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Abstract

Imaging serves as an important method for astronomical research. In prac-
tice, original images acquired by a telescope are often convolved and blurred by
the point-spread function (PSF), which is highly detrimental to many scientific
studies, including astronomy. This paper introduces a single-equation iterative
method for solving complex linear equations, and this method can effectively de-
convolve dirty images and eliminate the effects of the PSF. With different PSFs,
this algorithm demonstrates excellent deconvolution performance. Furthermore,
with a large PSF of aperture synthesis imaging, this algorithm improves the
peak signal-to-noise ratio and structural similarity of the dirty images by 41.0%
and 33.9% on average. In addition, this paper proves that the algorithm can
deconvolve the dirty image by fully utilizing the information from each pixel in
the image, even if the dirty image contains salt-and-pepper noise or even miss-
ing regions; through its excellent capability for flexible operation on individual
pixels, all these adverse conditions can be addressed and the image successfully
restored.

Full Text
Abstract

Imaging is a crucial method for astronomical research. In practice, images ac-
quired by telescopes are inevitably convolved and blurred by the point-spread
function (PSF), which severely hampers many scientific studies. This paper in-
troduces a single-equation iterative method for solving complex linear equations
that can effectively deconvolve dirty images and eliminate PSF effects. The algo-
rithm demonstrates excellent deconvolution performance across different PSFs.
For large PSFs characteristic of aperture synthesis imaging, the method im-
proves the peak signal-to-noise ratio (PSNR) by 41.0% and structural similarity
(SSIM) by 33.9% on average. Furthermore, we prove that the algorithm can
deconvolve images even when they contain salt-and-pepper noise or missing
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regions, by fully exploiting information from each pixel. Through its flexible
pixel-level operations, the method successfully handles these challenging scenar-
ios and restores the images.

1. Introduction

Image deconvolution has long been a vital research direction in astronomical im-
age processing because telescope images are inevitably blurred by numerous fac-
tors, including limited resolution, bandwidth constraints, and the point-spread
function (PSF). The primary culprit is the PSF, which convolves and blurs the
image, obscuring details of astronomical objects. The PSF—literally causing
point light sources to spread out—represents the impulse response of an imag-
ing system. Its effect transforms the true light distribution into a degraded
linear space. A larger main lobe or sidelobe reduces orthogonality between ba-
sis functions, causing the potential true image solution to spread across many
locations and become difficult to recover.

Radio telescope arrays employing Very Long Baseline Interferometry (VLBI)
face additional challenges. Since antenna sampling on the virtual objective lens
cannot completely cover the entire observation surface, the virtual telescope’s
PSF develops non-negligible sidelobes that severely blur images (Faulkner &
de Vaate 2015). Effective deconvolution algorithms are therefore essential for
recovering true images with sufficient clarity to reveal details.

From a traditional signal processing perspective, a linear time-invariant system
multiplies the original signal’s spectrum by a system function in the frequency
domain, which corresponds to convolution in the time domain. Consequently,
deconvolution involves eliminating this system function (Rafael & Gonzalez
2017), requiring extension to two-dimensional discrete Fourier transforms. In
practice, direct application is difficult, and preprocessing of dirty images is typ-
ically necessary (Dong et al. 2017; Rafael & Gonzalez 2017).

Alternative approaches based on image feature analysis have been explored ex-
tensively. These include dictionary-based sparse representation methods that
match features in dirty images for restoration. Studies by Yang et al. (2010) and
Hu et al. (2020) investigated image reconstruction methods based on such theo-
ries, while Lu et al. (2014), Dai et al. (2012), and Zhang et al. (2017) discussed
sparse representation dictionary construction and optimization. Although these
data-driven methods show promise, they share common limitations: unlike tra-
ditional methods, they cannot quantitatively and accurately analyze the convo-
lution process, making them ill-suited for handling diverse convolution scenarios
and producing reliable deconvolution results. Consequently, their application
in astronomical imaging has been less than ideal.

In astronomical image processing, Hégbom (1974) proposed the CLEAN al-
gorithm in 1974. This method identifies peaks in dirty images one by one,
subtracts a scaled convolution kernel, and finally restores the image using a
Gaussian beam. Subsequent improvements led to the adaptive scale pixel de-
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composition algorithm (Asp-CLEAN) by Bhatnagar & Cornwell (2004), which
minimizes an objective function to find optimal model components. Zhang et
al. (2016) accelerated this approach with the Asp-Clean2016 algorithm. Later
work (Zhang et al. 2018, 2019) combined Hégbom-CLEAN and Asp-Clean2016
into the fused-clean algorithm, which ensures effective separation of emission
from noise while accelerating deconvolution. Other scale-adaptive variants fol-
lowed (Zhang et al. 2020).

Despite these achievements, CLEAN algorithms fundamentally do not solve the
deconvolution problem—they merely eliminate complex sidelobes formally, mak-
ing images appear cleaner without restoring substantial new information. The
Richardson-Lucy algorithm (Richardson 1972; Lucy 1974) offers an alternative
space-domain approach, iterating via Newton’s method. While effective for sim-
ple problems, it lacks convergence guarantees and is sensitive to image defects
(Fish et al. 1995; Laasmaa et al. 2011).

The method presented here is also a traditional space-domain deconvolution
technique, conceptually similar to Richardson-Lucy but employing linear equa-
tion solvers rather than Newton’s method. Historically, the Kaczmarz algo-
rithm (Kaczmarz 1937) provides an efficient solution for massive linear systems,
though it remains underrepresented in textbooks. Modern improvements by
Strohmer & Vershynin (2009) and Needell (2010) introduced randomization and
optimized sampling, accelerating convergence and improving solution quality—
highly consistent with our programmatic improvements to iteration sequences.
This method was introduced to computed tomography (CT) as the algebraic
reconstruction technique (ART) by Gordon et al. (1970).

Applying this approach to astronomical image deconvolution offers several ad-
vantages. First, it operates at the pixel level rather than processing entire
images or blocks simultaneously, providing exceptional flexibility for handling
complex problems. Second, the algorithm guarantees convergence for decon-
volution, enabling more iterations that yield results increasingly close to the
original image.

2.1. The Mathematical Description of Imaging

In the spatial domain, a convolved dirty image I, (x,y) results from each light
source I,(xg,Yq) in the original image I (z,y) passing through a linear system
with response h(z,y), creating a weighted diffused distribution:

+00 +oo
I(x,y) = / / I,(zg,y0)h(x — 20,y — yo)d%dyo

In the discrete case:

L(a,y) =Y ) I (w, yo) (@ — g,y — )

To Yo
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Conversely, given a dirty image, each point value I, (z, y,) is determined by the
brightness distribution centered at (z,y,) in the original image according to a
linear response h’ (z,):

+oo +o00
Ib(%ayo) = / / Io(ac,y)hT(x—xO,y—yO)dacdy

In discrete form:
Ib<x0, yO) = Z Z Io(xv y)hT(x - an y— yo)
Ty

where h”(z,y) is the centrally symmetric version of h(z,y). This constitutes
a linear equation that, given I (zy,y,), can be represented as a hyperplane in
n-dimensional or even infinite-dimensional space. Different brightness values in
the dirty image constrain the light source distribution around (z,y,) in the
original image I (x,y) to a hyperplane. Ounly light distributions within this
hyperplane yield the observed dirty image after convolution.

Multiple values in the dirty image produce a series of hyperplanes constraining
the image distribution I, (x,y) in n-dimensional space. Image restoration re-
quires finding a distribution that satisfies all constraints as closely as possible.
Even when exact solutions are non-unique or unattainable, the algorithm seeks
the closest possible solution.

This can be framed as solving a matrix equation, though constructing it is
extremely difficult. One must transform h(z,y) into a large matrix and reshape
the image into a vector. For large h(x,y), this vector becomes prohibitively
long, and the matrix equation typically has infinitely many solutions or may be
unsolvable.

For radio interferometric imaging, deconvolution can bypass explicit convolu-
tion by directly setting up equations from phase and amplitude data. After
appropriate selection and adjustment, solving these equations simultaneously
yields the image.

2.2. Linear Equation Solving Strategy

As described, dirty image pixel values I, (x,y) constrain the light source distribu-
tion around points (x;, y;) in the original image I, (x, y) to multiple hyperplanes.
If an initial distribution I.(z,y) lies outside these hyperplanes, a reasonable ap-
proach is to move directly along the hyperplane normal to ensure the new result
resides within the hyperplane. This method, first proposed by Kaczmarz (1937)
and applied to CT reconstruction by Gordon et al. (1970), can be adapted for
astronomical image deconvolution.
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In the discrete case, the normal direction of the hyperplane and the distance
from the initial distribution I,(x,y) to the hyperplane are calculated by:

L(xiy;) — 32, 20, (e, h" (@ =z, — y;)
Zm Zy T (x — 2,y —y;)?

d:

Note the absence of absolute value in the numerator because distance must
include direction relative to the normal vector. The original distribution I,(z,y)
moves distance d along the normal to obtain a new distribution:

Ié(l‘,y) = Ic(x7y) +d- hT(x —THY— yz)

Convolution kernels h(z,y) typically have limited scope, with values outside a
small central area being negligible and can be set to zero. This simplifies calcu-
lations, requiring updates to I, (z,y) only in a small region around each point.
Multiple locations can be updated simultaneously, constituting a complete iter-
ation when all dirty image pixels are processed.

[Figure 1: see original paper] illustrates the algorithm’s process. I_(a;,b;) repre-
sents the distribution I.(z,y). In a simplified two-pixel, two-dimensional case,
two constraint hyperplanes are generated. When the angle between hyperplanes
is large (Figure 1(v)), the algorithm quickly converges to their common inter-
section, efficiently solving the two linear equations. When the angle is small
(Figure 1(w)), many iterations may still leave the result far from the intersec-
tion. Despite this, convergence is guaranteed—even for unsolvable cases, the
result converges to a particular solution or oscillates between hyperplanes with-
out diverging.

In high-dimensional spaces, small angles between constraint hyperplanes cause
slow convergence and accumulated errors that are difficult to eliminate. This
inherent limitation can be mitigated through flexible iteration scanning design
at the pixel level.

Strohmer & Vershynin (2009) randomized the Kaczmarz method, proving that
randomization accelerates convergence and improves effectiveness. For image
deconvolution, numerous traversal strategies exist for two-dimensional matri-
ces. This paper optimized iteration scanning at the program level, significantly
enhancing performance.

A simple left-to-right, top-to-bottom scan causes error accumulation due to
high parallelism between adjacent convolution kernels. Alternative strategies—
right-to-left, bottom-to-top, or combinations thereof—improve results without
increasing computational cost per iteration.

Figure 2: see original paper shows the combined four-direction scanning ap-
proach adopted in our initial experiments. More complex traversal methods
exist. Figure 2: see original paper demonstrates leapfrogging traversal, which
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avoids high-parallelism regions and accelerates convergence. We introduced
leapfrogging with random direction jumps, changing scan order after each full
traversal.

Our experiments conclude that increasing traversal randomness substantially
improves deconvolution quality—greater randomness yields better results.

2.3. Image Defects

Traditional deconvolution methods struggle with salt-and-pepper noise or dam-
aged regions. Common approaches involve smoothing, filtering, or segmenta-
tion, but segmentation loses information near boundaries and fails to utilize all
available data.

The single-equation iterative method handles these cases simply: when the scan-
ning program detects invalid pixels, it skips them. For damaged regions, pixels
can be marked invalid directly, requiring no major program modifications.

[Figure 3: see original paper| shows blurred images containing salt-and-pepper
noise or missing parts.

The parallelism between hyperplanes depends on the angle between their nor-
mal vectors. For two hyperplanes in n-dimensional space with normal vectors
[%1,29,...,z,] and [y1,Ys, ..., Y,], the angle § between hyperplanes equals the
angle between their normals. The cosecant of this angle reflects the relationship
between equations and the interaction between noise and convolution.

First, calculate distance d from one normal vector to another hyperplane, then
obtain sin 6:

d

sinf = —mMM—
||[£E1,£L'27 ,:L’n]”

In practice, a preprocessing program scans all pixels, marking invalid pixels with
a specific value (e.g., 1000) when conditions are met:

if condition:
I(x, y) = 1000

The iteration solver skips pixels with this special value:

if I(x, y) == 1000:
pass

If a bad pixel value is processed, the error won'’t affect the result, but this alone
cannot reconstruct the image. Convolution’s key property is that brightness
information at a position spreads to surrounding pixels. This method changes
the image distribution around a pixel when calculating each linear equation,
providing an opportunity to recover lost information. While this may seem
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questionable from a linear algebra perspective (as these equations may be un-
solvable), practice shows it generally suffices for image recovery.

2.4. The Interaction Between Noise and Convolution Ker-
nel

Noise sensitivity to convolution kernels can be interpreted through hyperplane
intersection shifts when pixel values in the dirty image are perturbed. The shift
magnitude depends on the interrelationship between pixel equations.

Comparing Figure 4: see original paper and (v), when hyperplane angles are
small, small pixel value changes cause large intersection shifts, indicating low
stabilization ability. In n-dimensional space, with normal vectors [z, z,, ..., T,]
and [yq, Y, -+, Yp), the cosecant cscd = 1/sin 6 defines a parameter called shift
parallelism. Calculating this for a convolution kernel h(z,y) and its shifted
version reveals the kernel’s noise resistance:

|h(z,y)[ - [h(z + Az, y + Ay)|
(h(z,y), h(x + Azx,y + Ay))

Shift Parallelism = csc =

When shift parallelism equals 1, hyperplanes are perpendicular; a pixel offset €
shifts the intersection by e. When shift parallelism exceeds 1, the same offset
shifts the intersection by € - cscf. Since cscf is always greater than 1, convo-
lution kernels always amplify noise. Large shift parallelism values cause small
pixel shifts to produce large intersection displacements, rapidly destroying de-
convolution results.

Shift parallelism depends on kernel size, shape, shift direction, and distance.
It explains why image resolution cannot be increased indefinitely and guides
adjustments to the single-pixel deconvolution method. Convergence speed also
depends on shift parallelism; low shift parallelism in large sidelobes can create
persistent shadow patterns because shadow solutions become very close to the
true solution.

An important conclusion emerges: when convolution is unavoidable but con-
trollable, kernels with low shift parallelism in specific directions and distances
should be selected to preserve information. Resolution can be sacrificed to com-
bat noise—by ensuring sufficient scanning intervals and low shift parallelism
between scanned pixels, images can be restored despite reduced resolution. This
reveals fundamental relationships between noise, convolution, and resolution in
the spatial domain.

For radio interferometric imaging, the virtual image contains no pixel value
shifts but rather phase and amplitude measurement errors, which impact re-
sults differently and less severely than thermal noise. The analysis remains
fundamentally similar, viewing noise as affecting the PSF.

chinarxiv.org/items/chinaxiv-202506.00097 Machine Translation


https://chinarxiv.org/items/chinaxiv-202506.00097

ChinaRxiv [$X]

2.5. The Optical Basics of This Method Compared with
CLEAN Algorithm

The classical Hogbom CLEAN algorithm assumes the true sky distribution com-
prises a finite number of point sources with mostly empty surrounding regions.
These sources are gradually identified and removed from dirty images.

Our algorithm differs fundamentally in its assumptions. While also assuming
a sky composed of point sources, it allows sources everywhere. For an imaging
system, smaller point sources in adjacent tiny regions can be approximated
as point (far-field) diffraction coherent sources due to Fraunhofer diffraction
(Eugene 2021). Thus, the imaging region can be pre-divided into finite small
grid regions.

Assuming one coherent source per region, the number of small regions defines
the pre-assumed image resolution. The intensity in each region becomes a lin-
ear combination of coherent source intensities in surrounding divided regions
(optical details omitted but results equivalent). Under this assumption, decon-
volution becomes solving linear equations to restore true coherent source inten-
sities. Unlike CLEAN, it simultaneously solves all sources, avoiding interference
problems when searching for nearby point sources.

Both methods are traditional, non-data-based algorithms, but differ in basic
assumptions and operation. Our algorithm offers better flexibility and adapt-
ability for complex surface light sources.

3.1. Experiment Settings

Four astronomical images (A, B, C, D) shown in Figure 5: see original paper
were used to test the algorithm. All images have a unified 512$x$512 resolu-
tion and are monochrome. Images A (nebula) and B (Sun) contain complex
distributed spontaneous light sources to test deconvolution of complex point
sources. Images C and D (lunar surface) contain large-area reflection sources to
test performance on low-contrast extended emission.

Two convolution kernels shown in Figure 5: see original paper were used: an
all-ones matrix and a mixed Gaussian function combining three lobes. These
enable simple general effectiveness tests.

Iteration numbers were determined through pre-testing: 200-300 iterations gen-
erally achieved desired sharpness for simple cases. Convergence speed depends
on scanning mode and PSF size/shape. The iteration count can be set dynam-
ically by generating a convolved reconstruction, calculating its difference from
the dirty image, and stopping at a threshold.

Two metrics evaluate deconvolution: PSNR and SSIM. PSNR represents the
ratio of maximum possible signal power to destructive noise power (Welstead
1999). For monochrome images I and K, mean square error is:
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PSNR is defined as:
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VMSE

where MAX; is the maximum pixel value. SSIM measures image similarity
(Wang et al. 2004):

PSNR = 20log, , (

(21u’z:u’y + Cl)(2ozy + 02)
(13 + 1 + ) (0F + o + ¢5)

SSIM(z,y) =

where 1 denotes mean, o denotes variance and covariance, and ¢ are constants.

3.2. Deconvolution Verification of Different Convolution
Kernels

Four images were convolved with both kernels and deconvolved using multi-
direction traversal. Results show good restoration after 200-300 iterations.
[Figure 6: see original paper] shows the results, with PSNR and SSIM values in

Visually, the algorithm achieves excellent restoration for all dirty images, im-
proving PSNR by 43.2% and SSIM by 22.1% on average. Counterintuitively,
the complex mixed Gaussian kernel yields better deconvolution because its lower
shift parallelism better preserves original image information in dirty image pix-
els. The program successfully deconvolves all test images with remarkable effec-
tiveness.

3.3. Deconvolution Verification of Radio Interferometry
Imaging

To test radio interferometry imaging deconvolution, we used the Radio Astron-
omy Simulation, Calibration, and Imaging Library (RASCIL) to generate a
convolution kernel. The kernel’s properties depend on antenna array configura-
tion, frequency, and observation mode. Using the SKA-Low LOWBD2 standard
configuration (r,,, = 750), snapshot mode, 100 MHz center frequency, 1 MHz
bandwidth, R.A. 4+15° decl. —45° and J2000 precession reference date, we
obtained u,v coverage. A Bézier function fitted this coverage to approximate
the aperture illumination distribution. Its two-dimensional Fourier transform
yields the interferometry imaging kernel—a 256$x$256 distribution shown in
[Figure 7: see original paper].
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Analysis reveals a main lobe width of ~25 pixels with numerous large, ener-
getic sidelobes, creating a highly dispersed energy distribution that severely
damages images and makes restoration difficult. The experiment uses the same
four astronomical images (512$x512monochrome)convolvedwiththis256 x $256
kernel.

[Figure 8: see original paper| shows the damage exceeds that of simple test
kernels. While lunar surface features remained somewhat distinguishable with
simple kernels, they become nearly invisible with this kernel. Such extended,
low-contrast sources are nearly hopeless for traditional CLEAN algorithms.

This experiment employed leapfrogging and random-direction scanning. Results
in [Figure 8: see original paper] demonstrate that even with such a massive ker-
nel, the algorithm performs well. Though flaws remain, the results are usable
for astronomical observations. Restoring such heavily damaged images is in-
herently difficult. PSNR and SSIM values appear in , showing 41.0% PSNR
improvement and 33.9% SSIM improvement on average—excellent results for a
non-data-based traditional method.

Processing large 256$x$256 kernels is time-consuming (hours vs. minutes for
smaller kernels), but the effectiveness justifies the cost. The algorithm has
not been parallelized; multicore or GPU implementation would significantly
accelerate it. Memory consumption remains below 1 GB even for large PSFs,
making it suitable for modern desktop computers.

For comparison, we deconvolved dirty image C using the Hogbom CLEAN algo-
rithm with the same 256$x$256 SKA PSF. The best result appears in [Figure
9: see original paper|. While CLEAN successfully identified point sources and
convolved them with a clean beam (a simple Gaussian), the result poorly re-
sembles the original compared to our algorithm, losing almost all true details.
In low-contrast cases, Hogbom CLEAN cannot correctly identify true sources
because surrounding brightness confuses the algorithm.

3.4. Reconstruction of Image Defects

The first experiment added 5% salt-and-pepper noise to four dirty images, ap-
plied four-direction combined scanning, and deconvolved them. Results appear
in [Figure 10: see original paper], with metrics in .

The noise has minimal impact on this pixel-iteration-based method, with neg-
ligible PSNR and SSIM degradation. Visual inspection shows slight sharpness
reduction compared to noise-free deconvolution, but this is not a major issue.

For larger lost blocks, performance varies. Dirty image D was tested with miss-

ing blocks at regular intervals: (a) 3$x3blocksat6—pizelintervals, (b)10x10blocksat20—
pizelintervals, (¢)6x6blocksat8 — pixelintervals,and(d)16x$16 blocks at 40-

pixel intervals. Preprocessing set missing pixels to 1000.

The deconvolution algorithm processed these defective images, with results in
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[Figure 11: see original paper] and metrics in , including reference values for
defect-free restoration.

Missing blocks significantly impact deconvolution, but the algorithm remains
robust. Figure 12: see original paper shows that by leveraging information from
slender surrounding regions, the algorithm successfully restores complete images
with good details. Figure 12: see original paper demonstrates that for sporadic
small-area losses, restoration is nearly perfect, as if the losses never existed,
proving the information was redundant.

The experiments confirm that the algorithm efficiently utilizes information to
restore images without introducing false structures like data-driven methods.
This suggests an intriguing possibility: when deconvolution matures, the con-
volution process could be used in reverse to disperse light information across
many locations, maximizing sensor capacity and redundancy.

4. Conclusion

To address complex deconvolution problems in radio interferometry imaging,
this paper reanalyzed general image deconvolution from the dirty image perspec-
tive. We proposed that pixel brightness in dirty images constrains surrounding
light distributions to hyperplanes, and that deconvolution requires solving these
brightness linear equations.

We introduced the Kaczmarz method—an iterative algorithm that steps along
hyperplane normals—particularly suitable for uniform equations like image de-
convolution. By adding varied scan directions, the algorithm achieves excellent
results, improving PSNR by 43.2% and SSIM by 22.1% on average.

We further improved the scan iteration method with leapfrogging and random-
direction scanning, applying it to radio interferometry baseline imaging. The
resulting large, complex convolution kernel severely damages images, but our
improved algorithm restores them to recognizable quality, improving PSNR by
41.0% and SSIM by 33.9% on average. Experiments verify that by skipping
invalid pixels, the algorithm fully utilizes dirty image information without de-
stroying structure, demonstrating strong adaptability through pixel-level oper-
ations.
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