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Abstract

Mathematical reasoning presents a significant challenge for Large Language
Models (LLMs) as it requires ensuring the correctness of each reasoning step.
Researchers have been strengthening the mathematical reasoning abilities of
LLMs through supervised fine-tuning, but due to the inability to suppress in-
correct outputs, illusions can easily arise. Recently, Direct Preference Opti-
mization (DPO) has been widely adopted for aligning human intent by using
preference data to prevent LLMs from generating incorrect outputs. However,
it has shown limited benefits in long-chain mathematical reasoning, mainly be-
cause DPO struggles to effectively capture the differences between accepted
and rejected answers from preferences in long-chain data. The inconsistency
between DPO training and LLMs’ generation metrics also affects the effective-
ness of suppressing incorrect outputs. We propose the Multi-Granularity Direct
Preference Optimization (MDPO) method, optimizing the mathematical rea-
soning of LLMs at three granularities: Solution2Solution, Inference2Inference,
and Step2Step. Solution2Solution focuses on the correctness of entire long-chain
reasoning; Inference2Inference concentrates on logical reasoning between steps;
Step2Step corrects computational errors in steps, enhancing the computational
capabilities of LLMs. Additionally, we unify the training objectives of the three
granularities to align with the generation metrics. We conducted experiments
on the open-source models Qwen2 and Llama3, achieving improvements of 1.7%
and 0.9% on the GSM8K dataset, and 2.3% and 1.2% on the MATH dataset,
outperforming DPO and other DPO variant methods. Furthermore, we also
provide a pipeline for constructing MDPO training data that is simple and does
not require manual annotation costs.
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Abstract

Mathematical reasoning presents a significant challenge for Large Language
Models (LLMs) as it requires ensuring the correctness of each reasoning step.
While researchers have strengthened LLMs’ mathematical reasoning abilities
through supervised fine-tuning, these models often suffer from hallucinations
and performance saturation due to their inability to suppress incorrect outputs.
Recently, Direct Preference Optimization (DPO) has gained traction for align-
ing models with human intent by using preference data to prevent generation
of incorrect outputs. However, DPO shows limited benefits in long-chain math-
ematical reasoning, primarily because it struggles to effectively capture differ-
ences between accepted and rejected answers in lengthy reasoning chains. More-
over, the inconsistency between DPQO’s training objective and LLMs’ generation
metrics further undermines its effectiveness at suppressing incorrect outputs.

We propose Multi-Granularity Direct Preference Optimization (MDPO), which
optimizes mathematical reasoning at three granularities: Solution-to-Solution,
Inference-to-Inference, and Step-to-Step. Solution-to-Solution focuses on the
correctness of entire long-chain reasoning; Inference-to-Inference concentrates
on logical reasoning between steps; and Step-to-Step corrects computational
errors within steps, thereby enhancing LLMs’ computational capabilities. Ad-
ditionally, we unify the training objectives across all three granularities to
align with generation metrics. Experiments on open-source models Qwen2 and
Llama3 demonstrate improvements of 1.7% and 0.9% on GSMS8K, and 2.3% and
1.2% on MATH, outperforming DPO and other DPO variants. Furthermore,
we provide a simple pipeline for constructing MDPO training data that requires
no manual annotation.

Introduction

Mathematical reasoning is considered a critical long-chain reasoning capability
for large language models (LLMs). This task is particularly challenging because
it typically requires extensive chains of thought involving numerous reasoning
steps, where any single error can lead to an incorrect final result. Many studies
have utilized additional math word problem (MWP) data to conduct supervised
fine-tuning (SFT) of LLMs to improve their mathematical reasoning abilities
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[?, 7, ?]. However, models often experience hallucinations during fine-tuning,
leading to performance saturation [?]. On one hand, SFT struggles to provide
fine-grained supervision signals; on the other hand, it cannot effectively suppress
the probability of undesirable outputs, making models more prone to errors in
long-chain reasoning. Therefore, developing methods that provide fine-grained
supervision while suppressing incorrect outputs is crucial.

Recently, Direct Preference Optimization (DPO) has emerged as an effective
alignment method that uses preference data triplets (z,y,,,y;) to increase the
probability of human-preferred answers y,, while decreasing the probability of
rejected answers y; [?]. While DPO proves effective in casual chat benchmarks,
it struggles with long-chain mathematical reasoning. Models trained with DPO
perform poorly at distinguishing correct from incorrect mathematical solutions,
often failing to accurately identify errors in incorrect solutions. For instance,
when a model generates initially correct steps before making an error, DPO
may inadvertently lower the probability of those correct earlier steps. This indi-
cates that DPO cannot accurately pinpoint detailed errors in incorrect solutions,
thereby hindering reasoning improvement.

Moreover, as highlighted in [?], during DPO training, satisfying the reward
ranking r(z,y,,) > r(x,y;) does not necessarily imply satisfying the likelihood
ranking pg(y,,|x) > pe(y;lz). In fact, only about 50% of triplets meet this
condition, stemming from the inconsistency between fine-tuning objectives and
downstream task requirements. In mathematics education, effective teachers
clearly identify whether errors stem from derivation mistakes or calculation er-
rors, provide correct solutions, and encourage reflection. Drawing inspiration
from this pedagogical approach, we propose Multi-granularity mathematical Di-
rect Preference Optimization (MDPO) that provides models with supervision
signals ranging from coarse to fine, while unifying fine-tuning representation
with final reasoning tasks to enhance both reasoning and computational abili-
ties.

Specifically, LLMs consider the entire chain of reasoning for solving MWPs as a
solution composed of multiple reasoning steps, as shown in Fig.~1 (left), where
solution = step,,...,step,. We define the generation from step, to step,
as one inference. As shown in Fig.~1 (right), our method performs preference
optimization at three granularities: Solution-to-Solution (Sol2Sol), Inference-to-
Inference (Infer2Infer), and Step-to-Step. Sol2Sol provides complete reasoning
chains as supervision signals, consistent with DPO, offering coarse-grained su-
pervision. Infer2Infer locates unreliable inferences infj ., and corrects the rea-
soning process to obtain inf ;,, providing fine-grained supervision. Step-to-Step
locates steps with computational errors, step, ., and corrects them to obtain
step,,;,, improving computational capabilities. These objectives are uniformly
defined as: given problem z and previous k steps step,, ,, continue reasoning un-
til generating the answer. This transformation of mathematical reasoning into
a text completion task ensures consistency between fine-tuning and downstream
objectives.
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We conducted experiments using two popular open-source models, Qwen2 [?]
and Llama3 [?], on the GSM8K [?] and MATH [?] datasets. With Qwen2-7B-
Instruct, we achieved accuracy improvements of 1.7% and 0.9% on GSM8K, and
2.3% and 1.2% on MATH, surpassing DPO [?] and its variant Step-DPO [7],
demonstrating MDPQ'’s potential. Additionally, we provide a method for auto-
matically constructing multi-granularity preference data pairs without manual
annotation.

2.1 Mathematical Reasoning

With increasing pre-training scale, LLMs have demonstrated strong reasoning
abilities. [?] proposed Chain-of-Thought prompting, which enables LLMs to
output step-by-step reasoning processes through carefully designed examples,
improving both accuracy and confidence in solving math word problems. Sub-
sequent researchers attempted to further enhance mathematical reasoning by
strengthening Chain-of-Thought [?, ?, ?]. However, these efforts remain hin-
dered by hallucinations and computational limitations inherent to LLMs.

[?] introduced Program-aided Language models (PAL), which transform math
word problem solving into Python code generation tasks, ensuring correctness
of intermediate calculations. However, this approach requires relatively strong
code generation capabilities; otherwise, it may introduce additional noise during
code generation. Additionally, many researchers have utilized data augmenta-
tion methods to construct higher-quality MWP data for supervised fine-tuning
of LLMs, yielding significant improvements in reasoning abilities [?, 7, 7, 7, ?].
Yet the hallucination issue remains unresolved, partly because supervised learn-
ing only increases the probability of generating correct answers without sup-
pressing incorrect outputs. Therefore, ensuring both the generation of correct
answers and suppression of undesirable outputs is essential for improving LLM
performance.

2.2 RLHF

Reinforcement Learning from Human Feedback (RLHF) is commonly used to
train LLMs to align with human values and intentions, including suppressing
harmful information and hallucinations [?, 7, 7, ?]. Recent studies have explored
using reinforcement learning to reduce hallucinations in mathematical reason-
ing, involving training a reward model and then optimizing the policy model
to maximize this reward. [?] proposed the Process Reward Model (PRM) to
evaluate the quality of each reasoning step, thereby enhancing mathematical
reasoning abilities. However, these methods require high-quality manually an-
notated data to train the reward model and involve complex, laborious training
processes.

Recently, researchers have explored simpler offline algorithms, notably Direct
Preference Optimization (DPO) [?]. DPO learns policy models directly from
preference data by parameterizing the reward function in RLHF, eliminating
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the need for an explicit reward model. This simple, stable method has inspired
various variants [?, 7, 7, ?]. One variant, Step-DPO, introduces step-level super-
vised signals to help LLMs accurately locate errors, similar to our approach [?].
However, its implicit reward is constructed from the logarithm of the likelihood
ratio between responses from the current policy model and the SFT model,
which does not directly align with generation metrics, resulting in poor perfor-
mance. Our method focuses on advancing LLMs’ computational capabilities.
[?] proposed the SimPO method, which directly uses average log-likelihood as a
reward for preference learning, aligning training with reasoning and making it
simple and efficient. Inspired by this research, we propose MDPO for mathemat-
ical long-chain reasoning, providing LLMs with multi-level supervised signals.

3 Background: Simple Preference Optimization (SimPO)

SimPO is a popular preference optimization method that requires neither a re-
ward model nor a reference model. It addresses the discrepancy between the
reward optimized during training and the generation metrics used during infer-
ence, significantly outperforming DPO and other variants. The algorithm’s core
is aligning the reward function in the preference optimization objective with the
generation metric. Specifically, during generation, a policy model 7, generates a
sequence that approximates the maximization of average log-likelihood, defined
as:

Po(ylz) = logmy(ylz) =Y log my(y,|a,y_,)

SimPO directly uses py from equation (1) as the reward, aligning it with the
likelihood metric used for guided generation, while introducing a length nor-
malization term to prevent the model from generating longer but lower-quality
sequences:

IOg 7T0(y|(£) _ Zz IOg ﬂ-@(yi‘xa y<z)

TSimpo (T, Y) =
SImPOLT ly] ly]

where (3 is a constant controlling the magnitude of reward difference. In addition,
SimPO introduces a target reward margin term - > 0 to ensure that the reward
r(z,y,) of a winning response exceeds the reward r(z,y;) of a losing response
by at least ~:

Py = yilz) = o(r(z,y,) — (2, 9) —7)

The loss function is represented as:

log my(y,|®)  logmy(y,z) 7)

Lsimpo(mg) = —E(, ~plogo (
’ (o) [ [
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4 Method
[Figure 1: see original paper]

Figure 1: (Left) Given a math word problem, which when fully reasoned
through the solution chain can be broken down into a series of solutions =
Stepy, .., Step,,, we define the generation from Step,, to Step;,; as one infer-
ence step. (Right) MDPO provides LLMs with three granularities of supervision
signals: Solution-to-Solution (Sol2Sol), Inference-to-Inference (Infer2Infer), and
Step-to-Step, optimizing the model using preference data. Sol2Sol constructs
preferences for complete inference chains; Infer2Infer identifies faulty inferences
in the chain and corrects them, while Step-to-Step focuses on identifying and
correcting computational errors at a specific step in the inference process.

4.1 MDPO

Although DPO has proven effective in chat benchmarks, it yields only marginal
improvements for long-chain reasoning tasks such as mathematical problem
solving. This limitation arises because rejecting an entire undesirable answer
in DPO may discard preceding correct reasoning steps, introducing significant
noise that negatively impacts training. Analogous to how teachers correct stu-
dents by pinpointing specific errors rather than dismissing entire answers, our
proposed MDPO provides more detailed supervision across three granularities:
Solution-to-Solution (Sol2Sol), Inference-to-Inference (Infer2Infer), and Step-to-
Step.

Sol2Sol. In solving mathematical word problems, the entire reasoning path
from scratch to the final answer is referred to as a Solution, which aligns with
DPO’s format. Although rejecting the entire undesirable answer can have neg-
ative consequences, we retain this approach to ensure the model can generate
complete reasoning chains.

Infer2Infer. Each solution can be decomposed into a sequence of reasoning
steps, solution = step,,...,step,, where step, is the i-th reasoning step. We
define the generation from step, to step, , as an Inference. Given a prompt
r and a series of initial correct reasoning steps step, , , = step,,...,step, ;,
Infer2Infer provides fine-grained supervision signals for the generation process
inf;, ; from step, ; to step,, maximizing the probability of generating the cor-
rect next reasoning step step . while minimizing the probability of generating
the incorrect reasoning step step, ., thereby enhancing the model’s reasoning
capabilities.

Step-to-Step. Since large models often face computational challenges during
reasoning that lead to overall failure, we provide preference data for accepting
and rejecting steps. Specifically, for a stepfOse with computational error, we con-
struct the correct calculation step step; to rectify the model’s computational
errors and enhance its computational abilities.
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4.2 Objective

To maintain consistency between fine-tuning and downstream tasks, we convert
mathematical word problem reasoning into the following format: given a math
word problem and the first k steps, the model must continue writing based on the
problem and these steps to obtain the final answer. This format allows our multi-
granularity optimization goals to align with the ultimate solving objectives. For
Sol2Sol, this can be considered as providing the problem and the first 0 steps,
requiring the model to generate all reasoning steps, which aligns with the final
solving of the math word problem. We use “Let’s think step by step.” as the
0-th step to guide the model in reasoning. For Infer2Infer, this can be viewed
as providing the problem and the first i — 1 steps, asking the model to generate
the i-th step and subsequent reasoning steps. For Step-to-Step, likewise, this
can be seen as providing the problem and the first ¢ — 1 steps, demanding the
model to generate the i-th step and subsequent reasoning paths.

log My (Y| (@ Soon—1))  logmy(yl (2, Sop—1))
Ayppo(Te) = —Bias, 1y, )~ 1080 ( wlywi - ] -7
where z represents the math word problem to be solved, s,_;,_; represents the
first k solving steps from step, to step, ,, v, represents a series of correct
solving steps from step, to step, , and y, represents a series of incorrect solving
steps from step,, to step,,.

4.3 Data Construction

Sol2Sol. In the Sol2Sol component, we use LLMs to sequentially generate
reasoning for questions and require the model to prepend “[Step i]” before each
step. Subsequently, we sample k reasoning paths and verify the generated paths
based on labels in the dataset, adopting complete reasoning paths with correct
final answers as preferred responses and paths with incorrect final answers as
rejected responses, consistent with simple DPO. Moreover, we select questions
in the generated paths that have both correct and incorrect answers, as these
are more challenging for the model and more effective at enhancing reasoning
abilities.

Infer2Infer. In the Infer2Infer component, we utilize the erroneous reason-
ing paths selected from the aforementioned problems as our foundation. These
reasoning paths are divided into steps and reorganized into multiple windows
W = (wg, ..., w;), where w; = (step,,step,,step,, ..., step,). Subsequently, we
leverage LLMs to generate and sample k reasoning paths. For each w;, we
define its error rate as the number of erroneous reasoning paths divided by
the total number of paths. Based on this, we define an unreliable step as
a step where error(w;) > error(w; ;). We consider that step, increases the

reasoning error rate and negatively impacts the final reasoning process. As a
result, the transition from step, ; to step, is regarded as an unreliable inference

chinarxiv.org/items/chinaxiv-202506.00062 Machine Translation


https://chinarxiv.org/items/chinaxiv-202506.00062

ChinaRxiv [$X]

inf ... Next, we continue generating using w,_,, sampling the reliable reasoning
path with the final correct answer as inf, to construct preference data pairs

win»
(z||w;_q,inf,,,, inf, .. ), where || denotes concatenation.

Step-to-Step. In the Step-to-Step component, we also use the selected prob-
lems mentioned above and add new problems involving complex calculations,
constructed by replacing original problems with more complex numbers. Sub-
sequently, we use LLMs for reasoning, sample the reasoning paths, and seg-
ment the steps. Using prompts, we employ GPT-4 to search for the first step
step,,., Where a calculation error occurred, correct it to obtain step,; , and
continue generating the final answers. Through answer verification, we en-
sure that the LLMs made correct modifications. We construct preference data

(z|[stepy._y,_q»Step i, Step .. )-

5 Experiments

Network Architecture. Our experiments employed two popular open-source
models, Qwen2 [?] and Llama3 [?]. Due to computational resource limita-
tions, we utilized smaller-scale models: Qwen2-7B-Instruct and Meta-Llama-
3-8B-Instruct. Our choice to employ instruction-tuned models rather than base
models for direct training stems from common practice in reinforcement learning
pipelines, where supervised fine-tuning typically serves as a crucial warm-start
initialization phase before RL-based optimization.

Datasets. For evaluation, we used the widely adopted GSM8K [?] and MATH
[?] datasets, with accuracy serving as the evaluation metric. The MATH test
set contains 5,000 mathematical problems spanning 5 difficulty levels and 7
subjects, including algebra, counting and probability, geometry, intermediate
algebra, number theory, prealgebra, and precalculus. Problems in GSM8K are
generally easier than those in MATH. Additionally, we use the GSM-HARD [?]
dataset to examine MDPOQO’s improvement in computational capabilities. Our
training dataset is based on the training sets of GSM8K and MATH, constructed
following the method described in Section 4.3, comprising a total of 30,000
preference data pairs.

Implementation Details. We perform MDPO on the models for 8 epochs with
a global batch size of 128 and a learning rate of 5e-7. The hyperparameter g is
set to 0.4. We use the AdamW optimizer with a cosine learning rate scheduler,
with the warmup ratio set to 0.1.

6.1 Main Results

The results of MDPO on Qwen2-7B-Instruct and Llama3-8B-Instruct are shown
in Table 1. MDPO demonstrates significant improvements for both models, with
Qwen2-7B-Instruct achieving a 1.7% accuracy increase on GSM8K and a 2.3%
increase on MATH. Similarly, Llama3-8B-Instruct with MDPO achieved a 0.9%
accuracy increase on GSMS8K and a 1.2% increase on MATH. These results
demonstrate that MDPO can effectively enhance LLMs’ ability to solve MWPs.
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[Figure 2: see original paper]

Figure 2: MDPO has different training objectives from DPO and Step-DPO,
primarily in reward formulation and margin setting. On GSM8K and MATH
tasks, MDPQ'’s consistency between training and downstream objectives has
led to performance improvements, mainly reflected in the increased generation
probability of accepted answers. The Win Rate indicates the proportion where

Po(Yul®) > po(yylz).

6.2 Comparison with Other Methods

We compared MDPO with DPO and Step-DPO methods on GSM8K and MATH
datasets, with results shown in Table 2. The benefits of DPO are limited and
significantly smaller than those of MDPO. Furthermore, MDPO outperforms
Step-DPO on both datasets, with greater enhancement on MATH. This is be-
cause MDPO not only optimizes reasoning ability but also provides supervisory
signals for computational power, making it more effective on complex datasets.

Due to computational resource limitations, we were only able to conduct exper-
iments on small-scale LLMs. However, based on research on DPO and Step-
DPO, methods proven effective on small-scale LLMs generally yield greater
improvements on large-scale LLMs.

We also conducted experiments using the original SimPO method. Empirical
results demonstrate that SimPO achieves consistent performance improvements
over standard DPO across both datasets, attributable to its more direct reward
signals. However, compared with our MDPO approach, SimPO exhibits inferior
performance on both datasets, primarily due to its lack of fine-grained, multi-
level supervision signals.

6.3 Ablation Study

We conducted ablation experiments on MDPO using Qwen2-7B-Instruct as the
base model on the GSM8K dataset. We sequentially added three granularities
of preference data for fine-tuning, with results shown in Table 3. Compared
to the base model, fine-tuning at each granularity improved final performance.
Notably, the Infer2Infer component contributed most to performance improve-
ment, as it provides finer supervisory signals than Sol2Sol, making a greater con-
tribution to enhancing reasoning abilities. The Step-to-Step component aims
to enhance computational abilities. Since operations in GSM8K are relatively
simple, Step-to-Step’s contribution may not be fully reflected. Additional ex-
periments are described in Section 6.4.

6.4 Computation

In MDPO, we introduced Step-to-Step to enhance the model’s computational
capabilities. We used GSM-HARD and MATH datasets to validate its effec-
tiveness. In GSM-HARD, numbers in the GSM8K test set were replaced with
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more complex digits, increasing computational difficulty. The MATH dataset
itself involves complex operations including fractions. We conducted experi-
ments with Qwen2-7B-Instruct and Step-to-Step data, with results shown in
Table 4. Models fine-tuned using Step-to-Step data show significant improve-
ments (+3.4 and +1.7 on GSM-HARD and MATH, respectively). Compared to
DPO and Step-DPO methods, our approach shows clear advantages when deal-
ing with computationally complex datasets, demonstrating that incorporating
fine-grained supervision signals for computational validation is essential.

6.5 Training Objective

In DPO and Step-DPO, the training objective does not align with the down-
stream task objective, resulting in a higher probability of LLMs outputting
rejected answers compared to accepted answers, contradicting the original in-
tention of fine-tuning. We conducted experiments on the test set, and Fig.~2
shows the proportion of cases where LLMs output an accepted answer with
higher probability after training with different methods. There is little differ-
ence between Step-DPO and DPO, as Step-DPO, while providing more detailed
supervisory signals through modified optimization objectives, still fails to align
training objectives with downstream tasks. In contrast, our MDPO method
aligns the reward function with the generation metric and unifies fine-tuning
with the final downstream task, thereby enhancing LLMs’ responsiveness to re-
wards. Experimental results demonstrate that MDPO significantly increases
the probability of LLMs outputting accepted answers, effectively reducing the
occurrence of rejected answers.

7 Conclusion

We proposed Multi-granularity Direct Preference Optimization (MDPO),
which provides three granularities of supervision signals for LLMs: Solution-
to-Solution, Inference-to-Inference, and Step-to-Step. The method optimizes
models using preference data. Solution-to-Solution ensures consistency between
downstream tasks and fine-tuning, while Inference-to-Inference focuses on
providing detailed problem-solving guidance for LLMs, accurately identifying
logical errors in the reasoning process to improve long-chain reasoning abilities.
Step-to-Step is dedicated to pinpointing computational errors in LLMs’
inference process, enhancing foundational computational capabilities through
data preferences.

Our method has been validated on two popular open-source LLMs, Qwen2 and
Llama3, showing significant improvements across multiple mathematical reason-
ing datasets and generally outperforming DPO and Step-DPO methods. Specif-
ically, on the MATH dataset, MDPO achieved a 2.3% improvement, surpassing
the widely recognized Step-DPO method by 1.4%. Furthermore, experiments on
the challenging GSM-HARD and MATH datasets demonstrate the effectiveness
of Step-to-Step in enhancing LLMs’ computational capabilities. Additionally,
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our experiments on target consistency showcase the necessity of aligning training
objectives with downstream tasks.

Due to computational resource limitations, our experiments have been con-
ducted only on 7B-sized models. However, based on trends reported by other
scholars [?, ?, ?], methods proven effective on small-scale models often lead to
greater improvements when scaled to larger models. In the future, we plan to
enrich our experimental results by testing on a wider range of large-scale models.
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