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Abstract

This study defines entropy related to mass ordering in multi-planetary systems
and investigates the impact of planetary system dynamical evolution on plan-
etary mass-ordering entropy using Monte Carlo simulations and N-body dy-
namical numerical simulations. The results demonstrate that behaviors such as
collisions and position exchanges during the dynamical evolution of planetary
systems lead to changes in the mass-ordering entropy of planetary systems.
Position exchanges cause the system’s mass-ordering entropy to gradually in-
crease, while collisions may lead to a decrease in the system’s mass-ordering
entropy. Although the system’s entropy value may decrease, the ratio of the
current system’s mass-ordering entropy to the maximum mass-ordering entropy
achievable by the current system consistently exhibits an increasing trend, indi-
cating that the system is evolving toward equilibrium. Comparisons with Kepler
multi-planetary systems reveal that approximately 16.9%+4.7% of Kepler multi-
planetary systems still maintain an ordered mass arrangement, suggesting that
these systems may not have undergone violent dynamical evolution.

Full Text
Abstract

This study defines an entropy related to mass ordering in multi-planetary sys-
tems and investigates, through Monte Carlo simulations and N-body dynamical
numerical simulations, the influence of planetary system dynamical evolution
on the entropy of planetary mass ordering. The results indicate that collisions,
positional swaps, and other dynamical processes can modify the mass ordering
entropy of planetary systems. Positional swaps tend to gradually increase the
mass ordering entropy, whereas collisions may lead to its decrease. Although a
system’s entropy may decrease, the ratio of its current mass ordering entropy to
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the maximum attainable mass ordering entropy consistently increases, demon-
strating that the system evolves toward equilibrium. Comparison with Kepler
multi-planetary systems reveals that approximately of them still maintain an
ordered mass arrangement, suggesting that these systems may not have experi-
enced violent dynamical evolution.

Key words: methods: numerical, methods: statistical, planets and satellites:
dynamical evolution and stability, entropy

1 Introduction

The second law of thermodynamics elucidates the directional nature of spon-
taneous physical processes in nature, namely that in isolated systems, these
processes proceed in the direction of entropy increase. Statistical physics proves
that the entropy of a thermodynamic system is related to thermodynamic prob-
ability through the Boltzmann relation:

S=klnW

where W represents the number of microscopic states corresponding to a given
macroscopic state (the thermodynamic probability) and k is the Boltzmann
constant. From a microscopic perspective, spontaneous physical processes essen-
tially evolve from states of lower probability to states of higher probability, from
macroscopic states containing fewer microscopic states to those containing more.
Common thermodynamic processes such as heat conduction, work-to-heat con-
version, and diffusion phenomena are all entropy-increasing processes—results
of increased thermodynamic probability. This increase in thermodynamic prob-
ability fundamentally represents the evolution of a system from non-equilibrium
to equilibrium states. Beyond these heat-related phenomena, many other natu-
ral processes, such as the dynamical evolution of planetary systems, also proceed
toward equilibrium. This paper draws an analogy with the definition of Boltz-
mann entropy in thermodynamics to define an entropy related to planetary
mass ordering in planetary systems, and combines Monte Carlo simulations
with N-body dynamical numerical simulations to study the evolution of this
mass ordering entropy.

2 Mass Ordering Entropy in Kepler Planetary Systems

Some studies [5] suggest that the arrangement of planets in Kepler systems
is ordered, meaning that planets farther from the central star tend to have
larger radii and masses. In thermodynamics, order typically implies low en-
tropy. Many theories of planetary evolution [6, 7] propose that the planetary
systems we observe today have undergone tens of millions of years of dynami-
cal evolution. During this evolution, planets may experience mutual collisions,
mergers, and positional exchanges, leading us to expect that the observed plan-
etary arrangements should be highly disordered. If planetary systems exhibit
very ordered arrangements, this suggests that they may not have experienced
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particularly violent dynamical processes, at least not frequent changes in their
relative positions. Inferring the evolutionary history of planetary systems based
on their current entropy is therefore crucial for understanding their dynamical
evolution. But how do we define an entropy related to planetary ordering? An
appropriate method is to use the microscopic interpretation of entropy to define
a sorting-related entropy in multi-planetary systems.

Building upon the approach in reference [8], which defined an entropy related to
planetary radius ordering based on the Boltzmann entropy form of equation (1),
we similarly define an entropy related to planetary mass ordering. We choose
mass over radius because mass is directly related to the dynamical evolution of
planetary systems. In our definition, the macrostate is the planetary sorting
score, and the corresponding microstate is the number of possible planetary
arrangements for that score. In a system with N planets, the sorting score for
adjacent planetary masses is defined as follows: if m;,; > m,;, then t; = 1;

otherwise, ¢; = —1, where m; and m,,, are the masses of the i-th and (¢ + 1)-
th planets counted from the inside outward (i.e., from near the star to farther
N-1

away). The total mass ordering score for the system is 7" = .~ " t,. The
thermodynamic probability corresponding to this score—that is, the number
of microstates Wr—can be calculated using Eulerian numbers Ay , [8]. The

Eulerian numbers are expressed as:

Ay = jzf;?—w (” j 1) (g+1—j)"

The mass ordering entropy for a planetary system with score T is then:

Sp=WmWr=InAy nir 1)

Note that this definition of ordering entropy omits the Boltzmann constant from
the traditional Boltzmann relation. If the planets in a system are arranged from
inside to outside in order of increasing mass, then 7'= N — 1 and there is only
one microstate (W, = 1), giving a mass ordering entropy of 0. Similarly, if
planets are arranged from inside to outside in order of decreasing mass, then
T = —(N — 1) and again there is only one microstate, yielding zero entropy.
Thus, when planetary systems are in ordered arrangements, their ordering en-
tropy is very small. While reference [8] considered additional factors such as
the influence of planetary sorting integration paths and the effect of adjacent
planetary pairs with opposite score signs on the number of states, these require
numerical statistical methods and involve substantial computational cost. Since
the evolutionary trends of these three types of entropy are similar, we have cho-
sen the simplest first type for our work. Although the number of planets in a
planetary system is generally less than 10, not constituting a “large-number”
system, its entropy evolution can be analogized to the evolution of Boltzmann
entropy in thermodynamics, reflecting the system’s progression toward equilib-
rium.
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3 Impact of Planetary System Dynamical Evolution on
Mass Ordering Entropy

3.1 Monte Carlo Simulations

The core accretion model suggests that low-mass planets tend to form in the
inner regions of planetary systems, while high-mass planets form in the outer
regions [9]. However, if positional exchanges occur during planetary system
evolution, the mass ordering entropy will change accordingly. Using Monte
Carlo methods, reference [8] simulated the evolution of radius ordering entropy
caused by positional exchanges during planetary system evolution and found
that the radius ordering entropy gradually increased with system evolution. In
reality, besides positional exchanges, planets may also undergo collisions and
scattering processes, all of which can alter the mass ordering entropy. Here, we
similarly employ Monte Carlo methods to simulate the dynamical evolution of
100 planetary systems, each containing 20 planets. The masses of planets in
these systems are drawn from a Gaussian distribution with a mean of 6 Earth
masses and a standard deviation of 1 Earth mass, with a minimum mass of
0.1 Earth masses. We initially arrange these planets from inside to outside
in order of increasing mass. During each iteration, we assume that adjacent
planets have a 10% probability of undergoing a positional exchange and a 0.5%
probability of experiencing a collision, with at most one pair of adjacent planets
interacting per iteration. Additionally, we stipulate that collisions cease when
only 8 planets remain in the system. To compare the effects of collisions and
positional exchanges on planetary system mass ordering entropy, we conduct two
control simulations: one considering only interplanetary collisions and another
considering only positional swaps. In our simulations, all planetary collisions are
treated as mass mergers [10]. Each planetary system undergoes 1,000 iterations,
and we track the evolution of mass ordering entropy in these systems.

Furthermore, we define a new quantity F» to measure whether the system has
reached a state of maximum thermodynamic probability—that is, equilibrium.
F is defined as:
S
Fr=—L

T Qmax
ST

where S is the current system’s mass ordering entropy and S7** is the maxi-

mum entropy achievable for the mass ordering of planets in the current system.
If F7r = 1, the system has reached equilibrium (the state of maximum entropy).
A smaller F indicates greater distance from equilibrium and a more ordered
system. The evolution of F, and Sy is shown in Figure 1 [Figure 1: see original
paper].

Figure 1 illustrates the evolution of entropy and the ratio of entropy to maxi-
mum entropy in 100 sets of planetary systems, each containing 20 planets with
an initial entropy of 0. From top to bottom, the plots show scenarios considering
only positional swaps, only collisions, and both positional swaps and collisions
simultaneously. The red shaded areas represent the 68% confidence intervals
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for the 100 sets of systems.

As shown, when only positional exchanges are considered, the planetary sys-
tem’s mass ordering entropy S, continuously increases with iteration number.
After 1,000 iterations, most planetary systems reach maximum entropy, with
planetary mass distributions becoming completely random. When only colli-
sions are considered, the system’s entropy first increases and then decreases
with iteration number. The initial increase occurs because collisional mergers
alter the initial mass ordering, increasing the number of microstates. The sub-
sequent decrease results from the reduction in planetary number, which reduces
the number of microstates accordingly. When both positional swaps and col-
lisions are considered, the planetary system’s entropy also first increases and
then decreases. In our simulations, the reduction in planetary number has a
significant impact on the system’s entropy value. However, the evolution of
F; shows that regardless of whether collisions are included, F7 for planetary
systems tends to increase with iteration number. For some systems, despite a
decrease in planetary number, they remain in the state of maximum thermo-
dynamic probability. Therefore, both collisions and positional exchanges drive
planetary systems toward equilibrium.

3.2 N-body Numerical Simulations

The above simulations are idealized, where planetary positional exchanges and
collisions occur with given probabilities and only between adjacent planets.
Next, we examine the impact of planetary system dynamical evolution on mass
ordering entropy through N-body numerical simulations. We assume each plan-
etary system contains 20 planets orbiting a central star of solar mass in coplanar
circular orbits. The innermost planet’s semi-major axis is set to 0.1 au. Within
each system, the distance between planets is set to be a multiple of their mutual
Hill radius, with the semi-major axes of other planets selected according to the
relation: N

Uiy —a; = K- T%’Hl)
where a; is the semi-major axis of the i-th planet, M, is the central star’s mass
(taken as one solar mass in this study), and K is a dimensionless quantity. A
smaller K value indicates closer spacing between adjacent planets and greater
system instability. Here, we assume K is drawn from a Gaussian distribution
with a mean of 6 and a standard deviation of 3 to ensure that planetary systems
exhibit unstable behavior during evolution [11], allowing us to study changes in
mass ordering entropy during dynamical evolution. Notably, to avoid excessively
small K values and potential negative values, we only consider K > 1. The mass
of each planet in the system is drawn from a Gaussian distribution with a mean
of 6 Earth masses and a standard deviation of 1 Earth mass, with a minimum
mass of 0.1 Earth masses. Based on planetary masses, we use the Forecaster
package from reference [12] to estimate planetary radii. We assume the initial
mean anomalies of these 20 planets are randomly distributed between 0° and
360°.
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Within the same system, the 20 planets can be arranged with masses increasing
sequentially, decreasing sequentially, or randomly. We simulate 100 planetary
systems for each of these three possibilities, designated as sets A, B, and C. We
consider Newtonian gravitational forces between planets and the central star
and between planets themselves, integrating these systems using the mercurius
integrator in the Python package REBOUND ([13, 14] for a duration of 106
yr. During this 10% yr period, when the distance between two planets becomes
smaller than the sum of their radii, we consider a collision to have occurred. In
our simulations, all collisions result in planetary mergers with conservation of
orbital angular momentum, total mass, and momentum. Additionally, when a
planet’s distance from the central star exceeds 100 au, we consider it ejected
from the planetary system. In subsequent analyses, we only count systems
containing at least 4 planets at the end of integration.

The mass ordering entropy gradually increases for sets A and B. In set A,
planetary masses initially increase from inside to outside, so the initial entropy
is 0. We select one planetary system to analyze its mass ordering entropy
evolution, as shown in Figure 2 [Figure 2: see original paper]. The left panel of
Figure 2 shows that at the initial moment, planets in the system are arranged
with increasing mass from inside to outside. Within 10 yr, the total number of
planets decreases from 20 to 10, and some planets undergo positional exchanges,
increasing the system’s mass ordering entropy. Between 103 yr and 10° yr, the
number of planets decreases from 10 to 6, reducing the system’s mass ordering
entropy, but £ increases to 1. This indicates that although the system’s entropy
value decreases, its current arrangement represents the most probable state
for that system. Throughout our simulation, the system’s final configuration
changes around 7.6 x 10° yr, leaving only 5 planets, which reduces the number
of microstates and the system’s entropy value, but the system remains in its
most probable arrangement.

Figure 3 [Figure 3: see original paper| shows the evolution of Fi for the three
simulation sets. The majority of systems in sets A and B show increasing
F with evolutionary time, indicating that most systems gradually approach
equilibrium. Meanwhile, set C maintains a consistently high F value. For
sets A and B, which initially have F = 0, only 2% of systems maintain mass
ordering from smallest to largest or largest to smallest after evolution. For set
C, which initially has F. close to 1, only 1% of systems end with random mass
ordering.

4 Comparison with Observations

The Kepler satellite has detected 77 systems containing four or more planets
(excluding Jupiter-containing systems). Here we consider only systems with four
or more planets because these have relatively high observational completeness
[15] and facilitate comparison with simulation results. Previous research [5]
concluded that Kepler planetary systems exhibit relatively ordered mass sort-
ing, treating all Kepler systems as an ensemble. They compared real Kepler
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planetary system mass ordering with random mass ordering and found that real
Kepler systems show higher ordering. Building on this concept, we compare the
average Frp of the 77 real Kepler systems (denoted as (Fp)) with that of ran-
domly mass-ordered systems. Specifically, we first use the mass-radius relation
from reference [12] to estimate planetary masses based on their radii. We then
take all planets from these 77 Kepler systems as a total sample and redistribute
them back to the systems according to each system’s original planet count. Af-
ter redistribution, we recalculate Fip for all systems. Repeating this process
1,000 times yields 1,000 sets of (F), with results shown in Figure 4 [Figure 4:
see original paper].

The upper panel of Figure 4 shows the distribution of (F;) from random mass
ordering versus the real value for Kepler systems, while the lower panel shows
the distribution of Fy for Kepler multi-planet systems. The median (Fr) from
random mass ordering is 0.911 (very close to the final median of 0.918 from ran-
dom distribution numerical simulations), with a standard deviation of 0.027.
The real Kepler systems have (F) = 0.798. Therefore, the significance of
ordered mass sorting in real Kepler systems is 4.10, slightly lower than that
obtained in reference [5]. One possible reason is that the mass ordering param-
eter defined by equation (3) in reference [5] actually only compares the relative
masses of the outermost and innermost planets in a system.

Among the 77 Kepler planetary systems, 53 have F, > 0.9, indicating that these
systems likely experienced relatively violent dynamical processes during their
evolutionary history. Before gas disk dissipation, these systems were probably
in a very compact configuration similar to our numerical simulations [7]. After
gas disk dissipation, without the buffering effect of the gas disk, interactions
between planets excited their eccentricities, making the entire system highly
unstable. Mutual collisions, positional exchanges, or scattering among planets
led to highly disordered mass arrangements.

Additionally, 13 systems have Fr, < 0.5. These systems likely maintained their
primordial mass ordering and probably did not experience frequent positional
exchanges or collisions during their evolutionary history. The orbital configura-
tions of these systems may not have been so compact before gas disk dissipation,
or their planets may have been in relatively stable first-order resonant chains af-
ter disk migration. After gas disk dissipation, even without the buffering effect
of the gas disk, interactions between planets would not cause frequent instabil-
ity within the system. These systems may retain the mass distribution from the
time of gas disk dispersal. The fraction of systems with F, < 0.5 is 16.9% +
4.7%. Observationally, the fraction of planetary systems with F < 0.5 is [miss-
ing value], where the error is Poissonian. In contrast, the random distribution
numerical simulations from Section 3.2 show that only 1.0% + 1.0% of plane-
tary systems have Fp < 0.5. Therefore, at the 3.30 level, Kepler multi-planet
systems are more ordered than randomly distributed simulated systems.
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5 Conclusions

Based on previous research [8], this paper presents a definition of entropy related
to planetary mass ordering in multi-planet systems and investigates, through
Monte Carlo simulations and N-body dynamical simulations, the impact of plan-
etary system dynamical evolution on mass ordering entropy.

Our results demonstrate that collisions, positional exchanges, and other be-
haviors during planetary system dynamical evolution can alter mass ordering
entropy. Although system entropy may decrease in some cases, the ratio of the
current system’s mass ordering entropy to its maximum attainable mass order-
ing entropy consistently shows an increasing trend, indicating that the system
gradually approaches equilibrium. Comparison with Kepler multi-planet sys-
tems reveals that approximately maintain high ordering, suggesting that these
systems likely did not experience violent dynamical evolution after formation
and retain their primordial mass ordering. This provides important clues for
better understanding the dynamical evolution of exoplanetary systems.
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