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Abstract

We present a new method for structural sequence analysis grounded in Algo-
rithmic Information Theory (AIT). At its core is the Ladderpath approach,
which extracts nested and hierarchical relationships among repeated substruc-
tures in linguistic sequences—an instantiation of AIT’s principle of describing
data through minimal generative programs. These structures are then used to
define three distance measures: a normalized compression distance (NCD), and
two alternative distances derived directly from the Ladderpath representation.
Integrated with a k-nearest neighbor classifier, these distances achieve strong
and consistent performance across in-distribution, out-of-distribution (OOD),
and few-shot text classification tasks. In particular, all three methods outper-
form both gzip-based NCD and BERT under OOD and low-resource settings.
These results demonstrate that the structured representations captured by Lad-
derpath preserve intrinsic properties of sequences and provide a lightweight,
interpretable, and training-free alternative for text modeling. This work high-
lights the potential of AIT-based approaches for structural and domain-agnostic
sequence understanding.
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ABSTRACT

We present a new method for structural sequence analysis grounded in Algo-
rithmic Information Theory (AIT). At its core is the Ladderpath approach,
which extracts nested and hierarchical relationships among repeated substruc-
tures in linguistic sequences—an instantiation of AIT’s principle of describing
data through minimal generative programs. These structures are then used to
define three distance measures: a normalized compression distance (NCD), and
two alternative distances derived directly from the Ladderpath representation.
Integrated with a k-nearest neighbor classifier, these distances achieve strong
and consistent performance across in-distribution, out-of-distribution (OOD),
and few-shot text classification tasks. In particular, all three methods outper-
form both gzip-based NCD and BERT under OOD and low-resource settings.
These results demonstrate that the structured representations captured by Lad-
derpath preserve intrinsic properties of sequences and provide a lightweight,
interpretable, and training-free alternative for text modeling. This work high-
lights the potential of AIT-based approaches for structural and domain-agnostic
sequence understanding.
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Introduction

The rapid advancements in natural language processing (NLP) and machine
learning have significantly improved the performance of text classification and
regression tasks [?, 7, 7, ?]. A wide range of approaches, from traditional bag-of-
words models to deep neural architectures and pre-trained language models such
as BERT [?], have been developed to tackle these tasks. However, deploying
these models in low-resource or distributionally inconsistent scenarios remains
a major challenge due to their heavy reliance on extensive annotated data and
high computational demands [?, ?]. Although these models demonstrate good
performance under ideal conditions, their generalization ability often diminishes
in settings with scarce data or in the presence of domain shifts.

Traditional models and word embedding-based classifiers require feature engi-
neering or fine-tuning [?, ?], while large-scale models encode a highly compres-
sive mapping of data in an ultra-high-dimensional space. From an information-
theoretic perspective, the process of extracting patterns from data can be viewed
as a form of compression—identifying and retaining only the most informative
structures [?, ?]. Inspired by this insight, Jiang et al. proposed a parameter-
free classification method that combines a standard compressor (e.g., gzip) with
a k-nearest neighbor (k-NN) classifier to approximate deep learning-like per-
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formance without training [?]. This method uses the normalized compression
distance (NCD) to measure text similarity, offering a lightweight and general-
ized solution that is especially suited for low-resource and heterogeneous data.

The theoretical foundation of this approach originates from the concept of infor-
mation distance and Kolmogorov complexity [?]. Bennett et al. introduced the
notion of normalized information distance (NID), a universal similarity metric
derived from Kolmogorov complexity [?]. However, due to the uncomputabil-
ity of Kolmogorov complexity, NID cannot be directly applied in practice. To
overcome this limitation, Li et al. proposed using compression algorithms to
approximate complexity and introduced NCD, which serves as a computable
alternative [?]. Cilibrasi and Vitanyi later extended this idea to clustering tasks
[?]. By estimating the complexity of data objects through compression, NCD
provides a model-free method for distance measurement, supporting training-
free classification frameworks [?].

In recent years, compression-based techniques have shown promising results in
text classification. For instance, gzip-based NCD combined with k-NN has been
shown to perform effectively on low-resource datasets and, in some settings, can
even outperform large-scale models like BERT [?]. The appeal of this method
lies in its independence from extensive training or prior domain knowledge—
it captures intrinsic regularities in data through general-purpose compression.
However, general-purpose compressors like gzip are not optimized for semantic
or hierarchical textual structures—features commonly found in natural human
language—which can constrain their classification accuracy.

To address these limitations, we propose an alternative compression-based clas-
sification framework based on the Ladderpath approach [?, ?], which falls under
the broader framework of Algorithmic Information Theory (AIT). Ladderpath
performs efficient compression by computing the minimal number of hierarchical
reconstruction steps required to reproduce a given string or other data object.
This allows it to capture nested structural features more effectively than tra-
ditional compressors. Unlike pre-trained models or parameter-tuned systems,
Ladderpath remains both model-free and parameter-free, which significantly en-
hances its adaptability in dynamic or data-sparse environments [?, ?]. This
makes it particularly suitable for real-world scenarios characterized by low data
availability or inconsistent distributions.

The main contributions of this paper are summarized as follows: (1) We propose
a new approach grounded in AIT, utilizing the Ladderpath approach to extract
the nested and hierarchical relationships among repeated substructures in lin-
guistic sequences and leverage them for compression. (2) We demonstrate that
these structured relationships can be used both for compression-based distance
computation—yielding a new normalized compression distance, NCDIp—and
for defining distances derived from the Ladderpath representation using ideas
analogous to the Dice coefficient and Jaccard index, resulting in LDice and
LJaccard. (3) Experiments show that all three distance measures are effective
for text classification tasks. NCDIp achieves performance comparable to the
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previously strongest compression-based method (NCDgzip), while LDice and
LJaccard consistently outperform it. Notably, in out-of-distribution (OOD) and
few-shot settings, all three methods outperform BERT. This not only provides a
practical solution for scenarios with limited labeled data, but more importantly,
highlights that the nested and hierarchical relationships extracted by Ladder-
path capture intrinsic structural properties of sequences—enabling classification
without any training.

2.1 Recap Ladderpath Approach: Capturing Nested and
Hierarchical Relationships

The Ladderpath approach, which falls under the umbrella of AIT, seeks to find
the shortest path for reconstructing an object (in this context, a string), with
a key assumption that previously reconstructed substructures can be directly
reused in subsequent steps—an idea that echoes Frangois Jacob’s notion of evo-
lutionary tinkering [?, ?, ?, ?]. It achieves this goal by identifying repeated
substructures and the hierarchical relationships among these substructures.

We define the length of this shortest path as the ladderpath-index A, while the
hierarchical and nested relationships can be represented as a partially ordered
multiset, or equivalently, a directed acyclic graph, referred to as the laddergraph
(see Fig. la [Figure 1: see original paper]| and 1b for two examples). For more
detailed information about the Ladderpath approach, refer to [?, 7, ?, ?]; here,
we provide only a brief recap.

Taking the string ‘ABCDBCDBCDCDEFEF’ as an example, we first compute
its ladderpath (the open-source code is available at [?]), which can be repre-
sented as a partially ordered multiset: {A, B, C,D, E,F // CD, EF // BCD(2)}.
The corresponding laddergraph is shown in Fig. 1a. The ladderpath-index A for
this string can also be computed, yielding a value of 10, indicating the minimum
number of steps required to reconstruct the target string.

We can naturally apply the Ladderpath approach to compression because it com-
putes the shortest reconstruction path by algorithmically identifying repeated
substructures (referred to as ladderons) and capturing their nested and hierar-
chical relationships. Each ladderon can be encoded in a dictionary with a unique
1D, allowing us to simply reference its ID whenever it reappears (see Section 2.2
for a detailed description of the compression procedure).

[Figure 1: see original paper]

2.2 Ladderpath-Based Compressor

Fig. 1la illustrates the process of compressing a single string using the Ladder-
path approach, with the previously discussed string ‘ABCDBCDBCDCDEFEF’
as an example. After computing its ladderpath, each ladderon is assigned a
unique ID: ‘BCD’ receives an ID of 0, ‘CD’ an ID of 1, and ‘EF’ an ID of 2 (the
higher the ID number, the lower the hierarchical level and typically the shorter
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the ladderon). Referring to Fig. 1b, starting from the highest ID and moving
downward, ‘EF’ comprises the basic building blocks ‘E’ and ‘F’, thus represented
directly as (E,F). Similarly, ‘CD’ consists of the basic building blocks ‘C’ and
‘D’, denoted as (C,D). The ladderon ‘BCD’ is composed of ‘B’ and ladderon 1
(namely, ‘CD’), and is therefore represented as (B,1). This construction reduces
the number of unique symbols: we no longer need to write the full sequence ‘B’,
‘C’, ‘D’, effectively compressing one character.

Next, for the target string, we assign it a negative ID, here noted as -1, and
represent it as (A,0,0,0,1,2,2). Every time ID 0 appears, we avoid rewriting
‘BCD’, thereby saving two characters per occurrence. Since ID 0 occurs three
times, a total of six characters is saved. Similarly, each occurrence of ID 1 saves
one character, thus two occurrences save two characters, and so forth. This
strategy of eliminating redundant rewrites is the basis of compression in the
Ladderpath approach.

Now, we can write all this information into a single sequence. The final compres-
sion using the Ladderpath approach can be represented as z = (1; A,0,0,0,1,2,2;
B,1; C,D; E,F) where the first number indicates the total number of target
strings—in this case, 1. The first semicolon-separated section encodes the target
string using ladderon IDs. The following sections, also separated by semicolons,
define all the ladderons: ‘B,1’ corresponds to ladderon ID 0, ‘C,D’ to ID 1, and
‘E,F’ to ID 2.

Excluding the initial number 1, the total length of this compressed string z is 13,
which equals A plus the total number of ladderons. In this example, A equals 10,
and there are a total of 3 ladderons. This can be clearly demonstrated since A
itself represents the shortest number of steps required to reconstruct the target
string from basic units. The compressed string directly reflects this minimal
reconstruction path. Note that the number of ladderons (3 in this case) is added
because combining n ladderons involves only (n - 1) steps; for example, forming
‘EF’ from ‘E’ and ‘F’ is counted as one step, but in the compressed sequence we
must explicitly write two characters, ‘E’ and ‘F’. Similarly, constructing ‘BCD’
from ‘B’ and ladderon 1 is one step, but we must write both ‘B’ and 1 in the
compressed output. Finally, Fig. 1b demonstrates the compression of two target
strings using the same approach.

In principle, we can further compress z into a binary sequence, for example, by
using Huffman coding or converting the final compressed sequence into another
format (see Appendix A.l for more details). However, we have not pursued
these additional steps here, as our primary objective is to define a distance
measure and subsequently perform text classification tasks based on Ladderpath
compression. In summary, as the ladderpath-index A is defined as the length
of the shortest reconstruction path derived from the hierarchical and nested
relationships among repeated substrings, we can simply use A as an effective
proxy for the optimally compressed length.

Finally, according to [?], to define NCD using a compressor, the compressor
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should satisfy the following four key properties: Idempotency, ensuring that
duplicate data does not affect compression efficiency; Monotonicity, requiring
that compressing multiple strings does not yield a smaller result than compress-
ing a single string; Symmetry, indicating that compression results should be
independent of the order of input data; and Distributivity, ensuring consistent
processing of different string combinations regardless of data structure, order,
or chunking method.

A compressor that meets these properties within an acceptable error margin is
considered a normal compressor [?]. Not all compressors strictly satisfy these
four properties. For instance, widely used compressors such as Zstandard exhibit
deviations in distributivity. We have conducted systematic experiments and
found that the Ladderpath-based compressor satisfies these properties within
an acceptable error margin (see Appendix A.2 for details).

Normalized Compression Distance (NCD): Ladderpath-based

After verifying the effectiveness of the Ladderpath-based compressor as a normal
compressor, we can use it to define the Ladderpath-based NCD. When using a
compressor, the NCD between two strings, X and Y, is defined as follows [?, ?]:

¢(X,Y) —min{c(X),c(Y)}
max{c(X),c(Y)}

NCD (X,Y) =

where ¢(X) is the length of X after it is compressed using the compressor c. By
substituting in the Ladderpath-based compressor, we obtain

N(X,Y) — min{\ (X), N (Y)}
max{N (X ), N (V)}

NCD,,(X,Y) =

where M'(X) = A(X) —1and M (X,Y) = A\(X,Y) — 2, and A is the ladderpath-
index. This small adjustment—subtracting 1 and 2—is applied to balance the
operation of taking out the target string(s) during reconstruction. If n targets
are taking out, then n should be subtracted. We now apply NCDIp to a text
classification task, with results presented in Section 3.

2.3 Define Ladderpath-distance L

Before conducting the text classification task, we define two alternative distance
measures based directly on the hierarchical and nested relationships among re-
peated substrings (i.e., ladderons). One of them is based on the idea behind
the Dice coefficient. The similarity between two sets, P and Q, is defined as the
ratio of the size of their intersection to the average size of the two sets, namely
[PNQ|/((|IP]+1Q])/2), and consequently, the distance is defined as one minus
this similarity. By applying the inclusion-exclusion principle, this distance can
be derived as:
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PNQl  2PNQ| |P|+|Q —|PuQ| |PUQ| P

[P+QI - [P+ QI o [P+ Q]
S g 2 2

Thus, we can define a Ladderpath-distance based on the Dice coefficient as:

’ N (X)+N (Y
)\(ny)_ ( ); (Y)
N (X)+ N (Y)

2

LDice (X7 Y) =

where A" (X) represents the shortest path length required to reconstruct string X
individually, corresponding to the set size |P| in Eq. (1), and similarly for A" (Y).
Furthermore, X' (X,Y) represents the shortest path length when reconstructing
strings X and Y jointly, corresponding to |P U Q| in Eq. (1).

Alternatively, the other distance measure is based on the idea behind the Jaccard
index, in which the similarity between two sets P and Q is defined as |PNQ|/|PU
Q|. The only difference from the Dice coefficient lies in the denominator: the
union size rather than the average size. Following a derivation similar to the
one above, we can define the Ladderpath-distance based on the Jaccard index
as:

A\ (X, Y) o )\/(X)+)\/(}2’)7)\’(X,Y)

N(X,Y)

L,]accard (Xv Y) =

Note that both distance measures ensure that when X = Y, the distance is 0,
and when X and Y share no common substructure, the distance is 1.

It is worth noting that the similarity or distance measures based on the Jac-
card index and the Dice coefficient do exhibit some differences (although they
can be transformed into one another). It is well known that the Jaccard-based
distance satisfies the triangle inequality, making it a true metric. In contrast,
the Dice-based distance does not satisfy the triangle inequality, and is therefore
considered a semimetric version of the Jaccard distance. Nevertheless, both mea-
sures are commonly used in practice. In some cases, the Dice-based distance is
even preferred because empirical evidence suggests that, compared to the Jac-
card index, the Dice coefficient tends to yield higher similarity scores, especially
in high-dimensional, sparse data—such as in bag-of-words models or image seg-
mentation masks. For example, in medical image segmentation (CT, MRI),
the Dice coefficient is widely used as an evaluation metric. Similarly, certain
n-gram—based tasks in natural language processing employ the Dice coefficient.
In deep learning applications involving medical imaging—such as Mask R-CNN
and other segmentation tasks—Dice loss is extensively used as a loss function
(while Jaccard loss is less common), due to its smoother gradient properties,
which help with network convergence [?].
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For the sake of completeness, we employ both distance measures in this work
to perform text classification tasks.

3 Results

In the work by Jiang et al. [?], the authors employed NCDgzip (a gzip-based
normalized compression distance), combined with a k-NN classifier, to perform
text classification across three distinct scenarios: in-distribution datasets, OOD
datasets, and few-shot learning settings. They demonstrated that this sim-
ple, training-free approach can achieve performance comparable to—or even
surpass—that of large language models such as BERT, despite BERT being a
substantially more complex model.

In this study, we employ the newly defined distances—NCDIp (Ladderpath-
based normalized compression distance), LDice and LJaccard—to carry out clas-
sification tasks and compare their performance against the original NCDgzip.
The results are presented in the following subsections.

3.1 For In-Distribution Datasets

We begin by cleaning the datasets, removing duplicates and contaminated en-
tries (see Appendix A.3 for details), as duplicate data can cause the k-NN
classifier to yield artificially high performance. Next, we conduct classification
experiments using the newly defined distances, and the results are presented in
Table 1 . For comparison, we adopt the accuracy values for TextCNN, LSTM,
W2V, and BERT from the work by Jiang et al. [?], and use TextLength (i.e.,
classifying based on text length) as the baseline. It is important to note that
the accuracy of NCDgzip reported in [?] was slightly inflated [?], due to the use
of an uncleansed dataset and an optimistic tie-breaking strategy in the k-NN
classifier (see Appendix A.4 for details). In fact, the authors later acknowl-
edged this issue. Consequently, we recomputed the classification accuracy for
NCDgzip using the same methodology but on the cleaned dataset.

As shown in Table 1, we report the results for the three newly defined dis-
tance measures: NCDIp, LDice and LJaccard. Among methods that do not
involve pre-training or training, the performance of LDice and LJaccard is gen-
erally stronger; NCDIp, in most cases, performs better than NCDgzip. LDice
and LJaccard yield identical values in this case—mnot because they are always
equivalent, but because their differences are negligible under the current condi-
tions (see Appendix A.5 for details). These results indicate that the proposed
measures exhibit competitive classification performance, suggesting that the hi-
erarchical and nested structures captured by Ladderpath approach can provide
meaningful similarity representations for text classification tasks. Note that
in our experiments, we set the parameter k = 7 for all k-NN-based methods,
rather than using k = 2 as in the study by Jiang et al., since k = 7 consistently
yields near-optimal performance across these methods. For comparison, we also
include results for k = 2, as detailed in Appendix A.5.
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In addition, we report the classification accuracies obtained for different values
of k in Fig. 2 [Figure 2: see original paper]. The results reveal that (1) the
Ladderpath-compression-based distance NCDIp surpasses NCDgzip on DBpedia
and R52, performs comparably on AGNews, and is outperformed by NCDgzip
only on R8; (2) the Ladderpath-distance LDice and LJaccard achieve the best
performance across all four datasets—except that on R8, NCDgzip remains
similarly strong.

Finally, we also present the results of the bag-of-words approach, as described
in [?]. This method represents a conventional text classification technique that
relies on word occurrence patterns rather than deep contextual understanding
or direct distance-based comparison. Specifically, it follows a three-step pre-
processing pipeline: (1) removing punctuation and replacing it with spaces;
(2) filtering out words below a certain frequency threshold; and (3) converting
all uppercase letters to lowercase. After this transformation, texts are repre-
sented as independent word vectors, which are then used to compute similar-
ities and perform classification. Notably, we observe that this approach also
yields strong performance in classification tasks. However, it is important to
emphasize that its success primarily stems from an inherent form of semantic
segmentation, in which words naturally serve as meaningful semantic units. In
contrast, compression-based and Ladderpath-based methods operate without
incorporating any prior semantic knowledge.

[Figure 2: see original paper]

3.2 For Out-of-Distribution (OOD) Datasets

OOD robustness is a major challenge for modern machine learning systems,
focusing on maintaining reliable performance despite significant differences be-
tween test data and training data. Compression-based and Ladderpath-based
methods offer advantages in this context, as they do not require pre-training.

Experiments were conducted on five OOD datasets, as shown in Table 2 . For
comparison, we use BERT as the baseline, with values reported in the study by
Jiang et al. [?]. The results show that LDice and LJaccard consistently outper-
form NCDgzip, while the performance of NCDIp and NCDgzip is comparable,
with each outperforming the other in approximately half of the cases.

Note that, for the same reasons discussed earlier, the accuracy values reported
in the study by Jiang et al. [?] were slightly inflated [?]. The authors later
acknowledged this issue and provided revised results in follow-up comments on
GitHub [?], from which we have taken the revised values for our comparison.

3.3 Few-Shot Setting

Few-shot classification tasks pose a significant challenge for conventional ma-
chine learning models, particularly when the number of labeled examples per
class is extremely limited or when the label distribution is highly imbalanced.
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While many recent few-shot methods rely on large pre-trained models or meta-
learning frameworks, we explore a fundamentally different direction based on
compression-based and training-free approaches. These methods, including
NCDIlp, LDice, and LJaccard, are naturally suited to low-resource and OOD
scenarios.

To evaluate the effectiveness of different compression-based distance metrics in
such low-resource conditions, we conduct experiments on five OOD datasets us-
ing the 5-shot setting. The results, presented in Table 3 | show that: (1) the
traditional compression-based method NCDgzip outperforms BERT on 3 out
of the 5 datasets and performs comparably to the Ladderpath-based compres-
sion method NCDIp; (2) the distance measures computed directly from Lad-
derpath, namely LDice and LJaccard, significantly outperform both BERT and
NCDgzip. These findings suggest that pre-training-free methods—especially
those based on our Ladderpath approach, which captures the nested and hi-
erarchical relationships among repeated substructures—are better equipped to
extract discriminative features from limited samples.

Beyond OOD tasks, few-shot learning is also applicable to in-distribution scenar-
ios, particularly when aiming for lightweight models or when annotation costs
are high. To further evaluate the scalability and robustness of the proposed
distance measures, we carried out additional experiments under different n-shot
settings (n {5, 10, 50, 100}) on three datasets: AGNews, DBpedia, and So-
gouNews. The results, shown in Fig. 3 [Figure 3: see original paper], indicate
that the Ladderpath-based distances LDice and LJaccard markedly outperform
all other methods across all tested cases. These results complement the OOD
evaluation in Table 3 by illustrating performance trends as the number of labeled
examples increases. We selected these three datasets because their data scales
are sufficiently large to support 100-shot experiments, and they differ in average
text length and language. This diversity enables a more comprehensive evalu-
ation across heterogeneous input conditions while ensuring consistency across
varying few-shot levels.

[Figure 3: see original paper]

4 Discussions

The effectiveness of text classification fundamentally depends on both the qual-
ity of feature extraction and the suitability of the classification model. Deep
learning architectures—such as convolutional neural networks and pre-trained
language models like BERT—have achieved remarkable success by capturing
deep semantic patterns in text. However, these methods typically require large-
scale annotated datasets, substantial computational resources, and often strug-
gle with generalization under domain shift or low-resource conditions.

In contrast, the Ladderpath approach offers a lightweight, training-free alterna-
tive grounded in AIT. By directly identifying repeated substructures and captur-
ing their nested and hierarchical relationships, Ladderpath constructs a struc-
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tural representation that is both compact and informative. These relationships
are then leveraged to define distance measures—either through compression-
based comparison (yielding NCDIp) or via structure-inspired metrics (LDice,
LJaccard)—and combined with a simple k-NN classifier. Our empirical results
demonstrate that these Ladderpath-based distances consistently achieve strong
classification performance, often comparable to deep learning baselines. In par-
ticular, LDice and LJaccard outperform traditional gzip-based NCD in both
OOD and few-shot settings, highlighting the expressiveness and robustness of
the hierarchical structure captured by Ladderpath.

We also compared our method to bag-of-words-based approaches, which typ-
ically involve aggressive preprocessing steps such as lowercasing, punctuation
removal, and filtering of short or infrequent words. These procedures, while not
explicitly semantic, introduce strong linguistic priors that help segment the in-
put into semantically meaningful units. In contrast, Ladderpath retains the raw
sequential order of the text while structurally compressing it based on internal
repetition and recursive reuse. As such, it captures meaningful regularities in
a domain-agnostic and language-independent manner—providing a structural
and interpretable perspective on text compression and similarity.

We believe that Ladderpath offers a broader and more general perspective on se-
quence modeling. As a structural representation technique, it holds promise as
a tokenization strategy that preserves nested relationships, potentially serving
as a preprocessing module for downstream neural models. The core principles of
Ladderpath—recursive structure reuse and information-theoretic minimality—
align with emerging interests in information bottlenecks and compression within
neural systems, further underscoring the relevance of compression-based learn-
ing paradigms [?, 7, ?]. Its interpretability and independence from labeled data
make it particularly suited for transparent or low-resource NLP applications.

Looking forward, Ladderpath could be extended to a variety of natural lan-
guage processing tasks, including structure-preserving tokenization, semantic
similarity estimation, document retrieval, and anomaly detection. Such direc-
tions would not only broaden its utility but also deepen our understanding of
how structural compression can inform and enhance sequence-level language
processing.
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Appendix
A.1 Implementation of Ladderpath-based Compressor
[FIGURE:S1]

Still taking the string “ABCDBCDBCDCDEFEF” as an example (Fig. la in
the main text), after processing with the Ladderpath approach, we obtain three
ladderons as Fig. S1 shows. The original string is essentially composed of basic
building blocks and these ladderons.

At the operational level, we can compute it using the code we provide as follows:
import ladderpath as 1lp
import ladderpath_{tools}.compress as lp_c

X = ['ABCDBCDBCDCDEFEF ']
lpjson = lp.get_{ladderpath}(X)
compressed_{list} = lp_c.compress(lpjson, SEP='Q')

# The result 1s:
# compressed_{list} = [1, '@', 'A', 2, 2, 2, 1, 0, O, '@', 'EF', '@', 'CD’',
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The result is not exactly the same as the one shown in the original text, z =
(1; A,0,0,0,1,2,2; B,1; C,D; E,F), but they correspond one-to-one. Let’s now
explain the structure of the above ‘compressed_ {list}’: ‘Q’ serves as a delimiter
to separate different sequences and ladderons. The first element, ‘1’, indicates
that the target sequence contains only one string. The subsequent elements
describe the reconstruction process of the original string, where “ ‘A’ 2, 2, 2,
1, 0, 0” means that the basic building block ‘A’ is first combined with element
2 (explained below), then again with element 2, followed in turn by element 2,
element 1, element 0, and element 0, until the full string is recovered. Next, three
‘@’ symbols separate three elements. The first pair ‘Q’, ‘EF’, designates element
0, meaning element 0 is created by combining the basic building blocks ‘E’ and
‘F’. The second pair, ‘@Q’, ‘CD’, designates element 1, formed by combining the
basic building blocks ‘C’ and ‘D’. The third group, ‘Q’, ‘B’; 1, designates element
2, which is constructed from the basic building block ‘B’ and element 1. Note
that the IDs shown in the ‘compressed_ {list}” can differ from those assigned by
the Ladderpath algorithm itself, owing to implementation details.

This design is primarily motivated by operational considerations, making sub-
sequent processing more convenient. For instance, the inclusion of explicit sep-
arators (such as ‘Q’) in the compressed list facilitates structural parsing and
reconstruction. Moreover, this list can be directly used as input for entropy en-
coding methods—such as Huffman coding—to achieve further compression and
efficient storage.

A.2 Normal Compressor

Firstly, we recap the concept of , which we need later. In the Ladderpath
approach, there are three primary indices for measuring a system:

o Ladderpath-index (\): The length of the shortest ladderpath for a
target.

o Size-index (S): The length of the shortest trivial ladderpath for an ob-
ject.

e Order-index (w): Defined as w(x) := S(x) - A(x), this means that the
work has been saved from combining blocks when constructing the target.

Based on these definitions, is calculated by the following formula:

w(x) — wy(S)
wmax(‘g) - wO(S)

where w(S) represents the average Order-index of all possible sequences of
length S, and w (S) represents the maximum Order-index among all sequences
of length S. Through this formula, quantifies the degree of orderliness of a
sequence, reflecting the structural characteristics of the system at a specific
length S (details can be found in [?]).
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A compressor that can satisfy these four properties with an error range of log(n)
is called a “Normal Compressor” [?]:

o Idempotency: C(xx) = C(x), and C(A) = 0 when A = .
e Monotonicity: C(xy) > C(x).

o Symmetry: C(xy) = C(yx).

o Distributivity: C(xy) + C(z) < C(xz) + C(yz).

For Idempotency, with x = ABCDEFBCD, C(x) = A -1 =6, and C(xx) = A
- 2 = 6. Combined with the reuse principle of Ladderpath, it is clear that after
constructing the subsequence x, it can be reused infinitely many times without
consuming additional resources. In the process of combining xx, we need to
take out the sequence x twice, and this operation has nothing to do with the
compression process, so we have C(xx) = A - 2.

For Monotonicity, it is clear that Idempotency is satisfied when y = 0 or y = x
in the presence of C(xy) = C(x). We focus on the cases y # 0 as well as y # x.
We can start by going through the construction steps and reuse principles of the
Ladderpath. The construction of the string xy must contain the steps necessary
to construct x; thus, its cost is at least equal to the cost of constructing x.
Specifically, the minimum number of steps to construct xy: A > A, and the
savings from reuse do not affect this inequality, so we can know that C(xy) >
C(x). Even if y introduces a new structure, its steps do not reduce the overhead
of the x part, thus ensuring that Monotonicity holds.

Symmetry is the same as Idempotency. The Ladderpath compressor tends to
generate x and y first when compressing objects xy and yx, so the difference
between generating xy and yx is whether to take out x or y first, which is only
the last step, and the resources for compressing x and y in the previous step are
unchanged.

For Distributivity, there is a stronger distributive law C(xyz) + C(z) < C(xz)
+ C(yz), and here we continue the idea of NCD and use a slightly weaker dis-
tributive law for verification (subsequently referred to as “weak”). Firstly, it
should be noted that in the experimental design, in order to encompass as much
as possible the various possibilities from purely random sequences to fully ho-
mogeneous sequences and to eliminate the influence of the number of repeated
substructures within the sequence on the compression efficiency, we chose =
[0, 0.1, 0.2, ..., 0.95], each containing 100 strings. In Table S1, we compare the
different compressors that do not satisfy the distributivity for each data group
under the strong and weak constraints, respectively.

Table S1: Counts of violations under different values for various compression
methods.

Across different values, nearly all compression methods satisfy the weakly re-
laxed distributivity of Kolmogorov complexity within the acceptable margin
of error. Ladderpath demonstrates relatively greater stability, with only two
string sequences failing to meet the weak distributivity. In contrast, gzip ex-
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hibits three violations, while Zstandard performs the worst, with eight sequences
not conforming to the property. Under the strong constraints of Kolmogorov
complexity, Ladderpath’s anomalous values remain in an intermediate state.
Gzip shows the poorest performance, particularly when compressing disordered
sequences with smaller values, where a substantial number of instances fail to
satisfy the strong distributivity. Regardless of the chosen -value, LZ77 consis-
tently achieves the best performance.

[FIGURE:S3]

To be more comprehensive, we conducted additional tests to examine the sat-
isfaction of “strong” distributivity—the most challenging property to satisfy—
namely, C(xy) + C(z) < C(xz) + C(yz), as shown in Fig. S3. The results
show that none of the tested compression algorithms can strictly satisfy the
strong distributivity, with gzip and bzip2 showing significant outliers and large
deviations. Ladderpath-based compressor almost completely satisfies the strong
distributivity for small (e.g., less than 0.4). It almost always satisfies the strong
distributivity, while typically, natural language texts have an ordering rate in
this range. For strong distributivity, the better the satisfaction, the more ef-
fective their discriminative distances are. In summary, the Ladderpath-based
compressor shows good properties compared to some other compressors, and
outperforms traditional compressors such as gzip and Zstandard.

A.3 Data Preprocessing

In this study, we utilized the dataset provided in work by Jiang et al. [?]. To
ensure high data quality and reliable experimental results, we implemented a
thorough cleaning and screening process. First, we focused on eliminating dupli-
cates to retain only unique records, which is crucial for maintaining the integrity
of our dataset. Following that, we removed any data entries deemed contami-
nated to ensure that the remaining dataset was pure and unaffected by noise.
While this cleaning process reduced the overall amount of data, it significantly
enhanced the accuracy and robustness of our experimental outcomes.

Moreover, we adjusted the data volume of each dataset based on both quality
and our computational resources. In cases where the datasets were extensive
(as illustrated in Table S2), we opted to select approximately 10% of the subset
for our experiments. This decision was driven by the need to manage the com-
putational overhead associated with the lengthy original data sequences and
our limited processing power. By adopting this strategy, we were able to ef-
fectively control computational costs while maintaining the representativeness
of the data, facilitating the successful execution of our experiments under con-
strained computing conditions.

Table S2: Original data volume and data volume used in our experiments.

Since the dataset is characterized by a large amount of data and long single text,
we truncate the text to split the long text into shorter segments, for the sake of
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speed. The experimental results show that there is no significant difference in the
compression effect between the truncated sequence and the original sequence,
but the Ladderpath compression efficiency is greatly improved. Therefore, this
method of truncation followed by aggregate compression is feasible and will not
have much impact on the final experimental results.

In the Ladderpath method, the entire sequence is traversed to find the longest
repeating subsequence. As the length of the sequence increases, the probabil-
ity of multiple longer duplicates decreases. The time and space complexity of
traversing the sequence to find duplicates increases exponentially. Based on
this, we try to truncate the text, truncate the original long text into shorter
segments 1 to 50 times, and repeat the Ladderpath compression for each trun-
cated segment. The vertical axis of the graph shows the average value of the
difference in length between each compression compared to the original text;
takes the values of [0, 0.1, 0.2, ..., 0.95], each value of corresponds to 10 strings,
and the horizontal axis indicates the number of text cuts.

Combined with the results in Fig. S4, the following conclusions can be drawn:

o Low : When is small (0-0.2), the overall mean difference fluctuates

significantly with the number of truncations. It is hypothesized that when

is small, there are only a limited number of repeated fragments available.

The truncation operation may further disrupt the redundant repetitions

that could be utilized by Ladderpath, leading to a significant response in
the truncated compression difference.

e Medium : When takes a moderate value (0.4-0.7), the results indi-
cate that most of the difference magnitude is at a medium level. This
suggests that within this range of , the repetitiveness and randomness of
text sequences are relatively balanced. An increase in the number of trun-
cations does not result in extreme variations in compression performance;
in some cases, a well-designed segmentation strategy may even moderately
improve compression efficiency.

« High (close to 1.0): When the value is high, the text is more struc-
tured with a greater number of repeated subsequences. In this case, seg-
mentation does not significantly enhance or degrade the compression per-
formance of Ladderpath.

The above results show that for a text sequence of about 1000 lengths in this
experiment, the split has a small effect on the compressed length. The average
difference between splits and original sequences is mostly in the range of -2 to 0.5,
which is negligible. Sequences with different values have different sensitivities
to truncation; the larger the value and the more organized the sequence, the
weaker the effect of truncation on the compression effect. In any case, we can
see that the truncation of text does not significantly change the compression
result, thus verifying the feasibility of reducing the complexity of the algorithm
by cutting the sequence.

[FIGURE:S4]
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A.4 Tie-Breaking Details in k-NIN

k-NN is a widely used algorithm for classification tasks due to its intuitive
approach. The fundamental idea is to classify a sample by identifying the near-
est k neighbors in the training set. Based on the distribution of categories
among these neighbors, the sample’s category is determined through voting or
a weighted decision. However, challenges arise when there is a tie in the votes
among the k neighbors.

There are various strategies for dealing with this problem: (1) Random: The
label of a randomly selected neighbor in the flat ticket category is assigned to
the sample to be classified; (2) Nearest: Among the neighbors of the tie-ballot,
rank them according to their distance from the sample to be classified and assign
the label of the nearest neighbor to that sample.

After resolving the tie vote, researchers usually evaluate classification accuracy
by comparing predicted labels with true labels. In the context of the study
conducted by Jiang et al. [?] (k = 2), it did not use Random or Nearest methods
when facing a tie. Instead, it directly analyzes the labels of the two neighbors
to provide results on classification accuracy. Their strategies for interpreting tie
votes are:

¢ Optimistic: Under this strategy, the prediction is considered correct if
at least one of the two neighbors’ categories matches the true category
during a tie scenario.

e Pessimistic: This approach demands that both neighbors must agree
with the true category for the prediction to be deemed correct when a tie
occurs.

Table S3 and Table S4 present the outputs from the two decision-making
strategies when k = 2, with W representing wrong classifications and C repre-
senting correct classifications. The results indicate that the Optimistic strategy
achieves a correctness rate of 3/4, while the Pessimistic strategy yields a signifi-
cantly lower correctness rate of only 1/4. Although the original article mentions
a Random method, it was not practically used. This is likely due to the fact
that with k = 2, the Random choice can result in a 50% error probability, which
does not meaningfully enhance performance.

Ultimately, the authors in [?] opted for the optimistic strategy, which con-
tributed to the relatively high accuracy of their results (albeit slightly unrealis-
tically high). In this study, we have chosen to implement the Nearest method
for resolving the tie vote problem, which provides a fairer comparison.

Table S5 gives the comparison results on multiple datasets using Nearest and
Optimistic strategies. The difference in performance of Nearest over Optimistic
with k = 2 is clearly visible, which is why the data in the original article is
inflated.

Table S5: Performance comparison of different decision-making methods under
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k =2.

A.5 In-Distribution Case with k = 2, and Result Interpretation

Table S6: Comparison of text classification accuracy across various methods
and datasets with k = 2.

It should be noted that some results reported by Jiang et al. appear to be on the
higher side. This is attributed to the fact that, as described in Appendix A .4,
the k-NN classification in their study consistently adopts the most optimistic
scenario. Jiang et al. have subsequently acknowledged this issue. Although they
have updated certain results on their GitHub repository, the data in Table 1
of their original paper remain unaltered. Consequently, the NCDgzip values
presented here are derived from our own experiments, with k = 2.

In Fig. 1, we observe a high degree of similarity in classification accuracy
between the Ldice and Ljaccard. This phenomenon can be explained through
the following analysis: We further examined the distance matrix comparisons
between the single text and several other texts within the AGNews dataset, as
illustrated in Table S7. The results indicate that for the same text pairs, the
distance values calculated by the Ldice and Ljaccard methods are extremely
close.

Such minimal differences in distance values have a negligible impact on the final
classification accuracy when using the k-NN classification method. Therefore,
despite theoretical differences between the two distance measures, they exhibit a
high degree of consistency in measuring text similarity in practical applications,
which in turn leads to the observed similarity in classification accuracy.

Table S7: Distances between the same train text and other test texts in AG-
News dataset under two different distance measures.

A.6 Out-of-Distribution Case with k = 2

Table S8: Comparison of text classification accuracy across various methods
and various OOD datasets with k = 2.

A.7 Out-of-Distribution Case in Few-Shot Setting with k = 2

Table S9: Comparison of text classification accuracy across various methods
on OOD datasets in the 5-shot setting using different methods with k = 2.

Note: Figure translations are in progress. See original paper for figures.

Source: ChinaXiv — Machine translation. Verify with original.
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