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Abstract

A fractional-order proportional-derivative controller is designed to address bi-
furcation issues in a dual-time-delay fractional-order predator-prey model. By
selecting different delays as bifurcation parameters, the stability and Hopf bi-
furcation conditions of the controlled system are derived. The results show that
the fractional order, delays and control parameters play an important role on
the stability and Hopf bifurcation of the system. By selecting reasonable system
parameters (fractional order, delays, and control parameters), suitable system
control strategies can be devised. Finally, the key findings of this study are
verified through numerical examples.
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Abstract

A fractional-order proportional-derivative controller is designed to address bi-
furcation issues in a dual-time-delay fractional-order predator-prey model. By
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selecting different delays as bifurcation parameters, we derive the stability and
Hopf bifurcation conditions of the controlled system. The results demonstrate
that the fractional order, delays, and control parameters play a crucial role in
determining the stability and Hopf bifurcation of the system. By selecting ap-
propriate system parameters (fractional order, delays, and control parameters),
suitable control strategies can be devised. Finally, the key findings of this study
are verified through numerical examples.
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1. Introduction

Predator-prey relationships have attracted significant attention from biophysi-
cists in recent decades. The functional response of predators constitutes an
important component in studying these relationships, as it reflects the effect of
predation on changes in prey density at any given time. Functional responses
are generally classified into two types: prey-dependent and predator-dependent.
The classical Holling types I-IV [1-4] are prey-dependent, while the Hassell-
Varley type [5], Beddington-DeAngelis type [6, 7], and Crowley-Martin type [8]
represent predator-dependent functional responses.

Time delay plays a crucial role in species modeling, as factors such as food di-
gestion, species migration, pregnancy, and maturation all involve time delays.
Jun et al. [9] demonstrated that time delay can affect system stability, showing
that when the delay exceeds a critical value, the system oscillates periodically
and becomes unstable. Kumar and Dubey [10] studied a prey-predator system
with prey shelter and gestation delay, revealing that time delay triggered by the
fear effect of prey causes the system to produce Hopf bifurcation. Cui et al. [11]
investigated prey-predator models with fear delay and pregnancy delay, demon-
strating that both prey and predator oscillate periodically and reach equilibrium
in finite time when the delay is smaller than the critical bifurcation value.

Fractional calculus exhibits long memory and hereditary properties, enabling
it to describe and analyze the changes and behaviors of complex systems more
accurately than integer-order calculus [12]. It has significant applications in nu-
merous fields, including viscoelastic materials [13], heat conduction [14], biolog-
ical systems [15], neuronal conduction [16], control systems [17], and signal pro-
cessing [18]. Mondal et al. Li [19] established a fractional delayed zooplankton-
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phytoplankton system and showed that delay plays an important role in the
stability and timing of Hopf bifurcation. Additional interesting studies on frac-
tional order can be found in [20-23].

The proportional-derivative (PD) controller has been widely used in various
applications, including mechanical engineering [24], automotive control systems
[25], and robot control [26]. Dupont [27] investigated how the PD controller can
be used to achieve stable movement at very low speeds. Ding et al. [28] studied
the bifurcation control problem for a class of complex networks with small-
world network models and time delays using the PD controller, which can delay
or advance the occurrence of Hopf bifurcation by setting appropriate control
parameters. Lu et al. [29] applied the PD controller to control the bifurcation
problem of a time-delayed fractional-order prey-predator system, successfully
delaying the generation of Hopf bifurcation and illustrating the relationship
between Hopf bifurcation points and fractional orders.

The structure of this paper is as follows: Section 2 introduces the fundamental
theorems and definitions of stability for fractional-order delay systems. Section
3 presents the research model and provides some basic instructions. Section
4 establishes sufficient conditions for the Hopf bifurcation of the corresponding
equilibrium points of the system considering multiple time delays. Section 5 em-
ploys numerical simulations to validate the analytical findings and demonstrate
the efficacy of the control strategy. Finally, Section 6 summarizes the obtained
results as the conclusion of this paper.

2. Preliminary and Model Description

Definition 1. The Caputo fractional derivative is defined as:

C na _ 1 ! f(n)(T) -
SO0 = poy | e

where n — 1 < a < n, n € N, and T" is the Gamma function in the form
I'(s) = fooo tsle~tdt.

Theorem 1. [30] Consider the following fractional-order system:

¢ Di(t) = f(t), (0) =z,

where 0 < o < 1. The equilibrium points of system (2) are locally asymptotically
stable if all eigenvalues A of the Jacobian matrix J = % satisfy the condition
|arg(A)| > &F. Furthermore, if |arg()\)| = &F, then the system may undergo a
Hopf bifurcation.

Definition 2. Deng et al. [31] considered the following fractional-order system:
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§D (1) = ayyy (t—7yp) + -+ ay,z, (t—7,),

§ D2y (t) = agy 2y (t — Top) + -+ + g, T, (E— 7o),

(?Dtanxn(t) = a‘nlxl(t - Tnl) +oee annxn(t - Tnn)7

where 0 < ; < 1 for i =1,2,---,n. We select the initial value x,(¢t) = 9,(¢) in
the domain —7,,,, <t < 0,4 =1,2,-,n, where 7,,,,, = max;; ,-,, 7; ;. The
characteristic equation for system (3) can be expressed as:

—ST —S8T,
11 —a e nl

«
§71 —aqq¢€ nl

=0.

ST’!L’IL

_alnefsTln e 8% — annei

We can obtain some stability results in [31].

[Figure 1: see original paper]

3. Model Descriptions

In [11], Cui et al. studied a prey-predator model with double delays and a
Beddington-DeAngelis functional response:

dx(t) pr(t)y(t)
dt ax(t) + by(t) + ¢’

AW _ el —mt =)

= ka(t) (L+ fy(t —m)) — az®(t) —

dt — az(t—7y) +by(t— 1) +c

where x(t) and y(t) represent the prey and predator populations, respectively,
with initial conditions z(0) > 0 and y(0) > 0. The parameters f, p, a, b, c,
W, d, h, k, and « are all positive constants. Additionally, 7; denotes the fear
delay and 7, represents the gestation delay. System (4) exhibits three positive
equilibrium points: Ey(0,0), Ey(£,0), and E*(z*,y*). From [11], we can derive:
«_ by +o)(d+hy)

T = *

mp — a(d + hy*)

i

The interior equilibrium point exists if and only if up — a(d + hy*) > 0, and the
equilibrium value y* must satisfy the equation:

Ay* + By? + Cy?> + Dy + E =0,

where
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A= a’h?fp+ b2afhup,

B = ppba(2cfh + bdf + bh) + a®>h?p + 2ah fp(ad — up),

C = upba(bd + 2cdf + 2ch) + hup(abk + c2af) + fplad — up)? + 2ahp(ad — pp),
D = cup(2bda + ahk + cah + cah + cdaf) + pupbk(ad — pp) + p(ad — up)?,

E = upc?da + ppck(ad — pp).

In this paper, we develop a Caputo derivative fractional-order prey-predator
model described as follows:

o p(t)y(t)
6 Dfa(t) = ka () (Lt fy(t =) —aa®(t) = my i
EDgy(t) = MU T T) )y,

o ax(t —75) + byt —75) + ¢

To regulate the Hopf bifurcation in system (5), we propose the following con-
troller:

u(t) =k,(y —y*) + kg § DY (y — y*),

where a € (0,1], and k, and k, are the control gains.

Applying the controller u(t) to the second equation of system (5), we obtain:

pr(t)y(t)
ax(t) + by(t) + ¢’

6 DRa(t) = ka(t) (1+ fy(t — ) — az®(t) —

t— 7o)yt —7y)
¢ ppy(t) = — P To 2l dy(t) — hy?(t) + k(g — y*) + ke § D2 (y — y).
o Dey(t) ar(t—ry) Fbyt—g) T ¢ y(t) = hy*(t) + ky(y —y") + kao Df (y — y7)

Remark 1: When k; = 0 and k, # 0, the controller (6) transforms into a
linear feedback controller. When k,, = 0 and k, # 0, the controller (6) becomes
a neutral delay feedback controller. When k,, # 0 and k, # 0, the controller (6)
is a fractional-order PD controller.

Remark 2: Currently, several common bifurcation control strategies have been
designed for integer-order and fractional-order systems, including dynamic feed-
back control [32, 33], delay feedback control [34, 35], and hybrid control [36, 37].
Notably, in recent studies [29] and [38], the fractional PD controller was used
to realize bifurcation control of fractional-order delay systems.
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4. Stability and Hopf Bifurcation of Controlled System (7)

In this section, we investigate the Hopf bifurcation of the controlled system (7).
The characteristic equation of system (7) is:

§% —aq; —by 772 —0
—G1g — g€ 8% — a9y — byye T ’
where
ay, = —————
1 (az* + by* + ¢)2’
12 1y T by e + (ax* + by* + ¢)?’
I kfx*
P fy)?
(—d — 2hy + k)
a/22 = s 7
_ pbpz*y* ,
by = b
(az* + by* 4+ ¢)2(1 — ky)
pbpx*y*

byy = .
2" (aa + by + )2 (1—ky)'

We can obtain:
§20 4 As® + Ay + e 2 (Ags® + Ay) + Ages(TiF2) = (),
where

Ay = —(ay; +ag),
Ay = ay1a9,

A3 = 7b22;
Ay = aq1byy — a19b9y,
Ag = —bygby;.

Case 1: 7, =0, 7, =0.
The characteristic equation (8) becomes:
82 + (A + Ag)s* + Ay + Ay + A = 0.

Theorem 2. When 7, = 0 and 7, = 0, the equilibrium point E*(z*,y*) of
system (7) is locally asymptotically stable if A; + A3 > 0 and A, + A, + A5 > 0.
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Proof. If A; + A5 >0 and A, + A, + A5 > 0, then according to the fractional
Routh-Hurwitz criteria, the roots of (9) have no positive real parts. Therefore,
E*(x*,y*) of system (7) is locally asymptotically stable.

Case 2: 7, >0, 1, =0.
The characteristic equation (8) can be described as:

829 4+ (A + Ag)s® + Ay + Ay + Age ™ = 0.

Let s = iw = w(cos § +isin 7). Substituting into equation (10) and separating
the real and imaginary parts, we obtain:

w?cos(am) + (A + A)w® cos % + A, + Ay = —Ag cos(wry),
w?sin(am) + (A; + A5)w® sin % = Ay sin(wry).

Squaring equations (11) and (12) and adding them together yields:

Wi +2( A, +A;)w3 cos %+2(A2—|—A4) cos(am)w?@+2(A;+A3)(Ay+ Ay )w™ cos %+(A1+A3)2+(A2+A4)2—A§

We define the following function:

Hy () = w142 A1+ AgJw™ cos T +( A4y 2w +2( g+ Ay) cos(am)u®+2( Ay A (Ag-+ 4w cos (2
Let ¢ = w®. Equation (14) becomes:

H, (9) = ¢'4+2( Ay +A43)° c0s T+ (A1 43262 +2( Ay + Ay) cos(am)§2+2(Ay+45) (AyAy)é cos T +(Ay+ A,

If (15) has a positive root ¢, then (14) has a corresponding positive root w, =

L/® Note that H, (0) = (Ay+A,)%— A2 and lim, . H,(¢) = +oo. We assume
that H,(0) < 0. According to Descartes’ rule of signs, equation (15) has at least
one positive root ¢,. From equation (11), we can deduce:

. 1 —w2®cos(am) — (A; + A)wScos & — A, — A 27
Tlmzw—arccos 0 ( ) ( 1 A3> 0 2 2 4 +§’
0 5 o

where j =0,1,2,..., and w, is the greatest positive root of H;(w) = 0.
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We define:

Tio = min{T{j)}.
We now prove the transversality condition Re [%] - #0.
s=1w
By differentiating equation (10) with respect to 7, we obtain:

ds(my) Ags?e 5T

dry, 2082 + oAy + Ag)s™ + Ags2es

Substituting s = ‘w,, into the above equation yields:

ds(ﬁ)
dry

A5(iw0)2e—iw07'1
20(iwg)?* + oAy + Ag) (i)™ + As (iwg ) 2e ot

s=1w

It follows that:

ds(ry)
dry

—Aswi cos(wyy) + iA5w3 sin(wyTy)

- 20w3® cos(wym + am) + a(A; + Ag)wl cos(wym + &) — Aswi cos(wyTy) + i[20w sin(wyTy + ¢

s=1iwg

If Re |20

e #+ 0, it means that the transversality condition is satisfied
1

] s=1w
and the Hopf bifurcation occurs at E*(z*,y*) for 7 = 1q,.

[Figure 4: see original paper]
[Figure 5: see original paper]

Theorem 3. When 7; > 0and 7, = 0, if (A,+A4,)? < A2 and Re [M

dry ]s:iwo

0 hold, the system (7) is locally asymptotically stable at the equilibrium point
E*(z*,y*) for all 7, € (0,74). When 7, > 7, the system (7) becomes unstable.
Furthermore, when 7, = 7, a Hopf bifurcation occurs at the equilibrium point
E*(x*,y").

Case 3: 7, =0, 7, > 0.

The characteristic equation (8) becomes:

2+ As™ + Ay + e 52 (Ags® + Ay 4+ A;) = 0.
Assuming s = iw = w(cos § +isin 7) is a solution to equation (17), substituting
s = w(cos § +isin §) into equation (17) and separating the real and imaginary
parts yields:
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N1 €oS(WTy) + 1o SIN(WTy) = Vo1,

Nz COS(WTy) — 7p; SIN(WTy) = Yag,

where

am
Mg = —(Agw® €os - + Ay + As),
Ty = —Azw®sin %,
2c « o
Vo1 = w*® cos(am) + A;w™ cos 5 + A,,

2c

Yoo = w?*sin(am) + A;w® sin %.

We define the following function:

Hy(w) =73 + 732 — 131 — N3a-

Then, we have:

Hy(w) = w® + Ajw® + Ajpw?® + Apgw® + Ay,
where

aT

Ay =24, cos <50
Ay = 2A,cos(am) + A2 — A2,
A3 =2A, A, cos % —2A5(A, + Aj) cos %,
Ay = A3 — (A + A5)%
When A, < 0, equation (21) has at least one positive root w,. Suppose equation

(21) has four positive roots w = wy, (k =1,2,3,4), and define the largest positive
root as wy.

From equations (18) and (19), we obtain:

cos(wry) = V21721 + 22Tl

031+ 1155
The bifurcation point is:
j 1 + 29w
7 = — arccos (W) + 22
“o M21 + 122 Wo
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where j =0,1,2,... and k= 1,2, 3,4.
We define:

Too = min{Téj)}.

By differentiating equation (17) with respect to 7,, we obtain:

ds(7y) 0,03+ 0,0,
dr, sitg 14 0,
where
24 @ am 2
0, = —wjAsw§ cos (7 — w07'2> — (A4 + A5)wi cos(wyTy),
Oy = —w3 A3w sin <% — LUO’TQ) — (Ay + A5)w3 sin(wyTs),
O = 2aw?® cos(ar) + Asawy sin (wOTQ — a—;) + A awf cos <w07'2 — a—;) ,
O, = 2aw?® sin(ar) — Asawg cos (wOTQ — a—;) + A awf sin (wOTZ — %) .
If %00;04 # 0, there exists a Hopf bifurcation at 7, = 75, in the system.

[Figure 6: see original paper]
[Figure 7: see original paper]

0,03+0,

Theorem 4. Supposing —15 © 0, O4 #+ 0. For system (7), the following results

can be obtained:

(i) If A2 < (A, + A;)?, the equilibrium point E*(z*,y*) is locally asymptoti-
cally stable for any 0 < 7, < 7y.

(i) If A3 < (A, + A;)?, the equilibrium point E*(x*,y*) is unstable for 7, >
Too-
In addition, the system (7) will undergo a Hopf bifurcation at 7, = 7y,.
Case 4: 7, > 0,0 < 75 < Typ.

The derivation process is the same as Case 3, and the detailed derivation is
shown in the Appendix. Our conclusions are as follows.

[Figure 8: see original paper]
[Figure 9: see original paper]

Theorem 5. Assuming (A, cos(w;735)+ A5)2 4+ A2 sin®(w,73) < A2, and Q, Q5+
Q5Q, # 0, the following results can be obtained for system (7):
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(i) The equilibrium point E*(z*,y*) is locally asymptotically stable for any
1 € (OaT{))

(ii) The equilibrium point E*(z*,y*) is unstable for 7, > 7. In addition, the
system (7) will undergo a Hopf bifurcation at 7, = 70.

Case 5: 7, > 0, 0 < 717 < 7.

Theorem 6. Supposing A2 < (Ajscos(wyr?) — A,)? + AZsin®(w,r}), and
M, My + My;M, # 0. For system (7), the following results can be obtained:

(i) The equilibrium point E*(z*,y*) is locally asymptotically stable for any
Ty € (07T8>

(ii) The equilibrium point E*(z*,y*) is unstable for 7, > 7. In addition, the
system (7) will undergo a Hopf bifurcation at 7, = 7J.

5. Numerical Simulation

In this section, we conduct numerical simulations to demonstrate the impact of
fractional order and time delay on the stability and Hopf bifurcation of system
(7). We utilized MATLAB 2021a software to simulate the fractional-order delay
system with the predictor-corrector scheme [39].

According to [11], we choose the parameter values as follows: f = 1.5, p = 4,
a=48,b=5c¢c=21,4p=12,d=0.1, h=0.01, k=0.9, a =0.6.

The initial values are all chosen as (z(0),y(0)) = (0.5,0.5), and the equilibrium
point E* is calculated as (x*,y*) = (0.1219,0.5702).

[Figure 1: see original paper] demonstrates the impact of the fractional order as
a parameter on the dynamical behavior of system (5). As the value of fractional
order decreases, the convergence rate of the system can be increased.

Case 1: When 7y = 7, = 0, choosing @ = 0.95 and k, = k; = 0.1, the system
(7) is locally asymptotically stable at the equilibrium point E*(0.1219,0.5702),
as shown in Figure 2. When o = 0.98; the system (7) experiences a Hopf
bifurcation at E*, which is illustrated in Figure 3. Other parameters are the
same as in (25). This indicates that a Hopf bifurcation occurs in the system
under the action of the controller. However, because of the effect of fractional
order on the stability of the system, we adjust the value of fractional order to
realize the stability control of the controlled system again.

Case 2: By setting k, = k; = 0.1, the conditions of Theorem 3 can be satisfied.
It is obtained from (16) that 7y, = 2.5815. When 7, = 2.2 < 79, the system
(7) is locally asymptotically stable at the equilibrium point E*(0.1219,0.5702),
as illustrated in Figure 4. The system (7) generates a Hopf bifurcation at E*
when 7 = 3 > 7y, as displayed in Figure 5.

Case 3: We set k, = 0.1 and k; = 0.1 in the fractional-order PD controller
(6), satistying the conditions of Theorem 4. From (24), we obtain 75, = 1.4589.
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The system (7) demonstrates an asymptotically stable equilibrium when 7, =
1.3 such that 75 < Ty (refer to Figure 6). Conversely, when 7, = 2 > 7y,
the equilibrium point E* becomes unstable, and a Hopf bifurcation occurs, as
illustrated in Figure 7.

Case 4: We assume 7y > 0 and 7, = 0.5 < 7y, taking the gain parameters k, =
k; = 0.1, satisfying the conditions of Theorem 5. According to the derivation of
Case 3, we can obtain 7{ = 2.7354. The system (7) exhibits an asymptotically
stable equilibrium at 7, = 2.5 < 7 (see Figure 8). It is exhibited in Figure 9
that a Hopf bifurcation happens when 7, = 3 > 7.

Case 5: For a = 0.9, k, = k; = 0.1, and 7y = 1.5, we calculate 9 = 0.5964.
According to the conclusion of Theorem 6, the equilibrium point of system
(7) is locally asymptotically stable when 7, = 0.3 < 79. When 7, = 0.7 > 79,
system (7) loses its stability, and a Hopf bifurcation occurs with a stable periodic
solution, as shown in Figure 10. Figure 11 depicts the stable periodic solution.

Figures 12 and 13 demonstrate the impact of multiple sets of gain parameters
and fractional order o on the critical values 7; and 75. In an uncontrolled system
(k, = kg = 0), the critical values 7; and 7, both decrease with an increase in
the fractional order a. Keeping the fractional order o constant, we observe that
the critical values 7; and 7, decrease with increasing control parameters.

[Figure 12: see original paper| shows that the critical value 7, decreases slowly
and then increases rapidly with the increase of the gain parameter k;, and
the critical value increases with the decrease of the fractional order . When
k; = 2, the critical value first decreases rapidly and then increases slowly with
the increase of k,, and increases with the decrease of fractional order «, which
is shown in [Figure 15: see original paper].

As shown in [Figure 16: see original paper], as the gain parameter k, increases,
the critical value 7, shows a trend of decreasing first and then increasing, and
with the decrease of the fractional order «, the critical value also increases.
When k,; = 2, with the increase of the proportional gain k,, the change curve
of the critical value 7, is w-shaped, which first decreases and then increases
and then decreases and increases again. At the same time, the critical value 7,
increases as the fractional order o decreases, as shown in [Figure 17: see original

paper].

6. Conclusion

In this paper, we extend the integer-order predator-prey model with double de-
lays to fractional order and apply a fractional-order PD controller to regulate
the fractional-order double-delay model. First, we provide the stability condi-
tions of the controlled system at the equilibrium point. Meanwhile, we discuss
the sufficient conditions for the Hopf bifurcation of the controlled system at
the equilibrium point under different delays. The research shows that when the
delay exceeds a critical value, the system undergoes a Hopf bifurcation. The
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stability of the system is affected by the fractional order, delay, and control pa-
rameters. A suitable control strategy for the system can be designed by selecting
appropriate system parameters (fractional order, delay, and control parameters).
The control parameters of the fractional-order PD controller can be adjusted
over a wide range. The conclusions of this paper have certain reference value
for studying the dynamic behavior of prey-predator systems.

The application of fractional-order PD controllers is extensive and can be further
advanced to cater to more complex systems. Our future research goal is to focus
on bifurcation control for high-dimensional fractional systems.
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Appendix: Fractional Order System with 7, >0 and 7, >0

When 74 > 0 and 7, = 75 < 7y, the characteristic equation (8) of system (7)
becomes:

§20 4 A sY + Ay + e 52 (Ags® + Ay) + Ages(mHTE) =,

We substitute s = iw = w(cos § +isin ) into (26) and separate the real and
imaginary parts, obtaining:

N1 COS(WT) + M3q SIn(wWT) = 731,

N2 COS(WT) — 137 SIN(WT) = 739,

where
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N31 = —As cos(wry),
N3y = Ag sin(wry),
2a o .o o am
Vg1 = w?® cosam + A;w® cos - + Ay + Agw® cos (? — w72> + A, cos(wTy),
am

am
Y30 = w2 sinam + A;w* sin - + Asw®sin (7 — LUTQ) — A, sin(wry).

By rearranging (27) and (28), we get:

V31731 + V32732

cos(wT) =
31 + N3o
sin(wr) = 7317732 - 7:;27731.
731 + N3

.2
As a consequence of sin”(w7) + cos?(wr) = 1, we have:

Wi 4+ Vo w3 + Voo + Vogw® 4 Vyy =0,

where

Vo = 24, cos %,
Voo = A2 + A2 4 2A, A; cos(wTi + am) + 24, cos(ar) + 24, cos(wTy),
%) +2A,A5 cos(wTj + %) + 2A,A, cos %7

Voy = A3 + A3 — AZ + 24, A, cos(wTs).

Vog = 2A; A, cos(wry —

Let us assume that H, (w) = w?® + Vo, w3® + Vow?® + Vyaw®™ + V. Given that
H,(0) =V, <0 and lim, ,  H,(w) = +oo, there must be at least one w; for
which H,(w;) = 0.

According to (29), we can deduce that the bifurcation point is:

V31731 T V32732 2jm
B Rl I
M31 T M3z Wy

)

G- 1 (
T — — arccos
Wy

where j =0,1,2,....
We define:

70 = min{r}.
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To validate the transversality condition, we differentiate both sides of equation
(26) with respect to 7;. This yields:

ds(r)|  _ @QiQs+ @0y
- )
dry S 14+ Q,
where
Q) = —w?Ag cosw, (T +73) — Wi A; cos (— — Wy TS ) Ayw? cos(wyT3),
2
Qy = —wiAgsinw, (1, + 75) + wit® Ay sin ( w17'2> + A4w1 sin(w,73),
[ot OéTf' *, a+1 * *
Q3 = 20w cos(am) + a A ws cos — — AsTiw ! cos —wyTs ) — 5 Aywq cos(wyTh —
Q =92 ( ) + aAd _|_ AT a+1 7T T+ A (
1 = 20w sin(am) + aA;ws sin aTaw( ™ sin 5> —wy T AT sin(wy 75 —

When 7, > 0 and 7 = 71 < 74, the proof of Theorem 6 is the same as in Case
4.

When 7, > 0 and 7, = 7§ < 7y, the characteristic equation (8) of system (7)
becomes:

$20 4 Ays® + Ay + e T (Ags® + Ay) + Ages(TiF2) = 0.

Let

Ny = —Ag cos(wry) — Agw® cos (% — wTi*) — Ay,

Nyg = A sin(wry) — Azw* sin (% — (m’f) ,

20 [ an

Y41 = w?®cos(am) + A;w® cos -5 + Ay,

Yz = W sin(am) + A;w® sin %.
Then we have:

Hy(w) = ' + V3w® + Vigw®® + Vigw® + Vi,

where
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Va1 = 24, cos %,

Vig = A2 — A2 + 2A, cos(am),

Vis = 24, A, cos a—; —2A3A, cos (% — wa) —2A3A; cos (wa — %) ,
Vi = A3 — A3 — AZ — 24, A5 cos(wTy).

The bifurcation point is:

)

1 (Wm%>+2ﬂ

79 = — arccos 5 5
Wo M1 + M2 Wo

where 5 =0,1,2,..., and w, is the largest positive root in (36).

The Hopf bifurcation point of system (7) is defined as:

9 =min{r¥}, j=0,1,2,.

am
2
M, = —w3 A5 coswy (17 + Ty) — w3 A cos (7 — LUQTQ) — Ayw3 cos(wyTy),
M—2A" (*_|_ )_~_2+0¢Ac %_ + A 2:( )
2 = w5 sinwy (7] + 1) +wp T Agsin (- —woTy 4w SIn(wy Ty ),

am am ™ am
— 20 fo a+1 a
M, = 20w3® cos(am) + aA;w§ cos 5 AgTow§ ™ cos ( 5 w27'2> — Ty A wq COS(WoTy — 5) + Ajaw§ cos 5 ¢
am ol

M, = 2aw3® sin(ar) + aA;ws sin 5 + AgTow§ ™ sin (% — w27'2) + A 7y sin(wyTy — g) + Azaws sin % cos(c
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