reconstructing baryon acoustic oscillation (BAO) signals,
significantly enhancing the BAO signal-to-noise ratio to around k � 0.4 h Mpc−1.
Chen et al. (2024) applied ANNs to evaluate the environmental characteristics of
galaxies. This approach allowed for precise estimation of line-of-sight velocities
and facilitated the reconstruction of the real-space power spectrum with an error
less than 5% at s > 8 h−1 Mpc.

In our previous study, we presented a galaxy group identification tool based on
ANNs, which we trained and substantiated using detailed cosmological simula-
tions (Ma et al. 2025; referred to hereafter as Paper I). The inherent nonlinear ca-
pabilities of ANNs enabled our algorithm to discern intricate patterns within the
data set. Our assessment on simulation data revealed the model’s exceptional
precision in assigning member galaxies and estimating halo masses, accurately
identifying over 92% of galaxy groups and achieving halo mass errors of less
than 0.3 dex. Importantly, the machine learning based method demonstrated
significant versatility, requiring minimal recalibration across various data sets.
Without the need for additional training, we verified its competence in produc-
ing dependable results on sparse samples with brighter magnitude cut up to
m_r < 14, high-redshift samples up to z = 1.08, and data sets from different
simulations.

These evaluations highlight the reliability and wide-ranging applicability of our
group finder. Furthermore, the group finder performs well on redshift-distorted
samples when re-trained on the corresponding data sets.

In this paper, we extend the work presented in Paper I by applying our group
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finder to redshift-space data and testing its performance on real observations
from the Sloan Digital Sky Survey Data Release 13 (SDSS DR13; Albareti et
al. 2017). SDSS DR13 offers extensive spectroscopic data, providing an ideal
benchmark for evaluating the effectiveness of our method in practical applica-
tions. Using the galaxy catalog of SDSS DR13 provided by Lim et al. (2017),
we assess the algorithm’s ability to reliably identify galaxy groups in a real sur-
vey environment. The structure of this paper is outlined as follows: Section 2
provides an overview of both the simulation data set employed for model train-
ing and the SDSS data set. Section 3 describes the architecture of our machine
learning based group finder and details of the procedures. In Section 4, we assess
the effectiveness of our method using mock galaxy catalogs from simulations,
focusing on aspects like completeness, purity, and halo-mass assignment. Sec-
tion 5 presents the outcomes of our group catalog and compares these results
to conventional techniques. Lastly, Section 6 discusses our main findings and
suggests potential avenues for future research.

2. Data
This section presents the data sets employed in our study, especially the mock
galaxy catalogs used for training and testing from the Millennium simulation.
Also, the data from the real survey Sloan Digital Sky Survey (SDSS) is described
in detail as follows.

2.1. Simulation and Mock Galaxy Catalog

The simulation used in this work is Millennium Simulation (MS; Springel et
al. 2005), which is a large scale N-body simulation of cosmic structure formation
based on ΛCDM cosmology. The simulation consists of N = 21603 dark matter
particles with particle mass 8.6 × 108 h−1Me, in a comoving volume of (500
Mpc/h)3. These particles evolve from z = 127 to z = 0. The cosmological
parameters of the simulation adopted by MS are the following: Ω_m = 0.25,
Ω_b = 0.045, h = 0.73, Ω_Λ = 0.75, n = 1, and 𝜎_8 = 0.9, and the Hubble
constant is defined as H0 = 100 h km s−1 Mpc−1.

We use the semi-analytic galaxy catalog of MS developed by Guo et al. (2011),
which implements the galaxy formation model L-Galaxies (Henriques et al. 2015)
onto merger trees extracted from the MS. To train and evaluate our machine-
learning-based galaxy group finder, we constructed mock galaxy catalogs derived
from the MS. Compared to the redshift-distorted samples used in Paper I, which
were directly extracted from a sub-box of the simulation, the mock catalogs in
this work are generated using a different approach to more realistically repro-
duce the observational characteristics of SDSS. We stack the simulation box
into a larger cubic volume (33 times the original volume) to achieve sufficient
survey depth out to a redshift limit of z = 0.2. We selected only groups with
host halos containing more than 100 dark matter particles and also apply an
r-band absolute magnitude cut of M_r < -14 to exclude galaxies that may be
unreliable in simulations. The observer is placed at the center of this enlarged
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simulation volume. We incorporate redshift-space distortions by adjusting each
galaxy’s cosmological redshift (z0) according to its line-of-sight peculiar velocity
(v_r): z_{rsd} = z0 + v_r/c. A redshift cut of z ≤ 0.2 is applied to match the
observational depth of SDSS.

Galaxy apparent magnitudes were computed using their absolute magnitudes
and luminosity distances, adopting r-band magnitude limit of m_r < 17.7, con-
sistent with the SDSS observational selection criteria (Abazajian et al. 2009).
To robustly assess the generalization capability of our model, we select five
distinct sky areas within the constructed mock survey. The largest of these,
covering approximately 12,000 square degrees, forms our primary training data
set and contains a total of 875,520 galaxies. The other four areas, each span-
ning roughly 7000 square degrees, serve as independent test data sets containing
401,027; 407,432; 394,189; and 417,336 galaxies, respectively.

2.2. SDSS Data

The redshift survey data set employed in this study is drawn from the SDSS
DR13, which represents the first data release of the fourth phase of the Sloan
Digital Sky Survey (SDSS-IV). The data set provides photometric observations
in five broad optical bands (u, g, r, i, z). In DR13, photometric calibration
was improved through updated zero-points and flat fields, as implemented via
the hypercalibration procedure described by Finkbeiner et al. (2016). Addi-
tionally, DR13 includes redshift measurements for galaxies previously excluded
from spectroscopic observations in DR7 due to fiber collisions—i.e., cases where
galaxies had close neighbors within the minimum fiber separation.

In order to validate our group-finding method, we utilize galaxies of the SDSS
sample in Lim et al. (2017) and compare with their group catalog. This sample,
derived from the Legacy Survey region in DR13, encompasses roughly 23% of
the sky with an r-band magnitude limit set at 17.77. Some galaxies in this
sample lack spectroscopic redshift measurements due to various issues such as
fiber collisions, broken or unplugged fibers, low-quality spectra, or poor model
fits. For these galaxies, redshifts from external sources were assigned, with
the sample restricted to z ≤ 0.2. Consequently, there are two catalogs in Lim
et al. (2017): the SDSS sample, containing only galaxies with spectroscopic
redshifts obtained from SDSS DR13 or other sources, and the SDSS+ sample,
which includes all galaxies, supplemented with redshifts estimated from nearest
neighbors and from 2MASS Photometric Redshift catalog (2MPZ; Bilicki et
al. 2014). Throughout this work, we utilize only the SDSS sample from Lim et
al. (2017).

In our schemes, stellar mass of galaxy is utilized as an input instead of lumi-
nosity. It is important to emphasize that the stellar mass in the SDSS sam-
ple is derived using an empirical relationship detailed by Bell et al. (2003):
log(M_*/M_�) = -0.499 + 1.519(g-r) - 0.586(g-r)2 - 0.5, where 4.67 is the ab-
solute magnitude of the Sun in the r band.
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3. Method
The framework of our group finder consists of two machine-learning models:
(1) Central Galaxy Identifier, predicting the central galaxies of all galaxies in
the catalog; (2) Group Mass Estimator, predicting the halo mass of identified
groups. Our final group catalog is based on the prediction of these two networks,
by applying an iteration process to merge the potential groups identified by the
network. This framework is the same as what we did in Paper I, only with some
minor modifications in the Group Mass Estimator. In addition, the model is
trained on mock data sets specifically designed to better replicate the properties
of SDSS observations, as described in Section 2.1. We briefly show the algorithm
of our schemes and the modification as follows.

3.1. Central Galaxy Identifier

A group catalog can be complex given the large number of galaxies, but the
groups can be expressed as center-satellite pairs of galaxies. Therefore, we
build a network to identify the central galaxies of all galaxies from their nearest
neighbors. Specifically, we search for neighbor galaxies within a line-of-sight dis-
tance of $±10ℎ^{-1}$ Mpc from each target galaxy. These galaxies are ranked
by their projection distances to the target galaxy. The properties of the nearest
ten neighbors and the target galaxy are taken as the network’s input features.
We list all the inputs as follows: r-band magnitude of target galaxy; color of
target galaxy; redshift of target galaxy; projection distance to its i-th neighbor;
r-band magnitude of i-th neighbor; line of sight distance to its i-th neighbor;
color of its i-th neighbor.

The ten neighbor galaxies of the target galaxy are numbered from 1 to 10,
according to ranks of projection distances in ascending order. The target galaxy
itself is indexed as 0. If the central galaxy is among these 11 galaxies and its
index is i, we will categorize the target galaxy as i-th class. In the situation
that none of these galaxies are its center, the target galaxy will be assigned to
class 11. The architecture of our neural network incorporates four hidden layers,
each utilizing Rectified Linear Unit (ReLU) activation functions. The output
layer generates a 12-dimensional probability vector corresponding to each class.
We implement cross-entropy loss for optimization and train the model over 500
epochs using the training data set from the MS.

3.2. Group Mass Estimator

The host halo mass of galaxies is a fundamental quantity for understanding
galaxy formation, evolution, and environmental effects. To accurately estimate
the halo mass of galaxy groups identified from observational data, we have
developed an ANN aimed at halo mass prediction. In this work, we use the term
M_{vir} to refer to the halo mass defined as M_{200}, i.e., the mass enclosed
within a spherical region whose average density is 200 times the critical density.
This neural network leverages key observational properties of galaxy groups,
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particularly focusing on the characteristics of the central galaxy and its largest
satellite galaxies. In our group-finding procedure, a group is defined as a set of
galaxies assigned to the same central galaxy by the Central Galaxy Identifier.
The inputs to the network consist of the properties of the central galaxy and
the N most massive satellite galaxies within the group: stellar mass of central
galaxy; total stellar mass of all galaxies in the group; total number of galaxies
in the group; projection distance of i-th satellite to group center; redshift of the
central galaxy; stellar mass of i-th satellite galaxy.

Here, the index i corresponds to the rank of the satellite galaxy by stellar mass,
with i = 1 representing the most massive satellite. Groups with higher richness,
i.e., more member galaxies, benefit from using a larger N; however, the predic-
tion accuracy for low-richness groups may degrade if N is too large. We adopt N
= 5 as a compromise to balance performance across groups of varying richness.
For groups containing fewer than five satellite galaxies, the missing values of
M_*,i and d_i are set to zero.

Compared to our previous work, we have refined the input parameters of our
mass prediction model. Specifically, we replaced the maximum r-band absolute
magnitude (M_r,max) among group galaxies with the redshift of the central
galaxy. Additionally, when selecting the most massive satellite galaxies, we
exclude the outermost 50% (rounded down) of satellites based on their pro-
jected distances to center. This adjustment mitigates potential inaccuracies in
halo mass estimation arising from uncertainties in the measurements of input
properties. For instance, in the SDSS data set, a small number of galaxies are
assigned extremely faint magnitudes (e.g., M_r > -10), which can confuse the
original model in Paper I and lead to unreliable halo mass predictions. The
performance of both the original and updated mass models will be presented in
the following section.

The neural network architecture comprises four hidden layers, each utilizing
ReLU activation functions to introduce nonlinearity. We employ the Mean
Squared Error as the loss function during training. The ANN is trained on the
training data set derived from the MS for 500 epochs, ensuring robust general-
ization and reliable halo mass predictions for groups identified in observational
catalogs such as SDSS.

[Figure 1: see original paper]. Global completeness and purity across four mock
test catalogs. Group completeness and purity are defined in the main text.
Dashed lines represent the mean values, and error bars denote the 1𝜎 standard
deviation among the four data sets. Completeness (blue) is plotted as a function
of the true virial mass of groups, M_{vir},t, while purity (green) is shown as a
function of the predicted virial mass of identified groups, M_{vir},p. All groups
achieve completeness and purity levels exceeding 90% across the full mass range.
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3.3. Identification of Groups

The Central Galaxy Identifier model provides central-satellite relationship data,
enabling highly precise identification of galaxy groups. Nonetheless, certain
satellites are somewhat distant from their centers, causing these centers to fall
outside the top ten nearest neighbors. Consequently, this could lead to the
fragmentation of the group into multiple smaller subsets. To mitigate this limi-
tation, we have implemented a simplified iterative merging process, outlined as
follows:

1. Initial Estimation. The groups predicted by the Central Galaxy Iden-
tifier are considered as candidate groups. Use the Group Mass Estimator
to predict halo masses (M_{vir}) and corresponding radii (R_{vir}) for
each candidate group.

2. Group Merging. Combine groups that overlap spatially within their
R_{vir} radii with line-of-sight tolerances of $±5ℎ^{-1}$ Mpc, merging
them into a single group centered on the one with the highest estimated
halo mass.

3. Iterative Refinement. Recalculate halo masses for the merged groups,
repeating the merging process until no further changes occur, resulting in
a stable final catalog.

4. Performance on Mock Catalog
To evaluate the performance of our group finder, we adopt the methodology
outlined in Wang et al. (2020). First, we define several notations for clarity:

1. IG. An identified galaxy group produced by the group finder.
2. TG. A true galaxy group from the simulation, corresponding to a known

host halo.
3. IG-T. An identified group successfully matched to a true group.
4. TG-I. A true group successfully matched to an identified group.

Matching IGs and TGs is nontrivial because groups often differ slightly in mem-
bership composition. We utilize a combined approach involving two matching
criteria: member matching and central matching. Member matching requires
that more than 50% of the members in an IG are also members of a TG, and
vice versa. Central matching demands that the central galaxy of an IG is the
same as that of a TG. While member matching is typically more stringent and
reliable, especially for large groups, combining it with central matching helps
enhance overall robustness. In cases where the two criteria yield differing re-
sults, priority is given to member matching outcomes. Through this combined
matching strategy, we establish clear one-to-one pairings between identified and
true groups, referred to as IG-T and TG-I pairs, respectively.

Our group finder is analyzed by employing four distinct mock catalogs derived
from simulations to assess its performance. Initially, we focus on the global com-
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pleteness and purity of the galaxy groups that our method identifies. Global
completeness refers to the ratio of true groups (TGs) in the simulations that
our method successfully matches to identified groups (IGs). On the other hand,
global purity indicates the proportion of IGs that accurately correspond to the
true groups in the simulations. In Figure 1, we depict the global completeness
and purity as functions of halo mass. The graph presents the average complete-
ness and purity for all four test data sets using dashed lines, with error bars
denoting the standard deviation. Notably, both completeness and purity are
consistently above 90% across the entire spectrum of halo mass ranges consid-
ered, even for groups with masses as low as M_{vir} � 1011 h−1Me. Moreover,
we notice a rising trend in these metrics for increasing halo masses, underscoring
the dependability of our identification method for larger groups. This observa-
tion is particularly significant, given that massive groups are critical in mapping
the cosmic density field.

Next, we further examine the accuracy of our identified groups by analyzing
individual galaxy memberships. For each IG matched with a corresponding
TG, we define two membership accuracy metrics. Consider an identified group
containing N_i predicted member galaxies matched to a true group containing
N_t galaxies. If N_s galaxies exist both in the identified and true groups, we
define:

1. Member Completeness. f_c = N_s / N_t
2. Member Purity. f_p = N_s / N_i

[Figure 2: see original paper]. Cumulative distributions of member completeness
and purity across four mock test catalogs. Left panel: The x-axis represents
member completeness (f_c), while the y-axis shows the fraction of groups with
completeness greater than a given value f_c. Results are displayed for four
halo mass bins, distinguished by different colors. Solid lines denote the mean
values and error bars indicate the 1𝜎 standard deviation across the four test
catalogs. Right panel: Similar to the left panel, but illustrating the cumulative
distribution of member purity (f_p) for the same halo mass bins.

In Figure 2, we present the cumulative distributions for member completeness
(f_c) and purity (f_p), categorized into four halo mass ranges, each represented
by distinct colors. Our group finder demonstrates high precision in assigning
member galaxies, particularly for groups with masses below 1014 h−1Me. In
excess of 80% of these groups achieve perfect membership accuracy, where both
completeness (f_c) and purity (f_p) reach 1. As we examine groups with higher
masses, the task of member galaxy assignment becomes more challenging due
to an increased number of satellites and amplified effects of redshift-space dis-
tortions. This complexity reduces the percentage of groups with perfect com-
pleteness and purity to about 40%. Nevertheless, even under these demanding
conditions, over 80% of the groups uphold complete and pure values above 0.6,
highlighting the consistent effectiveness of our group finder across an extensive
range of group masses.
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Figure 3 presents a direct comparison between the true and predicted halo
masses of matched groups, along with the results from the redshift-distorted
samples in Paper I. In this work, the comparison is shown as a 2D histogram
plot, while the relation from Paper I is represented by median values with error
bars. The updated model demonstrates performance comparable to that of the
original version in terms of mass prediction in mock catalog, which is expected.

[Figure 3: see original paper]. Comparison of true and predicted group masses
across four mock test catalogs, along with results from Paper I. The upper
panel shows a 2D histogram comparing the true and predicted halo masses of
matched groups in this work. For reference, results from the redshift-distorted
samples used in Paper I are overlaid as red points with error bars, representing
median halo mass predictions with asymmetric error bars estimated from the
25th and 75th percentiles. The lower panel presents the standard deviation of
log(M_{vir},p/M_{vir},t) for both data sets, quantifying the scatter in mass
predictions.

Figure 4 presents a comparison between the distribution of predicted halo mass
(M_{vir},p) and the actual halo mass obtained from simulations. Our model
estimates halo masses solely based on the intrinsic properties of groups, with-
out being trained on the true halo mass distribution, thus ensuring reliable
predictions, especially in areas with limited observational data. This approach,
however, can lead to some systematic deviations from the actual distribution.
The figure demonstrates that although the predicted and actual distributions
are quite similar, there is a slight underestimation for groups near M_{vir}
� 1014 h−1Me. To potentially improve the accuracy and precision of our halo
mass predictions, we could consider including additional variables, such as the
environmental context of the target groups.

[Figure 4: see original paper]. Comparison between the predicted halo mass
distribution and the true distribution across four mock test catalogs. The mass
range [1011 h−1Me, 1015・5 h−1Me] is divided into 18 logarithmic bins. In the
upper panel, the gray shaded region represents the 1𝜎 variation in the true halo
mass distribution across four test data sets. Blue points indicate the mean pre-
dicted distribution, with error bars showing the corresponding 1𝜎 scatter among
the test data sets. The lower panel shows the fractional difference between the
two distributions, computed as the difference divided by the true halo mass
distribution.

5. SDSS Group Catalog
In this section, we further discuss the group catalog that our group finder applies
to the observational SDSS data set addressed in Section 2.2. Among 586,025
galaxies in the SDSS DR13 data set, our group finder identifies 421,797 galaxy
groups with halo masses ranging from approximately 1011 h−1Me to 1015 h−1Me.
Of these, 62,471 groups contain more than one member galaxy. In Figure 5, we
present the distributions of these groups with respect to group richness (i.e.,
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number of member galaxies), redshift of the group center, and assigned halo
mass. These results are compared against the SDSS group catalog from Lim et
al. (2017) (hereafter Lim17 catalog). Despite employing different methodologies
for group identification, our results exhibit strong consistency with those of
Lim17 catalog across all three distributions. However, our catalog includes a
slightly higher number of high-richness groups, particularly at lower redshifts,
which leads to a relatively lower abundance of groups at z < 0.05. Additionally,
our predicted catalog contains fewer massive groups with M_{vir} � 1015 h−1Me.

[Figure 5: see original paper]. Number distributions of galaxy groups as func-
tions of group richness (left panel), redshift of the group center (middle panel),
and predicted halo mass (right panel). Results from our group finder are shown
as blue histograms, while green histograms represent the Lim17 catalog for com-
parison. The two catalogs exhibit good agreement across all three distributions,
with minor differences observed in the abundance of the most massive groups.

Figure 6 further illustrates this through a comparison of halo mass assignments
between the two catalogs for matched groups. Group matching is performed us-
ing the central and member matching criteria described in Section 4, resulting
in 390,177 matched groups. Although the scatter is larger than that observed
in the mock catalog predictions, the two catalogs show good agreement in halo
mass estimates for low-mass groups. However, our catalog clearly underesti-
mates the halo masses of the most massive groups, resulting in a lower predicted
abundance of most massive halos and the divergence in halo mass distribution
between the two catalogs. This difference may also be influenced by the underly-
ing simulations used to generate the mock catalogs and estimate the halo mass.
Lim et al. (2017) utilized the Evolution and Assembly of GaLaxies and their En-
vironments (EAGLE; Schaye et al. 2015) simulation to calibrate the halo mass
function used in their abundance matching. In contrast, our model was trained
on data sets from the MS, which adopts a different cosmology. Moreover, due
to the data-driven nature of our approach, the model’s performance may be
influenced by the specific galaxy formation physics implemented in the training
simulation.

[Figure 6: see original paper]. Comparison of halo masses for matched groups be-
tween our catalog and Lim17 catalog. The x-axis represents the halo masses as-
signed by Lim17 catalog, while the y-axis shows the corresponding virial masses
predicted by our model. For most low-mass groups, the two catalogs yield com-
parable results. However, our predictions tend to be slightly lower for the most
massive groups, consistent with the trend observed in Figure 5.

We further compare our catalog with Lim17 catalog at both the group level
and the member (inner group) level. Figure 7 presents the group-level similar-
ity, characterized by the fraction of common matched groups relative to each
catalog, denoted as R_c,ML and R_c,Lim, respectively. For groups with halo
masses M_{vir} > 1012 h−1Me, two methods achieve over 90% similarity in
both metrics. As previously noted, our model predicts fewer low-mass groups
at z < 0.05, which contributes to the observed decline in R_c,Lim below 1012

chinarxiv.org/items/chinaxiv-202506.00116 Machine Translation

https://chinarxiv.org/items/chinaxiv-202506.00116


h−1Me.

[Figure 7: see original paper]. Group-level similarity between our catalog and
Lim17 catalog. Similarity is defined using the fraction of matched groups relative
to each catalog: R_c,ML (green), the ratio of matched groups to the total
number of groups in our machine-learning-based catalog, and R_c,Lim (blue),
the ratio of matched groups to those in the Lim17 catalog. High similarity
(>90%) is maintained for halo masses above 1012 h−1Me, demonstrating strong
consistency in group identification between the two catalogs.

We also assess group similarity at the member galaxy level, shown in Figure
8, which displays the cumulative distributions of member-level similarity r_c,
defined as the fraction of common galaxies within each matched group. We
denote r_c,ML and r_c,Lim as the ratios with respect to the member lists in
our catalog and in Lim17 catalog, respectively. For groups with M_{vir} <
1014 h−1Me, over 80% of matched groups exhibit identical member galaxy as-
signments in both catalogs. For more massive groups, this proportion decreases
to approximately 60%, likely due to the increased complexity and richness of
higher-mass systems. Overall, these comparisons demonstrate strong agreement
between our catalog and Lim17 catalog, both in group identification and in the
assignment of member galaxies.

[Figure 8: see original paper]. Cumulative distributions of member-level similar-
ity between our catalog and Lim17 catalog. The similarity ratio r_c is defined
as the fraction of shared member galaxies within each matched group. The
left panel shows r_c,Lim, the ratio with respect to our machine-learning-based
group catalog, while the right panel shows r_c,ML, the ratio with respect to
the Lim17 catalog. Results are shown for four halo mass bins, each indicated
by a different color. The plots indicate strong agreement in member galaxy
assignments, especially for groups with M_{vir} < 1014 h−1Me.

We present the relationship between total stellar mass and virial mass of galaxy
groups in Figure 9, subdivided into three redshift intervals: [0, 0.07], [0.07,
0.14], and [0.14, 0.2]. In the figure, solid lines indicate the mean total stellar
mass within bins of virial mass, while the shaded regions denote the 1𝜎 scatter
around the mean. Across all redshift bins, groups with M_{vir} < 1013 h−1Me
exhibit consistent stellar-to-halo mass relations. As expected for magnitude-
limited samples, minimum detectable halo mass increases with redshift due to
observational limits. Additionally, deviations among the relations become ap-
parent at higher halo masses, particularly in the z � [0.14, 0.2] bin, due to the
decreasing number of detectable satellite galaxies at greater distances. These
variations highlight that, while stellar mass is a key input to our halo mass
estimation model, the network effectively leverages additional group properties,
such as richness and satellite spatial distribution, to improve mass predictions.

[Figure 9: see original paper]. Relationship between total stellar mass and
predicted halo mass of galaxy groups in three redshift bins: [0, 0.07], [0.07,
0.14], and [0.14, 0.2] in our SDSS group catalogs. Solid lines represent the mean
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total stellar mass within bins of halo mass, while shaded regions denote the 1𝜎
scatter. The relation remains consistent across redshift for groups with M_{vir}
< 1013 h−1Me, with variations at higher masses due to observational limits and
reduced satellite detection at higher redshifts.

As demonstrated in Paper I, our model generalizes well to galaxy samples with
varying magnitude limits, even when trained on data sets with a flux limit com-
pletely different from that in the test sample. To further validate this capability,
we manually selected a subset of the SDSS data set by applying a stricter r-band
magnitude limit of 17. This selection yields 236,316 galaxies, almost half of the
total sample, on which our model identifies 176,822 groups. For comparison,
applying the model to the full SDSS data set results in 170,297 identified groups
with m_r < 17. In Figure 10, we present distributions of group richness, red-
shift, and halo mass for the m_r < 17 subset. These are compared with the
distributions derived from the full SDSS data set, restricted to galaxies that
also meet the m_r < 17 criterion, labeled as m_r < 17.7 in the figure. The
distributions show strong consistency between the two data sets, indicating that
our model yields stable and reliable outputs across different magnitude limits.
However, the virial mass distributions at the high-mass end reveal some discrep-
ancies. This behavior is consistent with our earlier findings in Paper I, which
is due to halo mass estimates exhibiting a slight dependence on group richness.
While further calibration could mitigate this effect, we emphasize that it does
not significantly impact the accuracy of member galaxy assignments.

[Figure 10: see original paper]. Distributions of galaxy groups identified in
the magnitude-limited subset (mag_r < 17) compared with those from the full
SDSS data set (mag_r < 17.7) restricted to the same subset. Left panel: Num-
ber of member galaxies per group. Middle panel: Redshift distribution of group
centers. Right panel: Predicted halo mass distribution. Blue histograms repre-
sent results from the mag_r < 17 subset, while green histograms correspond to
groups in the mag_r < 17.7 data set within the same magnitude range.

Figure 11 displays a one-to-one comparison of predicted halo masses between
the two data sets. The results show excellent agreement at lower mass ranges.
However, for massive groups, the model applied to the m_r < 17 subset tends
to underestimate halo masses, a consequence of the model’s sensitivity to the
number of member galaxies. This finding underscores the robustness of our
method for group identification, while also highlighting the potential need for
refinement in halo mass estimation model.

[Figure 11: see original paper]. Comparison of predicted halo masses for com-
mon groups identified in the mag_r < 17 and mag_r < 17.7 subsets of the SDSS
data set. The x-axis shows halo masses predicted using the full sample (mag_r <
17.7), while the y-axis shows halo masses predicted from the magnitude-limited
subset (mag_r < 17). Results are presented as a 2D histogram, where the color
in each bin indicates the logarithm of the number of groups. The plot demon-
strates strong agreement at lower halo masses, with slight underestimation for
massive groups in the mag_r < 17 subset due to reduced group richness.
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5.1. Catalog Contents

The group catalog constructed by our machine-learning-based group
finder and the essential observable properties of galaxies are available at
https://github.com/JuntaoMa/SDSS-DR13-group-catalog.git. The contents of
catalog data are listed below:

• Column (1) galaxyId: unique ID of galaxies
• Column (2) centerId: galaxyId of its central galaxy
• Column (3) RA: right ascension in degrees
• Column (4) Dec: declination in degrees
• Column (5) z: redshift of galaxy
• Column (6) stellarMass: log(M_*/M_�)
• Column (7) centralMvir: log(M_{vir}/M_�), where M_{vir} is the virial

mass of group of which the galaxy is a member

6. Conclusion and Discussion
In this study, we extend our machine-learning-based galaxy group finder from
simulation environments to redshift space and real observational data, specifi-
cally applying it to the SDSS sample in Lim et al. (2017). We retain the core
architecture introduced in our previous work, with minor modifications to en-
hance compatibility with the observational data set. The model consists of three
key components:

1. Central Galaxy Identifier. Predicts the central galaxy of a target
system using the photometric and spatial properties of the galaxy and
its ten nearest neighbors.

2. Group Mass Estimator. Predicts the halo mass (M_{vir}) of each
group based on the properties of the central galaxy and the five most
massive satellite galaxies.

3. Group Finder. An iterative procedure that integrates the outputs of the
neural networks to produce the final group catalog.

Compared to Paper I, we refined the Group Mass Estimator by excluding the
outermost 50% of member galaxies, based on projected distance to the central
galaxy, when selecting the top five satellite galaxies. Additionally, we replaced
one of the model’s inputs, the maximum r-band absolute magnitude among
group members (M_r,max), with the redshift of the central galaxy. These
adjustments aim to mitigate observational uncertainties and enhance the ro-
bustness of halo mass predictions. Furthermore, we train the models on new
training data set constructed from MS to better fit the SDSS data.

The model was trained on mock catalog, applying an r-band apparent magni-
tude limit of 17.7 and restricting redshifts to z ≤ 0.2. This yielded a training
data set of 875,520 galaxies. We evaluated the performance of our group finder
using four independent mock catalogs. The model achieved over 90% complete-
ness and purity for groups with halo masses as low as M_{vir} � 1011 h−1Me,
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with performance improving further for more massive groups. At the member
galaxy level, more than 80% of low-mass groups achieved perfect membership
assignment, while over 80% of high-mass groups maintained f_c and f_p val-
ues above 0.6 despite the complexities of larger group structures and redshift
distortions. Our halo mass predictions were consistent with the true mass dis-
tribution, with only minor underestimation at the high-mass end, and could be
further improved by potentially incorporating environmental information.

Applying our group finder to the galaxy samples from SDSS DR13, we identi-
fied over 420,000 galaxy groups and estimated their halo masses using a trained
ANN model. Our results show strong consistency with Lim17 catalog gener-
ated by traditional methods, particularly in terms of group abundance, redshift
distribution, and halo mass distribution. Comparisons at both the group level
and member galaxy level reveal high similarity, with over 90% of groups with
M_{vir} > 1012 h−1Me matched between the two catalogs. Member galaxy as-
signments also show substantial agreement with Lim17 catalog, achieving exact
matches for over 80% of groups in lower mass ranges.

Discrepancies in high-mass halo abundance are attributed to methodological dif-
ferences in halo mass estimation, where the two works utilized simulations with
distinct cosmology and galaxy formation models. Recent efforts have sought to
enhance halo mass prediction in group catalogs. For example, Zhao et al. (2025)
employed machine learning techniques to mitigate systematic biases between
groups with star-forming (blue) and passive (red) central galaxies, achieving
halo mass predictions approximately one-third more accurate than those derived
from abundance matching. Similarly, Zhang et al. (2024) investigated detailed
scaling relations between halo mass and a variety of central galaxy properties,
offering improved empirical proxies for group halo mass. In future work, we aim
to compare our model’s output with these results to assess whether our method
already captures such effects implicitly and to evaluate the performance of our
prediction with other halo mass proxies.

Additionally, we demonstrated the model’s robustness across different observa-
tional limits by applying it to a magnitude-limited subset (m_r < 17) of the
SDSS data set. The model maintained consistent performance, highlighting its
generalizability without requiring retraining or additional calibration.

The group catalog, developed using our scheme, along with key observable
properties of galaxies, can be accessed at https://github.com/JuntaoMa/SDSS-
DR13-group-catalog.git. This repository offers a valuable supplementary re-
source for numerous research endeavors, particularly those focusing on large-
scale structure and the relationship between halos and galaxies.

This research highlights the efficacy and dependability of our deep learning
method for identifying galaxy groups and estimating halo mass using actual
survey data. The method’s adaptability, scalability, and precision position it
as an invaluable resource for various extensive surveys, including the 2MASS
survey, DESI surveys, along with additional forthcoming surveys. This enables
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comprehensive analyses of cosmic structures and the evolution of galaxies.
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