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Abstract

This article investigates the effect of higher-order kinematic modeling on the
elasto-static bending behavior of doubly-curved shells. Graphene origami is in-
troduced as a novel nanofiller, synthesized through a chemical process to achieve
a controllable material. A copper matrix serves as the primary constituent, rein-
forced with folded graphene origami. The principle of virtual work is employed
to derive the governing equations for the thickness-stretchable shell. Following
the derivation of the governing equations, formulas from established sources are
utilized to determine the effective material properties of the shell. A verification
test is conducted prior to investigating the influence of the primary parameters
of the graphene origami and environmental conditions on the bending behavior.
The findings of this study may be applied to the analysis of structures with
controllable responses.

Full Text

Preamble

This article investigates the effect of higher-order kinematic modeling on the
elasto-static bending behavior of tunable shells reinforced with folded graphene
origami nanofillers. A copper matrix reinforced with folded graphene origami
serves as the primary constituent material. The virtual work principle is em-
ployed to derive the governing equations for the thickness-stretchable shell. Af-
ter deriving the governing equations, empirical formulas from validated sources
are used to determine the effective material properties. A verification test is
presented before exploring the effects of key parameters related to graphene
origami and thermal environment on the bending results. The findings of this
work may be applied to the analysis of structures with controllable responses.
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1. Introduction

The development of novel and advanced materials using nanomaterials in var-
ious formats has become a major research interest for scientists in materials
science, civil engineering, mechanical engineering, and chemistry. Following the
introduction of carbon nanotubes in both single- and double-walled configura-
tions, researchers proposed graphene sheets and nanoplatelets, which exhibit
superior properties compared to their predecessors. Experimental studies have
demonstrated that adding small amounts of graphene can lead to significant im-
provements in mechanical and thermal properties [?]. Material scientists have
proposed new processes to control material properties and corresponding re-
sponses [?, ?], with hydrogenation emerging as a novel method for producing
controllable materials.

The intelligent and hybrid applications of novel materials for robotic systems
and structures as actuators and sensors have been described [?]. Neural and
fuzzy systems, along with networks, have been organized and explained for
characterization, modeling, and simulation of effective material properties of
nanocomposite structures and polymer-based composite materials [?]. Durabil-
ity and enhanced performance applications of novel composite materials and
structures with multi-field effects have been discussed in recent works [?]. Fan
et al. [?] provided experimental analysis on the thermal behavior of graphene-
reinforced polyurethane structures, including composite fibers with high sensi-
tivity. Temperature sensitivity of the materials was explained for biomaterial
applications in skin-core structures. Fan et al. [?] developed characteristics of a
new fabrication method for producing 3D nanomaterials and fiber reinforcement,
demonstrating significant improvements in mechanical and thermal properties
through the proposed manufacturing approach.

Waste materials can be utilized for fiber reinforcement production and in com-
posite structures reinforced with fibers. For instance, Wang et al. [?] organized
a novel study on the production of nano-reinforced composites. Using recycled
fibers in nanocomposite structure production yields materials bonded through
hydrogen bonding. In a similar work, Zhang et al. [?] developed applications of
hydrophobic carbon fibers in composite structures to achieve optimal conduc-
tivity, mechanical strength, and weather resistance. A low-cost composite was
manufactured using the proposed material. Sun et al. [?] studied the effects of
various fiber types, such as carbon, aramid, and silk, on the mechanical proper-
ties and inter-laminar shear strength of 3D composite structures under thermal
environments. Bai et al. [?] investigated temperature-dependent behaviors of
metal unsaturated soils using solutions of coupled nonlinear contaminant-heat-
moisture equations, examining the effects of various moisture environment and
thermal ambient parameters on hybrid coupled responses.

Intelligent nonlinear characteristics of novel systems have been described by re-
searchers [?] for application as sensors and actuators. Hua et al. [?] developed a
novel experimental setup for investigating the frictional properties of graphene-
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reinforced epoxy matrix composites. Heat capacities and molecular dynamics
results of carbon nanotube-based composites were described by Li et al. [?] and
Tomioka et al. [?]. Bai et al. [?] studied temperature effects on the mechani-
cal properties of geopolymers enriched with alkali activator across an extended
ambient temperature range. Bai et al. [?] investigated fluid velocity effects on
penetration characteristics of porous materials and their impact on absorption
capacity, developing a general solution for particle migration in porous media.
Ge et al. [?] introduced a new method for producing bio-composite structures
composed of bamboo biomass fibers using hot-pressing to achieve low-energy
consumption without adhesive properties, describing improved material prop-
erties through biomass foldability. Yue et al. [?] presented review works on
adsorption and photocatalytic applications of nano and carbon active particles.
Ge et al. [?] illustrated details of a pyrolysis operation for bio-energy produc-
tion using activation through a sodium-potassium hydroxide mixture, with ex-
perimental results demonstrating efficiency and importance. Foong et al. [?]
developed thermo-mechanical operations to produce more efficient nanocompos-
ite materials with enhanced properties and energy absorption capacity. Lam et
al. [?] developed a novel efficient thermo-mechanical operation for producing mi-
croporous materials with high absorption capacity using a higher-order kinetic
model. Huang et al. [?] developed an efficient production experimental method
for a new material with negative transfer for transmission systems.

Enhanced resonance capacity of hybrid and intelligent materials was developed
by Deng et al. [?] and Huang et al. [?], with theoretical approaches extended for
analysis. Semi-exact and numerical methods were employed for hybrid analysis
of smart piezoelectric structures with imperfections in recent works [?]. Kine-
matic relations for double-curved shells and higher-order analysis are available
in references [?], with potential extensions for future works based on comprehen-
sive literature studies [?]. Hadji et al. [?] studied the effect of multi-directional
material property gradation on thermal buckling analysis of functionally graded
shear-deformable plates assumed to be made of porous materials with various
distributions, exploring parametric effects of porosity coefficient and distribu-
tions on thermal buckling results. Dahmane et al. [?] investigated bidirec-
tional variation effects of material properties on dynamic responses of graded
beams through higher-order modeling, presenting wave propagation results us-
ing Hamilton’s principle with eigenvalue problem solutions.

Novel materials and structures find applications in materials science [?], with
production methods for nanocomposite structures explained in recent works [?].
Nanocomposite structures can be utilized in various situations [?], with func-
tionally graded material analysis using energy-based methods and small-scale
dependence studied recently [?]. Numerical methods such as the differential
quadrature method have been applied to vibrational and stability analyses of
advanced materials and structures [?, ?], with novel kinematic and constitu-

tive relations extending governing equations to new materials and compositions
[?7,7,7].
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This article examines the foldability and controllability of material properties
of novel nanomaterials in new configurations using chemical processes. A re-
view of graphene origami structure analysis and effective material properties
confirms that considering shaped nanomaterials and nanofillers through folding
processes and their application in new structures represents an important sub-
ject in mechanical engineering. The goal of this work is to provide a higher-order
framework for stress, deformation, and strain analyses of stretchable shells in
double-curved form composed of a copper-based matrix reinforced with folded
nanofillers in a thermal environment. An extended parametric analysis inves-
tigates the impact of geometric and material characteristics of folded nanoma-
terials on static results and elastic stress, strain, and deformation responses
of the graphene origami reinforced double-curved shell. A new, more accurate
kinematic model is developed for shell analysis.

2. Mathematical Modeling

A thickness-stretchable model is developed for deformation, strain, and stress
analyses of a graphene origami auxetic metamaterial reinforced doubly curved
shell. The shell is assumed shear-deformable and fabricated from copper re-
inforced with auxetic metamaterial. The kinematic relations based on the
thickness-stretchable model are developed as:

Wy = Wy + W, +g(Z)X

where the coordinates are depicted in Figure 1 [Figure 1: see original paper].
In this figure, the three coordinate directions are assumed as &, {, Z, the radii
of curvature are Ry, R, and the lengths of middle surfaces are L¢, L.. The
shape functions used to satisfy more accurate changes of shear strain along the
thickness are assumed as:

The strain components are:

1
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The constitutive relations are:

O¢ C,, C C3 0 0 0 € — Qo'
o; Ciys Cy Cy 0 0 0 g¢ — QT
07| _ |Ciz Coz Cz3 0 0 0 €7 = QegT
O¢z 0 0 0 0 Cyp O Yez
Oz 0 0 0 0 0 Cyu Yez

where Cy;, aog, T', 0,5, €¢, V¢ 7 are stifness coefficients, effective thermal expan-

sion, thermal loading, stress components, normal strain components, and shear
strain components, respectively.

The effective properties E g, Vug, o Of the shell are assumed as follows [?, ?]:

Eet = Ecofe(Hcorps Vaoam, 1)

Vot = (VarVaoam + VeuVeu) fo (Haorps Vaoan: T)

Qo = (o Vaoam + @cuVeu) fa(Haorp, Vaoam: T)

where modification functions fz(Hgorp, Veoam:1)s fo(Haorp: Vaoam:T)s
fo(Hgorps Vaoam: T) are used for correction. The relation between Vgoam
and V, is obtained as follows:

VGOAM = VGrﬂ VCu =1- VGr

The non-dimensional parameters defined in effective modulus of elasticity are
obtained in terms of geometric and material properties of the Cu matrix rein-
forced with graphene origami nanomaterials.
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The stress components yield:
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The strain energy is [?]:

5U:/ [0586+UC€C+O’CZ’-Y<Z_|_O-§Z,7§Z_|_U§C’Y§C] dVv
\%

The work is expressed as follows:

5W/£/C[q+ (NG, + Néo, )] 8w, + w,) ReRodédC

Finally, the equilibrium equations are derived as follows:
0u: =Nge—Neg o —Nezg =0

67} : _N§<7£_NC7C _NCZ =0

chinarxiv.org/items/chinaxiv-202506.00078 Machine Translation


https://chinarxiv.org/items/chinaxiv-202506.00078

ChinaRxiv [$X]

Ne Ne

. 3 ¢ ¢ ¢ _
5wb : 7M§7§§+R7£7MC7CC+R7€7M§Q§C7(NO!E + NTOx) (wb7§§+ws,§§)7<N0w + NTOQ?) (wb,ggJFws,gg) =0
S, —Se et _g e g N& 4+ N& NS+ N =0

Ws =D ee R, et R, sc.cc(Now + Nio ) (wy gty )= (Ng, + Nio,. ) (wy, et o) =
Pe I
5X1R7'§+R7C+GZ—SCZ7C—S§Z’§:O

where the resultant components are defined as:
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In which the integration constants are presented in Appendix A.
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3. Solution Procedure

The displacements are assumed as [?]:

w, = U cos(,,€) sin(p, ¢)
v = Vsin(A,,€) cos(p,¢)
w, = Wy sin(A,,€) sin(4,0)
w, = W, sin(A, ) sin(j1,.0)

X = xsin(A,,€) sin(p,,C)

in which {Y} = {U,V,W,,W,,x}T are unknown amplitudes and )\, = ’}j—z,

Wy, = %’; Substitution leads to:

[K{Y} ={F}

where the elements of stiffness matrix [K] and force vector {F'} are obtained as
follows:

6
K1,1 = _>\3n51 - N%5167 - %
S

K 5= —(0166 + 05) Ay,

0 0
Ky 5= 8,05 + (06 + 0168)Abtn + - + o

Re R
3 2 oy | Og
Ky 4 = 6315 — (0169 + 07) Ay, + ng + F{ + 09 + dgy
0 0
K1’5:71+70+583
Re R

Ky 1 = —(0165 + 037) A by
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4. Numerical Results and Discussion

To validate the formulation procedure, governing equations, and solution
methodology, results are compared with available literature data.

Table 1 presents a comparative study with results from Kiani et al. [?]. The
results are shown for various geometric parameters of the doubly curved shell,
demonstrating acceptable agreement between the present results and those of
Kiani et al. [?]. The input parameters are assumed as: Eg, = 65.79 GPa,
Eq, =929.57 GPa, 0, = 0.387, 05, = 0.22.

Table 2 lists the impact of folding degree Hgopp and thermal loading 7' on
the variation in middle surface deformation u. The deformation is presented
for different uniform temperature rises T = 320, 330, 340, and 350. A signifi-
cant enhancement in middle surface deformation u is observed with increasing
foldability parameter Hqopp and thermal loading 7'
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Table 3 lists the impact of origami content Vyoan and thermal loading T on
the variation in middle surface deformation u. The deformation is presented
for different uniform temperature rises T' = 320, 330, 340, and 350. A decreas-
ing trend in middle surface deformation u is observed with increasing origami
content Vooanm due to enhanced structural stiffness.

Table 4 lists the impact of folding degree Hoopp and thermal loading 7" on the
variation in bending transverse deflection w;. The deformation is presented for
different uniform temperature rises 7' = 320, 330,340, and 350. An enhance-
ment in bending transverse deflection wy, is observed with increasing foldability
parameter Hqopp and thermal loading T

Table 5 lists the impact of folding degree Hoopp and thermal loading 7" on the
variation in shear transverse deflection w,. This table reflects an enhancement in
shear transverse deflection w, with increasing foldability parameter Hqopp and
thermal loading T'. One can conclude that the stiffness is significantly decreased
with increasing foldability parameter Hyopp-

Table 6 lists the impact of origami content Vi;oay and thermal loading 7" on the
variation in shear transverse deflection w,. A significant decreasing behavior
in shear transverse deflection w, is observed with increasing origami content
Veoawm due to enhanced structural stiffness.

Table 7 lists the impact of folding degree Hyopp and thermal loading 7' on
the variation in stretching transverse deflection x. Unlike other displacement
and deflection components, the stretching transverse deflection yx is significantly
decreased with increasing foldability parameter Hgopp.

Table 8 lists the impact of origami content Voapn and thermal loading 7" on the
variation in stretching transverse deflection y. A significant decreasing behavior
in stretching transverse deflection y is observed with increasing origami content
Vaoam due to enhanced structural stiffness.

Table 9 lists the impact of folding degree Hgopp and thermal loading 7' on
the variation in normal in-plane strain €. An enhancement in normal in-plane
strain &, is observed with increasing foldability parameter Hgopp and thermal
loading T'.

Table 10 lists the impact of folding degree Hopp and thermal loading 7" on the
variation in normal out-of-plane strain €,. Unlike other displacement and de-
flection components, the normal out-of-plane strain €, is significantly decreased
with increasing foldability parameter Hzopp-

Table 11 lists the impact of origami content Vyoan and thermal loading 7" on
the variation in normal out-of-plane strain €. A significant decreasing behavior
in normal out-of-plane strain e, is observed with increasing origami content
Vaoawm due to enhanced structural stiffness.

Table 12 lists the impact of folding degree Hyopp and thermal loading 7' on
the variation in in-plane shear strain 7¢.. An enhancement in in-plane shear
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strain ¢ is observed with increasing foldability parameter Hsopp and thermal
loading T'.

Table 13 lists the impact of origami content Vzgap and thermal loading 7" on
the variation in in-plane shear strain .. A significant decreasing behavior in
in-plane shear strain ¢ is observed with increasing origami content Vioay due
to enhanced structural stiffness.

Table 14 lists the impact of folding degree Hyopp and thermal loading 7" on
the variation in out-of-plane shear strain 7,,. A slight decrease in out-of-plane
shear strain 7, is observed with increasing foldability parameter Hgopp and
thermal loading T'.

Table 15 lists the impact of origami content Vzgan and thermal loading 7' on
the variation in out-of-plane shear strain 7, ,. A significant decreasing behavior
in out-of-plane shear strain ~., is observed with increasing origami content
Vaoam due to enhanced structural stiffness.

5. Conclusion

A more accurate kinematic relation and a new nanocomposite-reinforced mate-
rial are suggested in this article to study bending and deformation results. The
general formulation includes an out-of-plane stretchable kinematic model de-
rived through variational principles, with behavioral relations extended through
generalized Hooke’s law and the virtual work principle. To compute resultant
force and moment components in the governing equations, material property
relations from validated sources derived using experimental, statistical, and
molecular dynamics-based analyses are employed. An extended parametric anal-
ysis investigates the impact of folded nanofiller parameters on the elasto-static
responses of composite double-curved shells. A verification test was presented
before presenting complete numerical results. The main conclusions of this work
are:

Investigating the effect of thermal loading T reveals increasing behavior in dis-
placement, strain, and stress components with increasing T due to decreased
material stiffness. The effective material properties were estimated as functions
of graphene origami characteristics. A decrease in the bending deflection compo-
nent is observed with increasing Vgoay and decreasing Hgopp of the graphene
origami. Furthermore, the effect of thermal loading is significant for higher
values of folding degree.

Investigating the variation of normal out-of-plane strain €, indicates that this
component is compressive, experiencing more negative values with increasing
thermal loading, while it is reduced with increasing Vooan and Hoopp-

Investigating the variation of in-plane strain £, indicates that although this
strain component experiences significant changes through the thickness direc-
tion, its values change only slightly with variations in volume fraction Vgoam
and folding degree Hyopp-
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Investigating the variation of in-plane shear strain .. indicates that this com-
ponent experiences no changes with volume fraction Vggay and only small
changes with folding degree Hqgopp-
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Note: Figure translations are in progress. See original paper for figures.

Source: ChinaXiv — Machine translation. Verify with original.
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