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Photometric redshifts of galaxies obtained from multi-wavelength data are
widely used in photometric surveys due to their high efficiency. Although
various methods have been developed, template fitting remains one of the
most popular approaches. Its accuracy strongly depends on the quality of
spectral energy distribution (SED) templates, which can be calibrated using
broadband photometric data from galaxies with known spectroscopic redshifts.
Such calibration is expected to improve photometric redshift accuracy, as
the calibrated templates will align more closely with observed photometric
data. The upcoming China Space Station Telescope (CSST) is one of the
Stage IV surveys, aiming for high-precision cosmological studies. To improve
the accuracy of photometric redshift estimation for CSST, we calibrated the
CWW+KIN templates using a perturbation algorithm with broadband photo-
metric data from the CSST mock catalog. This calibration employed a training
set consisting of approximately 4500 galaxies, representing 10% of the total
galaxy sample. The outlier fraction and scatter of the photometric redshifts
derived from the calibrated templates are 2.55% and 0.036, respectively.
Compared to the CWW+KIN templates, these values are reduced by 34% and
23%, respectively. This demonstrates that SED templates calibrated with a
small training set can effectively optimize photometric redshift accuracy for
future large-scale surveys like CSST, especially when spectral training data are
limited.
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Abstract

Photometric redshifts of galaxies obtained by multi-wavelength data are widely
used in photometric surveys because of their high efficiency. Although various
methods have been developed, template fitting is still adopted as one of the
most popular approaches. Its accuracy strongly depends on the quality of the
spectral energy distribution (SED) templates, which can be calibrated using
broadband photometric data from galaxies with known spectroscopic redshifts.
Such calibration is expected to improve photometric redshift accuracy, as the
calibrated templates will align with observed photometric data more closely.
The upcoming China Space Station Telescope (CSST) is one of the Stage IV
surveys, which is aiming for high precision cosmological studies. To improve
the accuracy of photometric redshift estimation for CSST, we calibrated the
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CWW+KIN templates using a perturbation algorithm with broadband photo-
metric data from the CSST mock catalog. This calibration used a training set
consisting of approximately 4500 galaxies, which is 10% of the total galaxy sam-
ple. The outlier fraction and scatter of the photometric redshifts derived from
the calibrated templates are 2.55% and 0.036, respectively. Compared to the
CWW+KIN templates, these values are reduced by 34% and 23%, respectively.
This demonstrates that SED templates calibrated with a small training set can
effectively optimize photometric redshift accuracy for future large-scale surveys
like CSST, especially with limited spectral training data.

Key words: galaxies: distances and redshifts — galaxies: photometry — methods:
statistical

1. Introduction

Estimating the redshifts of astronomical objects is essential for advancing ex-
tragalactic and cosmological studies (see Salvato et al. 2019; Newman & Gruen
2022 for a review). Redshifts can be determined using two primary methods:
spectroscopic and photometric observations. Spectroscopic redshifts (spec-z)
are obtained by measuring wavelength shifts in spectral features. While this
method provides high accuracy, obtaining spec-z for faint, distant objects is
challenging and time consuming (Newman et al. 2015). In contrast, photomet-
ric redshifts (photo-z) are estimated using multi-band photometric data, which
capture broadband features such as the Lyman and Balmer breaks. Although
photo-z sacrifices some accuracy compared to spectroscopic methods due to the
limited resolution of photometric data, it is significantly more efficient, enabling
redshift estimation from fewer exposures across all detected sources. This effi-
ciency makes photo-z a practical choice for many observational analyses.

There are two primary methods for deriving photo-z: machine learning and the
spectral energy distribution (SED) fitting method. In principle, any regression
based machine learning technique can be applied to estimate photo-z, including
classical support vector machines (Wadadekar 2005; Jones & Singal 2017), deci-
sion tree based bagging methods such as random forests, or boosting algorithms
(e.g., Carliles et al. 2010; Dalmasso et al. 2020; Zhou et al. 2021). Additionally,
simple neural networks have been widely used (e.g., Firth et al. 2003; Collister
& Lahav 2004; Cavuoti et al. 2017; Razim et al. 2021; Zhou et al. 2021).

Machine learning techniques typically use magnitudes and colors as input fea-
tures, but can also incorporate more digitized features correlated with redshift,
such as morphological parameters to improve estimation accuracy (D’Isanto
& Polsterer 2018; Gomes et al. 2018). Furthermore, combining digitized fea-
tures with photometric images to train hybrid deep neural networks (Zhou et
al. 2022) or employing advanced architectures like Long Short Term Memory
(LSTM) networks (Luo et al. 2024a) has shown potential for achieving even
higher precision.

However, machine learning methods have inherent limitations. Their accuracy
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strongly depends on the quality and size of the training sample. Moreover, the
lack of spectroscopic data for faint galaxies in the training set limits their ability
to estimate photo-z accurately through extrapolation.

The basic idea of SED fitting is to find the best match between observed multi-
band photometric data and redshifted galaxy SED templates. These templates
can be derived from observations (e.g., Coleman et al. 1980; Kinney et al. 1996;
Assef et al. 2010) or from stellar population synthesis models (e.g., Bruzual &
Charlot 1993, 2003; Fioc & Rocca-Volmerange 1997; Maraston 2005). Many
established SED fitting photo-z estimators (e.g., HyperZ, Bolzonella et al. 2000;
LePhare, Arnouts et al. 1999; BPZ, Benitez 2000; EAZY, Brammer et al. 2008)
can utilize either type of template set. These methods can provide redshift
estimates as long as the redshifted template SEDs cover the relevant wavelength
range of the observed filters.

A key limitation of SED fitting is the representativeness of the template set for
a given observational data set. Stellar population synthesis models involve nu-
merous physical assumptions, and empirical templates often derived from local,
bright galaxies may not capture the full range of galaxy properties across differ-
ent epochs. As a result, evolutionary effects at higher redshifts can introduce
additional uncertainties, reducing the accuracy of SED fitting approaches.

The current and next generation of large scale surveys, such as the Dark En-
ergy Survey (DES, Abbott et al. 2018), the Vera C. Rubin Observatory Legacy
Survey of Space and Time (Ivezié¢ et al. 2008; Abell et al. 2009), the Euclid
Survey (Laureijs et al. 2011; Euclid Collaboration et al. 2025), and the Roman
Space Telescope Survey (Green et al. 2012; Akeson et al. 2019), will provide
unprecedented amounts of photometric data. For many extragalactic objects in
these data sets, obtaining spec-z will be impractical. To fully utilize these exten-
sive data sets, it is crucial to improve and thoroughly assess the performance of
photo-z methods when applied to these surveys (Newman & Gruen 2022). The
same considerations apply to the China Space Station Telescope (CSST; Zhan
2011; Zhan 2018; Cao et al. 2018).

The CSST will employ seven photometric bands, ranging from near-ultraviolet
(NUV) to near-infrared (NIR), namely NUV, u, g, r, i, z and y, that cover
wavelengths of approximately 2500-10,000 A. The 5¢ magnitude limits for these
bands are 25.4, 25.4, 26.3, 26.0, 25.9, 25.2, and 24.4, respectively. During its
10 yr mission, CSST will survey a total of 17,500 deg? of the sky, performing
photometric and spectroscopic observations simultaneously. One of its primary
objectives is to test theoretical cosmological models through weak gravitational
lensing, which heavily relies on accurate redshift estimations.

This paper is part of a series that evaluates the performance of various photo-z
techniques to meet the scientific goals of the CSST using a mock CSST catalog.
Lu et al. (2023) estimate photo-zs from CSST mock fluxes using a weighted
random forest method. Luo et al. (2024b) employ a deep learning method
called generative adversarial imputation networks (GAIN) to impute missing
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photometric data, thus reducing the impact of data gaps on photo-z estimation
and improving precision. Luo et al. (2024a) propose a new approach that relies
solely on flux measurements from different observed filters to accurately predict
CSST photo-z by constructing a deep learning model based on Recurrent Neural
Networks (RNN) with LSTM units.

In this work, we focus on improving the accuracy of photo-z derived from the
CSST mock catalog using SED fitting and calibrated SED templates (i.e., a tem-
plate learning approach). Because the actual SEDs of galaxies may differ from
the initial templates, calibration of these templates is essential. Several stud-
ies have addressed template calibration and optimization (Budavari et al. 2000;
Benitez et al. 2004; Crenshaw & Connolly 2020). Here, we employ the template
perturbation algorithm introduced in Crenshaw & Connolly (2020, hereafter
CC20) and demonstrate that it significantly improves photo-z accuracy for the
CSST mock catalog, even with a very small training sample.

In Section 2, we briefly introduce the CSST mock catalog and the initial SED
templates used for calibration. Section 3 describes the perturbation algorithm
from CC20. Details of the calibration process are presented in Section 4. Section
5 compares the photo-z results obtained using the SED templates before and
after calibration. Finally, our conclusions are summarized in Section 6.

2. Data

A CSST mock catalog was employed to calibrate the SED templates, evaluating
the improvement in photo-z performance achieved by applying calibrated SED
templates within the SED fitting algorithm. This catalog has also been used
in previous CSST photo-z assessment studies (Zhou et al. 2021, 2022; Lu et
al. 2023; Luo et al. 2024a, 2024b), which explored both machine learning and
SED fitting methods.

In contrast to traditional approaches that rely on the mock catalogs generated
from the light cone of dark matter N-body simulations, our mock catalog is
derived from a CSST-like galaxy image simulation. The simulation process is
summarized below, and more detailed information can be found in Zhou et
al. (2022) and Lu et al. (2023). First, HST/F814W images from COSMOS were
rescaled to match the CSST pixel size, and square stamped images for each
galaxy were created. The size of stamps is based on the length of galaxies’
semimajor axes. Second, 31 SED templates from LePhare (Arnouts & Ilbert
2011, Tlbert et al. 2006) were assigned to each galaxy by fitting the photometric
data at the given photo-zs from the COSMOS2015 catalog (Laigle et al. 2016).
The theoretical flux calculated by convolving the response function of CSST
filters with SED templates was taken as the simulated flux for each galaxy.
Finally, simulated CSST-like images were generated in these seven bands based
on the simulated flux, taking into account the exposure time, aperture size,
and background noise level of CSST. Forced photometry was then applied to
the simulated images to produce the mock catalog used in this work. Figure 1
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displays the response function of each filter, with a wavelength coverage from
2500 to 11,000 A.

Figure 2 shows an example in which all photometric data points are overlaid with
their best matching SED template in the rest frame. The SED template has been
normalized to 5500 A, and the y-axis is expressed in logarithmic scale. With
a sufficiently large number of galaxies in the catalog, the overlapping region of
their photometric data points can effectively reconstruct the SED’s continuum.
As the sample expands, it can even recover higher resolution features of the
SED to a considerable degree.

However, discrepancies may exist between the distribution of photometric data
and the SED templates. To address this, we calibrate the SED templates by
applying perturbations, enabling better alignment between the templates and
the photometric data. The template perturbation is done in the rest frame. The
flux densities derived by SED templates are Fi,,, = >, sx7, x, Where s, and
7, Tepresent the flux density of the SED templates and the normalized filter
response function in discrete wavelength bins in the rest frame, respectively.

3. The Perturbation Algorithm

In this section, we provide a brief introduction to the perturbation algorithm
described in CC20 and Budavéri et al. (2000). The basic idea of the perturba-
tion algorithm is to calibrate the SED templates according to the discrepancies
between the photometric data and the SED templates. When redshifts are al-
ready known, the photometric data can be assigned to the SED templates with
the most similar colors. All galaxies in the training set will be matched to the
SED template with the most similar color before perturbation. The galaxies are
separated into different groups referred to as the sub-training sets of each SED
template.

The cost function is in the form of

Fo —F )’

X? = Z % + Z Ay ()2

i\n i,n k

where F{?ES is the normalized observed flux density (see Section 4.1), and ﬁm
represents the flux density derived from the perturbed SED templates, which
is denoted as §,. The subscripts ¢,n indicate band n of the ith galaxy in
the sub-training set. The first term of the cost function represents how well
the perturbed SED fits its sub-training set, weighted by the fractional error
of observed flux densities o, ,,. The second term is a penalty term, weighted
by the parameter A, which constrains the extent of the shape change during
template perturbation and thus helps stabilize the shape of the perturbed SED.
By minimizing this cost function, the shape change of the SED template, defined
as T, = S, — s, can be determined.
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For the part corresponding to hyperparameter optimization, CC20 implemented
a uniform metric A to replace A, in various templates and introduced an in-
novative parameter w, defined as the ratio of the loss function to the penalty
term, thus regulating the pace of training. By assuming

obs Fobs FtemD)Q

(Fi,n i,
Z—NZ

7,n ,n

where N is the number of photometric data points and N, is the number of
wavelength bins. Then, A can be approximated as

E (Fﬁlﬁs_Fit,ewinp)z
; 2
i,mn [
S S

k “k

where 5, = Z temp/ Zz .

Since the profile of SED templates changes after every perturbation, the photo-
metric data matching results may differ from the previous perturbation. The
algorithm will be iterated multiple times to obtain the best match between the
photometric data and the SED templates. Following the methodology outlined
in CC20, we use the weighted mean squared error (wMSE) between the flux
densities derived from the templates and the observed flux densities to quantify
the alignment between the sub-training sets and the SED templates:

obs __ Fternp ) 2

1 (zn i,m
WMSE = - 3 |~y

i,n i\n

The termination of the perturbation process is determined by the relative change
in wMSE, denoted as dMSE = |wMSE, ., — wWMSE_,4|/WMSE_ 4. The wMSE is
calculated each time the SED template is perturbed or a new sub-training set
is created. When dMSE falls below a specific threshold (4% in this work) or
reaches the maximum number of perturbations, we consider the SED templates
to be sufficiently calibrated for the current iteration.

The calibration process will stop when it reaches the maximum number of it-
erations or no templates are perturbed during the current iteration. For more
details on the perturbation algorithm, we refer the reader to the studies of CC20
and Budavari et al. (2000).

4. SED Template Calibration

In this section, we describe in detail the process of calibrating the SED tem-
plates using the perturbation algorithm, including the creation of training sets,
smoothing of initial templates to obtain more stable results, and comparisons
between the calibrated and initial SED templates.
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4.1. Training Set and Initial SED Templates

To improve the precision of photo-z estimation, we applied a signal-to-noise
ratio (SNR) cut with a threshold of $ $10 in either the g or i bands for both
training and test sets. This criterion is consistent with the sample selection used
in previous photo-z evaluation studies for the CSST project (Zhou et al. 2021,
2022; Lu et al. 2023; Luo et al. 2024a, 2024b). The final sample consists of
44,991 galaxies.

Instead of training the SED templates from scratch, we calibrate existing SED
templates, enabling the use of a relatively small training set. However, utilizing a
larger training set when available generally will result in a more stable outcome.
In this work, we selected 10% of the galaxies as the training set, which is 4500
galaxies with a maximum redshift of about 4.83, while the remaining 90% of
galaxies were the test set. The impact of the size of the training set will be
discussed in Section 5. Figure 1 illustrates the redshift distribution for both
training and test sets, which represent an ideal scenario where the redshift
distributions of the two sets are identical.

Perturbation will be applied to the SED templates based on their sub-training
sets. For each galaxy, the photometric data are then matched to the SED
template with the smallest 2 value, representing the closest color match:

2 _ Z (Fr?bs _ FTtLemp>2

* (dFg™)2

n

where dF°P® is the uncertainty of normalized flux densities.

Due to variations in the intrinsic luminosity and distance of galaxies, F°P® and
their uncertainty dF°” must be normalized before matching with the SED
templates. Instead of using the median of F™P/F°bs as the normalization
coefficient which is adopted in CC20, we apply the normalization method from
the EAZY code, which is formulated as

5, (FLem Fgh /(dF™)?)

n

>, (Fn™P)2 /(dFghs)?

where the uncertainties of observed flux density are considered.

Since the template perturbation process relies on sub-training sets of each SED
template, different normalization methods result in variations in the training
results. An accurate match between photometric data and SED templates is
crucial for creating well-suited sub-training sets, thereby enhancing the accuracy
of photometric redshift estimation. The impacts of using different normalization
coefficients will be discussed in Section 5.

In principle, the initial templates can be naive log normal curves (CC20) or any
set of SED templates. The initial templates should be comprehensive enough
to cover a variety of galaxy types. Simultaneously, the number of templates
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should be minimized to ensure that each template has sufficient photometric
data during the calibration process. Table 1 shows the results of photo-z derived
from different SED templates, where the fraction of outliers and eonMAD are
defined in Section 5. In this work, the CWW + KIN (Coleman et al. 1980;
Kinney et al. 1996; Benitez et al. 2004) template set is chosen as the initial SED
templates (Figure 3), due to its good photo-z results and a relatively uniform
distribution of the number of galaxies across each sub-training set.

4.2. Smoothing SED Templates

A high resolution SED template with dense sampling on the wavelength grid
will significantly increase the computational time required for the perturbation
algorithm. To simplify the computation, the initial SED template is sampled
using a fixed interval wavelength grid. However, for those SED templates with
many high resolution features, such as strong emission or absorption lines, this
sampling process can greatly impact F\ P,

Figure 4 illustrates these effects using the SB2 {B2004a} template (hereafter
SB2) as an example, showing the differences in the SED and F*™P between
the original template and a smoothed version. Both templates are sampled
with a fixed wavelength step of 100 A. At 5000 A, where the peak of the O
IIT emission line aligns with the sampling grid, the flux density derived from
the i band (F;*™P) can increase by up to 30%. In addition, at 6500 A, where
the Ho emission line is missed due to sampling, the F;°™ is 25% lower than
actual. These discrepancies in F°™P can lead to overcorrection in the perturbed
SED template, as shown in the lower left panel of Figure 4. Although the
shape changes in the perturbed SED template effectively compensate for the
discrepancies shown in the middle left panel, the presence of negative flux values
(at 5000 A) and an exaggerated, unrealistic absorption feature renders the SED
template unusable.

To avoid overcorrection, one approach is to modify the cost function by intro-
ducing an additional penalty term that further constrains changes in the SED
shape, as suggested in Feldmann et al. (2006, ZEBRA). Increasing the sampling
grid density, smoothing the templates before calibration or smoothing the tem-
plates before perturbation can also effectively reduce the overcorrection. In this
work, we choose to smooth the SB2 template using a one-dimensional Gaussian
filter with a o of 100 A. As shown in the right panels of Figure 4, the flux
densities of the smoothed SED templates change smoothly near emission lines.
The difference in F**™P between the sampled and smoothed initial templates is
significantly reduced, and no overcorrection is observed in the perturbed SB2
template. Two starburst templates, SB3_ {B2004a} and SB2_ {B2004a}, due to
their strong emission lines and other dense small features, are smoothed before
calibration (Figure 5).
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4.3. Calibrating SED templates

We utilized the template perturbation algorithm described in Section 3 to cali-
brate the CWW+KIN templates, employing photometric data sourced from the
CSST mock catalog as detailed in Section 2. According to CC20, the training
results are robust to w, and the CWW + KIN templates are calibrated with
w = 1.0, which is similar with the w used in the work of CC20. Given that the
final few iterations have minimal impact on the SED templates (as shown in
Figure 8), we set a maximum of three perturbations per iteration and a maxi-
mum of five iterations for the calibration process. The threshold dMSE is set
to 4%.

In Figure 6, we present the initial SED templates together with their correspond-
ing sub-training sets. The distribution of galaxies among the sub-training sets
appears relatively uniform for each SED template, ranging from approximately
1000 galaxies to at least 500 galaxies per template. Most templates show sim-
ilar initial wMSE, approximately 5. However, the initial wMSE of the bluest
template, SB2, is approximately one order of magnitude larger than the others.
This difference arises from the photometric data matching process, during which
all templates are normalized to a wavelength of 5500 A. The higher wMSE of
SB2 is attributed to its larger template flux density at the blue end compared
to the other templates.

After five iterative processes, the calibrated SED templates and the initial SED
templates are shown in Figure 7. The changes in the profile of the SED templates
are not obvious, and in order to make the changes in the SED profile more
apparent, we use a linear scale for the y-axis below 2, while maintaining a
logarithmic scale for values above 2. Each template shows a decrease in wMSE
to varying degrees after calibration, suggesting a more accurate alignment with
the photometric data when comparing with the original templates.

The SB3 template is illustrated as an example (Figure 8) to demonstrate the
evolution of wMSE and dMSE throughout the calibration process. The initial
stages show a rapid decline in wMSE, indicating that the first few perturba-
tions are usually the most influential, which suggests it is crucial to achieve a
precise alignment between the photometric data and the SED templates during
this stage. After five iterations, the final wMSE of the calibrated SB3 tem-
plate experiences a substantial reduction of over 60%, dropping from 5.211 to
2.036. This demonstrates the efficacy of the calibration process in enhancing
the alignment between the template and the observed photometric data.

In addition to the perturbation algorithm proposed in CC20, the SED fitting
code EAZY (Brammer et al. 2008) can also iteratively calibrate the SED tem-
plates according to the distribution of photometric data, a process known as
Absolute Calibration (Weaver et al. 2022). Additionally, the flux of each band
can also be corrected with an offset. The calibration process is similar to the
perturbation method: the photometric data are first matched with the SED
templates, and then the median value of F!*™P in each rest-frame wavelength
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bin is calculated, as well as the offsets for each band. The SED templates are
calibrated by multiplying the calculated ratio with the flux density of the SEDs
(Ilbert et al. 2006), and the calibration process will be iterated until the flux
offsets in each band change by less than 4%. EAZY can utilize either spec-z or
photo-z for flux and SED calibration.

In this work, we used the same training set as in the perturbation algorithm,
where all galaxies have available spec-z values and parameters, to calibrate the
SED templates using EAZY. The process converged after four iterations, and
the final flux offsets for the different bands are shown in Table 2. The cali-
brated SEDs are displayed in Figure 7 as gray curves. While the calibrated
SED templates from EAZY exhibit the same general trend as those calibrated
with the perturbation algorithm, the amplitude of the changes in the SED pro-
file is less apparent. This is because the calibration method in EAZY splits the
wavelength into larger bins when using a small training set, resulting in smaller
median values for the residuals and, consequently, smaller changes in the SED
profiles. The changes in the SED profiles would be more apparent when using
the full set of galaxies ( 45,000) as the training set, which further suggests that
misalignment between the photometric data and the SED templates may occur
on smaller wavelength scales. In contrast, the perturbation algorithm effectively
corrects misalignment on a small wavelength scale, as it directly adjusts the SED
templates along the wavelength grid without binning. This precise adjustment
is particularly efficient when the discrepancies between Ft°™P and F°" are not
large.

5. Results

We used the photo-z results of galaxies in the test set, which were derived
from the calibrated templates, to quantify improvements in the SED templates
after calibration. This section details the photo-z results estimated with the
SED fitting code EAZY, and discusses the impact of different setups during the
calibration process.

5.1. Photo-z Estimation

The SED fitting code EAZY determines redshifts by maximizing the
redshift probability density function (PDF) which has the form of
p(2) o exp(—x*(2)/2) X Pprior(2), where the x? is derived from templates, or
poor photometric data (Newman & Gruen 2022). Despite a slight decrease in
accuracy at high redshifts, a straightforward and effective method to overcome
these degeneracies is to apply a Bayesian prior based on the redshift distribu-
tion. Benitez (2000) pioneered this approach in BPZ, and EAZY implements
a similar prior to constrain the redshift PDF, as described in (Brammer et
al. 2008, Equation (3)):

pletm) e [ (=2 |
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where v and z, represent the parameters, and the PDF p(z) is dependent on
magnitude m of the reference band. The PDF of galaxies can be calibrated by
multiplying with prior probability density directly. Figure 9 depicts the part of
the Bayesian prior used in this work, which is based on the i band photometric
data and the distribution of z,.

For each galaxy, we use 2., as its best photo-z, which is estimated by the
mean value of the largest peak in PDF:

_ [ zp(z)dz
peak fp(z> dz

where the integration is performed over the largest peak. We employ the nor-
malized median absolute deviation o, y;ap, redshift bias b, and the fraction of
outliers 7 to quantify the accuracy and precision of photo-z estimations, defined
as follows:

z

Tomap = 1.48 x median(|dz — median(dz)|)
b = median(dz)

where dz = (2,cax — 2in)/(1 + 23,,). Outliers are defined as galaxies with [dz| >
0.15. In this work, all photo-zs are derived using single template fitting mode,
with a Bayesian prior based on the i band. The amplitude of the template error
function is set to 0, and the other parameters remain their default values in
EAZY.

5.2. Photo-z Results

Photo-zs may become catastrophic outliers due to degeneracies in the color-
redshift space, an incomplete set of templates, or poor photometric data (New-
man & Gruen 2022). The photo-z results for the test set are displayed in Figure
10, using the template calibrated with the perturbation algorithm. The corre-
sponding values for n and o, ;op are 2.55% and 0.036, respectively. Compared
to the results obtained using the initial CWW + KIN template (3.86% and
0.047), we observe reductions of approximately 30% in n and 20% in o \ap-
The general bias also decreases from +0.0053 to +0.0033.

Templates calibrated with EAZY, which exhibit negligible changes in SED, yield
photo-z results similar to the initial ones, with values n and o, \;ap of 3.52%
and 0.043. In order to focus on the enhancements provided by the perturba-
tion algorithm, and to simplify subsequent figures, we exclude the results from
templates calibrated with the EAZY method.

The 2, estimates for z;,, > 3 are slightly lower than the corresponding z;, val-
ues for both calibrated templates. This discrepancy is caused by the insufficient
high redshift galaxies in our training set, which suggests that in a more realistic
situation where the number of high redshift galaxies with spec-z is limited, the

photo-z may be biased at higher redshift after template calibration.
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In Figure 11, we present dz, the fraction of outliers 0, and o,y ap across different
Zpeak Pins. Compared to the initial CWW + KIN template, the calibrated
CWW + KIN template results in reduced or comparable n and o,ap for
Zpeak < 3. The most significant improvements in 7 and o,\jpp occur in the
range 1 < z,q < 2.2, where the Balmer break has shifted out of the middle
part of the CSST filters, and the Lyman break has not yet reached the middle
part of the CSST filters. In this region, the continuum plays a crucial role in
photo-z estimation. The substantial improvements in the photo-z results for
1 < Zpear < 2.2 are consistent with the results shown in Figure 7, where the
perturbation algorithm primarily modifies the continuum portion of the SEDs.

The application of the prior eliminates a large number of outliers; however, there
are still quite a few outliers in both photo-zs derived by calibrated and initial
SED templates. Most of these outliers exhibit very low SNR in the NUV and/or
u bands. The lack of constraint of photometric data with high SNR makes these
galaxies have multiple peaks in redshift PDFs, which make their photo-zs less
reliable.

A redshift quality exclusion criterion, based on EAZY’s quality parameter @),
(Brammer et al. 2008, Equation (8)), is applied to remove possible outliers. @,
describes the reliability of photo-z estimations; it is related to redshift PDF, y?2
and number of filters Ny, used in fitting, which has formula of

Q.= Daz=0.2
: X?nin/Nﬁlt

where pa,_q o represent the 3o confidence intervals computed from the redshift
PDF. x2,, is the minimum chi-square value between the observed photometric
data and the SED template, and pa,_g 5 is the probability of redshift in 2., +
0.2.

Though sacrificing completeness, selecting based on (), can further improve the
photo-z accuracy. Figure 12 shows that the @, and 2 distribution using the
CWW + KIN template before calibration is much smaller than the values after
calibration in the photo-z estimation. This indicates that calibrated templates
achieve a better match between photometric data and SEDs. This is consistent
with previous results for the smaller wMSE displayed in Figure 8. A smaller @),
distribution is crucial for applying the redshift quality cut.

Figure 12 also displays the photo-z results after applying various @), thresholds.
The calibrated templates consistently show improved performance across differ-
ent (), thresholds. We find that @), = 3 is an effective threshold for maintaining
lower 7 and o,y ap While retaining a sufficient number of galaxies. However,
the number of galaxies significantly decreases when @), < 3, as depicted in the
lower right panel of Figure 12.

Figures 13 and 14 show the photo-z results after excluding galaxies with @, > 3.
The fraction of galaxies excluded is f.;. The fraction of outliers n decreased
significantly after quality cuts, and for CWW + KIN templates, the n and
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Tamap are 1.94% and 0.044 respectively, with a f,,, of 11.8%. Compared to the
initial templates, the result from calibrated CWW 4+ KIN yields even lower 7
and o, \ap, Which are 1.06% and 0.034 respectively. Additionally, the calibrated
template set retains slightly higher completeness after the (), cut, with only
8.71% of galaxies excluded. When compared to Figure 11, Figure 14 shows a
similar trend in the photo-z results across different z,, bins.

5.3. Impact of Various Setups

To evaluate the impact of training set size on the results, we used training
sets of three different sizes: 1% (450 galaxies), 10% (4 x 10 galaxies), and
50% (2 x 10* galaxies) from the catalog. For each training set size, samples
were randomly selected from the catalog, and the templates were calibrated
accordingly. This process was repeated 100 times to reduce potential biases
introduced by sample selection. The results shown in Figure 15 indicate that a
training set with 450 galaxies can improve the photo-z accuracy, especially in
terms of o yap- However, using such a small training set results in unstable
improvements; for instance, 4 out of 100 tests exhibited a higher n compared to
the initial templates. Increasing the training set size can enhance the stability
of the photo-z results. For the CWW+KIN template, we find that training sets
with about 4500 galaxies consistently yield improved photo-z results.

Additionally, we tested the impact of using different normalization methods
during the photometric data matching process. All templates are calibrated
with the same parameters. These results are also shown in Figure 15. For SED
templates calibrated with small size training sets (450 galaxies), normalizing
with Equation (9) yields better photo-z results from calibrated templates. The
photo-z results become similar for both methods when the size of the training
set increased to 4500 galaxies.

Figure 16 shows an example of the wMSE and dMSE history during the calibra-
tion process using different normalization methods. The variations in the initial
wMSE primarily result from the different definitions of two normalization coef-
ficients. When normalizing with Equation (9), dMSE caused by the matching
process is much smaller compared to normalizing with median values or ratios.
This indicates a more accurate alignment between the SED templates and photo-
metric data within sub-training sets, which proves particularly beneficial when
the training set size is small.

As shown in Figure 10, the photo-z results could be biased at high z;,, due to the
lack of high redshift samples in our training sets. To address this, we conducted
an additional test by excluding galaxies with z;,, > 1 from the training sets.
Figure 17 shows the dz values from 100 different test sets for different training
set sizes, divided into different z;, bins. For galaxies with z;, > 4, the photo-z
results are almost unaffected, which is expected since there are very few galaxies
with redshifts greater than 4 in our training sets. However, for galaxies in the

range 1 < z;,, < 4, the templates calibrated without high redshift galaxies show
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slightly lower dz values, indicating that the estimated photo-zs become smaller
after excluding galaxies with z;,, > 1 from the training sets, potentially leading
to underestimated photo-z at higher z;, .

6. Summary

In this work, we used the perturbation algorithm described in CC20 to calibrate
CWW+KIN templates for the CSST mock catalog. Additionally, we tested the
impact of varying training set sizes and different normalization coefficients on
the photometric data matching process. We found that a training set of approx-
imately 4500 galaxies is sufficient to consistently improve the photo-z results
derived from calibrated templates, regardless of the normalization coefficient
used. For smaller training sets (450 galaxies), employing the normalization
coefficient defined by Equation (9) yielded slightly better performance.

The limited representation of high redshift galaxies in our training set introduces
a minor systematic underestimation of their photo-zs compared to the input
redshift values, even in scenarios where the redshift distributions of both the
training and test sets are identical, thereby establishing an ideal condition. In
realistic observations, it is likely that fewer high redshift galaxies will have spec-
z available, potentially introducing additional bias into the photo-z results. The
exclusion of galaxies with z;,, > 1 exacerbates the photo-z underestimation for
high redshift galaxies, relative to SED templates calibrated with z;, > 1 training
data. Future extensions of this study will focus on incorporating hierarchical
Bayesian priors in order to mitigate high redshift biases while preserving the
method’s computational efficiency and small-sample adaptability.

The template calibration approach, which utilizes a perturbation algorithm, ex-
hibits the capacity to enhance accuracy with the deployment of a comparatively
small training set. Moreover, it provides a feasible route for conducting initial
cosmological analyses in stage-IV surveys such as CSST, where template cali-
bration is capable of producing immediately applicable photo-z catalogs prior
to the implementation of comprehensive spectroscopic campaigns.
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