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Abstract
In this study, we used the f(T) gravity framework with the energy-momentum
tensor for a perfect fluid to derive key cosmological parameters, including the
Hubble parameter H, deceleration parameter q, and Statefinder diagnostics.
Model parameters were optimized using an R2 test, resulting in values of 0.013,
� = 0.50, with an R2 of 0.9527. Our model aligns closely with the ΛCDM model
and shows good performance based on AIC and BIC criteria. Analyzing the q(z)
curve revealed the transition from deceleration to acceleration in the universe’s
expansion. Additionally, we examined pressure, energy density, and equation of
state parameter for two models, f(T) = 𝜆T and f(T) = T + 𝛽T2, both aligning
well with observational data. The r–s and r–q diagnostics further confirm our
model’s consistency with ΛCDM, making it a strong alternative for explaining
cosmic expansion. The evolution of Ω(z) shows strong consistency with the
ΛCDM model, with the Om parameter approaching 0.3 at lower redshifts and
parameter uncertainties highlighting the model’s reliability.

Key words: equation of state—gravitation—(cosmology:) dark energy—
(cosmology:) large-scale structure of universe

1. Introduction
In recent years, modified gravity theories have gained significant attention as
alternatives or extensions to general relativity (GR). One such theory is f(T)
gravity, which is based on the idea of modifying the teleparallel equivalent of
GR (TEGR) by introducing a function of the torsion scalar T. Unlike GR, which
focuses on curvature, f(T) gravity takes torsion into account, providing a new
perspective on gravitational interactions and the evolution of the universe.

The perfect fluid model is widely used in cosmology to describe the large-scale
behavior of matter and energy in the universe. In the context of the Friedmann–
Lemaître–Robertson–Walker (FLRW) cosmological model, which describes a ho-
mogeneous and isotropic universe, the perfect fluid offers a simple yet effective
approach to model the distribution of matter, energy, and pressure. This model
is essential for understanding the dynamics of the universe, including the expan-
sion and the role of dark energy and dark matter.

Mohanty & Mishra (2001, 2003) made notable contributions to cosmological
model studies, especially within Bianchi type cosmologies involving perfect fluid
distributions. Their initial work focused on developing LRS Bianchi Type-I
cosmological models in a perfect fluid framework, establishing a foundational
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model. Building on this, they later introduced scale-invariant theories for
Bianchi type VIII and IX spacetimes, broadening the approach to explore
cosmological behaviors in more complex, anisotropic settings. Ferraro & Fiorini
(2007) made a notable impact on modified gravity theories by introducing a
model of modified teleparallel gravity. Their work presented a fresh perspective
on cosmic inflation, showing it could occur without the need for an inflation
field. This approach opened up new possibilities for explaining early universe
dynamics within the teleparallel gravity framework. Building on this founda-
tion, Bengochea & Ferraro (2009) explored the concept of dark torsion as a
potential driver of the universe’s accelerated expansion. Their study provided
valuable insights, suggesting that teleparallel gravity could offer a compelling
alternative to traditional explanations of cosmic acceleration.

Pradhan & Mathur (2009) and Pradhan & Ram (2009) investigated the dynam-
ics of inhomogeneous cosmological models within Lyra geometry, focusing on
perfect fluid universes influenced by electromagnetic fields and magnetic per-
meability variations. Their studies included a model of a perfect fluid universe
with an electromagnetic field and a plane-symmetric, magnetized inhomoge-
neous cosmological model with variable magnetic permeability. These works
provided valuable insights into how Lyra geometry can be applied to study in-
homogeneous structures, expanding the understanding of the role of magnetic
fields in the evolution of large-scale cosmic structures. Linder (2010) proposed
an alternative approach to cosmic acceleration by examining a modified gravity
theory, often referred to as “Einstein’s other gravity.” His work demonstrated
how this modified gravity could account for the observed acceleration of the
universe, offering a potential substitute for dark energy in cosmological models.

Chen et al. (2011) focused on cosmological perturbations within the framework
of f(T) gravity. Their study shed light on how modifications in teleparallel
gravity impact the behavior of cosmological perturbations, contributing to the
development of alternative models of the early universe. Harko et al. (2011)
introduced the f(R, T) gravity theory, where the gravitational Lagrangian is
a function of both the Ricci scalar R and the trace of the energy-momentum
tensor T. This theory opened new avenues for exploring modified gravity and its
potential to explain cosmic phenomena without invoking dark matter or dark
energy. Tamanini & Boehmer (2012) analyzed the tetrad choices in f(T) gravity,
distinguishing between “good” and “bad” tetrads. Their work clarified how
certain tetrad configurations impact the viability of solutions within teleparallel
gravity, helping refine the use of f(T) gravity in cosmological models.

Duran et al. (2012) examined the matter power spectrum within dark energy
models, using the Harrison-Zel’dovich prescription as a foundation. Their work
offered insights into the compatibility of dark energy models with observed
cosmic structures, contributing to a better understanding of matter distribu-
tion in the universe. Geng et al. (2012) investigated observational constraints
on teleparallel dark energy models, focusing on how teleparallel gravity could
explain dark energy phenomena. Their study provided valuable data on the vi-
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ability of teleparallel gravity as an alternative framework for explaining cosmic
acceleration. Setare & Darabi (2012) explored power-law solutions within f(T)
gravity, presenting solutions that contribute to understanding the evolution of
the universe under modified teleparallel gravity. Their work enriched the theo-
retical foundation of f(T) gravity models. Karami & Abdolmaleki (2012) studied
the generalized second law of thermodynamics within f(T) gravity frameworks.
Their research addressed thermodynamic properties in modified gravity models,
offering insights into the thermodynamic viability of f(T) gravity.

Singh & Singh (2014) and Rao et al. (2014) developed perfect fluid cosmolog-
ical models within a modified theory of gravity, examining how these models
influence cosmic dynamics. Their work contributed to exploring alternative cos-
mological models that incorporate perfect fluid distributions in non-standard
gravitational frameworks. Harko et al. (2014) extended f(T) gravity by intro-
ducing nonminimal torsion-matter coupling, providing a novel perspective on
interactions between torsion and matter. This work helped deepen understand-
ing of modified teleparallel gravity and its potential applications in cosmology.
Junior et al. (2015) studied Born-Infeld and charged black holes within f(T) grav-
ity, considering the effects of nonlinear sources. Their research expanded the
theoretical landscape of black hole solutions in modified gravity frameworks.
Rani et al. (2015) developed Bianchi type-III magnetized string cosmological
models within f(R, T) gravity, incorporating perfect fluid distributions. Their
work contributed to understanding how magnetized cosmologies evolve under
modified gravitational theories. Mishra et al. (2015) proposed a dark energy cos-
mological model for Bianchi type-III spacetime with a perfect fluid. This study
provided insights into how dark energy can be modeled within anisotropic space-
times. Shaikh (2016) examined a binary mixture of perfect fluid and dark energy
in modified gravity, offering an alternative framework for understanding dark
energy and perfect fluid interactions within cosmological models.

Nunes et al. (2016) investigated the cosmological viability of non-Gaussian
statistics in dark energy models, contributing to understanding statistical fea-
tures in cosmological observations under alternative gravity frameworks. Cai
et al. (2016) explored f(T) teleparallel gravity in cosmology, presenting a com-
prehensive overview of how this theory can address various cosmological phe-
nomena, including dark energy and inflation. Krššák et al. (2019) reviewed
teleparallel theories of gravity with a focus on achieving a fully invariant ap-
proach. Their work illuminated the foundational aspects of teleparallel gravity,
enhancing its utility in theoretical physics and cosmology. Arora et al. (2020) fo-
cused on observational constraints for f(Q, T) gravity models, offering a detailed
analysis of how these models align with observed cosmic phenomena. Their work
strengthened the case for f(Q, T) gravity as a viable alternative in the study of
cosmological evolution. Sahoo et al. (2020) developed a mixed fluid cosmological
model within f(R, T) gravity, focusing on interactions between different fluid
types in the context of modified gravity. This model provided insights into the
dynamics of cosmic evolution within f(R, T) gravity frameworks. Pradhan et
al. (2020) examined transit cosmological models under f(Q, T) gravity, placing
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particular emphasis on observational constraints. Their work contributed to
understanding how f(Q, T) gravity can align with observed cosmic phenomena,
especially in models where transit behavior is key.

Tiwari et al. (2020) studied phase transitions in LRS Bianchi type-I cosmolog-
ical models within f(R, T) gravity, focusing on how phase transitions affect
cosmological evolution. Their work offered a new perspective on the role of
modified gravity in cosmic phase transitions. Pawar et al. (2021) investigated
perfect fluid and heat flow within the f(R, T) gravity framework. Their study
provided an analytical approach to understand heat flow dynamics in modified
gravity theories, particularly within perfect fluid cosmologies. Mandal & Sa-
hoo (2021) explored constraints on the equation of state (EoS) parameter (𝜔)
in non-minimally coupled f(Q) gravity. Their work examined how varying 𝜔
affects the behavior of the universe under this modified gravity framework, of-
fering insights into the parameter’s cosmological implications. Pawar & Mapari
(2022) developed a plane-symmetry cosmological model with an interacting field
in f(R, T) gravity, examining how interactions influence cosmological evolution.
Their model added depth to the study of interacting fields in modified gravity
frameworks. Duchaniya et al. (2022) conducted a dynamical stability analysis of
accelerating f(T) gravity models, focusing on the conditions that ensure stable
cosmic acceleration. Their findings advanced the understanding of stability in
teleparallel gravity models. Kumar et al. (2023) investigated the phase structure
and critical behavior of charged-AdS black holes in the presence of perfect fluid
dark matter. Their study provided valuable insights into the thermodynamic
properties of black holes in modified gravity and dark matter contexts. Naicker
et al. (2023) analyzed isotropic perfect fluids within modified gravity, focusing
on how isotropy affects the viability of perfect fluid models under alternative
gravitational theories. Their work contributed to understanding fluid dynamics
in modified gravity contexts. Solanke et al. (2023) examined anisotropic dark
energy models within f(Q, T) gravity, using observational constraints to assess
model viability. Their work added to the study of dark energy in modified
gravity, especially for anisotropic cosmological models. Tiwari et al. (2023) pro-
posed a transition model in f(R, T) theory, using observational constraints to
examine transition behaviors in modified gravity. This model contributed to un-
derstanding how transitions influence cosmic evolution within f(R, T) gravity.
Singh et al. (2023) developed a constrained cosmological model within Lyra ge-
ometry, examining how Lyra geometry affects cosmic dynamics under modified
constraints. Their work expanded the applications of Lyra geometry in cosmo-
logical models. Pradhan et al. (2023) proposed an f(R, T)-based FLRW model
with observational constraints, investigating how f(R, T) gravity can support
FLRW cosmology in observed conditions. This study added to the literature
on FLRW models within modified gravity. Narawade & Mishra (2023) explored
a phantom cosmological model in f(Q) gravity, considering observational con-
straints to assess the model’s viability. Their work contributed to understanding
phantom energy’s role in cosmological expansion within modified gravity. Shekh
et al. (2023) analyzed observational constraints in an accelerated emergent f(Q)
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gravity model. Their work provided valuable insights into how observational
data can support accelerated cosmic expansion within the f(Q) gravity frame-
work. Pawar et al. investigated the anisotropic behavior of perfect fluid within
fractal cosmology, offering new perspectives on how fractal geometry influences
anisotropic cosmic structures. Their study contributed to the broader under-
standing of anisotropy in cosmological models.

In recent years, modified gravity theories have gained significant attention as
viable alternatives to GR, particularly in explaining cosmic acceleration and
astrophysical phenomena. Pawar et al. (2025b) investigated the implications of
f(R, T) gravity on quark and strange quark matter, providing observational con-
straints that highlight modified gravity’s influence in high-density astrophysical
environments. In a related study, Pawar et al. (2025a) explored the dynamics of
a perfect fluid within the framework of f(T) gravity, demonstrating how observa-
tional constraints shape the cosmic evolution predicted by torsion-based modifi-
cations. Shukla et al. (2025) further examined the role of f(T) gravity in driving
the late-time acceleration of the universe, emphasizing its ability to replicate
cosmic expansion history without invoking a cosmological constant. Moreover,
Chen et al. (2024) assessed the potential of next-generation gravitational-wave
detectors in constraining f(T) gravity, paving the way for novel observational
tests of teleparallel modifications. Additionally, Malik et al. (2024) investigated
physically viable solutions for anisotropic hybrid stars within f(T) gravity us-
ing an embedding approach, demonstrating that such models can effectively
describe compact stellar structures. These recent developments underscore the
growing significance of f(T) gravity in addressing key challenges in both cos-
mology and astrophysics, motivating further exploration of its theoretical and
observational implications.

Sood et al. (2024) explored photon orbits and phase transitions in Letelier AdS
black holes immersed in perfect fluid dark matter. This research enriched the
study of black hole physics by examining how dark matter affects photon trajec-
tories and phase behaviors in AdS black holes. Pawar et al. (2024c) developed
a fractal cosmological model featuring two forms of dark energy, guided by
a specific Hubble parameter. Their study offered insights into dark energy’s
role in fractal cosmology, highlighting the implications of multiple dark energy
components on cosmic expansion. Pawar et al. (2024d) examined observational
constraints on the wet dark fluid model within fractal gravity. Their research
assessed how wet dark fluid behaves under fractal gravity, contributing to the
study of alternative dark energy models. Yadav et al. (2024) focused on recon-
structing f(Q) gravity from Hubble parameter parameterization and observa-
tional constraints, offering a framework to link f(Q) gravity with empirical data
on cosmic expansion. Pawar et al. (2024b) studied perfect fluid with heat flow
in the f(T) theory of gravity, examining how heat flow interacts with perfect
fluids under teleparallel gravity. Their work added a thermal perspective to f(T)
cosmology. Pawar et al. (2024a) developed a model involving two fluids in f(T)
gravity, using observational constraints to assess its viability. This research con-
tributed to understanding the role of multi-fluid systems in teleparallel gravity,
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especially under observationally constrained conditions.

Our work stands out due to (i) a novel parameterization approach, (ii) a compar-
ative analysis of two prototype f(T) models within this framework, (iii) extensive
observational constraints using multiple diagnostic tools, and (iv) a strong con-
nection to Lambda Cold Dark Matter (ΛCDM) and established diagnostics.
We propose a cubic parameterization of the deceleration parameter q(t) in f(T)
gravity, inspired by Sofuoğlu et al. (2023), but uniquely applied in a teleparallel
setting. Unlike traditional f(T) studies that assume specific functional forms
of f(T) or parameterize dark energy’s EoS, our approach directly parameterizes
q(t). This enables an analytical derivation of the Hubble parameter and scale
factor, offering a model-agnostic perspective on cosmic expansion.

We examine two representative f(T) models: (I) f(T) = 𝜆T (teleparallel GR
equivalent) and (II) f(T) = T + 𝛽T2 (a quadratic extension). While both
models have been individually studied, our comparative analysis under identical
constraints highlights their response to the same expansion history. Our findings
show that both models closely mimic ΛCDM, reinforcing the consensus that
many viable f(T) models resemble standard cosmology at the background level.

Unlike purely theoretical studies, our work is data-driven. Using Hubble param-
eter measurements from the Observational Hubble Dataset (OHD), we apply
model selection criteria (Akaike Information Criterion (AIC), Bayesian Infor-
mation Criterion (BIC)) and introduce an R2 goodness-of-fit metric alongside
�2. Furthermore, we perform statefinder diagnostics (r, s and r, q) and the Om
diagnostic, explicitly comparing our model’s behavior with established dark en-
ergy models. The close alignment with ΛCDM strengthens the validity of our
approach. To position our study within the latest developments in f(T) cosmol-
ogy, we incorporate recent works, such as Wang & Mota (2020) on H0 tension.
Our best-fit H0 = 72.6 ± 0.5 km s−1 Mpc−1 aligns well with recent direct mea-
surements, contributing to the ongoing H0 tension discussion. A key novelty
of our study is the explicit analysis of q(z) evolution. While many f(T) studies
focus on H(z), we emphasize the transition redshift (q = 0). Our best-fit model
predicts z_{trans} � 0.6, consistent with observational estimates (z � 0.5–0.7).
This detailed investigation of q(z) further differentiates our work within the
field.

The main goal of this study is to explore how the pressure, density, and EoS
parameters behave within the framework of f(T) gravity. These parameters are
key to understanding the relationship between matter, energy, and the expan-
sion of the universe. In addition to the EoS, this research will also investigate
other important diagnostics, such as statefinder parameters and stability con-
ditions, to assess the viability and observational consequences of f(T) gravity.
By analyzing these parameters, we aim to gain deeper insights into the influ-
ence of f(T) gravity on the evolution of the cosmos and how it compares with
more conventional models like GR. This paper is organized as follows: Section
1—Introduction, Section 2—Field Equations, Section 3—Cosmological Parame-
ters, and Section 4—Discussion and Conclusion.
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2. Field Equations
We investigate the FLRW metric studied by Izumi & Ong (2013), which is ex-
pressed as ds2 = dt2 - a(t)2dx2. The scale factor a(t), which varies with cosmic
time t, governs the universe’s expansion or contraction. The components of
the tetrad are defined by e^a_� = diag(1, a(t), a(t), a(t)). In this framework,
f(T) is a differentiable function of T, where T denotes the torsion scalar from
teleparallel gravity. The term L_{matter} denotes the matter Lagrangian den-
sity, while e is the determinant of the tetrad field. This determinant is related
to the metric tensor by the relation g = �_{ab}ea_�eb_�.

The torsion scalar T studied by Capozziello et al. (2013) is given by T = -6H2,
where H = ȧ/a is the Hubble parameter. In this equation, the torsion tensor S
with indices �, �, and � represents the asymmetry in the connection, capturing the
deviation from a symmetric connection in the theory. It describes the geometric
effects of torsion. The components of the torsion tensor S^�_{��} are defined
as S^�_{��} = ½(K^�_{��} + 𝛿�_�T𝛼{𝛼�} - 𝛿�_�T𝛼{𝛼�}), where K^�_{��} is the
contorsion tensor. The antisymmetric tensor, denoted by T_{��}, emphasizes
the non-symmetric aspects of the torsion tensor. It highlights the asymmetric
nature of the connection in a mathematical sense. The components of this tensor
satisfy the condition T_{��} = -T_{��}, capturing the antisymmetric properties
of the torsion tensor.

The contorsion tensor is defined by the equation K^�_{��} = -½(T^�_{��} -
T_�^�_� + T_�^�_�). The modified field equation in teleparallel gravity is ob-
tained by varying the action with respect to the vierbein components h_i^� and
is given by:

e−1��(eS_a^{��})f_T - e�_{aT}�{�𝜎}S_�^{𝜎�}f_T + ¼e^�_{af}(T) = ¼eT^�_a

where f_T = df/dT, and T^�_a is the energy-momentum tensor.

Our model uses the standard minimal coupling between matter and gravity (the
matter Lagrangian L_{matter} enters additively in the action). The phrase
“nonlinear Lagrangian matter coupling” in our context refers to the fact that
the gravitational Lagrangian contains a nonlinear function of the torsion scalar,
f(T). This modifies how the matter content influences cosmic dynamics. In GR
(or its teleparallel equivalent, TEGR), which corresponds to f(T) = T, the field
equations (Friedmann equations) relate the Hubble expansion directly to the
energy density � and pressure p of matter.

The energy-momentum tensor for a perfect fluid investigated by Dimakis et
al. (2014) is given by T_{��} = (� + p)u_�u_� - pg_{��}, where p denotes the
pressure and � represents the energy density of the fluid. The four-velocity
vector in the comoving coordinate system is u^� = (0, 0, 0, 1), which satisfies
the conditions u^�u_� = 1 and u^��_�u_� = 0.

The trace provides valuable information about the total energy distribution and
pressure within a system, helping us understand the gravitational effects on
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spacetime. The trace is calculated as T = g^{��}T_{��} = � - 3p.

The torsion scalar T is a geometric quantity used in modified gravity theories
to measure the deviation of a torsion-based connection from a torsion-free one.
In teleparallel gravity, T is derived from the torsion tensor components. Its
specific form depends on the chosen gravitational theory and plays a crucial
role in describing spacetime geometry. We compute the torsion scalar T as
follows: T = -6H2.

The field equation from the variation of the action, when applied to the FLRW
metric, simplifies to:

3H2f_T + ½(f - Tf_T) = �

2Ḣf_T + 3H2f_T + ½(f - Tf_T) = -p

Here, a dot above a field variable denotes differentiation with respect to time t.

We adopt the deceleration parameter as proposed by Sofuoğlu et al. (2023):

q(t) = -1 + (n1t)/(1 + n2t2)

where n1 and n2 are positive constants. Given the relation between the Hubble
parameter and the deceleration parameter, q(t) = -äa/ȧ2, and using this along
with the definition of q(t), we obtain:

H(t) = (n1t)/(1 + n2t2)

To determine the scale factor, we use the relation H(t) = ȧ/a along with the
expression for H(t), yielding:

a(t) = 𝛽(1 + n2t2)^{n1/(2n2)}

where 𝛽 is a positive constant of integration and � = n1/(2n2). Substituting this
into the metric, we obtain the complete spacetime description.

From Figure 1, we observe that the scale factor a(t) begins near zero, indicating
a very compact universe (consistent with a Big Bang origin). As t increases,
a(t) grows gradually at first (decelerating expansion), and then much more
rapidly at later times. We highlight the “sharp upward trend” of a(t) at late
times, which signifies the transition to accelerated expansion. This qualitative
behavior—slow expansion in the past followed by recent acceleration—aligns
with the established ΛCDM narrative and observations of cosmic history.

3. Cosmological Parameters
In this section, we explore key cosmological parameters, including the Hubble
parameter, model comparison using AIC and BIC, the deceleration parameter,
the EoS parameters for both Model I and Model II, and the statefinder diagnos-
tic. Each of these parameters is examined in detail below.
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3.1. Hubble’s Parameter

The Hubble parameter H(t) is a fundamental concept in cosmology that mea-
sures the rate of the universe’s expansion at any given time t. By tracking how
H(t) changes over time, we can observe the universe’s evolving expansion rate,
influenced by factors such as dark energy, matter, and radiation. This time-
dependent parameter helps reveal different expansion phases, such as periods
of acceleration and deceleration, offering valuable insights into the universe’s
overall history.

In this study, we express the Hubble parameter in terms of both cosmic time t
and redshift z. The expression for the Hubble parameter as a function of cosmic
time is:

H(t) = (n1t)/(1 + n2t2)

where n1 > 0 and n2 > 0 are constants.

The Hubble parameter as a function of redshift is expressed as:

H(z) = H0(1 + z)^{1+�}

This form shows how the Hubble parameter changes with redshift, providing
insights into how the expansion rate evolves with observable distance. By in-
corporating redshift z, we connect the present expansion rate to the universe’s
past, allowing us to capture a comprehensive picture of cosmic evolution.

Figure 2 presents the relationship between the Hubble parameter H(z) and red-
shift z. The vertical axis signifies H(z) in km s−1 Mpc−1, spanning from 0
to 250, while the horizontal axis represents z, covering a range from 0 to 2.5.
Observational data points obtained via the Differential Age (DA) method are
depicted as purple circles, whereas Baryon Acoustic Oscillations (BAO) data
are shown as yellow diamonds, both with error bars indicating measurement
uncertainties. The red solid line represents the best-fit f(T) model prediction,
while the blue dashed line corresponds to the ΛCDM prediction based on Planck
reference parameters (H0 = 67.8, Ω_{m0} = 0.3, Ω_Λ0 = 0.7).

This figure is pivotal in demonstrating our model’s alignment with observational
H(z) data. Our discussion emphasizes that the model’s curve closely follows the
ΛCDM trajectory across the entire redshift range, passing through the central
regions of the data point error bars, indicating an excellent fit. Minor deviations
at higher redshifts (z > 1.5) are analyzed, showing slight differences that fur-
ther confirm the ability of f(T) gravity to emulate ΛCDM behavior effectively.
Moreover, the minimal scatter of data points around our model curve visually
supports the high R2 value, reinforcing the robustness of the fit. This figure pro-
vides a crucial foundation for understanding the optimized parameters detailed
in Table 1.

We determined the best-fit curve for H(z) using 57 observed data points and the
R2-test. The R2-test refers to the coefficient of determination R2, a statistical
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measure that indicates how well data points fit a model or regression line. The
R2 value ranges from 0 to 1, with R2 = 1 indicating a perfect fit (the model
explains 100% of the variance in the data) and lower values indicating a less
perfect fit. By contrast, the �2 test (chi-square) is a goodness-of-fit measure
that sums the squared differences between observations and model predictions
weighted by the observational uncertainties.

The R2-test evaluates how well the independent variable explains the variation
in the dependent variable. An R2 value of 1 implies a perfect fit between our
model parameters H0 and � and the OHD. For this analysis, we focused on data
within the redshift range z > -1 to determine the best-fit values for H0 and �.
Error bars indicate the mean and standard deviation for the 57 Hubble data
points, and we compared our model to the well-known ΛCDM model, with H0
= 67.8 km s−1 Mpc−1, Ω_Λ0 = 0.7, and Ω_{m0} = 0.3 representing the density
parameters for dark energy and matter. This comparison is illustrated in Figure
3. The best-fit values we obtained are 𝛽 = 1.312, � = 1.273, and H0 = 72.60 km
s−1 Mpc−1, with an R2 of 0.9527 and an RMSE of 9.2501.

The table summarizes key results from the cosmological model fitting. The
parameter 𝛽 is estimated to be 1.312, and � is 1.273, both with small uncertain-
ties, suggesting reliable measurements. The Hubble constant H0, representing
the universe’s current expansion rate, is found to be 72.60 km s−1 Mpc−1, con-
sistent with the findings of Kolhatkar et al. (2024). With an R2 value of 0.9527
and an RMSE of 9.2501, the model demonstrates a strong fit to the data. The
covariance matrix provides insight into parameter uncertainties and their corre-
lations; small off-diagonal values here imply minimal correlation between 𝛽, �,
and H0, indicating that the data constrain each parameter robustly and largely
independently. This helps to understand why the error bars on 𝛽 and � are
so small—the fit is very tight and the parameters are well determined. Thus,
the covariance matrix is an important by-product of our curve-fitting proce-
dure, confirming the reliability of the parameter estimates and allowing us to
propagate uncertainties to other derived quantities.

In Figure 3, the shaded regions around the best-fit curve represent the 1𝜎 (68%
confidence) and 2𝜎 (95% confidence) uncertainty bands for the model’s Hubble
parameter H(z) as a function of redshift. These bands are derived from the
covariance matrix of the parameters. In practice, we propagated the parameter
uncertainties (assuming a Gaussian error distribution for the parameters 𝛽 and
� and their covariance) to compute the uncertainty in H(z) at each redshift. The
result is a predicted range of H(z) values at each z corresponding to the 68%
confidence region (dark shaded area) and the 95% region (lighter shaded area).
Thus, the shaded regions in Figure 3 visually convey how certain we are about
our model prediction given the data uncertainties—they show the confidence
intervals around the best-fit H(z) curve.
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3.2. Model Comparison

To evaluate the reliability of our model, we used two statistical tools: the AIC
and the BIC. These criteria help us determine how well our model fits the data
while accounting for model complexity.

The AIC is calculated as follows:

AIC = �2_{min} + 2d

where d is the number of parameters in the model. To compare our model
with the standard ΛCDM model, we define the difference in AIC as ΔAIC
= AIC_{Model} - AIC_ΛCDM. An AIC difference between 4 and 7 suggests
moderate support for our model, while a difference less than 2 indicates strong
support. If the ΔAIC exceeds 10, it suggests weak support for our model.

The BIC is calculated as:

BIC = �2_{min} + d ln(N)

where N is the number of data points in our analysis. Similar to AIC, we define
ΔBIC to compare models. A ΔBIC between 2 and 6 suggests moderate support,
while a value less than 2 indicates strong support.

To evaluate the fit of our model to the data, we calculate the difference, or
residual, between each observed value of H_{obs}(z) and the corresponding
model prediction H(z). We then square these residuals, weigh them by the
uncertainties in each observation, and sum them all together. This sum gives
us the chi-squared value, �2, which is defined as:

�2 = Σ_i [H_{obs}(z_i) - H(z_i; H0, 𝛽, �)]2/𝜎_i2

For our model, we obtained AIC_{Model} = 37.49 and BIC_{Model} = 43.82,
calculated using a minimum chi-squared value of �2_{min} = 31.49, which re-
sults in ΔAIC = 2.51 and ΔBIC = 1.18. In comparison, the ΛCDM model has
values of AIC_ΛCDM = 40 and BIC_ΛCDM = 45. These results, consistent
with the findings of Jaybhaye et al. (2024), suggest that our model is moderately
supported according to the AIC and strongly supported according to the BIC.
This indicates that our model provides a competitive fit to the data compared
to the standard ΛCDM model. By balancing both accuracy and simplicity, our
model stands as a promising alternative in cosmological modeling.

3.3. Deceleration Parameter

The deceleration parameter q(t) provides insight into the rate at which the uni-
verse’s expansion is slowing down or accelerating over cosmic time. By relating
the scale factor to redshift, we can express q(t) as a function of time t. Initially,
we define q(t) in terms of cosmic time as:

q(t) = -1 + (n1t)/(1 + n2t2)
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At early times (high redshift), q(z) approaches a positive value, characteristic
of a matter-dominated era. In contrast, at low redshift, as z → -1, q(z) trends
toward a negative value, approaching -1 if the expansion becomes de Sitter-like.

To understand q(z) in terms of redshift z, we derive its expression as a function
of redshift. The redshift-dependent deceleration parameter is given by:

q(z) = -1 + (1 + z)^{-�}

This form of q(z) provides a framework for understanding the expansion history
of the universe and how it transitions from decelerating to accelerating phases
over time.

Figure 4 shows how the deceleration parameter q(z) changes with redshift z,
providing insights into the evolution of cosmic expansion. A key feature in
the graph is the transition phase, marked by the point where q(z) crosses zero
(indicated by the red dashed line). This transition highlights the shift from a
decelerating universe to an accelerating one as the universe evolves over time.
The central values of q(z) are shown by the main curve, while the shaded re-
gions represent uncertainties in the parameters 𝛽 and �, illustrating the range of
possible values based on model uncertainties. Spanning a redshift range from
approximately -1.0 to 3.5, the figure captures both the past and potential future
expansion phases, demonstrating how the universe has moved from a period of
deceleration to its current phase of accelerated expansion. We also describe
the asymptotic behavior of the deceleration parameter: at high redshift, q(z)
approaches 0.5, consistent with matter domination, while at z → -1, q(z) → -1,
indicating a de Sitter-like future.

3.4. Equation of State Parameter

In this section, we explore the relationship between energy density, pressure,
and the EoS parameter as functions of cosmic time t and redshift z, by applying
two different models: Model-I with f(T) = 𝜆T and Model-II with f(T) = T +
𝛽T2.

The expression for the energy density � is derived by solving the relevant field
equation:

� = (3H2f_T - ½(f - Tf_T))

The pressure p is obtained by substituting into the field equations:

p = -(2Ḣf_T + 3H2f_T - ½(f - Tf_T))

The EoS parameter 𝜔 is defined as the ratio of pressure to energy density, 𝜔 =
p/�. Using the expressions for p and �, we can write 𝜔 as:

𝜔 = [-(2Ḣf_T + 3H2f_T - ½(f - Tf_T))]/[3H2f_T - ½(f - Tf_T)]

This formulation provides insight into the dynamics of cosmic acceleration and
deceleration within the framework of the two models.
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3.4.1. Model-I: f(T) = 𝜆T For Model-I, we consider f(T) = 𝜆T, where 𝜆
is a constant. In this setup, f_T = 𝜆 and f_{TT} = 0, making it a linear
extension of TEGR. This linear form is notable because it preserves the second-
order nature of the field equations, simplifying the analysis while still allowing
for deviations that can explain cosmological effects, such as the universe’s accel-
erated expansion. Model-I is particularly useful for examining straightforward
modifications to GR that remain mathematically tractable.

The expression for energy density as a function of cosmic time t is:

�(t) = 3𝜆H2

The energy density in terms of redshift z is:

�(z) = 3𝜆H0
2(1 + z)^{2(1+�)}

Figure 5 presents the evolution of the energy density �(z) as a function of red-
shift, providing insights into the changing matter content of the universe over
cosmic time. The blue curve represents the best-fit model based on the opti-
mized parameter values 𝛽 = 1.312 and � = 1.273. As expected, energy density
increases with redshift, reflecting the higher density of the early universe where
matter played a dominant role in cosmic dynamics. The green and red shaded
regions indicate the uncertainty ranges associated with variations in 𝛽 and �,
respectively. The significant overlap of these bands suggests that while both pa-
rameters contribute to the model’s uncertainty, the general trend remains stable
and well-constrained. At z = 0, �(0) aligns with the current matter density of
the universe, approximately 0.1 in critical density units, consistent with obser-
vational estimates. Overall, this plot highlights the robustness of the model’s
predictions. Despite small parameter variations, the fundamental matter den-
sity evolution remains consistent, reinforcing the model’s reliability in describing
cosmic expansion.

The pressure in terms of cosmic time t is:

p(t) = -𝜆(2Ḣ + 3H2)

The pressure in terms of redshift z is:

p(z) = -𝜆H0
2[2�(1 + z)^{2+�} + 3(1 + z)^{2(1+�)}]

Figure 6 illustrates the evolution of pressure p(z) as a function of redshift z,
with the best-fit curve (blue line) derived from the parameters 𝛽 = 1.312 and
� = 1.273. This curve shows a decreasing trend in p(z) as redshift increases,
suggesting that pressure was significantly higher in the early universe and grad-
ually declined over cosmic time. The shaded regions represent the uncertainties
associated with the parameters: the green band indicates the range due to the
uncertainty in 𝛽, while the red band shows the effect of uncertainty in �. The
overlap between these bands suggests that the model is relatively stable despite
variations in these parameters. Overall, this plot highlights a steady decline in
cosmic pressure, with only minor sensitivity to changes in 𝛽 and �, reinforcing
the robustness of the model in describing the universe’s expansion history.
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Figure 6 further illustrates the pressure evolution in Model I, showing that p(z)
starts near zero at z = 0—consistent with pressureless dust at late times—and
gradually becomes more negative as redshift increases. This behavior reflects
the growing influence of the torsion term, which, in Model I (𝜆 ≠ 0), behaves like
an effective cosmological constant and drives cosmic acceleration. As the uni-
verse evolved, p(z) declined, reaching strongly negative values in the present era.
The uncertainty bands widen at higher redshifts, indicating that constraints on
pressure are less precise at early times—an expected outcome since our model
is primarily constrained using H(z) data up to z � 2. The fact that p(z) becomes
increasingly negative at lower redshifts strongly supports the idea that cosmic
acceleration is driven by an effective dark energy component or modified grav-
ity effects. This behavior aligns well with standard cosmological expectations,
reinforcing the validity of our model in capturing the late-time acceleration of
the universe.

The EoS parameter 𝜔, which describes the relationship between pressure and
energy density in cosmology, can be expressed in terms of cosmic time t as:

𝜔(t) = -1 - (2Ḣ)/(3H2)

Alternatively, in terms of redshift z, the EoS parameter is given by:

𝜔(z) = -1 + 2�/(3(1 + �))^{-�}

These forms of 𝜔 allow us to understand how the EoS evolves over time or
with redshift, providing insights into the dynamic behavior of the universe’s
expansion.

Figure 7 illustrates the evolution of the EoS parameter 𝜔(z) with redshift z. The
blue line represents the best-fit model, calculated with 𝛽 = 1.312 and � = 1.273.
At high redshift, 𝜔(z) is close to 0, indicating a matter-dominated era (since for
dust 𝜔 = 0). As z decreases, 𝜔(z) drops and approaches -1 at z = 0 and into
the future, indicating the emergence of a cosmological-constant-like behavior
(de Sitter fate). We highlight that around the current epoch, 𝜔 in our model
is around -0.9, which is slightly above -1 and consistent with a slowly varying
dark energy component. This is expected since our model mimics ΛCDM (which
has 𝜔 = -1 exactly for the cosmological constant). The slight deviation from
-1 is due to the specific functional form of f(T) and the fact that Model I is
effectively ΛCDM with a twist. We also mention in the text that the transition
of 𝜔(z) from 0 to near -1 is another way to see the deceleration-to-acceleration
transition. The uncertainty bands (green for 𝛽, red for �) show the sensitivity
of 𝜔(z) to parameter uncertainties. Overall, we explain that Figure 7 confirms
that Model I behaves like a dark-energy-matter mixed universe, with an effective
EoS shifting from 0 to � -1 today, consistent with observations.

3.4.2. Model-II: f(T) = T + 𝛽T2 For Model-II, we assume f(T) = T
+ 𝛽T2, which gives f_T = 1 + 2𝛽T and f_{TT} = 2𝛽. This quadratic model
introduces a nonlinear term in the torsion scalar T, allowing for a wider range of
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cosmological solutions. By including the 𝛽T2 term, the model can address both
early universe inflation and late-time cosmic acceleration, potentially without
invoking dark energy. Despite the added complexity, the field equations remain
second-order, making this model both flexible and consistent with observational
data.

The energy density in terms of cosmic time t is:

�(t) = 3H2 + 18𝛽H4

The energy density in terms of redshift z is:

�(z) = 3H0
2(1 + z)^{2(1+�)} + 18𝛽H0

4(1 + z)^{4(1+�)}

Figure 8 shows how energy density �(z) changes with redshift z, using best-fit
values for the model parameters: 𝛽 = 1.312 and � = 1.273. The blue line
depicts the central prediction, revealing a sharp increase in �(z) as redshift rises,
which aligns with the idea that the universe was denser in its early stages.
The green and red shaded areas reflect the impact of uncertainties in 𝛽 and
�, respectively. The evolution of �(z) in Model II is nearly identical to that in
Model I at late times. This similarity is expected because both models are fitted
to the same H(z) data, leading to a nearly identical background evolution. The
figure confirms that the energy density increases as a function of z, reflecting
a higher matter density in the past. The overlap between Model I and Model
II curves suggests that the additional T2 term in Model II primarily influences
higher derivatives or subtle differences that are not significantly apparent in
the redshift range considered. Any deviations from Model I would be more
noticeable at earlier cosmic times or in effective EoS behavior.

The pressure in terms of cosmic time t is:

p(t) = -(2Ḣ + 3H2) - 2𝛽(12H2Ḣ + 18H4)

The pressure in terms of redshift z is:

p(z) = -H0
2[2�(1 + z)^{2+�} + 3(1 + z)^{2(1+�)}] - 2𝛽H0

4[12�(1 + z)^{4+�}
+ 18(1 + z)^{4(1+�)}]

Figure 9 illustrates the evolution of pressure p(z) with redshift z, with the best-
fit curve (blue line) derived from the parameters 𝛽 = 1.312 and � = 1.273. The
curve shows a decreasing trend in p(z) as redshift increases, suggesting that
pressure was higher in the past. The widening of the uncertainty bands at
higher redshifts shows the model’s sensitivity to variations in 𝛽 and �.

The evolution of pressure p(z) in Model II is similar to Model I: p(z) decreases
with redshift, with negative pressures at late times driving cosmic acceleration.
The overall trend closely follows that of Model I, reinforcing the idea that both
models predict a declining pressure profile. A potential quantitative difference
arises at z = 0, where Model II might exhibit slightly more negative pressure due
to the influence of the 𝛽T2 term, which can act as a mild effective cosmological

chinarxiv.org/items/chinaxiv-202506.00085 Machine Translation

https://chinarxiv.org/items/chinaxiv-202506.00085


constant. The uncertainty bands indicate that variations in 𝛽 and � do not
significantly affect the qualitative trend of pressure evolution.

The EoS parameter in terms of cosmic time t is:

𝜔(t) = [- (2Ḣ + 3H2) - 2𝛽(12H2Ḣ + 18H4)]/[3H2 + 18𝛽H4]

The EoS parameter in terms of redshift z is:

𝜔(z) = [-H0
2[2�(1 + z)^{2+�} + 3(1 + z)^{2(1+�)}] - 2𝛽H0

4[12�(1 + z)^{4+�}
+ 18(1 + z)^{4(1+�)}]]/[3H0

2(1 + z)^{2(1+�)} + 18𝛽H0
4(1 + z)^{4(1+�)}]

Figure 10 shows the evolution of the EoS parameter 𝜔(z) with redshift z, based
on best-fit values 𝛽 = 1.312 and � = 1.273. The blue line represents the best-fit
prediction, while the green and red bands illustrate the uncertainty ranges for 𝛽
and �, respectively. The effect of �’s uncertainty is more pronounced, particularly
at lower redshifts.

The EoS parameter 𝜔(z) for Model II is similar to Model I: 𝜔(z) starts near 0
and approaches -1 at z = -1. However, a slight dynamic feature emerges due
to the T2 term, causing a subtle difference in 𝜔(z) evolution. Notably, at very
high redshifts, 𝜔(z) appears to transition from negative back to positive, which
suggests that in an early epoch not explicitly modeled here, 𝜔 could become
positive (e.g., during a radiation-dominated era). We clarify that our model is
valid within the redshift range covered by our data (z � 2.5). A key result from
this figure is that the impact of the 𝛽T2 term remains mild—Model II’s 𝜔(z)
is nearly indistinguishable from Model I’s within the observed redshift range.
This finding reinforces the idea that even with a T2 modification, the expansion
history remains remarkably close to ΛCDM-like behavior. This contributes to
our broader conclusion that f(T) models constrained by current data tend to
closely mimic standard cosmology.

3.5. Statefinder Diagnostic

The Statefinder diagnostic is a valuable tool in cosmology that helps character-
ize the expansion history of the universe and provides insights into the nature
of dark energy. This diagnostic technique enables us to distinguish between
different cosmological models by leveraging observational data.

In this analysis, we computed the Statefinder parameters r and s, which trace the
evolution of dark energy across various stages. These parameters are expressed
in terms of the scale factor and are given by:

r = äa/(aH3) s = (r - 1)/[3(q - ½)]

where H is the Hubble parameter and q is the deceleration parameter.

By using these formulas we get:

r(z) = 1 + (9/2)�(1 + z)^{-�} s(z) = �(1 + z)^{-�}/[�(1 + z)^{-�} - ½]
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Figure 11 shows the evolution of r(z) as a function of redshift z, reflecting
changes in the universe’s expansion over time. At high negative redshift values,
r(z) begins above 40, indicating a distinct early universe phase. As z approaches
zero and beyond, r(z) decreases and stabilizes near 1, aligning with the ΛCDM
model represented by the dashed line at r(z) = 1. The orange and blue shaded
regions illustrate the uncertainties in the parameters 𝛽 and �. For 𝛽 = 1.312 and
� = 1.273, these bands show the range of possible values for r(z) given parameter
variations, offering insights into model robustness and the expansion dynamics
of the universe. The statefinder r(z) in our model starts at high values in the
distant past; r is well above 1 for z < 0.5 in our model, indicating a deviation
from the simple ΛCDM value of 1 at early times. As z decreases toward 0, r(z)
declines and approaches 1, indicating that the cosmic jerk is consistent with
that of the ΛCDM model.

We have calculated s(z) as:

s(z) = �(1 + z)^{-�}/[�(1 + z)^{-�} - ½]

Figure 12 illustrates the cosmological function s(z) over redshift z, showcasing
the best-fit model along with uncertainty bands for two parameters, 𝛽 and �.
The central curve represents the most probable behavior of s(z) from z = -1
to z = 2, showing a smooth upward trend. Surrounding this curve, the blue
shading captures the variation due to uncertainty in 𝛽 (with an uncertainty
of $±$0.013), while the purple shading reflects the range due to uncertainty
in � (with $±$0.0065). The best-fit values, 𝛽 = 1.312 and � = 1.273, provide
insight into the expansion of the universe, helping refine our understanding of
the cosmological model through these parameters and their uncertainties. The
shape of the curve follows an upward trend as z transitions from negative values
(future) through z = 0 (present) and into positive values (past). This behavior
aligns with ΛCDM expectations.

The r–s plot in Figure 13 illustrates how different cosmological models behave,
including uncertainty bands for the parameters 𝛽 = 1.312 and � = 1.273. These
bands show how predictions shift within these uncertainty ranges. The ΛCDM
model, often used as a baseline, is marked at (r, s) = (1, 0). Alternative models,
like Chaplygin Gas and Quintessence, occupy other regions: Chaplygin Gas
appears at higher r values with negative s, while Quintessence lies closer to
ΛCDM but diverges with s < 0. These variations suggest different expansion
paths for the universe, shedding light on how dark energy behaves according to
each model.

Our model’s trajectory starts at a certain point in the early universe (high z) and
moves toward the ΛCDM point (1, 0) as the universe evolves. This convergence
indicates that, despite differences in the theoretical formulation, our f(T) model
ultimately behaves in a manner very similar to standard dark energy at late
times.

The r–q plot in Figure 14 gives an overview of different cosmological models
and how they predict the universe’s expansion. The main blue line shows the
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best-fit relationship between r and q based on the Hubble data, while shaded
bands indicate uncertainty due to variations in two key parameters: 𝛽 = 1.312
and � = 1.273. These bands, in light blue for 𝛽 and light coral for �, show how
much the model’s predictions can shift due to small changes in these values.

Key points and regions on the plot help contextualize these models. The black
dot at (-1, 1) represents the de Sitter (dS) point, where dark energy dominates,
causing exponential expansion. The ΛCDM model—a standard reference in
cosmology—is marked by an arrow pointing to the red dashed line at r = 1,
showing where this model lies in the r–q space.

In addition, regions for alternative models are labeled: Chaplygin Gas appears in
the upper left, associated with a specific dark energy model, while Quintessence
lies closer to ΛCDM, suggesting a dynamic form of dark energy with slightly
lower r values.

The plot also marks important transitions with vertical lines. The dashed line
at q = -1 represents the boundary for the de Sitter expansion, while the solid
line at q = 0 shows the shift from deceleration to acceleration in the expansion
of the universe.

We also compare our model’s behavior to other dark energy models.
Quintessence models typically cluster close to, but slightly off, the ΛCDM
line, while Chaplygin gas models occupy a different region of the plane.
Our trajectory remains within the expected bounds of standard dark energy
behavior, reinforcing that our f(T) model does not introduce exotic departures
but rather mimics ΛCDM remarkably well.

3.6. Om Diagnostic

The Om diagnostic is a valuable tool for distinguishing between different dark
energy models by comparing the universe’s expansion rates. The expression for
the Ω(z) parameter as a function of redshift z is given by:

Ω(z) = [H(z)/H0]2 - 1/[(1 + z)3 - 1]

Using the specific form of H(z), we derive:

Ω(z) = [(1 + z)^{1+�}]2 - 1/[(1 + z)3 - 1]

where 𝛽, �, and H0 are constants, and z represents the redshift.

Figure 15 illustrates the evolution of Ω(z), which is shown to be nearly flat
as a function of z at low redshifts, taking a value around 0.3 (marked by a
horizontal brown dashed line for reference Ω_{m0} = 0.3). We emphasize that
in our model, Ω(z) approaches approximately 0.3 at z → 1, which is in excellent
agreement with observations. We note that the curve is almost horizontal,
indicating minimal deviation from ΛCDM expectations. These results provide
strong evidence that our best-fit f(T) model closely mirrors the behavior of the
standard ΛCDM cosmology. Despite its modified gravity foundation, the model
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successfully replicates the expected cosmic evolution, reinforcing its viability as
a realistic description of the expansion of the universe. The shaded regions,
derived from uncertainties in the parameters 𝛽 = 1.312 and � = 1.273, highlight
the robustness of the model over time. Notably, the influence of 𝛽 becomes
more prominent in the later stages of cosmic evolution. This strong alignment
underscores the reliability of the model in describing the impact of dark energy
on the expansion of the universe.

4. Discussion and Conclusion
In this research, we applied the energy-momentum tensor for a perfect fluid to
solve the field equations within the f(T) gravity framework. From this approach,
we derived essential cosmological parameters, including the Hubble parameter
H and the deceleration parameter q, along with Om and Statefinder diagnos-
tics, which help analyze the model’s behavior relative to standard cosmological
models. To enhance accuracy, we constrained the model parameters using the
R2-test, obtaining the best-fit values that closely match observational data.

Specifically, the best-fit curve for H(z) was generated from 57 observed data
points, yielding an R2 of 0.9527 and an RMSE of 9.2501. The strong alignment
of our model with the established ΛCDM model highlights its reliability and
accuracy in capturing the universe’s expansion dynamics across the redshift
range analyzed.

We calculated the AIC and BIC values to assess our model’s performance. For
our model, we obtained AIC_{Model} = 37.49 and BIC_{Model} = 43.82,
based on a minimum chi-squared value �2_{min} = 31.49. Compared to the
ΛCDM model, which has AIC_ΛCDM = 40 and BIC_ΛCDM = 45, this gives
ΔAIC = 2.51 and ΔBIC = 1.18. In line with findings from Jaybhaye et
al. (2024), these results show moderate support for our model according to the
AIC and strong support according to the BIC. This suggests that our model pro-
vides a solid fit to the data while effectively balancing simplicity and accuracy,
making it a competitive alternative to the standard ΛCDM model.

We calculated the deceleration parameter q(z) and observed how it changes with
redshift z, offering insights into the universe’s expansion history. The graph
highlights a key transition point where q(z) crosses zero (marked by the red
dashed line), signaling the shift from a decelerating to an accelerating universe.
The main curve represents the central values of q(z), while shaded areas show
the range of possible values due to uncertainties in the parameters 𝛽 and �. Span-
ning redshifts from approximately -1.0 to 3.5, the figure captures the universe’s
journey from past deceleration to its present phase of accelerated expansion.

We further analyzed the behavior of pressure p, energy density �, and the EoS
parameter 𝜔, plotting these variables over cosmic time t and redshift z using
parameter values 𝛽 = 1.312 and � = 1.273. This study included two models:
Model I, where f(T) = 𝜆T, and Model II, where f(T) = T + 𝛽T2. Both models
align well with current observational data, including the Hubble and deceleration
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parameters, suggesting they are effective in describing the universe’s accelerated
expansion. The energy condition graphs for Models I and II highlight both
common trends and distinct features, offering unique insights into cosmological
behavior.

In our analysis of the r–s and r–q diagnostics, we found that the pair (r, s) = (1,
0) and (r, q) = (1, -½) corresponds to the standard ΛCDM model. With best-
fit parameters 𝛽 = 1.312 and � = 1.273, our model aligns closely with ΛCDM,
confirming consistency with recent studies.

From the evolution of Ω(z), we observed a strong consistency with the ΛCDM
model, as the Om parameter approaches the reference value of 0.3 at lower
redshifts. The best-fit model closely aligns with ΛCDM, and the parameter
uncertainties emphasize the model’s reliability, with 𝛽’s influence becoming more
pronounced at higher redshifts.
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Figure 1: Figure 10
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