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Abstract

To mitigate dark pulses and achieve low-background-level measurements, liquid
scintillation counters (LSCs) are generally equipped with two or three photo-
multiplier tubes (PMTs) for coincidence measurements. However, traditional
identification methods in LSC only utilize the anode pulse from a single PMT
to identify a/f particles, which limits their ability to identify particles. We
developed a three-channel convolutional neural network (TCNN) model, which
integrates pulses from three PMT anodes to identify particle categories. An-
ode pulses are organized into a shape of (3,512) and subsequently fed into the
TCNN for o/ pulse discrimination. To train and validate the TCNN, we pre-
pared two samples: a 241Am sample as an alpha emitter and a 90Sr/90Y sample
as a beta emitter. In the validation set, TCNN performed significantly better
than traditional convolutional neural networks (CNN) in identifying o/ 3 pulses,
achieving accuracy, recall, and F1 score of 99.44%, 99.23%, and 99.34%, respec-
tively. We also prepared a mixed-emitter sample exhibiting a beta activity of
approximately 172 Bq and an alpha activity of 98 Bq to evaluate the impact of
TCNN on spectral performance in practical applications. First, the category of
pulses from the sample is identified by the TCNN, and then their amplitude is
recorded in an a-MCA spectrum or S-MCA spectrum according to the identified
category. The alpha particle peak in the a-MCA spectrum is used to evaluate
spectral performance. The optimal detection limit for the alpha particle peak is
0.3337 cps, which shows a sensitivity increase of 31.16% compared to the CNN
method. This indicates that TCNN can effectively utilize three-channel pulses
to enhance the ability to distinguish between alpha and beta particles when
analyzing both simultaneously, thereby significantly improving the sensitivity
of the detector.
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Abstract

Liquid scintillation counters (LSC) are generally equipped with two or three
photomultiplier tubes (PMT) for coincidence measurements to mitigate dark
pulses and achieve low-background-level measurements. However, traditional
identification methods in LSC only utilize the anode pulse from a single PMT
to identify alpha/beta particles, which limits their discrimination capability.
We developed a three-channel Convolutional Neural Network (TCNN) model
that integrates pulses from three PMT anodes to identify particle categories.
Anode pulses are organized into a shape of (3,512) and subsequently fed into the
TCNN for alpha/beta pulse discrimination. To train and validate the TCNN, we
prepared two samples: a 24! Am sample as an alpha emitter and a ?°Sr/%0Y sam-
ple as a beta emitter. In the validation set, the TCNN performed significantly
better than traditional convolutional neural networks (CNN) in identifying al-
pha/beta pulses, achieving accuracy, recall, and F1 scores of 99.44%, 99.23%,
and 99.34%, respectively. We also prepared a mixed-emitter sample exhibiting
a beta activity of approximately 172 Bq and an alpha activity of 98 Bq to evalu-
ate the impact of the TCNN on spectral performance in practical applications.
First, the category of each pulse from the sample is identified by the TCNN, and
then its height is recorded in an alpha-MCA spectrum or beta-MCA spectrum
according to the identified category. The alpha particle peak in the alpha-MCA
spectrum is used to evaluate spectral performance. The optimal detection limit
for the alpha particle peak is 0.3337 cps, which shows a sensitivity increase of
31.16% compared to the CNN method. This indicates that the TCNN can ef-
fectively utilize the three-channel pulses to distinguish between alpha and beta
particles when analyzing both simultaneously, thereby significantly improving
the sensitivity of the detector.
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Particle Identification - Simultaneous Alpha/Beta Analysis

1 Introduction

The measurement of radionuclides is critically important for various fields, in-
cluding geochemistry, environmental monitoring, nuclear power generation, ma-
rine environment studies, and health physics. For example, assessing the gross
activity of alpha and beta particles in water is essential to ascertain its suitabil-
ity for commercial utilization [1]. Detecting the gross activity of alpha and beta
particles in urine samples from populations suspected of internal contamination
is highly valuable for treatment and prevention [2]. Radionuclides from uranium
decay chains have been widely used as tracers for various processes in the marine
environment [3]. Determination of 24 Pu in materials from nuclear facilities and
environmental samples is an essential issue for radiation protection of workers
and members of the public [4]. These applications all involve quantifying the
activity of alpha or beta particles.

Liquid scintillation counting (LSC), characterized by excellent counting effi-
ciency and minimal self-absorption, is appropriate for quantifying beta emitters
and short-range alpha particles [5-6]. The decay energy of beta particles varies
from 0 to 3 MeV, whereas the decay energy of alpha particles spans from 4
MeV to 7 MeV. The efficiency of fluorescence emission from scintillation liquid
excited by alpha particles is approximately one-tenth of that excited by beta
particles. Consequently, the pulse height spectrum produced by alpha parti-
cles may overlap with that produced by beta particles, presenting significant
challenges for the simultaneous analysis of both particle types. Fortunately,
Pulse Shape Discrimination (PSD) technology has been proposed to solve this
problem.

In organic scintillators, alpha particles possess greater stopping power compared
to beta particles and produce higher quantities of delayed fluorescence light.
Therefore, the alpha pulse output from the photomultiplier tube (PMT) exhibits
a greater density of slow components. This property is essential for employing
Pulse Shape Discrimination (PSD) technology to differentiate between pulses.
In the early days, the practical PSD methods were Charge-Integration (CI)
[7-8] and Zero-Crossing (ZC) [9-11]. Although these methods were originally
proposed for neutron/gamma-ray discrimination, they are also applicable to
alpha/beta particle discrimination. The tail-to-total charge ratio, which serves
as the separation parameter for CI, is used to interpret the pulse category.
The advantage of a simple algorithm structure allows it to be deployed in Field
Programmable Gate Array (FPGA) for real-time measurement. In ZC, the zero-
crossing time of shaped pulses from differential circuits is utilized to categorize
the pulses. This technology is relatively easy to implement in analog circuits,
but its resolution is slightly inferior to CI.

With the rapid development of digital and communication technologies, pulses
are digitized and stored on personal computers. To achieve higher measurement
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accuracy, many intelligent algorithms have been proposed to handle offline dig-
ital pulses. Some frequency domain methods, which are less sensitive to high-
frequency noise, have been proposed to identify neutron/gamma-ray events in
high counting rate environments. These mainly include frequency gradient anal-
ysis [12], the Fourier Transform Method [13], and the wavelet transform method
[14].

The K-means clustering algorithm [15], which does not require manual labeling,
has been used to identify pulses. This method consumes less memory but has
poor accuracy. Artificial neural network methods, such as Multi-Layer Percep-
tron (MLP) [16-17] and CNN [18], exhibit higher discrimination ability than
traditional methods, especially thanks to their considerable advantages in ex-
tracting image textures and details, including local connection, parameter shar-
ing, and adaptive learning. These characteristics enable them to demonstrate
exceptional accuracy in particle identification. Furthermore, Recurrent Neural
Network (RNN) [19] and Residual Network (ResNet) [20] have been introduced
to differentiate between neutron, gamma-ray, and piled-up pulses.

Many scholars have applied some of these methods to identify alpha/beta par-
ticles in liquid scintillators [21-23]. Recently, an ANN algorithm designed to
minimize computational resources has been deployed to ARM microprocessors
for real-time identification of alpha and beta pulses in LSC [24].

The structural and operational methods of LSC used for alpha/beta measure-
ments differ significantly from detectors used for neutron/gamma ray measure-
ments. In LSC, the sample added to the scintillation liquid reduces the fluo-
rescence yield through chemical quenching or delayed quenching [25]. When
employing intelligent algorithms to identify alpha/beta pulses, it is necessary
to fully evaluate whether the trained model maintains advanced performance in
practical applications. In structural design, three PMTs are symmetrically ar-
ranged around the optical chamber of the LSC. The LSC can employ coincidence
measurement techniques to eliminate dark pulses and achieve low background
level measurements. Simultaneously, the LSC can execute the Triple to Double
Coincidence Ratio (TDCR) method for activity standardization [26-27], which is
used by national metrology institutions across numerous countries. These PMTs
simultaneously measure fluorescence emitted from the scintillator stimulated by
a radiation event. Except for fluorescence absorbed during transmission, the re-
mainder randomly enters the three PMTs and strikes their cathode coatings
to generate photoelectrons. Subsequently, the photoelectrons are amplified by
the PMT, generating detectable pulses at their anodes. Therefore, the shape of
the anode pulse exhibits greater complexity, including time misalignment, pulse
disappearance, and significant changes in the proportion of post-pulses. Con-
ventional techniques utilize only one anode pulse for identification, simplifying
device architecture and mitigating the complexity of implementing the identi-
fication algorithm in hardware. However, the absence of the other two anode
pulses results in incomplete waveforms that markedly reduce the performance
of conventional identification algorithms. This paper proposes a three-channel
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convolutional neural network model (TCNN) that can integrate the waveforms
of the three anode pulses from three PMTs to identify alpha and beta particles.

The remainder of this paper is organized as follows. Section 2 describes the LSC
system, sample preparation, pulse shape characteristics, and evaluation methods
for particle identification algorithms. Section 3 delineates the architecture of the
TCNN model, the processes of data acquisition and preprocessing, as well as
the training of the model. In Section 4, we employ the TCNN model for the
simultaneous analysis of alpha/beta particles and evaluate its practical value.
Finally, Section 5 summarizes the conclusions of this study.

2 Detection System and Pulse Shape Analysis
2.1 3-PMTs Measurement System

The LSC used in this article was developed by Sichuan X-START Technology
(M&C Co. Ltd). The instrument mainly comprises essential elements such as a
lead shielding chamber (SC), a scintillation chamber (SCC), a signal condition-
ing circuit module (SCM), a data acquisition unit (DAU), and a data terminal.
Figure 1 [Figure 1: see original paper| presents a partial structural diagram.

The SC, with a wall thickness of 10 cm and constructed from high-purity lead,
was designed to reduce background radiation. The SCC is installed inside the
SC. Signal and power cables are led out through through-holes on the side of
the SC, each equipped with a specialized Pb plug to maintain the integrity of
the shielding.

The SCC is made of pure copper material. Three PMTs are symmetrically
installed on its side. A glass vial containing radionuclides and 15 ml of liquid
scintillation cocktail is positioned at the geometric center to maximize photon
collection efficiency. The geometric center can be accessed through the top
through-hole in the SCC. Current signals from the PMTs are transmitted to the
SCM through a 2 m coaxial cable.

These weak electric current signals are converted into amplified voltage pulses in
the SCM via a preamplifier characterized by low noise and high bandwidth capa-
bilities. Initially, these amplified pulses, also known as fast pulses, are digitized
via a data acquisition (DAQ) board. Subsequently, particle type identification
is conducted using digital PSD. Concurrently, the pulses are processed through
summing circuits to ascertain the average amplitude, which is essential for mea-
suring particle energy. Due to the short peaking time of the input pulses, the
summed pulses suffer from significant ballistic deficits. To address this issue, an
RC shaping circuit with a decay time constant 7 of 750 nanoseconds is utilized
to mitigate the effects of the ballistic deficit, although this results in a reduction
in pulse amplitude. After shaping, the pulses are further amplified by another
amplifier to ensure they fall within the amplitude range that can be measured by
the ADC on the DAQ board before being routed to the DAQ board for further
processing.
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The DAU comprises four data acquisition (DAQ) boards. Each DAQ board is
integrated with a Xilinx Zynq-7020 SoC, AD9434 ADC (500 Msps, 12 bits), and
other components. Boards 1, 2, and 4 are used for digital fast pulses. Board 3 is
used for digitizing summation pulses. Upon detecting a new pulse, DAQ board
3 immediately notifies the other DAQ boards to concurrently record the pulse.
Simultaneously, the board produces a unique identification code and sends it to
the other DAQ boards. This identification code is recorded in the last sequence
of the pulse to identify the correlation of the pulses. In the experiment, the
data depth was set to 2048 (4096 ns) and the delay depth was set to 450 (900
ns). This configuration fully preserves the pulse baseline and provides sufficient
information for digital algorithms. Finally, all recorded pulse data is transmitted
to the data processing terminal via Gigabit Ethernet for storage and analysis.

2.2 Sample Preparation

We conducted alpha/beta discrimination experiments based on two radioactive
nuclides, ! Am and 2°Sr/°Y. 24! Am decays to ?*"Np through alpha-particle
emission, with a principal alpha energy of 5.486 MeV (84.5% branching ratio).
This decay process has a half-life of 432.2 years. In the beta decay process,
908y disintegrates into “°Y, an antineutrino, and a beta particle, with a half-
life of 28.79 years. The energy of the released beta particles is continuously
distributed, ranging from 0 to 0.546 MeV. ?°Y is an unstable intermediate with
a half-life of 64.053 hours. It decays to stable OZr by emitting beta particles.
The energy range of the emitted beta particles is from 0 to 2.28 MeV. The
half-life of °°Y is much shorter than that of °Sr, and the activity of these two
radioactive nuclides in the prepared sample has reached equilibrium.

Other materials used in the experiment include Ultima Gold LLT scintillation
cocktail, 20 mL glass vials, an electronic balance scale, rubber bulb pipettes, and
a bottle-top dispenser. The Ultima Gold LLT is developed by PerkinElmer and
has various advanced performance characteristics, including low background
count, high light output, chemical stability, and efficient alpha/beta particle
recognition.

We prepared three samples for the experiment: two single-emitter samples and
one mixed-emitter sample. (1) An alpha-emitter sample consisting of 15 ml LLT
scintillation cocktail and 229 Bq of 2! Am. (2) A beta-emitter sample consisting
of 15 ml LLT scintillation cocktail and approximately 335 Bq of “°Sr/0Y. (3)
A mixed-emitter sample consisting of 15 ml LLT scintillation cocktail, 112 Bq
of 21 Am, and approximately 172 Bq of °Sr/?°Y.

It is critical to strictly control both the activity of radionuclides and the volume
of scintillation cocktail during sample preparation to ensure accuracy and re-
producibility. Each sample vial must contain 15.00 + 0.05 milliliters of Ultima
Gold LLT. Before measurement, the sample vials need at least 2 hours in a dark
room to effectively reduce chemiluminescence interference.

chinarxiv.org/items/chinaxiv-202506.00073 Machine Translation


https://chinarxiv.org/items/chinaxiv-202506.00073

ChinaRxiv [$X]

2.3 Analysis of Pulse Shape

A large category of practical organic scintillators can produce what is known
as a m-electron structure. The m-electrons have two different energy level struc-
tures, namely singlet and triplet states. These structures enable excited organic
molecules to return to their ground state through the emission of fluorescence,
phosphorescence, or delayed fluorescence. The proportion of delayed fluores-
cence is related to the initial density of the triplet state into which the excited
organic molecules fall. The higher the stopping power of charged particles, the
higher the initial density of triplet states. Experimental results demonstrate that
the delayed fluorescence produced by alpha particles exciting organic molecules
is greater than that produced by beta particles. This is the fundamental princi-
ple of pulse discrimination.

In a PMT, photoelectrons are produced by the photoelectric effect when flu-
orescence is incident upon the cathode. Subsequently, the photoelectrons are
amplified by the PMT, generating a detectable pulse at its anode. The pulse
produced by beta particles is called a beta pulse, and the pulse produced by
alpha particles is called an alpha pulse. A beta pulse and an alpha pulse are
shown in Figure 2a [Figure 2: see original paper|. The width of a beta pulse is
about 30 nanoseconds. The trailing edge of the pulse is smooth and has almost
no post-pulse. Conversely, alpha pulses exhibit significantly longer durations,
typically ranging from 200 ns to 400 ns. The trailing edge of the pulse is filled
with pile-up post-pulses.

The waveforms of 100 alpha pulses are displayed in Figure 2b [Figure 2: see
original paper]. The number of post-pulses fluctuates. Most pulses exhibit
many post-pulses, while a few pulses exhibit very few or even no post-pulses.
The waveforms of 100 beta pulses are displayed in Figure 2c¢ [Figure 2: see
original paper]. Only a small portion of pulses appear with a few post-pulses,
while the rest have no post-pulses at all. The diversity of post-pulses limits the
effectiveness of conventional PSD in practical applications.

The fast pulses from the three PMTs, produced by an identical event, are shown
in Figure 2d [Figure 2: see original paper], labeled as CHA, CHB, and CHC,
respectively. CHA, CHB, and CHC exhibit significant height variation, mea-
suring 13 (a.u.), 198 (a.u.), and 86 (a.u.), respectively. CHA not only has a
small pulse height but also a post-pulse. If we use the CI method to distinguish
pulses, CHB and CHC will be identified as beta pulses, while CHA will be
classified as an alpha pulse. This discrimination discrepancy can be explained
by statistical fluctuations. The heights of the pulses fluctuate around a certain
average value. The number of post-pulses also fluctuates randomly. These fluc-
tuations are independent of each other and jointly influence the performance of
PSD. Traditional methods only use pulses from one channel to identify particles.
Abandoning the pulses from the other two channels limits the ability of these
methods.

chinarxiv.org/items/chinaxiv-202506.00073 Machine Translation


https://chinarxiv.org/items/chinaxiv-202506.00073

ChinaRxiv [$X]

2.4 Evaluation Method

It is a binary classification problem to discriminate between alpha and beta
pulses. Precision, recall, and F1-score are commonly used to evaluate classifier
performance. The specific procedure for calculation is shown in equations (1)-

(3)-
Precision = Recall = 2xPrecisionxRecall F1Score = Precision+Recall

Where TP is True Positive, FN is False Negative, FP is False Positive, and TN
is True Negative. In this paper, alpha pulse is defined as the positive class,
while beta pulse is defined as the negative class. These classification indicators
are used to evaluate the model in the validation set.

The pulses from liquid scintillation cocktails containing mixed-emitter samples
cannot be manually labeled. For this situation, classification indicators cannot
be used. The Figure of Merit (FoM) [28] can be used to evaluate classifier
performance. The specific procedure for calculation is shown in equation (4).

!OH:

Where S is the distance between two Gaussian peaks, is the full width at half
maximum (FWHM) of the alpha peak, and is the FWHM of the beta peak.
The larger the FoM value, the better the classifier performance; otherwise, the
worse.

The alpha particles produced by the decay of radioactive nuclides have charac-
teristic energy, and alpha particle peaks are detectable in the energy spectrum.
The detection limit can be used to evaluate instrument performance. The Cur-
rie criterion was used in this paper to calculate the Limit of Detection (LOD)
[29] based on the statistical fluctuation of background counts.

where K = 1.645 is a normal distribution with 95% confidence, B is the total
number of background counts, T is the measurement time, R is the chemical
recovery fraction, is the efficiency fraction, and

3.1 Architecture of TCNN Model

The architecture of the Three-channel Convolutional Neural Network (TCNN)
implemented in this article is shown in Figure 3 [Figure 3: see original paper].
The architecture consists of one input layer, five convolutional layers, four pool-
ing layers, four activation functions, and one fully connected layer.

The shape of the input layer is (3,512), which consists of three pulses with a
length of 512. In a convolutional layer, all neurons share a convolution kernel
for computation. The size of the convolution kernel used by the TCNN is (Ci,
Co, 1, 3), where Ci and Co represent the number of input channels and output
channels of the convolutional layer, respectively. The pooling layer possesses no
learnable parameters; it employs the principle of local image correlation to down-
sample the feature map. This not only diminishes computational costs but also
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enhances the robustness of CNN to small positional changes. The pooling layer
in the TCNN uses the maximum value for sampling. Consequently, the Rectified
Linear Unit (ReLU) activation function is employed to nonlinearize the output
of the pooling layer, thereby enhancing the model’s expressive capacity.

The sliding step size is set to 1 in the last two convolutional layers and to 2
in the other layers. As the network depth increases, the number of channels in
the feature maps progressively expands from 8 to 32. The feature map of the
last convolutional layer is flattened into a 128-dimensional vector and further
transformed into a two-dimensional vector through a fully connected layer to
achieve binary classification.

The mathematical model of the TCNN is simplified to equation (5).

Where x is input data consisting of three fast pulses. Tcnn is the mapping
function of the TCNN model. The z = (20, z1) represents the predicted result
and is also referred to as Logits. z0 and zl are scalars that range from

During model training, z is converted into a probability distribution using the
Softmax Function, as illustrated in equation (6).

5 () =
Where represents the probability of the input pulse being predicted as class m.
m is 0 or 1. We train as predictive probabilities for alpha and beta pulses.

The Cross-Entropy Loss Function quantifies the model’s prediction risk. The
calculation formula is shown in equation (7).

, log (

Where N is the number of input pulses, represents the true label of the i-th
input pulse, and represents the probability of predicting the i-th input pulse as
the m-th class.

The Adam optimizer is utilized to update the weight parameters. The learning
rate (Ir) is set to 0.2. L2 regularization is employed to prevent the weight
parameters from becoming abnormally enormous. The regularization coefficient
A is set to 107°. During model training, excellent parameters are saved for
further validation.

The trained model can be employed for identifying unlabeled alpha/beta pulses.
First, we input pulses into equation (5) to obtain z = (20, z1). The z0 represents
the confidence score of alpha particles, and zl represents the confidence score
of beta particles. We can employ two distinct methods for classification.

The first method is the Score Comparison Method. This method directly com-
pares the magnitude of z0 and z1. When z0 > zl, the pulse is interpreted as
an alpha pulse. Otherwise, it is attributed to a beta pulse. This method is
relatively simple and is suitable for evaluating performance in validation sets.
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In practical applications, the Threshold Comparison Approach is advised for
pulse discrimination. This method only uses Logits z0 or z1 for classification.
For example, when z1 is used as a segmentation parameter, the larger the z1,
the higher the probability that the pulse belongs to a beta pulse. Conversely,
the higher the probability of it being interpreted as a non-beta pulse. In this
article, non-beta pulses denote alpha pulses. The discrimination threshold is set
to zT and has been previously provided. When z1 > zT, the pulse is interpreted
as a beta pulse. Conversely, it belongs to an alpha pulse. The appropriate zT
can be set according to specific needs. For example, the larger the zT is set,
the higher the detection efficiency of alpha pulses. The smaller the zT is set,
the higher the accuracy of the alpha pulse. In addition, we can also evaluate
the performance of the model in identifying alpha/beta pulses by analyzing the
distribution of z1.

Input — Convld stride=2 — Pool+Re — stride=2 — Convld stride=2 —
Pool+Re — stride=2 — Convld stride=2 — Pool+Re — stride=2 — Convld
stride=1 — Pool+Re — stride=2 — Convld stride=1

shape: (3,512) — (8,256) — (8,128) — (8,64) — (8,32) — (16,16) — (16,8) —
(16,8) — (16,4) — (32,4) — (128)

Figure 3. The architecture of the Three-channel Convolutional Neural Network

3.2 Data Acquisition

The three samples prepared in Section 2.2 are measured by the LSC. The data
terminal accepts pulses from the DAU and saves them to a file. A single-emitter
sample collects 65,536 pulses. The pulses are equally split into a training set and
a validation set. These two sets are employed for model training and validation,
respectively.

In practical applications, alpha-emitters and beta-emitters are simultaneously
added to liquid scintillation cocktails. The complex composition exposes the
scintillator to more dangerous quenching effects. The increased quenching effect
reduces the difference between alpha and beta pulses. The model’s capacity
to correctly identify pulses produced by mixed-emitter samples is our primary
concern. Consequently, we utilize pulses from the mixed-emitter sample as test
pulses. It took a total of 115.14 seconds to collect 32,768 pulses.

The count rate of the alpha-emitter recorded by the instrument is nearly equiv-
alent to its activity, given that its efficiency nears 100%. The activity of the
alpha-emitter is 98 Bq. The total number of alpha pulses calculated in the test
set is Na = 12,895. This value can be used to calculate the detection efficiency
of alpha-emitters.

Preprocessing can mitigate the danger of gradient explosion or vanishing during
training while enhancing model accuracy and generalization capability. The
specific processing procedure is as follows.
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Initially, the baseline, which is the mean of the data sequence within the non-
pulse region, is subtracted from the pulses. The continuous 512 sequence within
the pulse region is cropped out as input data for the TCNN model. In the
input data, the starting position of the pulse has been adjusted to the 50th
sequence. The maximum normalization technique is employed to transform the
data values to the interval of (-1, 1). The normalized data from three PMTs is
organized into a shape of (3, 512) suitable for input into the TCNN model.

3.3 Training

The model can learn rich features if it is provided with substantial and high-
quality pulses. An adequate quantity of training epochs is crucial for ensuring
model accuracy and generalization capacity. The impact of these two factors
will be studied in this section.

We planned 11 different numbers of training sets, ranging from 4 to 65,536
pulses. The model is trained for 100 epochs in each training set. Subsequently,
it is assessed using a validation set consisting of 65,536 pulses. The results
are shown in Figure 5a [Figure 5: see original paper]. The more pulses used
to train the model, the more accurate the model’s ability to identify pulses.
Upon training the model with 32 pulses, the precision, recall, and F1 score are
0.9262, 0.9624, and 0.9440, respectively. When the number of training pulses
is increased to 65,536, the precision, recall, and F1 score improve to 0.9953,
0.9916, and 0.9935, respectively.

The experimental results indicate that, despite a limited number of training
pulses, the model maintains comparatively high accuracy in pulse identification.
When the number of training pulses is sufficient, the error rate in identifying
pulses is reduced to below 1%. Finally, we use 65,536 pulses to train the model,
which can reduce the time investment in data collection while maintaining ac-
curacy.

Figure 4b [Figure 4: see original paper] depicts the relationship between model
accuracy and epochs in the validation dataset containing 65,536 pulses. After
the first epoch, measurement accuracy can reach a relatively high level, attain-
ing precision, recall, and F1 scores of 0.9942, 0.9356, and 0.9640, respectively.
The accuracy changes slightly with increasing training epochs, and the error
rate is less than 1%. At 80 training epochs, measurement accuracy yields opti-
mal results, with precision, recall, and F1 scores of 0.9958, 0.9915, and 0.9936,
respectively. Finally, the optimal model is applied to research in subsequent
chapters to guarantee reliability and consistency.

precision recall Fl-score
precision recall F1-score
Number of training pulses

Epochs
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Figure 4. (a) The impact of the number of training pulses on the accuracy of
the validation set; (b) The impact of epoch on the accuracy of the validation
set

3.4 Comparison

The CI and CNN are widely employed conventional techniques for pulse type
discrimination. The structure of CI is simple, so it can be deployed to FPGA
for real-time pulse discrimination. The CNN can achieve higher discrimination
accuracy and is extensively employed to discriminate offline pulses. A compar-
ative experiment is conducted on the validation set. The results are listed in
Table 1 . The accuracy of CI is minimal, with precision, recall, and F1 scores of
0.8708, 0.9438, and 0.9058, respectively. The accuracy of CNN is higher than
that of CI, with precision, recall, and F1 scores of 0.9989, 0.9395, and 0.9682,
respectively. The accuracy of TCNN is highest, with precision, recall, and F1
scores of 0.9958, 0.9915, and 0.9936, respectively. The F1 score of TCNN sur-
passes that of CNN by 2.54 percentage points. The result indicates that the
TCNN method can significantly improve the ability to distinguish alpha pulses
from beta pulses.

Table 1. The accuracy of different methods in the validation set

Methods  precision recall  F1 score

CI 0.8708 0.9438  0.9058
CNN [18] 0.9989 0.9395 0.9682
TCNN 0.9958 0.9915 0.9936

4.1 Analysis of Pulse Shape Discriminator

We use the test set pulses prepared in Section 3.2 to evaluate model performance
in practical applications. These pulses cannot be manually labeled. Therefore,
we first analyze the distribution of the segmentation parameter z1 and then use
the threshold comparison method to identify the pulses.

We input these pulses into the TCNN model and calculate the segmentation
parameter z1. Statistical analysis of z1 yields a bimodal distribution curve,
as illustrated by the dotted line in Figure 5a [Figure 5: see original paper].
Similarly, the result produced by CNN also shows a bimodal distribution, as
indicated by the dashed line in Figure 5a. The Charge-Ratio distribution pro-
duced by CI is shown by the solid line in Figure 5a. We have translated and
scaled these curves to ensure that the bimodal distribution falls within the range
of 1-200. The left peak of the curve is a short and wide alpha peak, while the
right peak is a high and narrow beta peak. We use Levenberg-Marquardt non-
linear least squares to fit the bimodal curve and then calculate the FoM factor.
The FoM values are 0.72 for CI, 0.81 for CNN, and 1.65 for TCNN. The FoM
factor of TCNN is 1.04 times higher than that of CNN. The TCNN significantly
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improves the ability to distinguish between alpha and beta pulses in practical
applications.

We also extracted the height of the summed pulse and combined it with z1 to
obtain a two-dimensional distribution (z1, height). The statistical results are
shown in Figure 5d [Figure 5: see original paper]. Similarly, the two-dimensional
distribution (z1, height) produced by CNN is shown in Figure 5c, and the two-
dimensional distribution (Charge Ratio, height) produced by CI is shown in
Figure 5b. In the two-dimensional distribution, isolated Gaussian peaks are
derived from alpha pulses, while the rest of the distribution comes from beta
pulses. The beta pulse exhibits a continuous distribution in the height dimension
and a Gaussian distribution in the segmentation parameter dimension.

In Figure 5b, the resolution of the charge ratio for low-energy beta pulses is poor,
which is the main reason why it is difficult for the CI method to distinguish
between alpha and beta pulses. In Figure 5c, the resolution of z1 has been
improved for beta pulses but has decreased for alpha pulses. The boundary
of the z1 distribution between alpha and beta pulses is ambiguous, limiting
the ability of CNN to distinguish them. In Figure 5d, the distribution of z1
from beta pulses is independent of pulse height and has very high resolution.
The boundary of the zl distribution between alpha and beta pulses is easily
identifiable, which is very advantageous for TCNN to identify them.

Figure 5. Distribution of segmentation parameters from composite sample;
(a) One-dimensional distributions produced by CI, CNN, and TCNN; (b)
Two-dimensional distribution (charge ratio, height) produced by CI; (¢) Two-
dimensional distribution (z1, height) produced by CNN; (d) Two-dimensional
distribution (z1, height) produced by TCNN

4.2 Simultaneous Alpha/Beta Analysis

We performed statistical analysis on the heights of 32,768 summation pulses
from the test set to construct the energy spectrum. The statistical results
are shown in Figure 6a [Figure 6: see original paper]. The Gaussian peak
in the energy spectrum is the Alpha Particle Peak produced by the decay of
241 Am. The background of the Alpha Particle Peak and the rest of the energy
spectrum are generated by beta particles. In the energy spectrum, the beta
particles increase the background of the alpha particle peak, adversely affecting
the detection limit and measurement accuracy of the instrument. The counting
of alpha particles also interferes with measurement of beta particle activity.

Another method of obtaining pulse height spectra involves using a classifier to
identify pulses. Two pulse height spectra, also known as alpha-multichannel
analyzers (MCA) and beta-multichannel analyzers, are used to record alpha or
beta pulse heights, respectively. If the pulse is recognized by the classifier as
an alpha particle, the height of the summation pulse is recorded in the alpha-
MCA. Otherwise, it is recorded in the beta-MCA. We use CI, CNN, or TCNN
to identify pulse categories, and subsequently record their heights into alpha-
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MCA or beta-MCA. The statistical results are shown in Figures 6b, 6¢, and 6d,
respectively. The alpha-MCA spectrum has an alpha particle peak and a small
background count of beta particles. The beta-MCA spectrum no longer shows
the alpha particle peak, mainly comprising the height spectrum of beta pulses.

Figure 6. The spectrum from the composite sample; (a) The unseparated spec-
trum; (b) The separated spectrum generated by CI; (¢) The separated spectrum
generated by CNN; (d) The separated spectrum generated by TCNN

The correlation between alpha-MCA and beta-MCA spectra is so strong that
either of these two spectra can be employed to evaluate instrument performance.
In the alpha-MCA spectrum, the Alpha Particle Peak is easily recognizable
from the background. Therefore, we use the alpha-MCA spectrum to evaluate
detector performance. The net count of the Alpha Particle Peak divided by the
calculated total count Na yields the recall. The net peak count divided by the
total count from the alpha-MCA spectrum yields the precision. The F1 score is
computed by substituting recall and precision into equation (3).

We set various discriminative thresholds around the valleys of the bimodal dis-
tribution shown in Figure 7a [Figure 7: see original paper]. The alpha-MCA
spectrum is recreated, and relevant calculations are performed to obtain differ-
ent precision, recall, and F1 scores. The precision-recall curve is illustrated in
Figure 7a. The F1l-score-recall curve is depicted in Figure 7b.

As the recall produced by the CI method rises from 0.8562 to 0.9168, the preci-
sion declines from 0.9168 to 0.8562, while the F1 score fluctuates between 0.8513
and 0.8649. The optimal F1 score is 0.8513. As the recall in the CNN approach
increases from 0.9142 to 0.9578, the precision decreases from 0.9730 to 0.9495,
while the F1 score varies between 0.9427 and 0.9536. The optimal F1 score is
0.9536. As the recall in the TCNN method increases from 0.9224 to 0.9553,
the precision decreases from 0.9835 to 0.9252, while the F1 score varies between
0.9520 and 0.9637. The optimal F1 score is 0.9637, which is higher than the
optimal value of CNN by 1.01 percentage points. Meanwhile, the recall and
precision are 0.9528 and 0.9748, respectively.

The indicators that directly reflect detector performance are detection limit and
background. The total count subtracted by the net count of the alpha particle
peak yields the background. The LOD-recall curve and background-recall curve
are illustrated in Figures 7c and 7d, respectively.

As the recall in the CI method rises from 0.8562 to 0.9168, the background
increases from 17.38 cps to 26.12 cps, while the LOD fluctuates within the
range of 0.4998 cps and 0.7807 cps. The optimal LOD is 0.4998 cps. As the
recall in the CNN approach increases from 0.9142 to 0.9578, the background
elevates from 2.84 cps to 3.12 cps, while the LOD varies between 0.4848 cps and
0.5937 cps. The optimal LOD is 0.4848 cps. As the recall in the TCNN method
increases from 0.9224 to 0.9553, the background elevates from 1.72 cps to 8.64
cps, while the LOD varies between 0.3337 cps and 0.4738 cps. The optimal
LOD is 0.3337 cps. Meanwhile, the recall and precision are 0.9591 and 0.9632,
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respectively. The detection sensitivity of 24! Am generated by the TCNN method
is 31.16% higher than that generated by the CNN method. Moreover, at the
same recall rate, the background level from the alpha-MCA spectra produced
by the TCNN method is lower. This enables the detector to achieve higher
efficiency and sensitivity in simultaneous alpha/beta analysis.

Figure 7. Analysis of alpha-MCA spectra from composite sample; (a) Precision-
recall curve; (b) Fl-score-recall curve; (c) LOD-recall curve; (d) Background-
recall curve

5 Conclusion

This study aims to improve the accuracy and sensitivity of LSC in simultaneous
alpha/beta analysis. A three-channel Convolutional Neural Network (TCNN)
model is proposed. This technique identifies pulse types by integrating three
pulses produced by LSC simultaneously.

We established a 24! Am sample, a %°Sr/?°Y sample, and a composite sample of
both 241 Am and 2°Sr/°°Y using Ultima Gold LLT scintillation cocktail, 4! Am
source, and ?°Sr/%0Y source. Data acquisition was conducted on the LSC man-
ufactured by X-STAR Technology Company. The pulses produced by alpha-
emitter and beta-emitter samples are utilized to train and validate the model.
During the training procedure, we performed experimental analysis on the epoch
and pulse size. The experimental results indicate that the model trained with
32 pulses possesses significant discriminative ability. Utilizing 65,536 pulses to
train the model over 80 epochs achieves optimal discriminating performance.
We utilize the optimal model to identify pulse types in the validation set and
compare it with conventional methods. The results demonstrate that TCNN
possesses better capability to differentiate between alpha and beta particles
relative to conventional techniques.

The TCNN model’s capability for simultaneous alpha/beta analysis was evalu-
ated using the prepared composite sample. The segmentation parameter zl,
produced by the model, is utilized to differentiate between alpha and beta
pulses. Statistical analysis indicates that the segmentation parameters exhibit
a bimodal distribution. The resolution of the alpha peak is lower than that of
the beta peak. The FoM factor of the bimodal distribution was determined to
be 1.62, which is 1.04 times superior to that of the CNN method. The results
obtained from two-dimensional statistics (segmentation parameter, height) in-
dicate that the pulse discrimination capability of the TCNN is not influenced
by pulse height. Upon determining the segmentation threshold, we combine the
classifier to extract the alpha-MCA spectrum and beta-MCA spectrum. The
experimental results indicate that beta-MCA mainly comprises the distribution
spectrum of beta particles. The alpha-MCA spectrum mainly includes alpha
particle peaks and a minor beta spectrum. We assessed the influence of differ-
ent classifiers on instrument performance utilizing the alpha-MCA spectrum.
Under the same recall rate, the alpha-MCA spectra separated by the TCNN
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model have lower background level and smaller detection limits.

These results indicate that the TCNN model possesses strong ability to distin-
guish alpha pulses from beta pulses in practical applications. Simultaneously,
it enhances the background rejection capability and sensitivity of LSC.

The TCNN exhibits outstanding performance in experiments; nevertheless, the
complex calculations limit its application in real-time scenarios. Future research
can further optimize the computational efficiency of the TCNN and explore its
application in neutron/gamma-ray detectors, especially in scenarios with high
real-time requirements.

In summary, this study not only provides an efficient and reliable method for
identifying alpha and beta particles in LSC, but also offers a new idea for process-
ing multi-channel radiation detectors. The TCNN method is expected to play
an important role in fields such as nuclear physics experiments, environmental
monitoring, and radioactive waste disposal.
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