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Abstract
A fractional-order proportional-derivative controller is designed to address bi-
furcation issues in a dual-time-delay fractional-order predator-prey model. By
selecting different delays as bifurcation parameters, the stability and Hopf bi-
furcation conditions of the controlled system are derived. The results show that
the fractional order, delays and control parameters play an important role on
the stability and Hopf bifurcation of the system. By selecting reasonable system
parameters (fractional order, delays, and control parameters), suitable system
control strategies can be devised. Finally, the key findings of this study are
verified through numerical examples.
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selecting different delays as bifurcation parameters, we derive the stability and
Hopf bifurcation conditions of the controlled system. The results demonstrate
that the fractional order, delays, and control parameters play a crucial role in
determining the stability and Hopf bifurcation of the system. By selecting ap-
propriate system parameters (fractional order, delays, and control parameters),
suitable control strategies can be devised. Finally, the key findings of this study
are verified through numerical examples.
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1. Introduction
Predator-prey relationships have attracted significant attention from biophysi-
cists in recent decades. The functional response of predators constitutes an
important component in studying these relationships, as it reflects the effect of
predation on changes in prey density at any given time. Functional responses
are generally classified into two types: prey-dependent and predator-dependent.
The classical Holling types I-IV [1–4] are prey-dependent, while the Hassell-
Varley type [5], Beddington-DeAngelis type [6, 7], and Crowley-Martin type [8]
represent predator-dependent functional responses.

Time delay plays a crucial role in species modeling, as factors such as food di-
gestion, species migration, pregnancy, and maturation all involve time delays.
Jun et al. [9] demonstrated that time delay can affect system stability, showing
that when the delay exceeds a critical value, the system oscillates periodically
and becomes unstable. Kumar and Dubey [10] studied a prey-predator system
with prey shelter and gestation delay, revealing that time delay triggered by the
fear effect of prey causes the system to produce Hopf bifurcation. Cui et al. [11]
investigated prey-predator models with fear delay and pregnancy delay, demon-
strating that both prey and predator oscillate periodically and reach equilibrium
in finite time when the delay is smaller than the critical bifurcation value.

Fractional calculus exhibits long memory and hereditary properties, enabling
it to describe and analyze the changes and behaviors of complex systems more
accurately than integer-order calculus [12]. It has significant applications in nu-
merous fields, including viscoelastic materials [13], heat conduction [14], biolog-
ical systems [15], neuronal conduction [16], control systems [17], and signal pro-
cessing [18]. Mondal et al. Li [19] established a fractional delayed zooplankton-
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phytoplankton system and showed that delay plays an important role in the
stability and timing of Hopf bifurcation. Additional interesting studies on frac-
tional order can be found in [20–23].

The proportional-derivative (PD) controller has been widely used in various
applications, including mechanical engineering [24], automotive control systems
[25], and robot control [26]. Dupont [27] investigated how the PD controller can
be used to achieve stable movement at very low speeds. Ding et al. [28] studied
the bifurcation control problem for a class of complex networks with small-
world network models and time delays using the PD controller, which can delay
or advance the occurrence of Hopf bifurcation by setting appropriate control
parameters. Lu et al. [29] applied the PD controller to control the bifurcation
problem of a time-delayed fractional-order prey-predator system, successfully
delaying the generation of Hopf bifurcation and illustrating the relationship
between Hopf bifurcation points and fractional orders.

The structure of this paper is as follows: Section 2 introduces the fundamental
theorems and definitions of stability for fractional-order delay systems. Section
3 presents the research model and provides some basic instructions. Section
4 establishes sufficient conditions for the Hopf bifurcation of the corresponding
equilibrium points of the system considering multiple time delays. Section 5 em-
ploys numerical simulations to validate the analytical findings and demonstrate
the efficacy of the control strategy. Finally, Section 6 summarizes the obtained
results as the conclusion of this paper.

2. Preliminary and Model Description
Definition 1. The Caputo fractional derivative is defined as:

𝐶
0 𝐷𝛼

𝑡 𝑓(𝑡) = 1
Γ(𝑛 − 𝛼) ∫

𝑡

0

𝑓 (𝑛)(𝜏)
(𝑡 − 𝜏)𝑛−𝛼−1 𝑑𝜏,

where 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ ℕ+, and Γ is the Gamma function in the form
Γ(𝑠) = ∫∞

0 𝑡𝑠−1𝑒−𝑡𝑑𝑡.
Theorem 1. [30] Consider the following fractional-order system:

𝐶
0 𝐷𝛼

𝑡 𝑥(𝑡) = 𝑓(𝑡), 𝑥(0) = 𝑥0,

where 0 < 𝛼 ≤ 1. The equilibrium points of system (2) are locally asymptotically
stable if all eigenvalues 𝜆 of the Jacobian matrix 𝐽 = 𝜕𝑓

𝜕𝑥 satisfy the condition
| arg(𝜆)| > 𝛼𝜋

2 . Furthermore, if | arg(𝜆)| = 𝛼𝜋
2 , then the system may undergo a

Hopf bifurcation.

Definition 2. Deng et al. [31] considered the following fractional-order system:
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𝐶
0 𝐷𝛼1

𝑡 𝑥1(𝑡) = 𝑎11𝑥1(𝑡 − 𝜏11) + ⋯ + 𝑎1𝑛𝑥𝑛(𝑡 − 𝜏1𝑛),
𝐶
0 𝐷𝛼2

𝑡 𝑥2(𝑡) = 𝑎21𝑥1(𝑡 − 𝜏21) + ⋯ + 𝑎2𝑛𝑥𝑛(𝑡 − 𝜏2𝑛),
⋮

𝐶
0 𝐷𝛼𝑛

𝑡 𝑥𝑛(𝑡) = 𝑎𝑛1𝑥1(𝑡 − 𝜏𝑛1) + ⋯ + 𝑎𝑛𝑛𝑥𝑛(𝑡 − 𝜏𝑛𝑛),

where 0 < 𝛼𝑖 ≤ 1 for 𝑖 = 1, 2, ⋯ , 𝑛. We select the initial value 𝑥𝑖(𝑡) = 𝜗𝑖(𝑡) in
the domain −𝜏max ≤ 𝑡 ≤ 0, 𝑖 = 1, 2, ⋯ , 𝑛, where 𝜏max = max1≤𝑖,𝑗≤𝑛 𝜏𝑖,𝑗. The
characteristic equation for system (3) can be expressed as:

∣
𝑠𝛼1 − 𝑎11𝑒−𝑠𝜏11 ⋯ −𝑎𝑛1𝑒−𝑠𝜏𝑛1

⋮ ⋱ ⋮
−𝑎1𝑛𝑒−𝑠𝜏1𝑛 ⋯ 𝑠𝛼𝑛 − 𝑎𝑛𝑛𝑒−𝑠𝜏𝑛𝑛

∣ = 0.

We can obtain some stability results in [31].

[Figure 1: see original paper]

3. Model Descriptions
In [11], Cui et al. studied a prey-predator model with double delays and a
Beddington-DeAngelis functional response:

𝑑𝑥(𝑡)
𝑑𝑡 = 𝑘𝑥(𝑡) (1 + 𝑓𝑦(𝑡 − 𝜏1)) − 𝛼𝑥2(𝑡) − 𝑝𝑥(𝑡)𝑦(𝑡)

𝑎𝑥(𝑡) + 𝑏𝑦(𝑡) + 𝑐 ,

𝑑𝑦(𝑡)
𝑑𝑡 = 𝜇𝑝𝑥(𝑡 − 𝜏2)𝑦(𝑡 − 𝜏2)

𝑎𝑥(𝑡 − 𝜏2) + 𝑏𝑦(𝑡 − 𝜏2) + 𝑐 − 𝑑𝑦(𝑡) − ℎ𝑦2(𝑡),

where 𝑥(𝑡) and 𝑦(𝑡) represent the prey and predator populations, respectively,
with initial conditions 𝑥(0) > 0 and 𝑦(0) > 0. The parameters 𝑓 , 𝑝, 𝑎, 𝑏, 𝑐,
𝜇, 𝑑, ℎ, 𝑘, and 𝛼 are all positive constants. Additionally, 𝜏1 denotes the fear
delay and 𝜏2 represents the gestation delay. System (4) exhibits three positive
equilibrium points: 𝐸0(0, 0), 𝐸1( 𝑘

𝛼 , 0), and 𝐸∗(𝑥∗, 𝑦∗). From [11], we can derive:

𝑥∗ = (𝑏𝑦∗ + 𝑐)(𝑑 + ℎ𝑦∗)
𝜇𝑝 − 𝑎(𝑑 + ℎ𝑦∗) ,

The interior equilibrium point exists if and only if 𝜇𝑝 − 𝑎(𝑑 + ℎ𝑦∗) > 0, and the
equilibrium value 𝑦∗ must satisfy the equation:

𝐴𝑦4 + 𝐵𝑦3 + 𝐶𝑦2 + 𝐷𝑦 + 𝐸 = 0,

where
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𝐴 = 𝑎2ℎ2𝑓𝑝 + 𝑏2𝛼𝑓ℎ𝜇𝑝,
𝐵 = 𝜇𝑝𝑏𝛼(2𝑐𝑓ℎ + 𝑏𝑑𝑓 + 𝑏ℎ) + 𝑎2ℎ2𝑝 + 2𝑎ℎ𝑓𝑝(𝑎𝑑 − 𝜇𝑝),
𝐶 = 𝜇𝑝𝑏𝛼(𝑏𝑑 + 2𝑐𝑑𝑓 + 2𝑐ℎ) + ℎ𝜇𝑝(𝑎𝑏𝑘 + 𝑐2𝛼𝑓) + 𝑓𝑝(𝑎𝑑 − 𝜇𝑝)2 + 2𝑎ℎ𝑝(𝑎𝑑 − 𝜇𝑝),
𝐷 = 𝑐𝜇𝑝(2𝑏𝑑𝛼 + 𝑎ℎ𝑘 + 𝑐𝛼ℎ + 𝑐𝛼ℎ + 𝑐𝑑𝛼𝑓) + 𝜇𝑝𝑏𝑘(𝑎𝑑 − 𝜇𝑝) + 𝑝(𝑎𝑑 − 𝜇𝑝)2,
𝐸 = 𝜇𝑝𝑐2𝑑𝛼 + 𝜇𝑝𝑐𝑘(𝑎𝑑 − 𝜇𝑝).

In this paper, we develop a Caputo derivative fractional-order prey-predator
model described as follows:

𝐶
0 𝐷𝛼

𝑡 𝑥(𝑡) = 𝑘𝑥(𝑡) (1 + 𝑓𝑦(𝑡 − 𝜏1)) − 𝛼𝑥2(𝑡) − 𝑝𝑥(𝑡)𝑦(𝑡)
𝑎𝑥(𝑡) + 𝑏𝑦(𝑡) + 𝑐 ,

𝐶
0 𝐷𝛼

𝑡 𝑦(𝑡) = 𝜇𝑝𝑥(𝑡 − 𝜏2)𝑦(𝑡 − 𝜏2)
𝑎𝑥(𝑡 − 𝜏2) + 𝑏𝑦(𝑡 − 𝜏2) + 𝑐 − 𝑑𝑦(𝑡) − ℎ𝑦2(𝑡).

To regulate the Hopf bifurcation in system (5), we propose the following con-
troller:

𝑢(𝑡) = 𝑘𝑝(𝑦 − 𝑦∗) + 𝑘𝑑
𝐶
0 𝐷𝛼

𝑡 (𝑦 − 𝑦∗),

where 𝛼 ∈ (0, 1], and 𝑘𝑝 and 𝑘𝑑 are the control gains.

Applying the controller 𝑢(𝑡) to the second equation of system (5), we obtain:

𝐶
0 𝐷𝛼

𝑡 𝑥(𝑡) = 𝑘𝑥(𝑡) (1 + 𝑓𝑦(𝑡 − 𝜏1)) − 𝛼𝑥2(𝑡) − 𝑝𝑥(𝑡)𝑦(𝑡)
𝑎𝑥(𝑡) + 𝑏𝑦(𝑡) + 𝑐 ,

𝐶
0 𝐷𝛼

𝑡 𝑦(𝑡) = 𝜇𝑝𝑥(𝑡 − 𝜏2)𝑦(𝑡 − 𝜏2)
𝑎𝑥(𝑡 − 𝜏2) + 𝑏𝑦(𝑡 − 𝜏2) + 𝑐 − 𝑑𝑦(𝑡) − ℎ𝑦2(𝑡) + 𝑘𝑝(𝑦 − 𝑦∗) + 𝑘𝑑

𝐶
0 𝐷𝛼

𝑡 (𝑦 − 𝑦∗).

Remark 1: When 𝑘𝑑 = 0 and 𝑘𝑝 ≠ 0, the controller (6) transforms into a
linear feedback controller. When 𝑘𝑝 = 0 and 𝑘𝑑 ≠ 0, the controller (6) becomes
a neutral delay feedback controller. When 𝑘𝑝 ≠ 0 and 𝑘𝑑 ≠ 0, the controller (6)
is a fractional-order PD controller.

Remark 2: Currently, several common bifurcation control strategies have been
designed for integer-order and fractional-order systems, including dynamic feed-
back control [32, 33], delay feedback control [34, 35], and hybrid control [36, 37].
Notably, in recent studies [29] and [38], the fractional PD controller was used
to realize bifurcation control of fractional-order delay systems.
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4. Stability and Hopf Bifurcation of Controlled System (7)
In this section, we investigate the Hopf bifurcation of the controlled system (7).
The characteristic equation of system (7) is:

∣ 𝑠𝛼 − 𝑎11 −𝑏21𝑒−𝑠𝜏2

−𝑎12 − 𝑏12𝑒−𝑠𝜏1 𝑠𝛼 − 𝑎22 − 𝑏22𝑒−𝑠𝜏2 ∣ = 0,

where

𝑎11 = 𝑎𝑝𝑥∗𝑦∗

(𝑎𝑥∗ + 𝑏𝑦∗ + 𝑐)2 ,

𝑎12 = 1 + 𝑓𝑦∗ − 2𝛼𝑥∗ − 𝑝𝑥∗

𝑎𝑥∗ + 𝑏𝑦∗ + 𝑐 + 𝑎𝑝𝑥∗𝑦∗

(𝑎𝑥∗ + 𝑏𝑦∗ + 𝑐)2 ,

𝑏12 = − 𝑘𝑓𝑥∗

(1 + 𝑓𝑦∗)2 ,

𝑎22 = (−𝑑 − 2ℎ𝑦 + 𝑘𝑝)
1 − 𝑘𝑑

,

𝑏21 = 𝜇𝑏𝑝𝑥∗𝑦∗

(𝑎𝑥∗ + 𝑏𝑦∗ + 𝑐)2(1 − 𝑘𝑑) 𝑖,

𝑏22 = 𝜇𝑏𝑝𝑥∗𝑦∗

(𝑎𝑥∗ + 𝑏𝑦∗ + 𝑐)2(1 − 𝑘𝑑) 𝑖.

We can obtain:

𝑠2𝛼 + 𝐴1𝑠𝛼 + 𝐴2 + 𝑒−𝑠𝜏2(𝐴3𝑠𝛼 + 𝐴4) + 𝐴5𝑒−𝑠(𝜏1+𝜏2) = 0,

where

𝐴1 = −(𝑎11 + 𝑎22),
𝐴2 = 𝑎11𝑎22,
𝐴3 = −𝑏22,
𝐴4 = 𝑎11𝑏22 − 𝑎12𝑏21,
𝐴5 = −𝑏12𝑏21.

Case 1: 𝜏1 = 0, 𝜏2 = 0.

The characteristic equation (8) becomes:

𝑠2𝛼 + (𝐴1 + 𝐴3)𝑠𝛼 + 𝐴2 + 𝐴4 + 𝐴5 = 0.

Theorem 2. When 𝜏1 = 0 and 𝜏2 = 0, the equilibrium point 𝐸∗(𝑥∗, 𝑦∗) of
system (7) is locally asymptotically stable if 𝐴1 + 𝐴3 > 0 and 𝐴2 + 𝐴4 + 𝐴5 > 0.
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Proof. If 𝐴1 + 𝐴3 > 0 and 𝐴2 + 𝐴4 + 𝐴5 > 0, then according to the fractional
Routh-Hurwitz criteria, the roots of (9) have no positive real parts. Therefore,
𝐸∗(𝑥∗, 𝑦∗) of system (7) is locally asymptotically stable.

Case 2: 𝜏1 > 0, 𝜏2 = 0.

The characteristic equation (8) can be described as:

𝑠2𝛼 + (𝐴1 + 𝐴3)𝑠𝛼 + 𝐴2 + 𝐴4 + 𝐴5𝑒−𝑠𝜏1 = 0.

Let 𝑠 = 𝑖𝜔 = 𝜔(cos 𝜋
2 + 𝑖 sin 𝜋

2 ). Substituting into equation (10) and separating
the real and imaginary parts, we obtain:

𝜔2𝛼 cos(𝛼𝜋) + (𝐴1 + 𝐴3)𝜔𝛼 cos 𝛼𝜋
2 + 𝐴2 + 𝐴4 = −𝐴5 cos(𝜔𝜏1),

𝜔2𝛼 sin(𝛼𝜋) + (𝐴1 + 𝐴3)𝜔𝛼 sin 𝛼𝜋
2 = 𝐴5 sin(𝜔𝜏1).

Squaring equations (11) and (12) and adding them together yields:

𝜔4𝛼+2(𝐴1+𝐴3)𝜔3𝛼 cos 𝛼𝜋
2 +2(𝐴2+𝐴4) cos(𝛼𝜋)𝜔2𝛼+2(𝐴1+𝐴3)(𝐴2+𝐴4)𝜔𝛼 cos 𝛼𝜋

2 +(𝐴1+𝐴3)2+(𝐴2+𝐴4)2−𝐴2
5 = 0.

We define the following function:

𝐻1(𝜔) = 𝜔4𝛼+2(𝐴1+𝐴3)𝜔3𝛼 cos 𝛼𝜋
2 +(𝐴1+𝐴3)2𝜔2𝛼+2(𝐴2+𝐴4) cos(𝛼𝜋)𝜔2𝛼+2(𝐴1+𝐴3)(𝐴2+𝐴4)𝜔𝛼 cos 𝛼𝜋

2 +(𝐴2+𝐴4)2−𝐴2
5.

Let 𝜙 = 𝜔𝛼. Equation (14) becomes:

𝐻1(𝜙) = 𝜙4+2(𝐴1+𝐴3)𝜙3 cos 𝛼𝜋
2 +(𝐴1+𝐴3)2𝜙2+2(𝐴2+𝐴4) cos(𝛼𝜋)𝜙2+2(𝐴1+𝐴3)(𝐴2+𝐴4)𝜙 cos 𝛼𝜋

2 +(𝐴2+𝐴4)2−𝐴2
5.

If (15) has a positive root 𝜙0, then (14) has a corresponding positive root 𝜔0 =
𝜙1/𝛼

0 . Note that 𝐻1(0) = (𝐴2+𝐴4)2−𝐴2
5 and lim𝜙→∞ 𝐻1(𝜙) = +∞. We assume

that 𝐻1(0) < 0. According to Descartes’rule of signs, equation (15) has at least
one positive root 𝜙0. From equation (11), we can deduce:

𝜏 (𝑗)
1 = 1

𝜔0
arccos [−𝜔2𝛼

0 cos(𝛼𝜋) − (𝐴1 + 𝐴3)𝜔𝛼
0 cos 𝛼𝜋

2 − 𝐴2 − 𝐴4
𝐴5

] + 2𝑗𝜋
𝜔0

,

where 𝑗 = 0, 1, 2, …, and 𝜔0 is the greatest positive root of 𝐻1(𝜔) = 0.
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We define:

𝜏10 = min{𝜏 (𝑗)
1 }.

We now prove the transversality condition Re [ 𝑑𝑠(𝜏1)
𝑑𝜏1

]
𝑠=𝑖𝜔0

≠ 0.

By differentiating equation (10) with respect to 𝜏1, we obtain:

𝑑𝑠(𝜏1)
𝑑𝜏1

= 𝐴5𝑠2𝑒−𝑠𝜏1

2𝛼𝑠2𝛼 + 𝛼(𝐴1 + 𝐴3)𝑠𝛼 + 𝐴5𝑠2𝑒−𝑠𝜏1
.

Substituting 𝑠 = 𝑖𝜔0 into the above equation yields:

𝑑𝑠(𝜏1)
𝑑𝜏1

∣
𝑠=𝑖𝜔0

= 𝐴5(𝑖𝜔0)2𝑒−𝑖𝜔0𝜏1

2𝛼(𝑖𝜔0)2𝛼 + 𝛼(𝐴1 + 𝐴3)(𝑖𝜔0)𝛼 + 𝐴5(𝑖𝜔0)2𝑒−𝑖𝜔0𝜏1
.

It follows that:

𝑑𝑠(𝜏1)
𝑑𝜏1

∣
𝑠=𝑖𝜔0

= −𝐴5𝜔2
0 cos(𝜔0𝜏1) + 𝑖𝐴5𝜔2

0 sin(𝜔0𝜏1)
2𝛼𝜔2𝛼

0 cos(𝜔0𝜏1 + 𝛼𝜋) + 𝛼(𝐴1 + 𝐴3)𝜔𝛼
0 cos(𝜔0𝜏1 + 𝛼𝜋

2 ) − 𝐴5𝜔2
0 cos(𝜔0𝜏1) + 𝑖[2𝛼𝜔2𝛼

0 sin(𝜔0𝜏1 + 𝛼𝜋) + 𝛼(𝐴1 + 𝐴3)𝜔𝛼
0 sin(𝜔0𝜏1 + 𝛼𝜋

2 ) + 𝐴5𝜔2
0 sin(𝜔0𝜏1)] .

If Re [ 𝑑𝑠(𝜏1)
𝑑𝜏1

]
𝑠=𝑖𝜔0

≠ 0, it means that the transversality condition is satisfied
and the Hopf bifurcation occurs at 𝐸∗(𝑥∗, 𝑦∗) for 𝜏1 = 𝜏10.

[Figure 4: see original paper]

[Figure 5: see original paper]

Theorem 3. When 𝜏1 > 0 and 𝜏2 = 0, if (𝐴2+𝐴4)2 < 𝐴2
5 and Re [ 𝑑𝑠(𝜏1)

𝑑𝜏1
]

𝑠=𝑖𝜔0
≠

0 hold, the system (7) is locally asymptotically stable at the equilibrium point
𝐸∗(𝑥∗, 𝑦∗) for all 𝜏1 ∈ (0, 𝜏10). When 𝜏1 > 𝜏10, the system (7) becomes unstable.
Furthermore, when 𝜏1 = 𝜏10, a Hopf bifurcation occurs at the equilibrium point
𝐸∗(𝑥∗, 𝑦∗).
Case 3: 𝜏1 = 0, 𝜏2 > 0.

The characteristic equation (8) becomes:

𝑠2𝛼 + 𝐴1𝑠𝛼 + 𝐴2 + 𝑒−𝑠𝜏2(𝐴3𝑠𝛼 + 𝐴4 + 𝐴5) = 0.

Assuming 𝑠 = 𝑖𝜔 = 𝜔(cos 𝜋
2 +𝑖 sin 𝜋

2 ) is a solution to equation (17), substituting
𝑠 = 𝜔(cos 𝜋

2 + 𝑖 sin 𝜋
2 ) into equation (17) and separating the real and imaginary

parts yields:
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𝜂21 cos(𝜔𝜏2) + 𝜂22 sin(𝜔𝜏2) = 𝛾21,
𝜂22 cos(𝜔𝜏2) − 𝜂21 sin(𝜔𝜏2) = 𝛾22,

where

𝜂21 = −(𝐴3𝜔𝛼 cos 𝛼𝜋
2 + 𝐴4 + 𝐴5),

𝜂22 = −𝐴3𝜔𝛼 sin 𝛼𝜋
2 ,

𝛾21 = 𝜔2𝛼 cos(𝛼𝜋) + 𝐴1𝜔𝛼 cos 𝛼𝜋
2 + 𝐴2,

𝛾22 = 𝜔2𝛼 sin(𝛼𝜋) + 𝐴1𝜔𝛼 sin 𝛼𝜋
2 .

We define the following function:

𝐻2(𝜔) = 𝛾2
21 + 𝛾2

22 − 𝜂2
21 − 𝜂2

22.

Then, we have:

𝐻2(𝜔) = 𝜔4𝛼 + 𝐴11𝜔3𝛼 + 𝐴12𝜔2𝛼 + 𝐴13𝜔𝛼 + 𝐴14,

where

𝐴11 = 2𝐴1 cos 𝛼𝜋
2 ,

𝐴12 = 2𝐴2 cos(𝛼𝜋) + 𝐴2
1 − 𝐴2

3,
𝐴13 = 2𝐴1𝐴2 cos 𝛼𝜋

2 − 2𝐴3(𝐴4 + 𝐴5) cos 𝛼𝜋
2 ,

𝐴14 = 𝐴2
2 − (𝐴4 + 𝐴5)2.

When 𝐴14 < 0, equation (21) has at least one positive root 𝜔0. Suppose equation
(21) has four positive roots 𝜔 = 𝜔𝑘 (𝑘 = 1, 2, 3, 4), and define the largest positive
root as 𝜔0.

From equations (18) and (19), we obtain:

cos(𝜔𝜏2) = 𝛾21𝜂21 + 𝛾22𝜂22
𝜂2

21 + 𝜂2
22

.

The bifurcation point is:

𝜏 (𝑗)
2 = 1

𝜔0
arccos (𝛾21𝜂21 + 𝛾22𝜂22

𝜂2
21 + 𝜂2

22
) + 2𝑗𝜋

𝜔0
,
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where 𝑗 = 0, 1, 2, … and 𝑘 = 1, 2, 3, 4.

We define:

𝜏20 = min{𝜏 (𝑗)
2 }.

By differentiating equation (17) with respect to 𝜏2, we obtain:

𝑑𝑠(𝜏2)
𝑑𝜏2

∣
𝑠=𝑖𝜔0

= 𝑂1𝑂3 + 𝑂2𝑂4
1 + 𝑂2

,

where

𝑂1 = −𝜔2
0𝐴3𝜔𝛼

0 cos (𝛼𝜋
2 − 𝜔0𝜏2) − (𝐴4 + 𝐴5)𝜔2

0 cos(𝜔0𝜏2),

𝑂2 = −𝜔2
0𝐴3𝜔𝛼

0 sin (𝛼𝜋
2 − 𝜔0𝜏2) − (𝐴4 + 𝐴5)𝜔2

0 sin(𝜔0𝜏2),

𝑂3 = 2𝛼𝜔2𝛼
0 cos(𝛼𝜋) + 𝐴3𝛼𝜔𝛼

0 sin (𝜔0𝜏2 − 𝛼𝜋
2 ) + 𝐴1𝛼𝜔𝛼

0 cos (𝜔0𝜏2 − 𝛼𝜋
2 ) ,

𝑂4 = 2𝛼𝜔2𝛼
0 sin(𝛼𝜋) − 𝐴3𝛼𝜔𝛼

0 cos (𝜔0𝜏2 − 𝛼𝜋
2 ) + 𝐴1𝛼𝜔𝛼

0 sin (𝜔0𝜏2 − 𝛼𝜋
2 ) .

If 𝑂1𝑂3+𝑂2𝑂4
1+𝑂2

≠ 0, there exists a Hopf bifurcation at 𝜏2 = 𝜏20 in the system.

[Figure 6: see original paper]

[Figure 7: see original paper]

Theorem 4. Supposing 𝑂1𝑂3+𝑂2𝑂4
1+𝑂2

≠ 0. For system (7), the following results
can be obtained:

(i) If 𝐴2
2 < (𝐴4 + 𝐴5)2, the equilibrium point 𝐸∗(𝑥∗, 𝑦∗) is locally asymptoti-

cally stable for any 0 < 𝜏2 < 𝜏20.

(ii) If 𝐴2
2 < (𝐴4 + 𝐴5)2, the equilibrium point 𝐸∗(𝑥∗, 𝑦∗) is unstable for 𝜏2 >

𝜏20.

In addition, the system (7) will undergo a Hopf bifurcation at 𝜏2 = 𝜏20.

Case 4: 𝜏1 > 0, 0 < 𝜏∗
2 < 𝜏20.

The derivation process is the same as Case 3, and the detailed derivation is
shown in the Appendix. Our conclusions are as follows.

[Figure 8: see original paper]

[Figure 9: see original paper]

Theorem 5. Assuming (𝐴4 cos(𝜔1𝜏∗
2)+𝐴5)2 +𝐴2

4 sin2(𝜔1𝜏∗
2) < 𝐴2

5, and 𝑄1𝑄3 +
𝑄2𝑄4 ≠ 0, the following results can be obtained for system (7):
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(i) The equilibrium point 𝐸∗(𝑥∗, 𝑦∗) is locally asymptotically stable for any
𝜏1 ∈ (0, 𝜏0

1 ).
(ii) The equilibrium point 𝐸∗(𝑥∗, 𝑦∗) is unstable for 𝜏1 > 𝜏0

1 . In addition, the
system (7) will undergo a Hopf bifurcation at 𝜏1 = 𝜏0

1 .

Case 5: 𝜏2 > 0, 0 < 𝜏∗
1 < 𝜏10.

Theorem 6. Supposing 𝐴2
2 < (𝐴5 cos(𝜔2𝜏∗

1) − 𝐴4)2 + 𝐴2
5 sin2(𝜔2𝜏∗

1), and
𝑀1𝑀3 + 𝑀2𝑀4 ≠ 0. For system (7), the following results can be obtained:

(i) The equilibrium point 𝐸∗(𝑥∗, 𝑦∗) is locally asymptotically stable for any
𝜏2 ∈ (0, 𝜏0

2 ).
(ii) The equilibrium point 𝐸∗(𝑥∗, 𝑦∗) is unstable for 𝜏2 > 𝜏0

2 . In addition, the
system (7) will undergo a Hopf bifurcation at 𝜏2 = 𝜏0

2 .

5. Numerical Simulation
In this section, we conduct numerical simulations to demonstrate the impact of
fractional order and time delay on the stability and Hopf bifurcation of system
(7). We utilized MATLAB 2021a software to simulate the fractional-order delay
system with the predictor-corrector scheme [39].

According to [11], we choose the parameter values as follows: 𝑓 = 1.5, 𝑝 = 4,
𝑎 = 4.8, 𝑏 = 5, 𝑐 = 2.1, 𝜇 = 1.2, 𝑑 = 0.1, ℎ = 0.01, 𝑘 = 0.9, 𝛼 = 0.6.

The initial values are all chosen as (𝑥(0), 𝑦(0)) = (0.5, 0.5), and the equilibrium
point 𝐸∗ is calculated as (𝑥∗, 𝑦∗) = (0.1219, 0.5702).
[Figure 1: see original paper] demonstrates the impact of the fractional order as
a parameter on the dynamical behavior of system (5). As the value of fractional
order decreases, the convergence rate of the system can be increased.

Case 1: When 𝜏1 = 𝜏2 = 0, choosing 𝛼 = 0.95 and 𝑘𝑝 = 𝑘𝑑 = 0.1, the system
(7) is locally asymptotically stable at the equilibrium point 𝐸∗(0.1219, 0.5702),
as shown in Figure 2. When 𝛼 = 0.98, the system (7) experiences a Hopf
bifurcation at 𝐸∗, which is illustrated in Figure 3. Other parameters are the
same as in (25). This indicates that a Hopf bifurcation occurs in the system
under the action of the controller. However, because of the effect of fractional
order on the stability of the system, we adjust the value of fractional order to
realize the stability control of the controlled system again.

Case 2: By setting 𝑘𝑝 = 𝑘𝑑 = 0.1, the conditions of Theorem 3 can be satisfied.
It is obtained from (16) that 𝜏10 = 2.5815. When 𝜏1 = 2.2 < 𝜏10, the system
(7) is locally asymptotically stable at the equilibrium point 𝐸∗(0.1219, 0.5702),
as illustrated in Figure 4. The system (7) generates a Hopf bifurcation at 𝐸∗

when 𝜏1 = 3 > 𝜏10, as displayed in Figure 5.

Case 3: We set 𝑘𝑝 = 0.1 and 𝑘𝑑 = 0.1 in the fractional-order PD controller
(6), satisfying the conditions of Theorem 4. From (24), we obtain 𝜏20 = 1.4589.
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The system (7) demonstrates an asymptotically stable equilibrium when 𝜏2 =
1.3 such that 𝜏2 < 𝜏20 (refer to Figure 6). Conversely, when 𝜏1 = 2 > 𝜏20,
the equilibrium point 𝐸∗ becomes unstable, and a Hopf bifurcation occurs, as
illustrated in Figure 7.

Case 4: We assume 𝜏1 > 0 and 𝜏2 = 0.5 < 𝜏20, taking the gain parameters 𝑘𝑝 =
𝑘𝑑 = 0.1, satisfying the conditions of Theorem 5. According to the derivation of
Case 3, we can obtain 𝜏0

1 = 2.7354. The system (7) exhibits an asymptotically
stable equilibrium at 𝜏1 = 2.5 < 𝜏0

1 (see Figure 8). It is exhibited in Figure 9
that a Hopf bifurcation happens when 𝜏1 = 3 > 𝜏0

1 .

Case 5: For 𝛼 = 0.9, 𝑘𝑝 = 𝑘𝑑 = 0.1, and 𝜏1 = 1.5, we calculate 𝜏0
2 = 0.5964.

According to the conclusion of Theorem 6, the equilibrium point of system
(7) is locally asymptotically stable when 𝜏2 = 0.3 < 𝜏0

2 . When 𝜏2 = 0.7 > 𝜏0
2 ,

system (7) loses its stability, and a Hopf bifurcation occurs with a stable periodic
solution, as shown in Figure 10. Figure 11 depicts the stable periodic solution.

Figures 12 and 13 demonstrate the impact of multiple sets of gain parameters
and fractional order 𝛼 on the critical values 𝜏1 and 𝜏2. In an uncontrolled system
(𝑘𝑝 = 𝑘𝑑 = 0), the critical values 𝜏1 and 𝜏2 both decrease with an increase in
the fractional order 𝛼. Keeping the fractional order 𝛼 constant, we observe that
the critical values 𝜏1 and 𝜏2 decrease with increasing control parameters.

[Figure 12: see original paper] shows that the critical value 𝜏1 decreases slowly
and then increases rapidly with the increase of the gain parameter 𝑘𝑑, and
the critical value increases with the decrease of the fractional order 𝛼. When
𝑘𝑑 = 2, the critical value first decreases rapidly and then increases slowly with
the increase of 𝑘𝑝, and increases with the decrease of fractional order 𝛼, which
is shown in [Figure 15: see original paper].

As shown in [Figure 16: see original paper], as the gain parameter 𝑘𝑑 increases,
the critical value 𝜏2 shows a trend of decreasing first and then increasing, and
with the decrease of the fractional order 𝛼, the critical value also increases.
When 𝑘𝑑 = 2, with the increase of the proportional gain 𝑘𝑝, the change curve
of the critical value 𝜏2 is w-shaped, which first decreases and then increases
and then decreases and increases again. At the same time, the critical value 𝜏2
increases as the fractional order 𝛼 decreases, as shown in [Figure 17: see original
paper].

6. Conclusion
In this paper, we extend the integer-order predator-prey model with double de-
lays to fractional order and apply a fractional-order PD controller to regulate
the fractional-order double-delay model. First, we provide the stability condi-
tions of the controlled system at the equilibrium point. Meanwhile, we discuss
the sufficient conditions for the Hopf bifurcation of the controlled system at
the equilibrium point under different delays. The research shows that when the
delay exceeds a critical value, the system undergoes a Hopf bifurcation. The
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stability of the system is affected by the fractional order, delay, and control pa-
rameters. A suitable control strategy for the system can be designed by selecting
appropriate system parameters (fractional order, delay, and control parameters).
The control parameters of the fractional-order PD controller can be adjusted
over a wide range. The conclusions of this paper have certain reference value
for studying the dynamic behavior of prey-predator systems.

The application of fractional-order PD controllers is extensive and can be further
advanced to cater to more complex systems. Our future research goal is to focus
on bifurcation control for high-dimensional fractional systems.
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Appendix: Fractional Order System with 𝜏1 > 0 and 𝜏2 > 0
When 𝜏1 > 0 and 𝜏2 = 𝜏∗

2 < 𝜏20, the characteristic equation (8) of system (7)
becomes:

𝑠2𝛼 + 𝐴1𝑠𝛼 + 𝐴2 + 𝑒−𝑠𝜏∗
2(𝐴3𝑠𝛼 + 𝐴4) + 𝐴5𝑒−𝑠(𝜏1+𝜏∗

2) = 0.

We substitute 𝑠 = 𝑖𝜔 = 𝜔(cos 𝜋
2 + 𝑖 sin 𝜋

2 ) into (26) and separate the real and
imaginary parts, obtaining:

𝜂31 cos(𝜔𝜏) + 𝜂32 sin(𝜔𝜏) = 𝛾31,
𝜂32 cos(𝜔𝜏) − 𝜂31 sin(𝜔𝜏) = 𝛾32,

where
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𝜂31 = −𝐴5 cos(𝜔𝜏2),
𝜂32 = 𝐴5 sin(𝜔𝜏2),
𝛾31 = 𝜔2𝛼 cos 𝛼𝜋 + 𝐴1𝜔𝛼 cos 𝛼𝜋

2 + 𝐴2 + 𝐴3𝜔𝛼 cos (𝛼𝜋
2 − 𝜔𝜏2) + 𝐴4 cos(𝜔𝜏2),

𝛾32 = 𝜔2𝛼 sin 𝛼𝜋 + 𝐴1𝜔𝛼 sin 𝛼𝜋
2 + 𝐴3𝜔𝛼 sin (𝛼𝜋

2 − 𝜔𝜏2) − 𝐴4 sin(𝜔𝜏2).

By rearranging (27) and (28), we get:

cos(𝜔𝜏) = 𝛾31𝜂31 + 𝛾32𝜂32
𝜂2

31 + 𝜂2
32

,

sin(𝜔𝜏) = 𝛾31𝜂32 − 𝛾32𝜂31
𝜂2

31 + 𝜂2
32

.

As a consequence of sin2(𝜔𝜏) + cos2(𝜔𝜏) = 1, we have:

𝜔4𝛼 + 𝑉21𝜔3𝛼 + 𝑉22𝜔2𝛼 + 𝑉23𝜔𝛼 + 𝑉24 = 0,

where

𝑉21 = 2𝐴1 cos 𝛼𝜋
2 ,

𝑉22 = 𝐴2
1 + 𝐴2

3 + 2𝐴1𝐴3 cos(𝜔𝜏∗
2 + 𝛼𝜋) + 2𝐴2 cos(𝛼𝜋) + 2𝐴4 cos(𝜔𝜏∗

2),
𝑉23 = 2𝐴1𝐴4 cos(𝜔𝜏∗

2 − 𝛼𝜋
2 ) + 2𝐴2𝐴3 cos(𝜔𝜏∗

2 + 𝛼𝜋
2 ) + 2𝐴2𝐴1 cos 𝛼𝜋

2 ,
𝑉24 = 𝐴2

2 + 𝐴2
4 − 𝐴2

5 + 2𝐴2𝐴4 cos(𝜔𝜏∗
2).

Let us assume that 𝐻1(𝜔) = 𝜔4𝛼 + 𝑉21𝜔3𝛼 + 𝑉22𝜔2𝛼 + 𝑉23𝜔𝛼 + 𝑉24. Given that
𝐻1(0) = 𝑉24 < 0 and lim𝜔→∞ 𝐻1(𝜔) = +∞, there must be at least one 𝜔1 for
which 𝐻1(𝜔1) = 0.

According to (29), we can deduce that the bifurcation point is:

𝜏 (𝑗) = 1
𝜔1

arccos (𝛾31𝜂31 + 𝛾32𝜂32
𝜂2

31 + 𝜂2
32

) + 2𝑗𝜋
𝜔1

,

where 𝑗 = 0, 1, 2, ….

We define:

𝜏0
1 = min{𝜏 (𝑗)}.

chinarxiv.org/items/chinaxiv-202506.00063 Machine Translation

https://chinarxiv.org/items/chinaxiv-202506.00063


To validate the transversality condition, we differentiate both sides of equation
(26) with respect to 𝜏1. This yields:

𝑑𝑠(𝜏1)
𝑑𝜏1

∣
𝜏1=𝜏0

1

= 𝑄1𝑄3 + 𝑄2𝑄4
1 + 𝑄2

,

where

𝑄1 = −𝜔2
1𝐴5 cos 𝜔1(𝜏1 + 𝜏∗

2) − 𝜔2+𝛼
1 𝐴3 cos (𝛼𝜋

2 − 𝜔1𝜏∗
2) − 𝐴4𝜔2

1 cos(𝜔1𝜏∗
2),

𝑄2 = −𝜔2
1𝐴5 sin 𝜔1(𝜏1 + 𝜏∗

2) + 𝜔2+𝛼
1 𝐴3 sin (𝛼𝜋

2 − 𝜔1𝜏∗
2) + 𝐴4𝜔2

1 sin(𝜔1𝜏∗
2),

𝑄3 = 2𝛼𝜔2𝛼
1 cos(𝛼𝜋) + 𝛼𝐴1𝜔𝛼

1 cos 𝛼𝜋
2 − 𝐴3𝜏∗

2𝜔𝛼+1
1 cos (𝛼𝜋

2 − 𝜔1𝜏∗
2) − 𝜏∗

2𝐴4𝜔1 cos(𝜔1𝜏∗
2 − 𝜋

2 ) + 𝐴3𝛼𝜔𝛼
1 cos 𝛼𝜋

2 cos(𝜔1𝜏∗
2),

𝑄4 = 2𝛼𝜔2𝛼
1 sin(𝛼𝜋) + 𝛼𝐴1𝜔𝛼

1 sin 𝛼𝜋
2 + 𝐴3𝜏∗

2𝜔𝛼+1
1 sin (𝛼𝜋

2 − 𝜔1𝜏∗
2) + 𝐴4𝜏∗

2 sin(𝜔1𝜏∗
2 − 𝜋

2 ) + 𝐴3𝛼𝜔𝛼
1 sin 𝛼𝜋

2 cos(𝜔1𝜏∗
2).

When 𝜏2 > 0 and 𝜏1 = 𝜏∗
1 < 𝜏10, the proof of Theorem 6 is the same as in Case

4.

When 𝜏2 > 0 and 𝜏1 = 𝜏∗
1 < 𝜏10, the characteristic equation (8) of system (7)

becomes:

𝑠2𝛼 + 𝐴1𝑠𝛼 + 𝐴2 + 𝑒−𝑠𝜏∗
1(𝐴3𝑠𝛼 + 𝐴4) + 𝐴5𝑒−𝑠(𝜏∗

1+𝜏2) = 0.

Let

𝜂41 = −𝐴5 cos(𝜔𝜏∗
1) − 𝐴3𝜔𝛼 cos (𝛼𝜋

2 − 𝜔𝜏∗
1) − 𝐴4,

𝜂42 = 𝐴5 sin(𝜔𝜏∗
1) − 𝐴3𝜔𝛼 sin (𝛼𝜋

2 − 𝜔𝜏∗
1) ,

𝛾41 = 𝜔2𝛼 cos(𝛼𝜋) + 𝐴1𝜔𝛼 cos 𝛼𝜋
2 + 𝐴2,

𝛾42 = 𝜔2𝛼 sin(𝛼𝜋) + 𝐴1𝜔𝛼 sin 𝛼𝜋
2 .

Then we have:

𝐻2(𝜔) = 𝜔4𝛼 + 𝑉11𝜔3𝛼 + 𝑉12𝜔2𝛼 + 𝑉13𝜔𝛼 + 𝑉14,

where
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𝑉31 = 2𝐴1 cos 𝛼𝜋
2 ,

𝑉32 = 𝐴2
1 − 𝐴2

3 + 2𝐴2 cos(𝛼𝜋),
𝑉33 = 2𝐴1𝐴2 cos 𝛼𝜋

2 − 2𝐴3𝐴4 cos (𝛼𝜋
2 − 𝜔𝜏∗

1) − 2𝐴3𝐴5 cos (𝜔𝜏∗
1 − 𝛼𝜋

2 ) ,
𝑉34 = 𝐴2

2 − 𝐴2
4 − 𝐴2

5 − 2𝐴4𝐴5 cos(𝜔𝜏∗
1).

The bifurcation point is:

𝜏 (𝑗) = 1
𝜔2

arccos (𝛾41𝜂41 + 𝛾42𝜂42
𝜂2

41 + 𝜂2
42

) + 2𝑗𝜋
𝜔2

,

where 𝑗 = 0, 1, 2, …, and 𝜔2 is the largest positive root in (36).

The Hopf bifurcation point of system (7) is defined as:

𝜏0
2 = min{𝜏 (𝑗)}, 𝑗 = 0, 1, 2, ⋯ .

𝑀1 = −𝜔2
2𝐴5 cos 𝜔2(𝜏∗

1 + 𝜏2) − 𝜔2+𝛼
2 𝐴3 cos (𝛼𝜋

2 − 𝜔2𝜏2) − 𝐴4𝜔2
2 cos(𝜔2𝜏2),

𝑀2 = 𝜔2
2𝐴5 sin 𝜔2(𝜏∗

1 + 𝜏2) + 𝜔2+𝛼
2 𝐴3 sin (𝛼𝜋

2 − 𝜔2𝜏2) + 𝐴4𝜔2
2 sin(𝜔2𝜏2),

𝑀3 = 2𝛼𝜔2𝛼
2 cos(𝛼𝜋) + 𝛼𝐴1𝜔𝛼

2 cos 𝛼𝜋
2 − 𝐴3𝜏2𝜔𝛼+1

2 cos (𝛼𝜋
2 − 𝜔2𝜏2) − 𝜏2𝐴4𝜔2 cos(𝜔2𝜏2 − 𝜋

2 ) + 𝐴3𝛼𝜔𝛼
2 cos 𝛼𝜋

2 cos(𝜔2𝜏2),

𝑀4 = 2𝛼𝜔2𝛼
2 sin(𝛼𝜋) + 𝛼𝐴1𝜔𝛼

2 sin 𝛼𝜋
2 + 𝐴3𝜏2𝜔𝛼+1

2 sin (𝛼𝜋
2 − 𝜔2𝜏2) + 𝐴4𝜏2 sin(𝜔2𝜏2 − 𝜋

2 ) + 𝐴3𝛼𝜔𝛼
2 sin 𝛼𝜋

2 cos(𝜔2𝜏2).
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