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The double revolving fiber positioning technology employed in the Large Sky
Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) represents one of
the most successful advancements in large-scale multi-objective spectroscopy.
The precision of fiber positioning is crucial, as it directly impacts the obser-
vational efficiency of LAMOST. A critical component of the fiber positioning
system is the closed-loop control system, which traditionally utilizes the light
spot generated at fiber end. However, this study introduces a novel approach
based on front-illuminated LAMOST focal plane image measurements. Unlike
back-illumination, front-illumination does not necessitate internal lighting in
the spectrograph, thus reducing light pollution and eliminating the need for ad-
ditional photography. This method employs an artificial intelligence model to
analyze images captured at the focal plane unit (FPU), using the image of the
white ceramic head on the FPU as the data set for training, the model is capa-
ble of accurately measuring the fiber positions solely through front-illumination.
Preliminary trials indicate that the measurement accuracy achieved using the
front-illumination method is approximately 0. 13. This level of precision meets
the stringent fiber positioning accuracy requirement of LAMOST, set at 0. 2.
Furthermore, this novel approach demonstrates compatibility with LAMOST’s
existing closed-loop fiber control system, offering potential for seamless integra-
tion and enhanced operational efficiency.
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Abstract

The double revolving fiber positioning technology employed in the Large Sky
Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) represents one
of the most successful advancements in large-scale multi-object spectroscopy.
The precision of fiber positioning is crucial, as it directly impacts the obser-
vational efficiency of LAMOST. A critical component of the fiber positioning
system is the closed-loop control system, which traditionally utilizes the light
spot generated at the fiber end. However, this study introduces a novel approach
based on front-illuminated LAMOST focal plane image measurements. Unlike
back-illumination, front-illumination does not necessitate internal lighting in
the spectrograph, thus reducing light pollution and eliminating the need for ad-
ditional photography. This method employs an artificial intelligence model to
analyze images captured at the focal plane unit (FPU), using the image of the
white ceramic head on the FPU as the dataset for training. The model is ca-
pable of accurately measuring fiber positions solely through front-illumination.
Preliminary trials indicate that the measurement accuracy achieved using the
front-illumination method is approximately 0.13 arcseconds. This level of preci-
sion meets the stringent fiber positioning accuracy requirement of LAMOST, set
at 0.2 arcseconds. Furthermore, this novel approach demonstrates compatibility
with LAMOST’s existing closed-loop fiber control system, offering potential for
seamless integration and enhanced operational efficiency.

Key words: instrumentation: detectors —techniques: image processing — meth-
ods: data analysis

1. Introduction

Multi-object fiber surveys have significantly enhanced the efficiency of astronom-
ical observations by allowing the simultaneous observation of multiple celestial
objects. This advancement is achieved through the deployment of multiple mov-
able fiber positioning units. Automation technology is now integral to large-scale
multifiber spectral surveys, providing precise control and detection of the fibers.
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A notable development in this field is the parallel controllable fiber positioning
system (Xing et al. 1998), which utilizes double revolving fiber positioning units
(FPUs).

This innovative system was first implemented in the Large Sky Area Multi-
Object Fiber Spectroscopic Telescope (LAMOST; Cui et al. 2012). LAMOST
can position 4000 fibers with an impressive accuracy of 0.4 arcseconds within
only 10 minutes, marking a significant milestone in the automation and preci-
sion of astronomical surveys. Subsequent surveys, including the Dark Energy
Spectroscopic Instrument (DESI; Schubnell et al. 2016), the Multi-Object Op-
tical and Near-Infrared Spectrograph (MOONS; Montgomery et al. 2016), and
the Prime Focus Spectrograph (PFS; Fisher et al. 2014) for the Subaru Tele-
scope, have all adopted fiber positioning systems analogous to the one utilized
by LAMOST.

The new surveys usually use a visual closed-loop system to detect the fiber posi-
tion more precisely, which is always equipped with a monitor camera, e.g., PFS
(Wang et al. 2016), MOONS (Drass et al. 2016) and DESI (Baltay et al. 2019).
However, LAMOST currently employs a semi-open loop system, which does
not provide a method to confirm whether the fiber has moved to the correct
position during observations. To mitigate this, LAMOST calibrates the coordi-
nates of the FPUs at the beginning of each observation season, ensuring precise
zero positions and accurate movement trajectories. Additionally, the system
requires some time to return the FPUs to their pre-calibrated home positions
before moving to new positions. Despite these efforts, occasional mechanical
failures can lead to collisions between adjacent FPUs, potentially impacting
fiber positioning accuracy and risking damage to the FPUs themselves. The
calibration and repositioning process incurs additional time and costs due to
the lack of a real-time system for detecting the exact fiber location. LAMOST
is now actively pursuing the implementation of a closed-loop real-time system
to enhance observation precision, and already has a research program based on
back-illumination (Zhou et al. 2018).

The closed-loop system primarily comprises two categories of methods: the back-
illuminated method and the front-illuminated method. The back-illuminated
method is a well-established technique and has been widely implemented in
several multi-object fiber surveys, such as DESI (Baltay et al. 2019) and PFS
(Wang et al. 2016). This method operates by emitting light from the end of
the spectrometer, which then travels through the optical fiber and exits at the
focal plane. A high-precision camera captures the emitted light to calculate the
position of the optical fiber with high accuracy. However, this method requires
a complex back-illumination system. For instance, when LAMOST attempts to
construct its back-illuminated system, it must include a slit of LED bulbs that
matches the fiber slit and a device to move the LED slit in and out of the light
path. This movement during closed-loop control introduces potential instability
due to an increased risk of mechanical errors. Furthermore, the presence of
light inside the spectrograph poses a risk of light pollution, with the potential
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for overwhelming photons to cause CCD saturation and residual electric charge
erase. Additionally, the mechanical movement of the device increases overhead
time during observations.

The front-illumination technique, as implemented in the MOONS project (Drass
et al. 2016) and methodologically explored in LAMOST (Zhou et al. 2022), pro-
vides a direct approach to fiber positioning through the capture of illuminated
focal plane images. This allows for the complete acquisition of the FPUs’ me-
chanical structure, which is then used to calculate the fiber positions. In addition
to determining the fiber positions, it is essential to ascertain the posture of the
FPUs to prevent mechanical collisions during LAMOST observations (Zhou et
al. 2021). Consequently, for the back-illuminated method, two captures are re-
quired: one back-illuminated shot for fiber positions and one front-illuminated
shot for FPU posture, resulting in additional time consumption and reduced ob-
servation time. In contrast, the front-illuminated method is more time-efficient.
However, achieving the necessary accuracy with this method is challenging. To
precisely determine the fiber positions, the method demands either a complex
hardware mechanical structure, such as dedicated metrology targets atop the
FPU (Drass et al. 2016), or a sophisticated algorithm for analyzing the FPUS’
mechanical structure (Zhou et al. 2022).

For LAMOST, the lack of a dedicated front-illuminated detection design ne-
cessitates the development of an advanced algorithm for precise fiber position
detection. This algorithm is designed to accurately locate fiber positions by de-
tecting the pinhole of the fiber (as shown in Figure 1), achieving the necessary
precision despite numerous environmental factors impacting actual observations.
Accurately identifying the pinhole of each fiber within a complex scene contain-
ing thousands of FPUs presents a significant challenge. Our goal is to attain
pinpoint accuracy within a margin of error of 0.2 arcseconds, equivalent to ap-
proximately 0.17 pixels. Additionally, compensating for deviations due to the
camera’s angle relative to the focal plane and managing the varying orientations
of FPUs during operation further complicate the task. Our research indicates
that front-illuminated images contain sufficient information to utilize artificial
intelligence (AI) technology for fiber detection. This study focuses on employ-
ing Al methods to achieve front-illuminated closed-loop control of the telescope
through modifications to the software algorithm alone, thereby exploring new
methodologies for future multi-object fiber surveys.

The structure of this paper is as follows: Section 2 outlines the methodologies
employed and provides detailed descriptions of each. Section 3 presents the re-
sults obtained from our study, accompanied by a comparative analysis. Finally,
Section 4 discusses the limitations of the study, while Section 5 provides the
conclusions.
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2. Method

In this study, we have developed an Al-based methodology capable of accurately
determining the real-time positions of optical fibers using only front-illuminated
images. This method adheres to the precision standards required by the LAM-
OST optical fiber closed-loop control system. The overall workflow of our ap-
proach is illustrated in Figure 2. This section will provide a detailed exposition
of our method.

2.1. Front-illuminated Images and Preprocessing

The closed-loop control system being updated by LAMOST utilizes a solution
based on back-illuminated imaging. Within this system, the FPUs are illu-
minated from the spectrometer end by the back-illuminator to determine the
optical fiber positions. Additionally, FPUs can be illuminated by the front-
illuminator to capture their complete mechanical structures. The system em-
ploys six high-precision cameras, which collectively cover the entire focal plane.
These cameras are positioned approximately 20 m from the focal plane. Each
camera is equipped with an 800 mm focal length lens and a 7920 x 6004 pixel
CMOS sensor. The image pixel size is 4.6 x 4.6 m, translating to 115 m on
the focal plane or 1.18 arcseconds in the sky. For preliminary testing of the pro-
posed methodology, only one camera was utilized in this study. The captured
image is shown in Figure 1.

The captured image has a 24-bit bit depth, resulting in a pixel range of 0—
224 — 1, which is not optimal for subsequent processing. Standard algorithms
typically operate on 8-bit images; therefore, it is necessary to convert the 24-
bit image to an 8-bit format. A widely adopted approach to address this issue
is grayscale stretching, which remaps the original pixel values to a new range.
In this study, the pixel range [0, 22* — 1] is transformed to [0, 255]. The
grayscale histogram of the original image is displayed in Figure 3. Notably,
the captured image exhibits a significant difference between the maximum and
minimum pixel values, exceeding 20,000. Nonetheless, the majority of pixel
values predominantly fall within a narrower range of 4000-10,000. To ensure
the inclusion of the white ceramic head information, pixels exceeding the value of
25,000 must also be considered. If these pixel values are directly scaled linearly
to the [0, 255] range, the vast majority would be compressed into a range between
0 and 50. The resulting grayscale histogram is shown in Figure 4(b). The image
generated after this mapping, as depicted in Figure 4(c), renders the mechanical
structure of the Focal Plane Unit (FPU) almost entirely indiscernible, thereby
obstructing further image analysis.

To mitigate this issue, logarithmic stretching is proposed as an effective solution.
This technique employs a logarithmic mapping function to stretch pixel values
in the low grayscale range, which are densely clustered, while compressing the
pixel values in the high grayscale range, where values are more sparsely dis-
tributed. If the pixel value at position (x, y) is denoted as P, , the logarithmic
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transformation is applied using the following formula:

pP,,=Alog(P,,+1)

where A is a constant scaling factor. The transformed pixel values are then
rescaled to the range [0, 255]. To further refine the grayscale distribution and
enhance the image contrast, only pixel values within a specified range are con-
sidered for this mapping. This selective approach prevents the lower pixel val-
ues, which tend to dominate due to the nature of logarithmic mapping, from
occupying too many grayscale levels. As a result, this mitigates the compres-
sion of details in the low-intensity regions of the image. Figure 4(e) presents
the grayscale histogram following this transformation, which still exhibits a
significant imbalance in grayscale distribution. Consequently, as shown in Fig-
ure 4(f), the resulting image continues to obscure finer mechanical structures,
demonstrating the limitations of this particular logarithmic mapping approach.

It has been observed that low-value background pixels, which typically contain
minimal information, frequently occupy a significant portion of the grayscale
range even after undergoing mapping. Meanwhile, the pixels that encode me-
chanical structure information are compressed into a very narrow range by the
logarithmic function due to their higher values. This compression renders it chal-
lenging to distinguish between the mechanical structure and the background.
To mitigate this issue, it is advisable to use the rapidly increasing part of the
logarithmic function to map both the background and mechanical structure pix-
els. This can be achieved by introducing a constant parameter into the mapping
formula, optimizing the contrast between these regions. The improved mapping
formula is expressed as:

P,,=Alog(P, ,—b+1)

Adding the constant b is analogous to performing a rightward shift of the loga-
rithmic function as a whole, thereby enhancing the visibility of the black back-
ground and darker mechanical structures in regions where the function exhibits
rapid changes. Given that the mapping is restricted to the pixel range (5000,
25,000), b must not exceed 5000; otherwise, negative pixel values will result after
the mapping process. Experimental results have demonstrated that selecting b
within the range (4500, 4900) yields the desired effect by improving the clarity of
darker structures. Consequently, the median value b = 4700 is adopted in this
work. Even if alternative values of b within this interval are adopted, the result-
ing image effects remain comparable. Moreover, as long as the image processing
parameters are maintained consistently during both training and inference, the
positioning accuracy will remain unaffected.

Under these conditions, the grayscale distribution of the image exhibits a well-
balanced contrast, facilitating a clearer distinction between the background and
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the mechanical structure. The grayscale distribution has been effectively opti-
mized, as demonstrated in Figures 4(h) and (i). It is important to emphasize
that this method does not result in any loss of information. The value of b
continues to represent the pixel value of the black background within the range
of (0, 5000). During implementation, all pixel values less than b are assigned
the value b before subtraction. This operation solely affects the background
information and has no impact on the regions containing actual structural in-
formation.

2.2. Dataset

In this research, we utilize imagery captured under actual observational con-
ditions to compose our training datasets. To train an AI model for fiber po-
sitioning, it is imperative to first establish a training dataset that includes
paired data: front-illuminated fiber images alongside their precise positional
coordinates. For each fiber image captured using front illumination, we employ
the back-illumination technique to accurately ascertain the fiber’s coordinates,
which serve as the ground truth label for our dataset. To ensure exact corre-
spondence between the fiber positions in the front- and back-illuminated images,
both the fiber and the camera are held stationary during the acquisition process.
Moreover, the images are captured in rapid succession to guarantee that the po-
sitional coordinates of the fibers remain consistent across both sets of images.
The back-illumination method, known for its high accuracy, is widely utilized,
thereby enhancing the reliability of the ground truth labels within our dataset.
It is critical to emphasize that only the back-illuminated images are used for
the dataset’s formulation, enabling the AT model to effectively learn to deduce
fiber positions from front-illuminated images. Once the model is trained, it can
determine fiber positional coordinates solely from the front-illuminated images.

In the acquisition of fiber coordinates via back illumination, the two-dimensional
Gaussian fitting method is typically employed. This method is predicated on the
premise that the light emitted from the focal plane exhibits an ideal Gaussian
intensity distribution (Dong & Wang 2012). Specifically, the intensity distribu-
tion across any perpendicular cross-section (x, y) of the light beam conforms to
a Gaussian profile. The Gaussian intensity function is defined as:

(5E*930)2 (y*%)z
I =H — —
(z,y) exp ( 207 203

Here, I(x, y) represents the intensity of the laser beam at the cross-section
coordinates (x, y); H denotes the peak intensity of this cross-section; (x,, yo)
specifies the central position of the spot; and o, o, are the standard deviations
along the two orthogonal directions of the beam. Based on the functional form
of this equation, the location of the peak intensity (H) is inferred to coincide
with the central position of the spot. Thus, in this study, the position of the
peak intensity is utilized to determine the central position of the spot.
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Our dataset comprises more than 12,000 images, as shown in Figure 5(a). Of
these, 60% constitute the training set, with the remainder divided between
validation and test sets. Our final dataset consists of 50 x 50 pixel images
that only contain the white ceramic header region of the FPU, which can be
segmented utilizing the novel model developed by Professor Song’s team at the
LAMOST. Any cutting method can be used to reproduce our method, as long
as there is a complete ceramic head in the cut image. We posit that this region
sufficiently captures the majority of the necessary fiber position information,
thereby obviating the need for a complete FPU image. To substantiate this
hypothesis, we conducted a targeted comparative analysis, which demonstrated
that employing the entire FPU as the dataset actually results in a significant
decrease in accuracy. This outcome suggests that the full FPU image introduces
extraneous information that detracts from model performance.

2.3. Network Architecture

Recent advances in Al have brought transformative progress across various
fields. The development of deep learning techniques, particularly the exten-
sive use of convolutional neural networks (CNNs), has significantly enhanced
AT’s ability to perform tasks such as image classification and object detection.
These capabilities have proven invaluable in diverse domains, including medical
imaging analysis and autonomous driving. Moreover, Al is increasingly be-
ing integrated into astronomical research, where it aids in optimizing telescope
operations and data analysis. Image semantic segmentation technology was em-
ployed to estimate the initial orientation of the FPU, reducing the incidence of
collisions (Zhou et al. 2021). Furthermore, object detection technology was uti-
lized to develop an autofocus determination method tailored for the LAMOST.
This method effectively enhances the closed-loop control system’s performance
under varying illumination conditions, both front and backlit (Zhou et al. 2022).

The evolution of neural network architectures for image processing has marked
significant technological advancements, with milestones including AlexNet
(Krizhevsky et al. 2012), ResNet (He et al. 2016), and the recent Swin
Transformer (Liu et al. 2021). Each of these developments has enhanced the
performance and broadened the applications of image processing technologies.
In our method, we evaluated three distinct network architectures as potential
backbones and compared their respective performance.

In 2012, AlexNet emerged as a pivotal advancement in deep learning for image
processing. Utilizing a CNN architecture, it employed hierarchical convolution
operations which substantially enhanced the accuracy of image classification.
This breakthrough established AlexNet as a foundational model for deep learn-
ing applications. Introduced by Microsoft Research in 2015, the Residual Net-
work (ResNet) provided an innovative solution to the issue of vanishing gra-
dients in deep network training. ResNet’s introduction of “skip connections”
facilitated information retention and transmission across the network, address-
ing challenges associated with training deeper networks. This architecture not
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only increased the depth and performance of networks but also significantly
mitigated the problem of overfitting. Due to its robust structure and superior
performance, ResNet has found extensive applications in industrial settings, par-
ticularly in image recognition and object detection, and has become a benchmark
in deep learning models. The Swin Transformer represents the latest innovation
in image processing network structures. Integrating the self-attention mech-
anisms of the Transformer with the local processing benefits of convolutional
networks, it hierarchically segments images into small patches and aggregates
features across layers. This approach not only processes image features effi-
ciently but also captures detailed local and global information. Demonstrating
superior performance in various computer vision tasks, including image classifi-
cation, object detection, and segmentation, the Swin Transformer offers higher
accuracy and flexibility compared to traditional CNNs, positioning itself as the
forthcoming standard in image processing networks.

Pre-trained models in deep learning are those initially trained on large-scale
datasets, thereby acquiring preliminary weights that enable them to learn rich
feature representations. These learned features are often generalizable and can
effectively be transferred to various image processing tasks. The incorporation
of this prior knowledge mitigates the demands on data and resources, enhances
training efficiency, and accelerates the convergence rate of the final model. Fur-
thermore, the parameters of pre-trained models, including learning rates, weight
initialization methods, and the number of network layers, have been extensively
optimized through large-scale experiments. This extensive pre-validation helps
in avoiding common issues such as training instability, vanishing or exploding
gradients, which are often encountered when training models from scratch. As a
result, the training process and model performance remain robust and reliable.
However, while these classic models often come with pre-trained versions, a
limitation arises from their reliance on public datasets, which typically require
a fixed input image size, most commonly 224 x 224 pixels. This constraint
necessitates the interpolation of smaller images, such as 50 x 50 pixels, to fit
the model’s input size, which is suboptimal for high-precision tasks that require
finer details. To address this issue, we trained ResNet18 from scratch to process
50 x 50 images, and based on it, designed smaller convolution kernels specifi-
cally for 50 x 50 images to make the growth of the receptive field more gradual,
allowing the network to learn detailed local features layer by layer.

The architecture of the deep neural network under discussion employs a
feature extractor, typically the network backbone, tasked with deriving
high-dimensional semantic features from input imagery. Subsequently, these
features undergo coordinate regression to yield the requisite positional outputs.
We initially flattened the feature map obtained from the backbone network and
employed a linear layer to transform the flattened features into coordinates.
However, this approach did not meet the requisite accuracy standards. Conse-
quently, we explored alternative methodologies to address this limitation. The
critical phase of converting the high-dimensional features into precise coordinate
predictions falls to the regression head, a component whose design significantly
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influences the overall accuracy of the model. This is particularly vital in tasks
requiring sub-pixel precision, where effective coordinate prediction remains
a challenging but essential aspect. Various methodologies for constructing
regression heads are prevalent, including linear layer regression, heat map
matching (Newell et al. 2016), and the Differentiable Spatial to Numerical
Transform (DSNT) approach (Nibali et al. 2018). The linear layer regression
technique, commonly implemented through a fully connected layer, enables
direct prediction of target coordinates from features processed by the CNN.
While straightforward and intuitive, this method may suffer from a lack of
spatial generalization capability, and it often struggles with complex or highly
variable input data structures. The heat map matching technique, extensively
utilized in human pose estimation, offers an indirect means of keypoint location
estimation by generating a heat map. On this map, high-value areas denote
the probable locations of keypoints, aligning with their positions in the input
image. However, the use of the argmax operation to estimate the predicted
coordinate position inherently limits the output to integer values, which
fails to meet the precision required for our application. Furthermore, this
method demonstrates suboptimal performance when applied to low-resolution
feature maps. Contrastingly, DSNT offers a sophisticated alternative that
excels in handling low-resolution maps without accuracy degradation. This
method, involving a fully differentiable layer, estimates keypoint coordinates
by calculating a weighted average across the heat map. This approach not only
facilitates numerical regression of coordinates but also ensures smooth gradient
feedback across all pixels during inference, crucial for integrating DSNT within
an end-to-end training framework. Crucially, DSNT’s ability to compute
non-integer coordinates and maintain efficacy across various resolutions marks
a significant improvement over traditional heat map methods, rendering it
particularly apt for tasks demanding high precision in coordinate prediction.
Figure 6 is an example of a DSNT regression calculation.

The process underlying our method is illustrated in Figure 7, which outlines a
two-stage framework. In the initial stage, we apply the segmentation technique
devised by Professor Song’s team at the LAMOST to divide the fiber focal plane
image into several 50 x 50 pixel sub-images, each corresponding to a white
ceramic fiber head. In the subsequent stage, we employ the backbone network
combined with a regression head, as proposed in this study, to accurately predict
the precise positions of the fiber heads.

3. Results

This section delineates the error metrics and result analysis derived from the
aforementioned methodology, alongside a review of several comparative experi-
mental outcomes. The error assessments are predicated on a dedicated test set
comprising exclusively front-illuminated images, which were excluded from the
training dataset. Utilizing this batch of 50 x 50 front-illuminated images, the
trained model directly computed the fiber coordinates. The model’s extrapo-
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lation capacity was then evaluated by measuring the discrepancy between the
predicted coordinates and the actual ground-truth coordinates. This process
underscores the model’s effectiveness in generalizing from the training data to
novel, unencountered images.

To improve fiber positioning accuracy, it is essential to first investigate which
types of images yield the best performance. Figure 5 presents three different
image datasets: a 50 x 50 pixel image of the ceramic head, a full view of the
FPU, and an enlarged version of the ceramic head using cubic interpolation
(suitable for pre-training purposes). To evaluate the effectiveness of each image
type, we trained a ResNet18 model on each dataset and analyzed the accuracy of
the predicted fiber coordinates. This approach aims to determine which image
dataset provides the highest precision in fiber positioning.

To quantitatively assess the efficacy of our model on the test dataset, we em-
ployed two widely recognized metrics: Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE). The MAE quantifies the average magnitude of
the absolute differences between the predicted values and the observed values,
mathematically expressed as:

1 & -
MAE = EZIyi—yi\
i=1

where n is the total number of images in the test set, y represents the ith
true coordinate, and § denotes the ith predicted coordinate. This metric is
particularly robust, as it assigns equal weight to all errors, thereby diminishing
the influence of outliers. Conversely, RMSE is defined as the square root of the
average of the squared differences between the predicted values and the observed
values, calculated using the formula:

n

1
RMSE =4 /= Z(yz — ;)2

n i=1

RMSE is more sensitive to larger errors as it squares the deviations; this char-
acteristic makes it especially useful for highlighting significant errors, albeit at
the cost of increased sensitivity to outliers. Additionally, a statistical analysis
of the error distribution revealed a close approximation to a Gaussian distribu-
tion, prompting the fitting of this distribution to our data. We subsequently
derived the standard deviations for the x- and y-coordinates, providing crucial
statistical insights into our positioning accuracy.

Table 1 shows the performance of the model trained on different image datasets.
Our analysis reveals that the accuracy achieved using the full FPU image is sig-
nificantly lower compared to the latter two methods and presents challenges
in model convergence during training. This can be attributed to the predomi-
nance of critical fiber position data within the ceramic head, whereas the full
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FPU image introduces excessive extraneous information that impairs learning
efficiency and detracts from the model’s predictive accuracy. This finding fur-
ther confirms that utilizing a 50 x 50 pixel image does not result in any loss of
positional information. As long as the image is consistently and accurately seg-
mented, ensuring the complete preservation of the fiber ceramic ferrule within
the frame, the stability of fiber detection can be reliably maintained.

Table 1 Performance Results of the ResNet18 Model Trained on Each Image
Dataset

Image Type MAE MSE
50 x 50 image 0.096 0.015
Interpolation Resize 0.099  0.016
FPU image 0.120  0.023

Note. The fully connected (FC) layer is utilized as the regression head. The bold
values indicate the highest precision achieved among all the schemes presented
in the respective tables.

In assessing the performance of various established image processing models, we
utilized a pre-trained backbone integrated with a linear layer to analyze their
impact on the test dataset. The result is shown in Table 2. Transitioning from
AlexNet to ResNet18 yielded a marked improvement in model efficacy. However,
escalating the complexity of the model architecture, as seen with ResNet34 and
the Swin Transformer, did not further enhance performance; rather, it exhibited
a regression. We attribute this result primarily to the intrinsic characteristics
of the image coordinate regression task and the available data volume. Unlike
image classification, which heavily relies on high-level semantic features for ob-
ject category identification, coordinate regression depends more on local image
features such as edges, corners, and textures. These local features facilitate di-
rect inference of coordinates through position-sensitive attributes like gradient
direction. In this context, while the deeper ResNet34 model extracts higher-
level semantic features more effectively than ResNet18, its increased depth also
results in multiple convolutional and pooling operations. This, in turn, signifi-
cantly reduces spatial resolution, blurring positional information and amplifying
noise-related distortions. Similarly, the Swin Transformer model, which relies
on a global attention mechanism for feature extraction, excels at capturing
high-level semantic information but is less effective at learning local edge and
texture features. As a result, its performance is inferior to the convolution-based
ResNet18 in this specific regression task.

Furthermore, the dataset in this study is relatively small, aligning more closely
with the VC dimension of ResNet18. In contrast, the larger parameter spaces of
ResNet34 and the Swin Transformer make them more prone to overfitting when
trained on limited data. Additionally, some random errors in the training set
may exacerbate their susceptibility to overfitting. Consequently, these models
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are more likely to converge to local optima, diminishing their generalization
capability and ultimately leading to suboptimal test performance.

For ResNet18, the best-performing pre-trained model in our experiments, we
modified the initial convolutional kernel size and conducted pre-training from
scratch using 50 x 50 images, which led to improved results. Notably, the
ResNet18 backbone trained from scratch with the combination of the DSNT
regression head yielded the highest accuracy across all performance metrics.
Furthermore, Table 2 reports the prediction time for identifying all optical fibers
(excluding object detection and image splitting) within the entire image. In
tests conducted on a personal laptop, the ResNet18 architecture demonstrated
superior performance in both accuracy and time efficiency. The integration of
the DSNT regression layer not only enhanced accuracy but also did so with
minimal impact on time consumption.

Table 2 Performance Outcomes of the Models

Model MAE MSE  Param Time
AlexNet(Pretrain) 0.115 0.021 2.1s -
ResNet18(Pretrain) 0.096 0.015 5.5 -
ResNet34(Pretrain) 0.102 0.018 11.1s -
Swin Transformer v2(Pretrain)  0.108 0.019 14.6s -
ResNet18(Scratch) 0.093 0.014 5.0s -

ResNet18+DSNT (Scratch) 0.087 0.012 5.3s -

Note. Pretrain refers to models initialized with pretrained weights, whereas
Scratch denotes models trained from the beginning without the use of any pre-
trained parameters. Time is the duration to predict fiber coordinates on a 7920
x 6004 focal plane image, excluding target detection and image splitting. Param
denotes the model’s parameter count. The bold values indicate the highest pre-
cision achieved among all the schemes presented in the respective tables.

The following section provides a comprehensive analysis of the error distribution
associated with the prediction outcomes obtained from the ResNet18+DSNT
model, as illustrated in Figure 8. Let x d represent the x-coordinate predicted
by the model and x ¢ denote the x-coordinate derived via the back-illumination
method. The error in the x-coordinate is then defined as Ax =x d-x ¢, with
Ay representing the analogous error in the y-coordinate. Since both Ax and Ay
are assumed to conform to a Gaussian (normal) distribution, the overall error,
which is given by D = y/(Ax? + Ay?), conforms to a Rayleigh distribution. The
probability density function (PDF) of the Rayleigh distribution is given by:

fia) = e & )
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where o is the scale parameter related to the standard deviation of the Gaussian-
distributed components Ax and Ay. The expected value and standard deviation
of Ad can be expressed in terms of o, with the expectation given by:

™
Eld] = =
[d]=0\/7
and the standard deviation by:
4—7
0g =0 9

The figure depicts the distributions of Ax, Ay, and Ad, alongside their respec-
tive Gaussian and Rayleigh fits. Figure 8 presents the statistical distribution of
measurement errors across all fibers in the test dataset, encapsulating the ag-
gregate error distribution resulting from multiple shots. This figure effectively
illustrates the overall performance and reliability of the fibers throughout the
dataset. The calculated standard deviations for these distributions are 0.12 and
0.11 pixels, respectively, which sufficiently satisfy the accuracy requirements of
the project.

Figure 9 illustrates the distribution of error vectors for all optical fibers situated
on a single focal plane within the test set. Each sub-image is derived from pho-
tographs of the focal plane captured subsequent to the moving of the optical
fibers. Figure 10 presents a statistical diagram that corresponds to the sub-
images in Figure 9, depicting the distribution of errors associated with each.
For example, Figures 9(a) and 10(a) are derived from the same shooting of op-
tical fibers, respectively, which are the error vector distribution map and error
statistics map of the method for this shooting. In Figures 9 and 10, the first
sub-image depicts all optical fibers at their home positions, whereas the subse-
quent sub-images illustrate the fibers at various offset positions. Notably, our
methodology demonstrates marginally enhanced positioning accuracy for fibers
in the home position compared to those in offset positions. Although the posi-
tioning of optical fibers may sometimes exhibit slightly larger errors in certain
instances, likely due to random external influences, the overall precision remains
consistently high across multiple measurements (as depicted in Figure 8). This
level of accuracy satisfies the closed-loop system requirements for LAMOST
fiber positioning and underscores the robustness of our approach.

4. Discussion

In Zhou’s study (Zhou et al. 2022), it was suggested that the camera’s orien-
tation could lead to systematic deviations between the front and back images.
However, the error map we generated does not exhibit such a pattern, suggest-
ing that this deviation can potentially be captured and accounted for by the
model. Our observed errors appear to be more random and irregular, showing
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no discernible correlation with the position of the optical fibers on the focal
plane. We also explored the use of the CoordConv method (Liu et al. 2018),
originally proposed to address the issue of convolutional networks being insen-
sitive to spatial position, by incorporating approximate positional information
of the optical fiber on the focal plane as input for model training. Specifically,
after gridding the entire image, the approximate location, as identified by the
first stage of target detection, was utilized to determine the grid in which the op-
tical fiber resides. This information was then integrated into the model through
the CoordConv layer during training. However, this approach did not result in
improved accuracy, indicating that the source of error is likely unrelated to the
camera’s angle or the position of the optical fiber on the focal plane.

In Figure 9, the distribution of single-fiber measurement results appears largely
random. However, the statistical analysis depicted in Figure 10 reveals a small
numerical offset in the error, as indicated by the values of the variable repre-
senting the Ax and Ay offsets. Notably, these offsets appear to be randomly
distributed around the central point, with no significant bias in the aggregated
results of multiple measurements (as shown in Figure 8). This pattern suggests
that the observed deviations may stem from stochastic variables in the single
image acquisition rather than the AI methodology employed. We suggest that
during the dataset construction phase, even though the fiber and the camera
maintain a fixed position for consecutive front and back-illuminated shooting,
subtle shifts in the fiber’s position in the image may occur due to extrinsic fac-
tors such as camera shake or atmospheric turbulence, leading to minor, random
displacements.

To test this hypothesis, the experimental protocol was designed to replicate the
dataset construction conditions: the fiber and the camera were held stationary
for a brief period while capturing two successive back-illuminated photographs
and using the same back-illuminated fiber detection algorithm to determine the
fiber position coordinates. The decision to conduct the error analysis using two
consecutive back images, rather than front and back images, stems from the
complexity of isolating errors arising from hardware factors and algorithm fac-
tors between front and back exposures. These non-algorithmic influences make
it challenging to determine whether observed discrepancies originate from the
algorithm itself or from external factors. To address this issue, we replicate the
experimental conditions of sequential front and back imaging by capturing two
consecutive back images. Using the same positioning algorithm based on back
illumination, we extract the respective coordinates, thereby eliminating algo-
rithmic variations as a potential source of error. Consequently, any differences
in the computed coordinates between the two consecutive back images can be
attributed solely to non-algorithmic factors, such as hardware limitations, en-
vironmental conditions, and temporal fluctuations. The error vector diagram,
presented in Figure 11, corroborates our hypothesis by demonstrating a similar
error distribution, thereby affirming that these random errors likely arise from
variations in the imaging process rather than the Al algorithm itself.
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We believe that the accuracy of alignment could potentially be enhanced through
the development of algorithms designed to establish multiple fixed reference
points on the focal plane in the front-illuminated images. These reference points
would facilitate precise coordinate alignment post-imaging. Nevertheless, it is
imperative that the precision of these fixed points substantially surpasses the
offsets () illustrated in Figure 10, as insufficient accuracy could prove detri-
mental rather than beneficial. However, it is important to note that even in
the absence of these enhancements, the AI method deployed herein satisfies the
stringent accuracy requirements mandated by the LAMOST fiber detection sys-
tem. This performance is commensurate with that achieved via back-illuminated
techniques.

5. Conclusions

To achieve greater fiber positioning accuracy, LAMOST is currently developing
a closed-loop control fiber detection system, a pivotal component of the overall
closed-loop control framework. Unlike the back-illuminated imaging technique,
which solely illuminates fibers from the spectrometer end, the front-illuminated
imaging captures comprehensive information from the FPU, offering an alter-
native method to calculate fiber positions. This study introduces an advanced
fiber detection approach that leverages cutting-edge AI technology based on
front-illuminated images captured by the fiber monitoring camera. Specifically,
object detection techniques are employed to extract the white ceramic ferrule
image encompassing the fiber. The AI model is subsequently trained using data
collected from actual observations, with the fiber positions determined by back-
illuminated imaging serving as ground-truth labels. This enables the AI model
to predict fiber coordinates from the front-illuminated images. A subset of the
observational data, which was excluded from the training process, was utilized
to evaluate the extrapolation capability of the AI model. The experimental re-
sults demonstrated that the ResNet18 architecture yielded the best performance
in terms of both accuracy and processing time. Notably, the DSNT regression
head further enhanced the model’s accuracy, achieving a precision level of 0.11
pixels—sufficient to meet LAMOST’s fiber positioning accuracy requirements.
In contrast to the back-illuminated system, which introduces additional obser-
vation overheads and light pollution within the spectrograph during nighttime
operations, the proposed front-illuminated method effectively mitigates these is-
sues. As a result, this technique not only fulfills the stringent accuracy standards
set by LAMOST but also presents a promising solution for implementation in
the future closed-loop control fiber positioning system.
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