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Abstract
The identification of specific galaxy populations in large-scale spectroscopic sur-
veys represents an essential yet challenging task, particularly for rare or anoma-
lous galaxies that deviate from the typical galaxy distributions. Traditional
methods based on template-fitting or predefining spectral features face chal-
lenges in addressing the complexity and scale of modern astronomical data sets.
To overcome these limitations, we propose GalSpecEncoder-KB, a modular and
flexible framework that combines deep learning with knowledge base retrieval to
enable efficient and interpretable analysis of galaxy spectra. The framework inte-
grates a Transformer-based feature encoder, GalSpecEncoder, pre-trained with
masked-modeling strategy to capture semantically rich and context-aware spec-
tral representations. By leveraging a Retrieval-Augmented Analysis approach,
the knowledge base constructed from catalogs enables metadata retrieval and
weighted voting for target galaxy identification. Using the Sloan Digital Sky
Survey as a comprehensive case study, we demonstrate the capabilities of the
framework for target galaxy search. Experimental results demonstrate the ex-
ceptional generalizability and adaptability across diverse galaxy search tasks,
including identification of LINERs, Strong Gravitational Lenses, and detection
of Outliers, while maintaining robust performance and interpretable spectral
analysis capabilities.
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ods based on template-fitting or predefining spectral features face challenges
in addressing the complexity and scale of modern astronomical data sets. To
overcome these limitations, we propose GalSpecEncoder-KB, a modular and
flexible framework that combines deep learning with knowledge base retrieval
to enable efficient and interpretable analysis of galaxy spectra. The framework
integrates a Transformer-based feature encoder, GalSpecEncoder, pre-trained
with a masked-modeling strategy to capture semantically rich and context-aware
spectral representations. By leveraging a Retrieval-Augmented Analysis ap-
proach, a knowledge base constructed from catalogs enables metadata retrieval
and weighted voting for target galaxy identification. Using the Sloan Digital
Sky Survey as a comprehensive case study, we demonstrate the capabilities of
the framework for target galaxy search. Experimental results demonstrate ex-
ceptional generalizability and adaptability across diverse galaxy search tasks,
including identification of LINERs, Strong Gravitational Lenses, and detection
of Outliers, while maintaining robust performance and interpretable spectral
analysis capabilities.

Key words: catalogs — galaxies: general — methods: data analysis

1. Introduction
The study of galaxy spectra is crucial for unraveling the physical processes
occurring within galaxies and tracing their evolution across cosmic time. By
analyzing spectral features, we can infer a galaxy’s composition, star forma-
tion history, and the activity of its central black hole, offering insights into the
mechanisms driving galaxy formation and evolution. Among these pursuits, a
particularly significant task is the search for target galaxies with specific char-
acteristics, such as low-ionization nuclear emission-line region (LINER) galaxies
or strong gravitational lens systems. This task holds immense scientific value,
as it enables the identification of rare or extreme galaxy populations and their
role in the broader cosmic ecosystem. However, the search for target galaxies is
inherently challenging due to the complexities of galaxy spectra. Spectra often
exhibit a range of intricate features, including strong emission lines indicative
of dynamic astrophysical processes, redshift-induced distortions, and noise from
observational limitations. The diversity and overlap in spectral characteristics
further complicate the task, particularly when differentiating between subtle
variations in galaxy types. Therefore, effectively learning representations from
these spectra and extracting meaningful features are critical steps in addressing
these challenges.

Traditional analytical methods, rooted in theoretical models [?, ?, ?], often fall
short in capturing the nuanced details of galaxy spectra. While these methods
provide a solid foundation, they lack the sophistication required to reproduce the
intricate features of high signal-to-noise ratio (SNR) spectra accurately. This
limitation is especially pronounced when dealing with strong emission lines,
which serve as vital indicators of active processes within galaxies [?, ?]. To
address these limitations, a growing body of work has turned to data-driven
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methodologies, particularly machine learning (ML), to extract and analyze the
rich information encoded in galaxy spectra [?]. Specifically, these methods can
be broadly categorized into two different classes: supervised learning and unsu-
pervised learning approaches.

Supervised learning approaches, which leverage labeled data sets, are often em-
ployed for regression and classification tasks, such as galaxy spectral classifi-
cation [?]. By learning the relationships between input features and labeled
outputs, these models have achieved remarkable success in data-rich tasks, ac-
curately identifying galaxy properties and types. However, the reliance on large,
high-quality labeled data sets poses significant limitations. Labeling astronom-
ical data is labor-intensive and costly, and many regions of parameter space
remain underexplored due to a lack of sufficient training samples. Moreover, su-
pervised learning models are inherently task-specific, requiring bespoke architec-
tures and extensive retraining for each new analysis. This results in inefficiencies
and reduced flexibility in the data analysis pipeline.

In contrast, unsupervised learning eliminates the dependency on labeled data
by uncovering latent structures and intrinsic patterns directly from the data.
Classical techniques like Principal Component Analysis (PCA) have been widely
used to reduce the dimensionality of galaxy spectra and extract dominant fea-
tures [?]. Clustering algorithms, such as k-means and hierarchical clustering,
have further enabled the grouping of galaxy spectra based on intrinsic similar-
ities, aiding in the identification of distinct populations [?]. However, these
methods often rely on oversimplified assumptions, such as linearity in PCA or
fixed cluster numbers in clustering, which may fail to capture the intricate vari-
ability of galaxy spectra. While unsupervised models have proven useful, their
inability to effectively handle the high complexity and diversity of galaxy spectra
highlights the need for more advanced approaches tailored to these challenges.

In response to the limitations of both supervised and unsupervised learning,
self-supervised learning has emerged as a promising alternative, leveraging the
power of learned embeddings to address diverse tasks in galaxy spectral anal-
ysis. For instance, [?] employed a variational autoencoder (VAE) to reduce
the dimensionality of galaxy spectra, creating latent space representations that
proved effective for downstream tasks such as outlier detection, redshift estima-
tion, and galaxy classification. Building on this foundation, [?] introduced con-
volutional elements into the autoencoder architecture, enhancing the model’s
ability to capture correlated spectral features. Further advancements by [?]
integrated attentive convolutional encoders with physical modeling, yielding
embeddings that facilitated anomaly detection and other tasks [?, ?]. These
self-supervised approaches highlight the potential of data-driven embeddings to
extract meaningful representations from galaxy spectra, enabling flexible and
efficient analysis without reliance on extensive labeled data sets.

In this work, we introduce GalSpecEncoder-KB, a self-supervised framework
that fundamentally advances galaxy spectral analysis through two synergistic
innovations. First, our GalSpecEncoder employs a Transformer architecture pre-
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trained with masked spectral modeling, overcoming the limited receptive fields of
prior convolutional neural network-based (CNN-based) autoencoders by captur-
ing long-range dependencies across galaxy spectra through self-attention mech-
anisms. Second, we pioneer a Retrieval-Augmented Analysis (RAA) paradigm
that integrates a catalog-derived knowledge base with similarity search, enabling
flexible target galaxy identification without task-specific retraining. This con-
trasts with conventional end-to-end models that require complete architectural
redesign for new tasks. The framework operates through two phases: (1) self-
supervised pre-training of the spectrum encoder to generate context-aware em-
beddings, and (2) knowledge base construction from public catalogs using these
embeddings, followed by metadata retrieval (comprising similarity search and
metadata association) and weighted voting for analysis. Initial validation on
Sloan Digital Sky Survey (SDSS) spectra demonstrates that this combination
of Transformer-based representation learning and knowledge base system effec-
tively preserves physically meaningful spectral features while maintaining task
adaptability.

The outline of this paper is as follows. In Section 2, we provide a comprehen-
sive description of the GalSpecEncoder-KB framework, including the detailed
structure and training of the GalSpecEncoder model, as well as the strategy
of the downstream knowledge base analysis pipeline. Section 3 outlines the ex-
perimental setup used to validate the effectiveness of the GalSpecEncoder-KB
framework, using SDSS galaxy spectra as a case study. Section 4 presents the
experimental results, while Section 5 discusses the impact of technical details on
performance. Finally, the conclusions of this work are summarized in Section
6.

2. Methodology
In this section, we introduce GalSpecEncoder-KB, a spectral analysis framework
tailored for target galaxy search tasks. Inspired by the Retrieval-Augmented
Generation (RAG) technique [?], which integrates retrieval mechanisms with
generative models for knowledge-intensive inference, our framework adapts this
paradigm to galaxy spectral analysis—a domain requiring rich contextual infor-
mation and expert-level feature interpretation. As illustrated in Figure 1

, the framework operates through two interconnected components: a deep learn-
ing (DL)-based encoder and a modular knowledge base system.

2.1. GalSpecEncoder

2.1.1. Model Structure An overview of GalSpecEncoder is depicted in Fig-
ure 2 [FIGURE:2]. The standard Transformer [?] receives a one-dimensional
(1D) sequence of token embeddings as input. While spectral data are inher-
ently a 1D signal, they consist of S data points. Treating each data point as an
individual token in the Transformer would be computationally prohibitive due
to the model’s quadratic time complexity, which scales poorly with increasing
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Figure 1: Figure 1

sequence length. To handle this issue, we reshape the spectrum into a sequence
of fixed-size patches, where S is the resolution of the original spectrum, P is the
resolution of each spectrum patch, O is the number of overlapping data points
between two adjacent patches, and N = (S - P)/(P - O) + 1 is the resulting num-
ber of patches, which also serves as the effective input sequence length for the
Transformer. The Transformer maintains a constant latent vector size D across
all its layers. To align with this structure, we map each patch to D dimensions
with a trainable linear projection. Additionally, position embedding is added
to each spectrum patch to retain positional information. These embeddings are
standard learnable 1D vectors. The resulting sequence of embedding vectors is
then used as input to the encoder. We refer to the output of this projection as
the patch embeddings.

The encoder module in our model is based on the standard Transformer archi-
tecture, specifically utilizing the encoder stack. It processes patch embeddings
through L=6 identical layers. Each layer contains multi-head self-attention
(MSA) and feed-forward networks (FFN). Standard implementations of these
components are provided in Appendix A.1. In this work we employ h = 6 par-
allel attention heads, with embedding processing dimension Dh = D/h = 768/6
= 128.

2.1.2. Training Strategy Inspired by the work of [?], we use a masked-
modeling self-supervised learning strategy (Figure 3 [FIGURE:3]) to pre-train
the GalSpecEncoder model. Masked-modeling self-supervised learning strate-
gies, widely employed in Natural Language Processing [?] and Computer Vision
[?], have proven highly effective for pre-training spectral encoders [?]. It enables
the model to learn context-aware representations by predicting missing elements
in input sequences. The rich features in galaxy spectra, such as emission and
absorption lines and continuum variations, make this approach particularly well-
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suited.

In this work, we randomly mask 25% of the spectrum patch sequences to train
the GalSpecEncoder. This masking strategy compels the model to capture both
global relationships, such as correlations between features at different wave-
lengths, and local patterns, including detailed line shapes. By reconstructing
the masked patches, the GalSpecEncoder learns to develop robust embeddings
that encapsulate comprehensive spectral information. This approach aligns
seamlessly with the self-supervised learning paradigm, effectively leveraging the
abundance of unlabeled data to maximize the utility of available spectral fea-
tures.

Furthermore, the masked-modeling strategy significantly enhances the encoder’s
ability to handle observational gaps and noise, which are prevalent in astronom-
ical data. By reconstructing missing spectral regions, the GalSpecEncoder is
trained to infer information from contextual cues, fostering a deeper under-
standing of the intrinsic structures and variabilities of the data. This process
equips the GalSpecEncoder with the flexibility required to adapt to the com-
plexities of real-world spectra, ensuring reliable and consistent representation
learning from diverse and imperfect inputs.

2.2. Knowledge Base System

2.2.1. Encoding and Retrieval The pre-trained GalSpecEncoder generates
dense vector representations for known galaxy spectra from public catalogs.
These vectors are stored in a vector database optimized through indexing tech-
niques, balancing storage efficiency with retrieval accuracy. When analyzing an
unknown spectrum, the same encoder maps it into this vector space as a query
vector. We employ Euclidean distance (L2) to measure geometric proximity
in the high-dimensional space, using the Flat algorithm to retrieve the Top_K
most similar vectors. Each vector maintains linkage to its original specobjid
identifier from source catalogs.

2.2.2. Metadata Association For target galaxy search applications, we as-
sociate spectral vectors with classification metadata critical for galaxy identifi-
cation. This includes: (1) spectroscopic classifications from standard diagnostic
diagrams (BPT classification), and (2) catalog-level types (e.g., Strong Gravita-
tional Lens, Outliers). The object specobjid linkage supports direct retrieval of
these identifiers through federated cross-matching with source catalogs.

2.2.3. Weighted Inference The conversion from L2 distances (xi) to voting
weights (wi) prioritizes two objectives: (1) assigning higher weights to closer
neighbors and (2) ensuring stable weight differentiation while mitigating the
effects of extreme values. We evaluate four candidate transformations (see Ap-
pendix A.2 for details) and select the optimal function through comparative
analysis of their weight distributions. The exponential transformation e^{-x}
demonstrates superior performance, as quantified by its alignment with the
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knowledge base’s distance patterns and robustness metrics. The final weighting
scheme applies softmax normalization to ensure the weights sum to one.

3. Experiments
This section provides an overview of the experimental setup to validate the
effectiveness of the proposed GalSpecEncoder-KB framework. To evaluate its
performance, we use SDSS galaxy spectra as a practical use case. The section
is divided into two main parts: Dataset Construction & Data Pre-processing
Operations (Sections 3.1 and 3.2 respectively), and Experiment Setting (Section
3.3).

3.1. Dataset Construction

In this work, the data set serves two primary purposes: self-supervised learn-
ing of the GalSpecEncoder and the construction of a foundational knowledge
base. For self-supervised learning, explicit labels are not required to compute
the loss function or guide model training, as the model derives insights directly
from the data without supervision. In contrast, constructing the knowledge
base—intended for downstream applications identifying specific galaxy types—
necessitates categorical information to ensure its accuracy and practical rele-
vance.

To achieve these objectives, we utilize spectroscopic data from the SDSS Data
Release 16 (DR16; [?]). Data acquisition was carried out as part of the SDSS
and the Baryon Oscillation Spectroscopic Survey (BOSS; [?]), with wavelength
coverage of (3800, 9200) Å and (3600, 10400) Å, respectively. The overall data
were drawn from the SpecObj catalog within SDSS DR16, a comprehensive
resource encompassing spectroscopic measurements for 2,963,274 galaxies. The
catalog provides spectral data with a resolution of approximately R � 2000.

To construct the knowledge base for the galaxy search pipeline proposed in this
work, accurate galaxy classification information is essential. We utilize data
labels from two SDSS emission-line VACs: galSpecExtra (SDSS DR8; [?]) and
emissionLinesPort (SDSS DR12; [?]). To ensure label reliability, only samples
with consistent classification results across both catalogs were included. Addi-
tionally, the knowledge base is enriched with entries from the eBOSS Strong
Gravitational Lens Detection Catalog (SDSS DR16; [?]) for Strong Gravita-
tional Lenses and data from [?] to incorporate Outliers. These curated resources
form the foundation for robust spectral analysis and galaxy search tasks.

3.2. Data Pre-processing Operations

To standardize the spectral data, we resampled the SDSS spectra from logarith-
mic wavelength space to a fixed linear wavelength range of 3850–9000 Å using
interpolation. This process ensured a uniform resolution of 3688 data points
across all spectra, facilitating precise alignment and comparability of spectral
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features. By addressing gaps and smoothing irregularities, this standardiza-
tion enhances the continuity of spectral profiles, providing a robust foundation
for subsequent analysis and model training. Such pre-processing is critical for
preserving data set integrity and ensuring the extraction of reliable and scien-
tifically meaningful insights.

To normalize the spectra, we computed the median flux within the rest-frame
wavelength range 𝜆rest = 5300–5850 Å. This wavelength window was chosen
for its relative insensitivity to redshift-induced variations, thereby reducing po-
tential amplitude biases. This approach effectively mitigates distortions linked
to redshift-dependent flux scaling, which is essential when handling large data
sets with diverse redshift distributions. This normalization aligns spectral am-
plitudes across the data set, reducing variability and ensuring uniformity. It
establishes a consistent framework for identifying subtle astrophysical patterns,
thereby enabling reliable comparative analysis and robust data interpretation.

To adapt spectral data for the Transformer while addressing its quadratic self-
attention complexity O(n2), we segmented the spectra into fixed-size patches,
each comprising 15 spectral points with an overlap of 10 points. This patch-
based approach encodes local spectral features, enabling the Transformer to
effectively process non-text sequential data and focus on localized information.
By reducing the sequence length appropriately and leveraging GPU parallelism,
this method significantly decreases computational costs and accelerates training.
This pre-processing step ensures compatibility with the Transformer, facilitating
efficient and scalable analysis of large-scale spectral data sets like SDSS.

In the end, we obtain 293,392 SDSS spectra for pre-training, with each sample
comprising 3688 data points. Additionally, 46,054 labeled spectra are used for
sampling during the construction of the knowledge base.

3.3. Experiment Setting

To verify the effectiveness of the proposed GalSpecEncoder-KB framework, we
conduct a set of experiments leveraging pre-processed SDSS galaxy spectra.
In the first phase, we examine the representation capabilities of the GalSpe-
cEncoder by performing comparative studies, which assess its ability to encode
spectral data into high-quality embeddings that accurately capture the struc-
tural and informational characteristics of the input spectra. Building upon this
evaluation, the second phase focuses on the framework’s target galaxy search
functionality. In this work, we design a series of search tasks based on SDSS
data to evaluate the pipeline’s robustness and adaptability under varying ap-
plication scenarios, highlighting its practical applicability to real-world spectral
analysis challenges.

The proposed model is implemented using the PyTorch framework [?]. All
experiments in this work are conducted in the same hardware and software
environment. The hardware environment is based on a CentOS Linux release
7.9.2009 (Core) operating system installed on a 64-bit Intel(R) Xeon(R) Plat-
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inum 8163 CPU @ 2.50 GHz with four cores and four NVIDIA Tesla V100 SXM2
GPUs, supported by Alibaba Cloud Elastic Compute Service. The software en-
vironment is Python 3.10.16, torch 2.5.1 and torchvision 0.20.1.

In this work, we adopt the mean-squared error (MSE) loss to measure recon-
struction performance and optimize the model with the AdamW optimizer [?].
The initial learning rate is set to 1 × 10−5 and managed using a cosine annealing
schedule with a warmup phase. During the first 2000 steps, the learning rate
gradually increases, after which a cosine annealing schedule is applied over the
maximum training duration of 500,000 steps. To mitigate overfitting, we adopt
a model checkpointing strategy that retains only the best-performing model
based on validation loss. The batch size is set to 32, ensuring that each train-
ing iteration processes 32 data samples, balancing computational efficiency and
performance.

4. Results
In this section, we present the results of our experiments conducted on SDSS
galaxy spectra to evaluate the proposed GalSpecEncoder-KB framework. First,
we perform comparative studies to assess the encoding quality of the GalSpecEn-
coder and validate its ability to effectively represent SDSS spectral data. Next,
we focus on the core application of the pipeline—target galaxy search—by de-
signing and analyzing multiple search experiments on SDSS data. These results
highlight the framework’s effectiveness in identifying specific galaxy types and
demonstrate its potential for advancing galaxy spectral analysis.

4.1. Experimental Evaluation of Encoding Quality

In the analysis of SDSS galaxy spectra, the search for target galaxies is funda-
mentally a feature identification and classification task. Specifically, it involves
identifying galaxies with specific characteristics or attributes from vast observa-
tional data, where these features may relate to the galaxies’ physical properties,
evolutionary stages, or environmental factors. Therefore, to evaluate whether
the proposed analysis pipeline, combining the GalSpecEncoder with a knowl-
edge base, is effective for target galaxy search tasks, we design a comparative
experiment involving a three-class classification task: star-forming, active galac-
tic nucleus (AGN), and normal galaxy. This experiment serves to validate the
utility of our approach. The labels for the test set and the prior information in
the knowledge base are derived from the two emission-line catalogs provided by
SDSS, as described in Section 2: galSpecExtra and emissionLinesPort. Table 1
summarizes the sample data used in the comparative experiments.

To comprehensively evaluate the effectiveness of our approach, this section com-
pares it with two representative benchmarks: a classical ML method, random
forest (RF), and a DL model. RF [?] is a well-established supervised ML
technique widely applied to automate spectral classification tasks for stars and
galaxies [?, ?]. Notably, [?] demonstrated that RF outperformed other meth-
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ods, including k-nearest neighbors (KNN), support vector classifiers, and multi-
layer perceptron (MLP) networks, in classifying intermediate-redshift emission-
line galaxies, showcasing its robust distinguishing capability. Meanwhile, Gal-
SpecNet [?] is a 1D CNN model, which leverages supervised learning to per-
form end-to-end training for classifying emission-line galaxy spectra into star-
forming, composite, AGN, and normal galaxy cases, demonstrating state-of-the-
art (SOTA) performance. Therefore, we select these two representative models
for our comparative experiments. To further evaluate whether the Transformer
architecture can capture meaningful physical semantics, we performed super-
vised training on the three-class classification task using the same training data,
loss function, and optimizer as in GalSpecNet.

To evaluate the performance of our method in the comparative experiments, we
adopt commonly used classification metrics, including Accuracy (Acc), Preci-
sion (P), Recall (R), and F1-score, to assess the results for each galaxy type. In
this framework, each galaxy is treated as a binary classification problem, where
the target type is labeled as the “true type” and all other types are collectively
considered the “false type”. For example, when evaluating star-forming galaxies,
true positives (TP) represent cases where both the label and the model’s predic-
tion correctly identify the galaxy as star-forming. True negatives (TN) indicate
cases where the model correctly predicts a galaxy as not star-forming, aligning
with the ground truth. False positives (FP) occur when the model incorrectly
classifies a galaxy as star-forming, while the ground truth designates it as not
star-forming. Conversely, false negatives (FN) represent cases where the model
fails to classify a galaxy as star-forming when it is labeled as star-forming. We
here use the macro-averaged F1-score.

Table 2 presents a comprehensive comparison of performance metrics across
galaxy types among the evaluated models mentioned above, highlighting their
relative strengths and limitations. When comparing GalSpecEncoder-KB with
the supervised GalSpecEncoder, we find that although the self-supervised strat-
egy uses a large amount of unlabeled data for pre-training, its learning goals
differ from the final classification task. Self-supervised learning focuses on cap-
turing general features, while supervised learning directly targets the classifi-
cation task and better captures the relevant features. As a result, for specific
classification tasks, the supervised method may perform better. Additionally,
the similarity-based retrieval used in GalSpecEncoder-KB depends heavily on
the quality and completeness of the vector knowledge base, which can limit its
ability to handle ambiguous galaxy types.

Furthermore, the overall classification performance of GalSpecNet is better than
that of the supervised GalSpecEncoder. This is probably attributed to the
translation invariance inherent in CNNs, an inductive bias that mitigates red-
shift effects and enhances the robustness of spectral representations. However,
supervised ML/DL approaches require building task-specific data sets and mod-
els, which limits their reuse and transfer. The knowledge base approach miti-
gates these constraints by enabling similarity-based retrieval without additional
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training, significantly reducing computational costs and time while enhancing
adaptability to other tasks.

This classification experiment validates the efficacy and generalizability of
GalSpecEncoder embeddings, while demonstrating the effectiveness of our
knowledge-based RAA framework. These empirical results establish a robust
foundation for downstream classification tasks, sustaining a comprehensive
evaluation of our methodology. Considering the balance between accuracy
and flexibility, we adopt the proposed GalSpecEncoder-KB framework in
subsequent experimental investigations.

4.2. Experimental Results for Target Galaxy Search

The comparative experiments presented in Section 4.1 validate the effectiveness
of GalSpecEncoder-KB in spectral classification tasks. Motivated by these re-
sults, we extend its application to galaxy search tasks, specifically targeting
the identification of certain types of galaxies within large-scale observational
data sets. The GalSpecEncoder-KB framework achieves this by decoupling the
feature extraction and classification modules, leveraging a knowledge base and
similarity search technique to achieve classification outcomes. As a result, the
method allows for the rapid adaptation to galaxy search tasks by simply reconfig-
uring the knowledge base to include prior information about the target galaxies.
This flexibility ensures that the model can efficiently utilize the robust context-
aware representations learned during pre-training, enabling seamless transfer to
search tasks for any galaxy type.

To further evaluate the model’s performance in target galaxy search tasks, we
design a series of experiments:

1. We further refine the classification by designating LINER galaxies as the
target for the search task. To test our approach’s transferability, we care-
fully configure the knowledge base using data summarized in Table 1,
ensuring sample diversity and representativeness. Specifically, the sam-
ples for star-forming, composite, Seyfert, LINER, and normal galaxies are
sourced from the intersection of the galSpecExtra and emissionLinesPort
catalogs.

2. The second task focuses on searching for small-sample galaxies, specifi-
cally selecting Strong Gravitational Lenses from the eBOSS Strong Grav-
itational Lens Detection Catalog. This catalog contains 838 “likely,” 448
“probable” and 265 “possible” strong lens candidates, all identified within
the final data release of eBOSS (part of SDSS DR16). These candidates
were spectroscopically identified using methodologies derived from the
BOSS Emission-Line Lens Survey (BELLS) and Sloan Lens ACS (SLACS)
surveys [?], with enhanced inspection tools introduced by [?] to refine and
expand upon earlier detection techniques.

3. In the final experiment, we aim to further investigate the quality of prior
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knowledge retrieved from the knowledge base. To achieve this, we refer
to the work of [?], who utilized an unsupervised RF-based anomaly de-
tection algorithm to analyze 2,379,168 galaxy spectra from SDSS DR12.
Their study identified over 400 samples with the highest anomaly scores,
subsequently categorizing them into 16 distinct classes. Building on this
foundation, we design the Outliers as the search targets and examine the
similarity of the samples retrieved through our approach.

In summary, this study incorporates three distinct galaxy search experiments:
LINER, Strong Gravitational Lens, and Outlier. To streamline the experimen-
tal setup, a single mixed test set is designed, containing both target and non-
target galaxies, simulating real-world search scenarios. For instance, in the
LINER galaxy search task, the goal is to extract LINER samples from the
mixed test set. Detailed information on the experimental data is presented in
Table 3 . The primary objective of these experiments is to evaluate whether our
GalSpecEncoder-KB framework can be directly adapted to various galaxy search
tasks without retraining. Performance metrics include P, R, and F1-score, with
particular emphasis on R. This focus reflects the critical importance of minimiz-
ing false negatives in galaxy search tasks, where missing target galaxies could
significantly impact the effectiveness of the analysis.

Table 4 presents the detailed summary of the P, R, and F1-score for the galaxy
search tasks. The results highlight both the strengths and challenges of applying
the GalSpecEncoder-KB framework across diverse search scenarios.

In the LINER galaxy search, our model achieves a precision of 0.8727, indicat-
ing a relatively low proportion of false positives. The recall is notably high
at 0.9460, reflecting the model’s strong capability to correctly identify LINER
galaxies within the mixed test set. The resulting F1-score of 0.9079 underscores
a balanced performance in detecting LINER galaxies. However, the precision
being lower than recall suggests some confusion between LINER galaxies and
other types, likely due to the overlap of spectral characteristics within AGN
subtypes. This overlap complicates the task of differentiating LINER galaxies
from other AGN-like systems, especially star-forming or Seyfert galaxies, which
share similar emission line characteristics.

The search for Strong Gravitational Lens achieves remarkable results, with near-
perfect precision of 0.9937 and F1-score of 0.9701, demonstrating the model’s
ability to effectively distinguish these rare but unique systems from non-target
samples. While the recall (0.9476) is slightly low, it remains sufficiently high to
ensure reliable identification of strong lens systems. This strong performance
can be attributed to the distinct spectral features of lensing galaxies, which are
effectively captured by our GalSpecEncoder-KB framework.

The Outlier galaxy search task yields the most variable performance among the
three experiments, with a precision of 0.9847, recall of 0.8377, and an F1-score
of 0.9053. The high precision indicates that most retrieved galaxies are gen-
uine Outliers, but the lower recall reveals challenges in detecting a significant
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portion of the Outlier population. This result reflects the inherent difficulty in
identifying rare and diverse galaxy types, as Outliers are by definition charac-
terized by atypical features that do not consistently align with the dominant
patterns in the knowledge base. The lower recall may also be influenced by the
relatively small representation of Outlier galaxies in the training set, which lim-
its the model’s exposure to their unique characteristics during knowledge base
construction.

After analyzing the recall failure samples (see Appendix B.1 for details), we
determine that the low recall rate primarily stems from the absence of consistent
spectral characteristics among the Outliers. With 16 distinct Outlier subtypes—
each possessing unique spectral properties—each subtype effectively functions
as an independent target during similarity retrievals. The limited sample sizes
for certain subtypes hinder the development of a robust “search focus” within
the knowledge base. In contrast, although there is one instance of the “Outliers
on BPT diagram” among the recall failures, this subtype’s overall recall rate
is an impressive 0.9778. This clearly indicates that when a target galaxy can
establish a distinctive feature cluster in the knowledge base, achieving a high
recall rate becomes feasible.

The consistently high recall across all tasks underscores the robustness of our
GalSpecEncoder-KB framework in minimizing false negatives, a critical priority
in galaxy search tasks to ensure scientific completeness. Variations in precision
reflect the challenges posed by the spectral diversity and rarity of certain tar-
gets, such as LINER and Outlier galaxies, compared to the distinctiveness of
Strong Gravitational Lens. Importantly, the ability of the knowledge base to re-
trieve relevant priors, as demonstrated in the Outlier galaxy search experiment,
suggests that these retrieved priors can offer valuable insights into the physical
mechanisms or observational conditions underlying anomalous samples. This
capability highlights the potential of the framework not only as a classifier but
also as a tool for helping us to understand and interpret the nature of their
data.

Overall, the results demonstrate the adaptability of our GalSpecEncoder-KB
framework to a wide range of search scenarios without retraining, emphasizing
its suitability for real-world astronomical applications (see Appendix B.2 for
details). Future efforts could focus on enriching the knowledge base with more
diverse and representative samples, as well as enhancing methods to better
capture the complexity and diversity of Outlier galaxies.

5. Discussions
This part delves into the critical factors shaping the performance of our
GalSpecEncoder-KB framework in target galaxy search tasks. We explore
the influence of the knowledge base configuration, focusing on the proportion
of target galaxies, and assess how it affects retrieval accuracy and coverage.
Furthermore, we analyze the role of Top_K, the number of prior samples
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retrieved, in balancing precision, recall, and F1-score. These insights are
instrumental in refining the framework for varied application scenarios and
improving its adaptability to diverse search tasks.

5.1. Knowledge Base Configuration

The configuration of the knowledge base is a pivotal factor influencing the per-
formance of target galaxy search tasks. To investigate this, we design an experi-
ment to analyze the effect of varying the proportion of target galaxies within the
knowledge base. Specifically, we focus on Strong Gravitational Lens as the tar-
get and systematically adjust their proportion in the knowledge base to observe
its impact on key performance metrics such as P, R, and F1-score.

The motivation behind this experiment lies in the challenges posed by real-world
astronomical data sets, where target galaxies often constitute a small fraction of
the total sample. Understanding how the proportion of target galaxies affects
search performance is essential for optimizing the knowledge base to balance
recall and precision. Recall is particularly critical in galaxy search tasks, where
minimizing false negatives ensures the comprehensive identification of target
galaxies.

The results presented in Figure 4 [FIGURE:4] reveal a clear trade-off between
precision and recall as the proportion of Strong Gravitational Lens increases.
Higher proportions of target galaxies in the knowledge base enhance recall, as
more similar samples improve the likelihood of correctly identifying target galax-
ies. However, this improvement comes at the expense of precision. The increased
proportion of target galaxies introduces a class imbalance, leading to more false
positives. This occurs because the model is biased toward predicting Strong
Gravitational Lenses, even when their similarity scores are not sufficiently high.
This trade-off is reflected in the F1-score, which balances the two metrics.

These findings emphasize the importance of carefully curating the knowledge
base to achieve optimal performance. In applications where high recall is criti-
cal, such as identifying rare phenomena, a higher proportion of target galaxies
may be preferable. Conversely, for tasks requiring high precision, reducing the
proportion of target galaxies might help mitigate false positives. This exper-
iment underscores the need for task-specific knowledge base configurations to
ensure the robustness and adaptability of galaxy search models in diverse astro-
nomical scenarios.

5.2. Top_K

To explore the impact of the number of retrieved priors (Top_K) on the per-
formance of galaxy search tasks, we conduct experiments using multiple galaxy
types as the target. By varying K while analyzing P, R, and F1-score, we aim
to evaluate the influence of retrieval depth on search outcomes and identify an
optimal K for balancing performance metrics.
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Contrary to the typical trade-off observed in many retrieval tasks, the results
displayed in Figure 5 [FIGURE:5] indicate that precision, recall, and F1-score
exhibit consistent trends as K increases. All three metrics gradually decrease
with larger K values, suggesting that an increase in the number of retrieved
priors does not significantly enhance recall but instead introduces marginally
more noise, leading to reductions in precision and overall performance.

This behavior can be attributed to the characteristics of the data set and the
model’s similarity computation. When K is small, the retrieved priors are highly
relevant to the target class, resulting in strong performances across all metrics.
As K increases, the additional priors retrieved are likely to include less relevant
or ambiguous samples, diluting both precision and recall without positive con-
tributions. Based on this analysis, we select K = 3 as the optimal configuration.
At this value, the model achieves favorable performance across precision, recall,
and F1-score. This choice not only balances key metrics but also enhances the
model’s tolerance for errors, ensuring reliable results in galaxy search tasks. Fur-
thermore, retrieving three priors can improve the interpretability of the search
process by providing users with relevant samples to better understand the spec-
trum in question.

6. Conclusions
In this work, we propose a galaxy search framework, which integrates a
Transformer-based spectrum encoder—GalSpecEncoder, along with a catalog
knowledge base, similarity search techniques, and a weighted voting algorithm.
Using the SDSS spectral data as a comprehensive case study, we demon-
strate the effectiveness and generalizability of the framework. The primary
contributions of our work can be summarized as follows:

1. The results tested on SDSS spectra highlight the effectiveness of our
GalSpecEncoder, which is pre-trained using a masked-modeling strategy.
This approach leverages the self-attention mechanism to model long-range
dependencies and capture robust spectral features. As a result, GalSpe-
cEncoder achieves enhanced generalization performance in downstream
tasks and establishes a scalable framework for robust galaxy spectral anal-
ysis.

2. By relying on prior knowledge embedded in the knowledge base, our ap-
proach bypasses the need for extensive task-specific retraining, instead
focusing on the retrieval of context-aware spectral embedding and corre-
sponding metadata. Furthermore, the modularity and flexibility of this
framework allow for seamless adaptation to a wide range of target galaxy
search tasks. By simply reconfiguring the knowledge base to include spec-
tra relevant to the desired targets, the pipeline can quickly and efficiently
pivot to new applications, demonstrating exceptional transferability and
efficiency in diverse spectral analysis challenges.

3. Our proposed GalSpecEncoder-KB framework improves model inter-
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pretability by using retrieved prior knowledge to analyze unknown
spectra. It automates target galaxy searches while integrating additional
knowledge base fields to help users better understand spectral properties.
Appendix B.2 provides a case study illustrating the framework’s workflow
and decision-making process. Unlike traditional ML methods that rely
on opaque weight matrices, our framework enhances transparency by
leveraging retrieved metadata.

In conclusion, our proposed GalSpecEncoder-KB framework offers a robust and
scalable solution for galaxy spectral analysis by combining Transformer-based
encoding, metadata retrieval, and a weighted voting algorithm. However, there
are some limitations. The method’s performance is somewhat unstable because
it relies on high-quality, diverse training data and a comprehensive, representa-
tive knowledge base to accurately learn and generalize spectral features. Also,
noise is currently mixed into the spectral features, so spectra with different SNR
may harm retrieval and affect performance. Moreover, the similarity retrieval
algorithm scans the entire vector database, and its computational cost grows
linearly with the size of the database, which can become high when the database
exceeds 500,000 entries.

To overcome these challenges, we plan to explore several optimization strategies
in future work. We aim to adopt a Transformer-CNN hybrid model that pre-
serves the Transformer’s advantage in modeling long-range dependencies while
better capturing local features. We also plan to implement a learnable weight
transformation strategy, replacing the fixed e^{-x}, to improve the weighted
voting algorithm by considering additional context such as the spectral SNR.
Finally, as indicated in Appendix C, the current exact similarity retrieval al-
gorithm shows inefficiencies when handling large-scale knowledge bases. There-
fore, we will consider using a Hierarchical Navigable Small World (HNSW; [?])
algorithm to boost retrieval efficiency when the knowledge base becomes very
large, even if this requires more storage. Furthermore, we plan to extend the
application of the GalSpecEncoder-KB framework to other downstream tasks,
such as redshift estimation and galaxy physical parameter prediction, to further
explore its potential and versatility.
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Appendix A Technical Specifications
A.1. Transformer Component Details

The encoder module in our model is based on the standard Transformer archi-
tecture [?], specifically utilizing the encoder stack. It is composed of a stack
of L = 6 identical layers. Each layer has two sub-layers. The first is an MSA
mechanism (Equation (A1)), which allows the model to jointly attend to infor-
mation from multiple representation subspaces across different regions of the
galaxy spectrum.

MultiHead(𝑄, 𝐾, 𝑉 ) = Concat(head1, … , headℎ)𝑊 𝑂

where head𝑖 is standard qkv self-attention, which is widely used to build a block
in neural network architectures. In our work, the self-attention mechanism gen-
erates query (q), key (k), and value (v) vectors for each spectral patch and
computes attention weights based on the dot product between the queries and
keys. These weights are then used to compute a weighted sum of the value
vectors, resulting in a context-aware representation for each patch. This pro-
cess enables the self-attention mechanism to capture global relationships among
spectrum patches, effectively combining local and global information to extract
richer spectral features.

Attention(𝑄, 𝐾, 𝑉 ) = softmax (𝑄𝐾𝑇

√𝐷ℎ
) 𝑉

Here the projections are parameter matrices 𝑊 𝑄, 𝑊 𝐾, 𝑊 𝑉 ∈ ℝ𝐷×𝐷ℎ for the
queries, keys, and values, while 𝑊 𝑂 ∈ ℝ𝐷×𝐷 represents a trainable linear pro-
jection combining the heads’ outputs. In addition, 𝑋 ∈ ℝ𝑁×𝐷 represents an
input sequence and 𝐷ℎ = 𝐷/ℎ.

A.2. Selection of the Weight Transformation Function

To determine an appropriate transformation, understanding the distribution
of pairwise distances within the knowledge base is critical to optimizing the
weighting scheme and ensuring robust voting performance. Considering that
this study uses SDSS galaxy spectra as a use case, we calculate and visualize
the distribution of pairwise L2 distances across the SDSS-derived knowledge
base (as depicted in Figure A1), which reveals the following characteristics:

1. Skewness (𝛾1). The L2 distance distribution exhibits a slight right skew
with a skewness value of 0.44. This indicates the presence of a few rela-
tively large distance values that deviate from the mean.

2. Kurtosis (𝛾2). The distribution shows a kurtosis of -0.40, suggesting it
is flatter than a normal distribution. This implies that data points tend
to be more concentrated around the mean with fewer extreme values.
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3. Mean (�) and Median. The mean distance is 2.84, while the median
is 2.71, indicating a relatively symmetric distribution around the central
tendency.

4. Standard Deviation (𝜎). The standard deviation is 1.18, providing a
measure of the dispersion of distances around the mean.

Overall, the L2 distance distribution lacks fat-tail or sharp-peak characteristics,
instead showing a slight skew and flat kurtosis, with data concentrated around
the mean and few extreme values. These properties are essential considerations
for selecting an appropriate transformation function.

To convert L2 distances into weights, we evaluated four candidates: inverse
(1/(x� + �) with � = 10−5), inverse square (1/(x�2 + �)), linear (-x�), and ex-
ponential (e^{-x�}) functions. The � term prevents division-by-zero errors in
inverse transformations. The impact of each function on the weight distribu-
tion was analyzed through their resulting skewness and kurtosis (as shown in
Table A1). For our task, the ideal weight distribution should exhibit symmetry
to minimize the impact of extreme values, distinctiveness to effectively differenti-
ate weights across distances, and stability to ensure smoothness and robustness
against outliers.

1. Symmetry. The e^{-x} function yields a weight distribution with a
skewness of 1.69, which, while not perfectly symmetric, is a significant
improvement over the highly skewed distributions produced by 1/(x� + �)
and 1/(x�2 + �). The latter function introduces extreme values that could
destabilize model performance.

2. Distinctiveness. With a kurtosis of 3.43, the e^{-x} transformation
approaches the ideal kurtosis of 3 for a normal distribution. This indicates
a more optimal balance between peakedness and tail weight, allowing for
better differentiation of weights, particularly in high-density regions where
distances are smaller.

3. Stability. The exponential function provides a smooth and gradual decay
in weights as distances increase, avoiding the abrupt changes and extreme
values associated with the other transformation functions. This stability
is crucial for maintaining consistent model performance across various
distance ranges.

In summary, the exponential function e^{-x} was selected as the weight trans-
formation function due to its superior balance of symmetry, distinctiveness, and
stability in the weight distribution. This choice is expected to enhance the over-
all performance and robustness of our model in processing L2 distances within
the knowledge base.
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Appendix B Case Study
B.1. Analysis of Recall Failure Samples in Outlier Galaxy Search
Tasks

The overall Outliers sample comprises only 377 instances (as shown in Table
3). Since an additional 100 samples are randomly selected as the test set, the
remaining pool becomes too limited to establish a robust “search focus” within
the knowledge base. Our similarity search analysis identified two primary failure
modes among the 17 undetected samples:

1. Prototype Starvation. 58.82% (10/17, corresponding to the first 10
rows in Table B1) of the failed samples belong to five rare subtypes (each
represented by fewer than 10 samples in the knowledge base). The sparse
priors associated with these subtypes hinder the formation of distinctive
feature clusters in the vector space.

2. Narrow Feature Window. 35.29% (6/17, specifically referring to
Sodium excess galaxies and Weak H𝛼 emission) of the failed samples
have a limited range of distinct spectral features, differing from normal
galaxies by only a few key lines. This scarcity of unique features results
in over-smoothed spectral representations during similarity comparisons,
leading to increased misclassification.

These findings highlight the intrinsic challenges in detecting Outliers. Moreover,
the low recall rate may be attributed to the relatively scant representation of
Outliers in the training set, which restricts the model’s capacity to encode their
unique spectral features.

B.2. Interpretability Verification of LINER Spectral Retrieval and
Classification

In this study, we selected the SDSS spectrum spec-0881-52368-0036 (redshift z =
0.0668) as the target for case analysis. The spectrum was manually verified as a
LINER using the BPT diagnostic diagram. This study aims to evaluate whether
the GalSpecEncoder-KB framework can accurately identify such spectra and,
through its retrieval results, clarify the basis for classification, thereby providing
empirical support for the method’s interpretability.

Figure B1 compares the target galaxy spectrum with the top_3 retrieved sam-
ples. LINER galaxies are characterized by relatively strong low-ionization emis-
sion lines, such as [O I] $�$6300, [N II] $�$6583, and [S II] 𝜆$�$6716,6731, while
the [O III] $�$5007 line remains comparatively weak. This pattern suggests that
LINER galaxies generally have a lower overall ionization state, distinguishing
them from other types of AGNs. However, the comparison shows that the target
spectrum and the three retrieved samples exhibit striking similarities in these
key spectral features (highlighted in Figure B1), demonstrating the high quality
of embedding and the effectiveness of the similarity search algorithm.

In Table B2, we performed a provenance analysis on the metadata of these four
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samples. These parameters help us understand the physical meaning behind
the retrieval results and the criteria for classification. For example, the weight
values show the importance of each sample in the decision-making process, while
the emission-line intensity ratios serve as key indicators in the BPT diagnostic
diagram.

1. Physical Consistency Verification. According to [?], the dividing line
between LINERs and Seyfert 2 galaxies is defined by Equation (B1). Our
calculations show that both samples spec-1445-53062-0466 and spec-1009-
52644-0170 fall below this line and are located very close to the target
sample on the BPT diagram. This supports the reliability of the retrieval
results.

log([O III]/H𝛽) = 1.18 log([N II]/H𝛼) + 0.77

2. Explanation of Anomalous Sample. Although sample spec-1009-
52644-0170 is labeled as a Seyfert galaxy, its parameter values indicate
that it lies near the LINER/Seyfert 2 boundary and actually falls within
the LINER region. This finding agrees with the known transitional types
between LINER and Seyfert galaxies, where the boundary is not strict [?].
This observation further supports the validity of the retrieval outcomes.

3. Decision Credibility. Even with the inclusion of a mismatched sample,
the weighted voting mechanism—with a weight ratio of 68.12%—produced
a classification that matches manual verification. This confirms that the
retrieval weighting method is effective and that the GalSpecEncoder-KB
framework is reliable in its classification decisions.

In summary, this case study illustrates the workflow and decision-making cri-
teria of the GalSpecEncoder-KB framework in the target galaxy search task.
Through detailed visualization of retrieval results, metadata provenance analy-
sis, and interpretability assessment, it provides strong empirical support for the
method’s interpretability.

Appendix C Algorithm Efficiency Experiment
The absolute size of the knowledge base is a critical factor influencing the practi-
cality of the GalSpecEncoder-KB framework, particularly in terms of its impact
on the efficiency of our similarity retrieval process. To quantify this relation-
ship, this study designed a systematic experiment. The experimental results (as
depicted in Figure C1) demonstrate that, under the current configuration using
the exact similarity retrieval algorithm, the retrieval time exhibits a strict linear
growth with respect to the size of the knowledge base.

To assess the efficiency of our similarity retrieval process, we randomly select 10
test samples and measure the average retrieval time across knowledge bases of
different sizes: 1000, 5000, 10,000, and up to 500,000 entries. Each retrieval is
repeated 100 times to reduce randomness, and the average time per sample is
recorded. The results show a linear growth in retrieval time, with a regression
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function of y = 0.0058x + 0.0490, where x is the knowledge base size and y is
the retrieval time.
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