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Abstract
This article investigates the effect of higher-order kinematic modeling on the
elasto-static bending behavior of doubly-curved shells. Graphene origami is in-
troduced as a novel nanofiller, synthesized through a chemical process to achieve
a controllable material. A copper matrix serves as the primary constituent, rein-
forced with folded graphene origami. The principle of virtual work is employed
to derive the governing equations for the thickness-stretchable shell. Following
the derivation of the governing equations, formulas from established sources are
utilized to determine the effective material properties of the shell. A verification
test is conducted prior to investigating the influence of the primary parameters
of the graphene origami and environmental conditions on the bending behavior.
The findings of this study may be applied to the analysis of structures with
controllable responses.

Full Text
Preamble
This article investigates the effect of higher-order kinematic modeling on the
elasto-static bending behavior of tunable shells reinforced with folded graphene
origami nanofillers. A copper matrix reinforced with folded graphene origami
serves as the primary constituent material. The virtual work principle is em-
ployed to derive the governing equations for the thickness-stretchable shell. Af-
ter deriving the governing equations, empirical formulas from validated sources
are used to determine the effective material properties. A verification test is
presented before exploring the effects of key parameters related to graphene
origami and thermal environment on the bending results. The findings of this
work may be applied to the analysis of structures with controllable responses.
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1. Introduction
The development of novel and advanced materials using nanomaterials in var-
ious formats has become a major research interest for scientists in materials
science, civil engineering, mechanical engineering, and chemistry. Following the
introduction of carbon nanotubes in both single- and double-walled configura-
tions, researchers proposed graphene sheets and nanoplatelets, which exhibit
superior properties compared to their predecessors. Experimental studies have
demonstrated that adding small amounts of graphene can lead to significant im-
provements in mechanical and thermal properties [?]. Material scientists have
proposed new processes to control material properties and corresponding re-
sponses [?, ?], with hydrogenation emerging as a novel method for producing
controllable materials.

The intelligent and hybrid applications of novel materials for robotic systems
and structures as actuators and sensors have been described [?]. Neural and
fuzzy systems, along with networks, have been organized and explained for
characterization, modeling, and simulation of effective material properties of
nanocomposite structures and polymer-based composite materials [?]. Durabil-
ity and enhanced performance applications of novel composite materials and
structures with multi-field effects have been discussed in recent works [?]. Fan
et al. [?] provided experimental analysis on the thermal behavior of graphene-
reinforced polyurethane structures, including composite fibers with high sensi-
tivity. Temperature sensitivity of the materials was explained for biomaterial
applications in skin-core structures. Fan et al. [?] developed characteristics of a
new fabrication method for producing 3D nanomaterials and fiber reinforcement,
demonstrating significant improvements in mechanical and thermal properties
through the proposed manufacturing approach.

Waste materials can be utilized for fiber reinforcement production and in com-
posite structures reinforced with fibers. For instance, Wang et al. [?] organized
a novel study on the production of nano-reinforced composites. Using recycled
fibers in nanocomposite structure production yields materials bonded through
hydrogen bonding. In a similar work, Zhang et al. [?] developed applications of
hydrophobic carbon fibers in composite structures to achieve optimal conduc-
tivity, mechanical strength, and weather resistance. A low-cost composite was
manufactured using the proposed material. Sun et al. [?] studied the effects of
various fiber types, such as carbon, aramid, and silk, on the mechanical proper-
ties and inter-laminar shear strength of 3D composite structures under thermal
environments. Bai et al. [?] investigated temperature-dependent behaviors of
metal unsaturated soils using solutions of coupled nonlinear contaminant-heat-
moisture equations, examining the effects of various moisture environment and
thermal ambient parameters on hybrid coupled responses.

Intelligent nonlinear characteristics of novel systems have been described by re-
searchers [?] for application as sensors and actuators. Hua et al. [?] developed a
novel experimental setup for investigating the frictional properties of graphene-
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reinforced epoxy matrix composites. Heat capacities and molecular dynamics
results of carbon nanotube-based composites were described by Li et al. [?] and
Tomioka et al. [?]. Bai et al. [?] studied temperature effects on the mechani-
cal properties of geopolymers enriched with alkali activator across an extended
ambient temperature range. Bai et al. [?] investigated fluid velocity effects on
penetration characteristics of porous materials and their impact on absorption
capacity, developing a general solution for particle migration in porous media.
Ge et al. [?] introduced a new method for producing bio-composite structures
composed of bamboo biomass fibers using hot-pressing to achieve low-energy
consumption without adhesive properties, describing improved material prop-
erties through biomass foldability. Yue et al. [?] presented review works on
adsorption and photocatalytic applications of nano and carbon active particles.
Ge et al. [?] illustrated details of a pyrolysis operation for bio-energy produc-
tion using activation through a sodium-potassium hydroxide mixture, with ex-
perimental results demonstrating efficiency and importance. Foong et al. [?]
developed thermo-mechanical operations to produce more efficient nanocompos-
ite materials with enhanced properties and energy absorption capacity. Lam et
al. [?] developed a novel efficient thermo-mechanical operation for producing mi-
croporous materials with high absorption capacity using a higher-order kinetic
model. Huang et al. [?] developed an efficient production experimental method
for a new material with negative transfer for transmission systems.

Enhanced resonance capacity of hybrid and intelligent materials was developed
by Deng et al. [?] and Huang et al. [?], with theoretical approaches extended for
analysis. Semi-exact and numerical methods were employed for hybrid analysis
of smart piezoelectric structures with imperfections in recent works [?]. Kine-
matic relations for double-curved shells and higher-order analysis are available
in references [?], with potential extensions for future works based on comprehen-
sive literature studies [?]. Hadji et al. [?] studied the effect of multi-directional
material property gradation on thermal buckling analysis of functionally graded
shear-deformable plates assumed to be made of porous materials with various
distributions, exploring parametric effects of porosity coefficient and distribu-
tions on thermal buckling results. Dahmane et al. [?] investigated bidirec-
tional variation effects of material properties on dynamic responses of graded
beams through higher-order modeling, presenting wave propagation results us-
ing Hamilton’s principle with eigenvalue problem solutions.

Novel materials and structures find applications in materials science [?], with
production methods for nanocomposite structures explained in recent works [?].
Nanocomposite structures can be utilized in various situations [?], with func-
tionally graded material analysis using energy-based methods and small-scale
dependence studied recently [?]. Numerical methods such as the differential
quadrature method have been applied to vibrational and stability analyses of
advanced materials and structures [?, ?], with novel kinematic and constitu-
tive relations extending governing equations to new materials and compositions
[?, ?, ?].
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This article examines the foldability and controllability of material properties
of novel nanomaterials in new configurations using chemical processes. A re-
view of graphene origami structure analysis and effective material properties
confirms that considering shaped nanomaterials and nanofillers through folding
processes and their application in new structures represents an important sub-
ject in mechanical engineering. The goal of this work is to provide a higher-order
framework for stress, deformation, and strain analyses of stretchable shells in
double-curved form composed of a copper-based matrix reinforced with folded
nanofillers in a thermal environment. An extended parametric analysis inves-
tigates the impact of geometric and material characteristics of folded nanoma-
terials on static results and elastic stress, strain, and deformation responses
of the graphene origami reinforced double-curved shell. A new, more accurate
kinematic model is developed for shell analysis.

2. Mathematical Modeling
A thickness-stretchable model is developed for deformation, strain, and stress
analyses of a graphene origami auxetic metamaterial reinforced doubly curved
shell. The shell is assumed shear-deformable and fabricated from copper re-
inforced with auxetic metamaterial. The kinematic relations based on the
thickness-stretchable model are developed as:

𝑤𝑍 = 𝑤𝑏 + 𝑤𝑠 + 𝑔(𝑍)𝜒

where the coordinates are depicted in Figure 1 [Figure 1: see original paper].
In this figure, the three coordinate directions are assumed as 𝜉, 𝜁, 𝑍, the radii
of curvature are 𝑅𝜉, 𝑅𝜁, and the lengths of middle surfaces are 𝐿𝜉, 𝐿𝜁. The
shape functions used to satisfy more accurate changes of shear strain along the
thickness are assumed as:

𝑓(𝑍) = 𝑍 − ℎ
𝜋 sin (𝜋𝑍

ℎ )

𝑔(𝑍) = 1 − 𝑓 ′(𝑍) = cos (𝜋𝑍
ℎ )

The strain components are:

𝜀𝜉 = 1
𝐿𝜉

[𝑢,𝜉 − 𝑍𝑤𝑏,𝜉𝜉 − 𝑓(𝑍)𝑤𝑠,𝜉𝜉 + 𝑤𝑏
𝑅𝜉

+ 𝑤𝑠
𝑅𝜉

+ 𝑔(𝑍)𝜒
𝑅𝜉

]

𝜀𝜁 = 1
𝐿𝜁

[𝑣,𝜁 − 𝑍𝑤𝑏,𝜁𝜁 − 𝑓(𝑍)𝑤𝑠,𝜁𝜁 + 𝑤𝑏
𝑅𝜁

+ 𝑤𝑠
𝑅𝜁

+ 𝑔(𝑍)𝜒
𝑅𝜁

]
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𝜀𝑍 = 𝑔′(𝑍)𝜒

𝛾𝜉𝜁 = 1
𝐿𝜉

𝑣,𝜉 + 1
𝐿𝜁

𝑢,𝜁 − { 1
𝐿𝜉

+ 1
𝐿𝜁

}

𝛾𝜉𝑍 = −𝐿𝜉𝑢
𝑅𝜉

+ {−𝑓 ′(𝑍) + 1}𝑍𝑤𝑏,𝜉𝜁 + 𝑓(𝑍)𝑤𝑠,𝜉𝜁 + 𝑤𝑠,𝜉 + 𝑔(𝑍)𝐿𝜉𝜒,𝜉

𝛾𝜁𝑍 = −𝐿𝜁𝑣
𝑅𝜁

+ {−𝑓 ′(𝑍) + 1}𝑍𝑤𝑏,𝜉,𝜁 + 𝑓(𝑍)𝑤𝑠,𝜉,𝜁 + 𝑤𝑠,𝜁 + 𝑔(𝑍)𝐿𝜁𝜒,𝜁

The constitutive relations are:

⎡
⎢
⎢
⎢
⎢
⎣

𝜎𝜉
𝜎𝜁
𝜎𝑍
𝜎𝜉𝜁
𝜎𝜉𝑍
𝜎𝜁𝑍

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝐶11 𝐶12 𝐶13 0 0 0
𝐶12 𝐶22 𝐶23 0 0 0
𝐶13 𝐶23 𝐶33 0 0 0
0 0 0 𝐶66 0 0
0 0 0 0 𝐶55 0
0 0 0 0 0 𝐶44

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝜀𝜉 − 𝛼eff𝑇
𝜀𝜁 − 𝛼eff𝑇
𝜀𝑍 − 𝛼eff𝑇

𝛾𝜉𝜁
𝛾𝜉𝑍
𝛾𝜁𝑍

⎤
⎥
⎥
⎥
⎥
⎦

where 𝐶𝑖𝑗, 𝛼eff, 𝑇 , 𝜎𝑖𝑗, 𝜀𝜉, 𝛾𝜁𝑍 are stiffness coefficients, effective thermal expan-
sion, thermal loading, stress components, normal strain components, and shear
strain components, respectively.

The effective properties 𝐸eff, 𝜈eff, 𝛼eff of the shell are assumed as follows [?, ?]:

𝐸eff = 𝐸Cu𝑓𝐸(𝐻GOFD, 𝑉GOAM, 𝑇 )

𝜈eff = (𝜈Gr𝑉GOAM + 𝜈Cu𝑉Cu)𝑓𝜈(𝐻GOFD, 𝑉GOAM, 𝑇 )

𝛼eff = (𝛼Gr𝑉GOAM + 𝛼Cu𝑉Cu)𝑓𝛼(𝐻GOFD, 𝑉GOAM, 𝑇 )

where modification functions 𝑓𝐸(𝐻GOFD, 𝑉GOAM, 𝑇 ), 𝑓𝜈(𝐻GOFD, 𝑉GOAM, 𝑇 ),
𝑓𝛼(𝐻GOFD, 𝑉GOAM, 𝑇 ) are used for correction. The relation between 𝑉GOAM
and 𝑉Cu is obtained as follows:

𝑉GOAM = 𝑉Gr, 𝑉Cu = 1 − 𝑉Gr

The non-dimensional parameters defined in effective modulus of elasticity are
obtained in terms of geometric and material properties of the Cu matrix rein-
forced with graphene origami nanomaterials.
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The stress components yield:

𝜎𝜉 = 𝐶11 [𝑢,𝜉 − 𝑍𝑤𝑏,𝜉𝜉 − 𝑓(𝑍)𝑤𝑠,𝜉𝜉 + 𝑤𝑏
𝑅𝜉

+ 𝑤𝑠
𝑅𝜉

+ 𝑔(𝑍)𝜒
𝑅𝜉

]

𝜎𝜁 = 𝐶12 [𝑢,𝜉 − 𝑍𝑤𝑏,𝜉𝜉 − 𝑓(𝑍)𝑤𝑠,𝜉𝜉 + 𝑤𝑏
𝑅𝜉

+ 𝑤𝑠
𝑅𝜉

+ 𝑔(𝑍)𝜒
𝑅𝜉

]+𝐶13 [𝑣,𝜁 − 𝑍𝑤𝑏,𝜁𝜁 − 𝑓(𝑍)𝑤𝑠,𝜁𝜁 + 𝑤𝑏
𝑅𝜁

+ 𝑤𝑠
𝑅𝜁

+ 𝑔(𝑍)𝜒
𝑅𝜁

]−𝛼eff𝑇

𝜎𝑍 = 𝐶13 [𝑢,𝜉 − 𝑍𝑤𝑏,𝜉𝜉 − 𝑓(𝑍)𝑤𝑠,𝜉𝜉 + 𝑤𝑏
𝑅𝜉

+ 𝑤𝑠
𝑅𝜉

+ 𝑔(𝑍)𝜒
𝑅𝜉

]+𝐶23 [𝑣,𝜁 − 𝑍𝑤𝑏,𝜁𝜁 − 𝑓(𝑍)𝑤𝑠,𝜁𝜁 + 𝑤𝑏
𝑅𝜁

+ 𝑤𝑠
𝑅𝜁

+ 𝑔(𝑍)𝜒
𝑅𝜁

]+𝐶33𝑔′(𝑍)𝜒−𝛼eff𝑇

𝜎𝜉𝜁 = 𝐶66 [ 1
𝐿𝜉

𝑣,𝜉 + 1
𝐿𝜁

𝑢,𝜁 − { 1
𝐿𝜉

+ 1
𝐿𝜁

}]

𝜎𝜉𝑍 = 𝐶55 [−𝐿𝜉𝑢
𝑅𝜉

+ {−𝑓 ′(𝑍) + 1}𝑍𝑤𝑏,𝜉,𝜁 + 𝑓(𝑍)𝑤𝑠,𝜉,𝜁 + 𝑤𝑠,𝜉 + 𝑔(𝑍)𝐿𝜉𝜒,𝜉]

𝜎𝜁𝑍 = 𝐶44 [−𝐿𝜁𝑣
𝑅𝜁

+ {−𝑓 ′(𝑍) + 1}𝑍𝑤𝑏,𝜉,𝜁 + 𝑓(𝑍)𝑤𝑠,𝜉,𝜁 + 𝑤𝑠,𝜁 + 𝑔(𝑍)𝐿𝜁𝜒,𝜁]

The strain energy is [?]:

𝛿𝑈 = ∫
𝑉

[𝜎𝜉𝜀𝜉 + 𝜎𝜁𝜀𝜁 + 𝜎𝜁𝑍𝛾𝜁𝑍 + 𝜎𝜉𝑍𝛾𝜉𝑍 + 𝜎𝜉𝜁𝛾𝜉𝜁] 𝑑𝑉

The work is expressed as follows:

𝛿𝑊 = ∫
𝜉

∫
𝜁

[−𝑞 + (𝑁𝜉
0𝑥 + 𝑁𝜉

𝑇 0𝑥)] 𝛿(𝑤𝑏 + 𝑤𝑠)𝑅𝜉𝑅𝜁𝑑𝜉𝑑𝜁

Finally, the equilibrium equations are derived as follows:

𝛿𝑢 ∶ −𝑁𝜉,𝜉 − 𝑁𝜉𝜁,𝜁 − 𝑁𝜉𝑍 = 0

𝛿𝑣 ∶ −𝑁𝜉𝜁,𝜉 − 𝑁𝜁,𝜁 − 𝑁𝜁𝑍 = 0
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𝛿𝑤𝑏 ∶ −𝑀𝜉,𝜉𝜉+𝑁𝜉
𝑅𝜉

−𝑀𝜁,𝜁𝜁+𝑁𝜁
𝑅𝜁

−𝑀𝜉𝜁,𝜉𝜁−(𝑁𝜉
0𝑥 + 𝑁𝜉

𝑇 0𝑥) (𝑤𝑏,𝜉𝜉+𝑤𝑠,𝜉𝜉)−(𝑁𝜁
0𝑥 + 𝑁𝜁

𝑇 0𝑥) (𝑤𝑏,𝜁𝜁+𝑤𝑠,𝜁𝜁) = 0

𝛿𝑤𝑠 ∶ −𝑆𝜉,𝜉𝜉+𝑁𝜉
𝑅𝜉

−𝑆𝜁,𝜁𝜁+𝑁𝜁
𝑅𝜁

−𝑆𝜉𝜁,𝜉𝜁−(𝑁𝜉
0𝑥 + 𝑁𝜉

𝑇 0𝑥) (𝑤𝑏,𝜉𝜉+𝑤𝑠,𝜉𝜉)−(𝑁𝜁
0𝑥 + 𝑁𝜁

𝑇 0𝑥) (𝑤𝑏,𝜁𝜁+𝑤𝑠,𝜁𝜁) = 0

𝛿𝜒 ∶ 𝑃𝜉
𝑅𝜉

+ 𝑃𝜁
𝑅𝜁

+ 𝐺𝑍 − 𝑆𝜁𝑍,𝜁 − 𝑆𝜉𝑍,𝜉 = 0

where the resultant components are defined as:

{𝑁𝜉, 𝑀𝜉, 𝑆𝜉, 𝑃𝜉} = ∫
ℎ/2

−ℎ/2
𝜎𝜉𝐿𝜉{1, 𝑍, 𝑓(𝑍), 𝑔(𝑍)}𝑑𝑍

{𝑁𝜁, 𝑀𝜁, 𝑆𝜁, 𝑃𝜁} = ∫
ℎ/2

−ℎ/2
𝜎𝜁𝐿𝜁{1, 𝑍, 𝑓(𝑍), 𝑔(𝑍)}𝑑𝑍

{𝑁𝜉𝑍 , 𝑀𝜉𝑍 , 𝑆𝜉𝑍} = ∫
ℎ/2

−ℎ/2
𝜎𝜉𝑍𝐿𝜉{1/𝑅𝜉, 𝑍 − 𝑓 ′(𝑍) + 1, 𝑔(𝑍)𝐿𝜉}𝑑𝑍

{𝑁𝜁𝑍 , 𝑀𝜁𝑍 , 𝑆𝜁𝑍} = ∫
ℎ/2

−ℎ/2
𝜎𝜁𝑍𝐿𝜁{1/𝑅𝜁, 𝑍 − 𝑓 ′(𝑍) + 1, 𝑔(𝑍)𝐿𝜁}𝑑𝑍

{𝑁𝜉𝜁, 𝑁𝜁𝜉, 𝑀𝜉𝜁, 𝑆𝜉𝜁} = ∫
ℎ/2

−ℎ/2
𝜎𝜉𝜁{𝐿𝜉, 𝐿𝜁, 𝑍{𝐿𝜉 + 𝐿𝜁}, 𝑓(𝑍){𝐿𝜉 + 𝐿𝜁}}𝑑𝑍

{𝐺𝑍} = ∫
ℎ/2

−ℎ/2
𝜎𝑍𝑔′(𝑍)𝑑𝑍

In which the integration constants are presented in Appendix A.
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3. Solution Procedure
The displacements are assumed as [?]:

𝑤𝑠 = 𝑈 cos(𝜆𝑚𝜉) sin(𝜇𝑛𝜁)

𝑣 = 𝑉 sin(𝜆𝑚𝜉) cos(𝜇𝑛𝜁)

𝑤𝑏 = 𝑊𝑏 sin(𝜆𝑚𝜉) sin(𝜇𝑛𝜁)

𝑤𝑠 = 𝑊𝑠 sin(𝜆𝑚𝜉) sin(𝜇𝑛𝜁)

𝜒 = 𝜒 sin(𝜆𝑚𝜉) sin(𝜇𝑛𝜁)

in which {𝑌 } = {𝑈, 𝑉 , 𝑊𝑏, 𝑊𝑠, 𝜒}𝑇 are unknown amplitudes and 𝜆𝑚 = 𝑚𝜋
𝐿𝜉

,
𝜇𝑛 = 𝑛𝜋

𝐿𝜁
. Substitution leads to:

[𝐾]{𝑌 } = {𝐹}

where the elements of stiffness matrix [𝐾] and force vector {𝐹} are obtained as
follows:

𝐾1,1 = −𝜆2
𝑚𝛿1 − 𝜇2

𝑛𝛿167 − 𝛿82
𝑅𝜉

𝐾1,2 = −(𝛿166 + 𝛿5)𝜆𝑚𝜇𝑛

𝐾1,3 = 𝛿2𝜆3
𝑚 + (𝛿6 + 𝛿168)𝜆2

𝑚𝜇𝑛 + 𝛿1
𝑅𝜉

+ 𝛿5
𝑅𝜁

𝐾1,4 = 𝛿3𝜇3
𝑛 − (𝛿169 + 𝛿7)𝜆2

𝑚𝜇𝑛 + 𝛿4
𝑅𝜉

+ 𝛿8
𝑅𝜁

+ 𝛿9 + 𝛿84

𝐾1,5 = 𝛿1
𝑅𝜉

+ 𝛿5
𝑅𝜁

+ 𝛿83

𝐾2,1 = −(𝛿165 + 𝛿37)𝜆𝑚𝜇𝑛
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𝐾2,2 = −𝛿73𝜆2
𝑚 − 𝛿41𝜇2

𝑛 − 𝛿98
𝑅𝜁

𝐾2,3 = 𝛿42𝜆3
𝑚 + (𝛿74 + 𝛿38)𝜆2

𝑚𝜇𝑛 + 𝛿41
𝑅𝜁

+ 𝛿37
𝑅𝜉

𝐾2,4 = 𝛿43𝜇3
𝑛 − (𝛿75 + 𝛿39)𝜆2

𝑚𝜇𝑛 + 𝛿41
𝑅𝜁

+ 𝛿99 + 𝛿37
𝑅𝜉

𝐾2,5 = 𝛿44
𝑅𝜁

+ 𝛿45 + 𝛿40
𝑅𝜉

+ 𝛿101

𝐾3,1 = 𝛿10𝜆3
𝑚 + (𝛿170 + 𝛿46)𝜆𝑚𝜇2

𝑛 + 𝛿1
𝑅𝜉

+ 𝛿37
𝑅𝜁

𝐾3,2 = 𝛿50𝜇3
𝑛 + 𝛿5

𝑅𝜉
+ 𝛿41

𝑅𝜁
𝜇𝑛 + (𝛿14 + 𝛿76)𝜆2

𝑚𝜇𝑛

𝐾3,3 = −𝛿11𝜆4
𝑚−𝛿51𝜇4

𝑛−(𝛿15+𝛿77+𝛿47)𝜆2
𝑚𝜇2

𝑛+𝛿14
𝑅𝜁

+𝛿38
𝑅𝜁

+ 𝛿2
𝑅𝜉

+𝛿10
𝑅𝜉

+𝛿50
𝑅𝜁

+ 𝛿6
𝑅𝜉

+𝛿46
𝑅𝜉

+𝛿42
𝑅𝜁

+ 𝛿41
𝑅𝜁𝑅𝜁

+ 𝛿5
𝑅𝜉𝑅𝜁

+ 𝛿37
𝑅𝜁𝑅𝜉

+ 𝛿1
𝑅𝜉𝑅𝜉

+(𝑁𝜉
0𝑥+𝑁𝜉

𝑇 0𝑥)𝜆2
𝑚+(𝑁𝜁

0𝑥+𝑁𝜁
𝑇 0𝑥)𝜇2

𝑛

𝐾3,4 = −𝛿12𝜆4
𝑚−𝛿52𝜇4

𝑛−(𝛿78+𝛿48+𝛿16)𝜆2
𝑚𝜇2

𝑛+𝛿10
𝑅𝜉

+𝛿14
𝑅𝜁

+𝛿39
𝑅𝜁

+ 𝛿3
𝑅𝜉

+ 𝛿7
𝑅𝜉

+𝛿43
𝑅𝜁

+𝛿50
𝑅𝜁

+𝛿46
𝑅𝜉

+ 𝛿37
𝑅𝜁𝑅𝜉

+ 𝛿41
𝑅𝜁𝑅𝜁

+ 𝛿1
𝑅𝜉𝑅𝜉

+ 𝛿5
𝑅𝜉𝑅𝜁

+(𝑁𝜉
0𝑥+𝑁𝜉

𝑇 0𝑥)𝜆2
𝑚+(𝑁𝜁

0𝑥+𝑁𝜁
𝑇 0𝑥)𝜇2

𝑛

𝐾3,5 = 𝛿17
𝑅𝜁

+𝛿18+ 𝛿13
𝑅𝜉

+ 𝛿49
𝑅𝜉

+ 𝛿53
𝑅𝜁

+𝛿54+ 𝛿45
𝑅𝜁

+ 𝛿9
𝑅𝜉

+ 𝛿4
𝑅𝜉𝑅𝜉

+ 𝛿8
𝑅𝜉𝑅𝜁

+ 𝛿40
𝑅𝜁𝑅𝜉

+ 𝛿44
𝑅𝜁𝑅𝜁

𝐹3 = +𝑞

𝐾4,1 = 𝛿19𝜆3
𝑚 + (𝛿55 + 𝛿171)𝜆𝑚𝜇2

𝑛 + 𝛿1
𝑅𝜉

+ 𝛿37
𝑅𝜁

+ 𝛿86
𝑅𝜉

𝐾4,2 = +𝛿59𝜇3
𝑛 + (𝛿23 + 𝛿79)𝜆2

𝑚𝜇𝑛 + 𝛿5
𝑅𝜉

+ 𝛿41
𝑅𝜁

+ 𝛿102
𝑅𝜁

𝐾4,3 = −𝛿20𝜆4
𝑚−𝛿60𝜇4

𝑛−(𝛿24+𝛿56+𝛿80)𝜆2
𝑚𝜇2

𝑛+𝛿19
𝑅𝜉

+𝛿23
𝑅𝜁

+𝛿38
𝑅𝜁

+ 𝛿2
𝑅𝜉

+𝛿55
𝑅𝜉

+𝛿42
𝑅𝜁

+ 𝛿6
𝑅𝜉

+𝛿59
𝑅𝜁

+ 𝛿1
𝑅𝜉𝑅𝜉

+ 𝛿5
𝑅𝜉𝑅𝜁

+ 𝛿41
𝑅𝜁𝑅𝜁

+ 𝛿37
𝑅𝜁𝑅𝜉

+(𝑁𝜉
0𝑥+𝑁𝜉

𝑇 0𝑥)+(𝑁𝜁
0𝑥+𝑁𝜁

𝑇 0𝑥)
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𝐾4,4 = −𝛿21𝜆4
𝑚−𝛿61𝜇4

𝑛−(𝛿25+𝛿57+𝛿81)𝜆2
𝑚𝜇2

𝑛+𝛿19
𝑅𝜉

+𝛿87
𝑅𝜉

+𝛿23
𝑅𝜁

+ 𝛿3
𝑅𝜉

+𝛿39
𝑅𝜁

+𝛿43
𝑅𝜁

+𝛿103
𝑅𝜁

+ 𝛿7
𝑅𝜉

+𝛿59
𝑅𝜁

+𝛿55
𝑅𝜉

+ 𝛿1
𝑅𝜉𝑅𝜉

+ 𝛿5
𝑅𝜉𝑅𝜁

+ 𝛿37
𝑅𝜁𝑅𝜉

+ 𝛿41
𝑅𝜁𝑅𝜁

+(𝑁𝜉
0𝑥+𝑁𝜉

𝑇 0𝑥)+(𝑁𝜁
0𝑥+𝑁𝜁

𝑇 0𝑥)+𝛿22
𝑅𝜉

+𝛿26
𝑅𝜁

+𝛿88+𝛿27+𝛿105
𝑅𝜁

+𝛿58
𝑅𝜉

+𝛿62
𝑅𝜁

+𝛿63+ 𝛿40
𝑅𝜁𝑅𝜉

+ 𝛿44
𝑅𝜁𝑅𝜁

+𝛿45
𝑅𝜁

+ 𝛿4
𝑅𝜉𝑅𝜉

+ 𝛿8
𝑅𝜉𝑅𝜁

+ 𝛿9
𝑅𝜉

𝐹4 = +𝑞 (1 + ℎ
2𝑅𝜉

) (1 + ℎ
2𝑅𝜁

)

𝐾5,1 = −𝛿28
𝑅𝜉

+ 𝛿64
𝑅𝜁

+ 𝛿114 + 𝛿90
𝑅𝜉

𝐾5,2 = −𝛿32
𝑅𝜉

+ 𝛿68
𝑅𝜁

+ 𝛿118 + 𝛿106
𝑅𝜁

𝐾5,3 = 𝛿115+𝛿29
𝑅𝜉

+𝛿65
𝑅𝜁

+𝛿69
𝑅𝜁

+𝛿33
𝑅𝜉

+𝛿119+𝛿114
𝑅𝜉

+ 𝛿28
𝑅𝜉𝑅𝜉

+ 𝛿68
𝑅𝜁𝑅𝜁

+ 𝛿32
𝑅𝜉𝑅𝜁

+𝛿118
𝑅𝜁

+ 𝛿64
𝑅𝜁𝑅𝜉

𝐾5,4 = 𝛿70
𝑅𝜁

+ 𝛿34
𝑅𝜉

+ 𝛿120 + 𝛿107 + 𝛿28
𝑅𝜉𝑅𝜉

+ 𝛿114
𝑅𝜉

+ 𝛿32
𝑅𝜉𝑅𝜁

+ 𝛿68
𝑅𝜁𝑅𝜁

+ 𝛿118
𝑅𝜁

+ 𝛿64
𝑅𝜁𝑅𝜉

𝐾5,5 = 𝛿92𝜆2
𝑚+𝛿109𝜇2

𝑛+( 𝛿67
𝑅𝜁𝑅𝜉

+ 𝛿71
𝑅𝜁𝑅𝜁

+ 𝛿72
𝑅𝜁

+ 𝛿31
𝑅𝜉𝑅𝜉

+ 𝛿117
𝑅𝜉

+ 𝛿121 + 𝛿122 + 𝛿35
𝑅𝜁

+ 𝛿36
𝑅𝜉

)

𝐹5 = −𝑞 (1 + ℎ
2𝑅𝜉

) (1 + ℎ
2𝑅𝜁

)

4. Numerical Results and Discussion
To validate the formulation procedure, governing equations, and solution
methodology, results are compared with available literature data.

Table 1 presents a comparative study with results from Kiani et al. [?]. The
results are shown for various geometric parameters of the doubly curved shell,
demonstrating acceptable agreement between the present results and those of
Kiani et al. [?]. The input parameters are assumed as: 𝐸Cu = 65.79 GPa,
𝐸Gr = 929.57 GPa, 𝜃Cu = 0.387, 𝜃Gr = 0.22.

Table 2 lists the impact of folding degree 𝐻GOFD and thermal loading 𝑇 on
the variation in middle surface deformation 𝑢. The deformation is presented
for different uniform temperature rises 𝑇 = 320, 330, 340, and 350. A signifi-
cant enhancement in middle surface deformation 𝑢 is observed with increasing
foldability parameter 𝐻GOFD and thermal loading 𝑇 .
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Table 3 lists the impact of origami content 𝑉GOAM and thermal loading 𝑇 on
the variation in middle surface deformation 𝑢. The deformation is presented
for different uniform temperature rises 𝑇 = 320, 330, 340, and 350. A decreas-
ing trend in middle surface deformation 𝑢 is observed with increasing origami
content 𝑉GOAM due to enhanced structural stiffness.

Table 4 lists the impact of folding degree 𝐻GOFD and thermal loading 𝑇 on the
variation in bending transverse deflection 𝑤𝑏. The deformation is presented for
different uniform temperature rises 𝑇 = 320, 330, 340, and 350. An enhance-
ment in bending transverse deflection 𝑤𝑏 is observed with increasing foldability
parameter 𝐻GOFD and thermal loading 𝑇 .

Table 5 lists the impact of folding degree 𝐻GOFD and thermal loading 𝑇 on the
variation in shear transverse deflection 𝑤𝑠. This table reflects an enhancement in
shear transverse deflection 𝑤𝑠 with increasing foldability parameter 𝐻GOFD and
thermal loading 𝑇 . One can conclude that the stiffness is significantly decreased
with increasing foldability parameter 𝐻GOFD.

Table 6 lists the impact of origami content 𝑉GOAM and thermal loading 𝑇 on the
variation in shear transverse deflection 𝑤𝑠. A significant decreasing behavior
in shear transverse deflection 𝑤𝑠 is observed with increasing origami content
𝑉GOAM due to enhanced structural stiffness.

Table 7 lists the impact of folding degree 𝐻GOFD and thermal loading 𝑇 on
the variation in stretching transverse deflection 𝜒. Unlike other displacement
and deflection components, the stretching transverse deflection 𝜒 is significantly
decreased with increasing foldability parameter 𝐻GOFD.

Table 8 lists the impact of origami content 𝑉GOAM and thermal loading 𝑇 on the
variation in stretching transverse deflection 𝜒. A significant decreasing behavior
in stretching transverse deflection 𝜒 is observed with increasing origami content
𝑉GOAM due to enhanced structural stiffness.

Table 9 lists the impact of folding degree 𝐻GOFD and thermal loading 𝑇 on
the variation in normal in-plane strain 𝜀𝜉. An enhancement in normal in-plane
strain 𝜀𝜉 is observed with increasing foldability parameter 𝐻GOFD and thermal
loading 𝑇 .

Table 10 lists the impact of folding degree 𝐻GOFD and thermal loading 𝑇 on the
variation in normal out-of-plane strain 𝜀𝑍. Unlike other displacement and de-
flection components, the normal out-of-plane strain 𝜀𝑍 is significantly decreased
with increasing foldability parameter 𝐻GOFD.

Table 11 lists the impact of origami content 𝑉GOAM and thermal loading 𝑇 on
the variation in normal out-of-plane strain 𝜀𝑍. A significant decreasing behavior
in normal out-of-plane strain 𝜀𝑍 is observed with increasing origami content
𝑉GOAM due to enhanced structural stiffness.

Table 12 lists the impact of folding degree 𝐻GOFD and thermal loading 𝑇 on
the variation in in-plane shear strain 𝛾𝜉𝜁. An enhancement in in-plane shear
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strain 𝛾𝜉𝜁 is observed with increasing foldability parameter 𝐻GOFD and thermal
loading 𝑇 .

Table 13 lists the impact of origami content 𝑉GOAM and thermal loading 𝑇 on
the variation in in-plane shear strain 𝛾𝜉𝜁. A significant decreasing behavior in
in-plane shear strain 𝛾𝜉𝜁 is observed with increasing origami content 𝑉GOAM due
to enhanced structural stiffness.

Table 14 lists the impact of folding degree 𝐻GOFD and thermal loading 𝑇 on
the variation in out-of-plane shear strain 𝛾𝜉𝑍 . A slight decrease in out-of-plane
shear strain 𝛾𝜉𝑍 is observed with increasing foldability parameter 𝐻GOFD and
thermal loading 𝑇 .

Table 15 lists the impact of origami content 𝑉GOAM and thermal loading 𝑇 on
the variation in out-of-plane shear strain 𝛾𝜉𝑍 . A significant decreasing behavior
in out-of-plane shear strain 𝛾𝜉𝑍 is observed with increasing origami content
𝑉GOAM due to enhanced structural stiffness.

5. Conclusion
A more accurate kinematic relation and a new nanocomposite-reinforced mate-
rial are suggested in this article to study bending and deformation results. The
general formulation includes an out-of-plane stretchable kinematic model de-
rived through variational principles, with behavioral relations extended through
generalized Hooke’s law and the virtual work principle. To compute resultant
force and moment components in the governing equations, material property
relations from validated sources derived using experimental, statistical, and
molecular dynamics-based analyses are employed. An extended parametric anal-
ysis investigates the impact of folded nanofiller parameters on the elasto-static
responses of composite double-curved shells. A verification test was presented
before presenting complete numerical results. The main conclusions of this work
are:

Investigating the effect of thermal loading 𝑇 reveals increasing behavior in dis-
placement, strain, and stress components with increasing 𝑇 due to decreased
material stiffness. The effective material properties were estimated as functions
of graphene origami characteristics. A decrease in the bending deflection compo-
nent is observed with increasing 𝑉GOAM and decreasing 𝐻GOFD of the graphene
origami. Furthermore, the effect of thermal loading is significant for higher
values of folding degree.

Investigating the variation of normal out-of-plane strain 𝜀𝑍 indicates that this
component is compressive, experiencing more negative values with increasing
thermal loading, while it is reduced with increasing 𝑉GOAM and 𝐻GOFD.

Investigating the variation of in-plane strain 𝜀𝜉 indicates that although this
strain component experiences significant changes through the thickness direc-
tion, its values change only slightly with variations in volume fraction 𝑉GOAM
and folding degree 𝐻GOFD.
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Investigating the variation of in-plane shear strain 𝛾𝜉𝜁 indicates that this com-
ponent experiences no changes with volume fraction 𝑉GOAM and only small
changes with folding degree 𝐻GOFD.
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