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Abstract

Vehicle insurance pricing, as one of the core issues in actuarial science, impacts
the profitability and capital liquidity of insurance companies. This literature
review briefly elaborates on the development of motor insurance across different
regions and discusses historical research related to motor insurance ratemaking
systems, special motor insurance pricing, No-Claim Discount bonus-malus the-
ory, and reserve evaluation methods. Taking statistical distributions and model
structures as entry points, this review analyzes the specific operational logic of
models and concentrates on discussing literature that establishes pricing frame-
works and reserve evaluations using the Tweedie distribution family for index
insurance pricing models, Generalized Additive Models and LocalGLMnet mod-
eling methods, and most methods based on frequentist and Bayesian schools.
To demonstrate the application effects of risk modeling concepts on real-world
business, this article also includes relevant literature on Bonus-Malus Systems,
GAM reserve evaluation models, etc., exploring a construction method for risk
dynamic adjustment mechanisms in vehicle insurance based on these. Regarding
reserve research, it includes literature on evaluation methods under homogeneity
and heterogeneity assumptions, specifically divided into two categories: using
traditional methods such as the chain-ladder method for predictive modeling
of aggregate accident claim data, and using machine learning technology to im-
prove models based on existing algorithmic models for predictive modeling of
individual accident claim data. In addition to general motor insurance, weather
index insurance is also studied and discussed, and by utilizing remote sensing
data and ground observation data to establish multi-dimensional input methods,
the model’s ability to identify extreme weather events is enhanced. Empirical
findings indicate that the model performs well in terms of claim payment stabil-
ity and regional risk differences. Based on the data level, this literature review
selects real vehicle insurance and weather insurance claim payment data as case
studies, and sets up control groups for different modeling approaches to analyze
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and evaluate the similarities and differences in predictive performance. This ar-
ticle focuses on constructing a replicable and generalizable insurance modeling
methodology in the property insurance field, comprehensively considering reg-
ulatory, data modeling, and other factors to enhance the quantitative pricing
capabilities of property insurance companies, thereby promoting the property
insurance industry to gain new practical experience and theoretical foundations
in digital transformation, pricing actuarial science, and other aspects.
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further specify comparison dimensions across models to emphasize the advan-
tages of innovative methods such as Local GAMnet. Additionally, combine busi-
ness realities to reinforce analysis of interpretability and applicability, thereby
enhancing research completeness.
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Chapter 2: Research Background and Significance
2.1.1 Research Background on Auto Insurance Pricing

Auto insurance is specifically designed to cover a series of risks or predictable
accidents that may occur during vehicle operation. It is a commercial insurance
product that assumes compensation liability related to automotive mobile equip-
ment, typically including vehicle damage insurance (property damage coverage)
or third-party liability insurance.

In current practice, auto insurance primarily utilizes Generalized Linear Mod-
els (GLM) [?]. GLM consists of three major components: random component,
systematic component, and link function. Specifically, the dependent variable
Y is assumed to follow the exponential family of distributions, and explanatory
variables X influence the response variable through a linear predictor. Since
Y may not be normally distributed, directly modeling E(Y) might be inappro-
priate, hence a link function g( ) is introduced: g(E[Y]) = . By selecting an
appropriate link function, the relationship between g(E[Y]) and X becomes lin-
ear. GLM assumes error terms follow the exponential family, such as Bernoulli,
binomial, Poisson, gamma distributions, etc., greatly expanding the applicable
data range [?].

However, since nonlinear relationships between certain features and claim
amounts are more realistic and acceptable, theoretically Generalized Additive
Models (GAM) [?, ?] should replace GLM. GAM is an extension of GLM
that allows mnonlinear relationships between independent and dependent
variables. The difference between GAM and GLM lies in that GAM relates
the expected value E[Y] of the dependent variable to independent variables
through smoothing functions rather than purely linear combinations. These
smoothing functions can be splines or local weighted regression functions.

In reality, even when insurers consider most factors affecting claims, each policy
and claim still implies different influencing conditions not captured by the model.
These unconsidered conditions affect final claim amounts positively or negatively
to varying degrees. To incorporate these effects into ratemaking, research has
emerged on using Generalized Linear Mixed Models (GLMM) and Generalized
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Additive Mixed Models (GAMM) for auto insurance pricing. In a sense, GLMM
[?, 7] and GAMM [?] can be viewed as GLM and GAM models that incorporate
random effects.

In the auto insurance field, both model selection and actuarial choice of loss
distributions represent processes of gradual optimization forming industry con-
sensus, then continuing to develop based on new theories. Two elements de-
termine loss magnitude: loss frequency (number of claims) and loss severity
(claim amount). Common theoretical distributions for loss frequency include
Poisson, binomial, and negative binomial distributions. Common theoretical dis-
tributions for loss severity include log-normal, gamma distributions, and other
right-skewed distributions such as log-gamma, Weibull distributions, as well as
derived continuous distributions with more parameters like transformed gamma
and transformed beta distributions [?]. In auto insurance, the Tweedie distribu-
tion is generally assumed as the practical distribution.

A potential problem exists: even when data fitting achieves ideal assumptions
meeting actuarial standards, it remains insufficient because individual behav-
ior consistently influences claims. This led actuaries to propose usage-based
insurance (UBI), known as UBI auto insurance in this context. For example,
Progressive Property Insurance Company provides UBI Snapshot service, re-
quiring vehicle owners to install OBD devices so insurers can obtain driving
data to calculate snapshot scores and determine premium discounts. Different
states have different programs, but owners must provide at least 75 consecutive
days of driving data. Features such as age, gender, driving experience, vehi-
cle brand, vehicle usage period, and vehicle price are typically considered in
UBI auto insurance, with telematics data being particularly important—daily
average distance, for instance, is derived from widely used raw telematics data.
To handle the dynamic data required by UBI auto insurance, neural networks,
particularly Feed-Forward Networks (FFN), can automatically learn complex
patterns in data and improve prediction accuracy [?].

Regarding model optimization methods in auto insurance, common algorithms
include LASSO [?], XGBoost [?], and Light GBM [?]. XGBoost is an ensemble
learning algorithm that can also perform feature selection, but it is less direct
than LASSO for this purpose. Due to its use of decision trees, its computa-
tional complexity is much higher than LASSO, while LASSO is essentially a
penalization algorithm typically built on linear models. From the perspective
of auto insurance modeling, Light GBM’s optimization efficiency is higher than
XGBoost’s.

2.1.2 Research Background on Weather Index Insurance

Weather index insurance, as the name suggests, is a non-traditional pricing
model based on weather factors. Multiple studies have shown that precipita-
tion and extreme temperatures affect driver behavior and vehicle mobility [?].
For example, adverse weather reduces free-flow speed, increases headway dis-
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tance, and road surface friction coefficients affect vehicle handling. Basagana
X. et al. [?] used Poisson regression models controlling for rainfall, day of week,
month, year, holidays, and other variables, finding that total vehicle accidents
increased significantly by 2.9% during heatwave periods. Moreover, for every
1°C increase in maximum temperature, the risk of driver performance-related
accidents increased by 1.1%. During vehicle operation, drivers primarily face
fatigue driving and improper behavior (including speeding, road rage, sudden
braking, etc.). Noelke et al. [?] studied 1.9 million Americans, finding that hot
weather conditions more easily lead to irritability, nervousness, and other neg-
ative emotions and high-fatigue mental states compared to normal conditions.
Makowiec-Dabrowska T et al. [?] further used fatigue assessment questionnaires
to find that “difficulty in decision-making” correlates with temperature. That
is, higher temperatures make it more difficult for people to make correct judg-
ments, which is dangerous for driving.

Zhai Xiaoqi et al. [?] integrated high-resolution weather and accident data
through geographic information systems, finding that high temperature and rain-
fall significantly increase the risk of severe injury or death, and that improper
behavior by pedestrians and drivers has greater impact under adverse weather
conditions, demonstrating the importance of introducing real-time weather data.
Commonly considered weather attributes include visibility and precipitation [?],
while increased rainfall frequency and intensity correlate with poor visibility and
low road friction, thereby increasing accident risk [?, 7, ?].

Like most traditional property insurance types, auto insurance is subject to
information asymmetry, leading to moral hazard and adverse selection problems.
For vehicles, insurers can only dispatch survey personnel to accident sites after
claims investigation, increasing company costs and potentially enabling fraud.
In contrast, weather index insurance uses “objective weather indicators” as the
basis for claims settlement, which in a sense eliminates the need to consider
moral hazard or adverse selection because compensation standards are based
on clearly defined and pre-published weather data, making insurance contracts
and business procedures simple.

2.1.3 Research Background on Insurance Risk Response Mechanisms

In addition to traditional models, auto insurance pricing can also employ Kappa-
N models and Bonus-Malus System (BMS) to address adverse selection and
moral hazard arising from renewal issues. The Kappa-N model is a generaliza-
tion of count distributions that incorporates claim scores considering historical
claims experience data, adding two covariates to the base formula [?]. How-
ever, since the Kappa-N model under penalty discounts does not consider ac-
tual penalty severity, it leads to excessive premium increases or decreases in the
model. The BMS model is similar to the Kappa-N model but includes minimum
and maximum value requirements. Here, BMS operates like a tiered system with
limited levels, assigning relative proportions to each tier size. Policyholders gen-
erally move down tiers if no claims occur during the contract period; filing a
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claim moves them to a certain tier.

Future research will no longer simply interpret the parameter as a claim score
but directly define it as BMS level. The primary risk response mechanism in the
insurance industry is the reserve assessment mechanism [?]. Verrall [?] theoret-
ically demonstrated that traditional reserve assessment methods (including the
B-F method and GLM) are essentially equivalent in substance, providing a new
interpretation of traditional methods. Mario V. W. [?] used regression trees to
evaluate and predict individual reserves, showing that decision tree model struc-
tures can more accurately capture complex nonlinear relationships. Gabrielli
et al. [?] cross-classified traditional chain ladder models to obtain feed-forward
neural network structures with skip connections, demonstrating excellent fitting
performance.

2.2.1 Impact of Pan-Generalized Nonlinear Framework on Loss Pre-
diction

The high robustness and interpretability of Generalized Linear Models have
led to their widespread acceptance, but they still have limitations when facing
nonlinear problems and high-dimensional data issues. Using nonlinear struc-
tures becomes essential. Auto insurance loss prediction models under the pan-
generalized nonlinear framework mainly include pricing models and reserve pre-
diction models.

The rapid development of connected vehicles, ADAS, OBD, and remote infor-
mation systems in recent years has enabled insurers to obtain large amounts
of real-time driving behavior data (e.g., acceleration, mileage) in real time, en-
abling precise pricing that traditional pricing models cannot achieve. Ronald et
al. [?] proposed LocalGLMnet, a model combining GLM interpretability with
strong nonlinear modeling capabilities, enhancing real-world alignment by us-
ing neural networks for nonlinear modeling on top of a linear main architecture.
However, pure neural networks cannot fully restore the nonlinear predictive ca-
pability after linear processing within the main architecture, necessitating GAM
as a supplement—a model that can completely restore nonlinear processing on
a nonlinear main architecture.

The pan-generalized nonlinear framework is a framework for modeling multi-
stage, multi-source nonlinear information, possessing unified processing capa-
bilities for data across all stages of the policy lifecycle (including pricing and
reserve assessment stages). Compared with traditional linear models, the pan-
generalized nonlinear framework breaks through linear assumptions by integrat-
ing static and dynamic data under a unified framework to analyze intrinsic
relationships between input and output variables. It then uses a unified pattern
to comprehensively represent multi-source information such as driver informa-
tion, vehicle information, driving behavior characteristics, and historical claims
information, improving risk characterization for auto insurance and thereby en-
hancing risk Zzl@7kF for high-order insurance products. It can better handle low
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prediction accuracy issues caused by heterogeneity, providing feasible theoreti-
cal support for further improving the adaptability of auto insurance risk control
systems.

The dual-model insurance system under this framework refers to a pricing mode
that sequentially applies two different models meeting discrimination and fair-
ness requirements (a basic model with few features and a precise model with
many features). For example, a dual-model system composed of LocalGLMnet
and LocalGAMnet models can also have its pricing model and reserve model
serve as two subsystems to solve problems of traditional insurance models lack-
ing interactivity, feedback, and inability to reflect the entire risk development
process. By comprehensively updating traditional auto insurance pricing mod-
els through LocalGLMnet, BMS system, and GAM, among other methods, the
model better captures more complex and realistic nonlinear features in auto
insurance business while maintaining interpretability and stability, with notice-
ably improved regression prediction results. By adding optimization algorithms
such as LightGBM to mitigate overfitting in claims prediction, the dual-model
system can also improve overall modeling effectiveness and generalization capa-
bility to some extent.

Regarding reserve prediction, the chain ladder method, Bornhuetter-Ferguson
method, and Mack model remain mainstream due to their stability and strong in-
terpretability. However, because classical methods assume stable claims behav-
ior, they cannot well capture changing characteristics during the claims process.
Methods based on homogeneity assumptions also struggle to reflect individual
risks in overall reserve estimates, and reserve estimates for certain high-risk niche
markets may show deviations. For example, luxury sedans, high-performance
sports cars, bulletproof vehicles, and imported new energy vehicle models have
significantly different average claim amounts and claim types compared to fam-
ily vehicles. Continuing to use aggregated models from the same broad category
for reserve calculation would underestimate cumulative risk, leading to insuffi-
cient reserves or unidentified risk exposure, potentially causing solvency crises.
The pan-generalized nonlinear dual-model system can accommodate such differ-
ences, embedding heterogeneity within the model structure to enable different
dynamic trajectories for claims development processes across different vehicles
and populations.

In terms of modeling technology, the pan-generalized nonlinear framework em-
phasizes model extensibility and composability, allowing selection of different
model types based on business needs. For example, GAM can be used to model
main effects at the pricing end, while local neural networks describe nonlinear
interactions among certain variables. At the reserve end, mixed models can
be introduced for dynamic modeling of payment timing and amounts. Using a
dual-model system enables companies to more accurately predict risks and im-
plement risk interventions, allowing insurers to timely grasp and defend against
risk occurrence. Moreover, it can model pricing and reserves at the model level
while connecting pricing and reserve modeling to establish a closed-loop mech-
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anism for risk assessment and capital allocation, optimizing insurance product
risk structure and enhancing insurers’ risk control capabilities and resistance to
tail risks.

2.2.2 Impact of Weather Index Insurance on Insurance Companies
Under Pan-Generalized Nonlinear Framework

If insurance companies do not systematically integrate ESG factors into all as-
pects of claims management and operations, they will likely be excluded from
major ESG investment standards (including but not limited to various funds
and indices) in the future, losing capital market recognition. Moreover, in
terms of climate change response, property and casualty insurers face more di-
verse climate-related risks and opportunities and should establish sound climate-
resilient business structures and climate risk assessment models early on [?, ?].

Currently, climate risks are mainly divided into two categories: physical risk and
transition risk. In actuarial practice, the primary focus is on physical risk—the
direct or indirect impact on insured objects and their related assets and liabilities
caused by climate change itself or extreme events triggered by climate change,
such as increased frequency and severity of catastrophic events like hurricanes,
floods, and wildfires leading to significantly increased claims. Additionally, the
impact of weather factors on auto insurance should be fully considered.

Precipitation events reaching weather index insurance thresholds have adverse
effects on large vehicle populations, leading to high maintenance costs and traffic
disruptions. [TABLE:A1]

Given that vehicle driving risks must consider not only direct impacts from ex-
treme weather but also indirect risks such as large-area vehicle damage, high
maintenance costs, and traffic disruptions, precipitation events exceeding thresh-
old values in certain regions will cause accidents affecting large areas, bringing
certain risks to insurers’ loss calculations. Vehicle driving risk levels do not de-
pend solely on direct damage from climate risks; related indirect impacts must
also be emphasized. Specifically: drivers’ inability to maintain good vehicle
control due to high temperatures leads to various traffic violations; air quality
problems triggered by meteorological changes reduce road visibility, increasing
traffic mortality rates; frequent extreme weather events like heavy rain intensify
risks of vehicle engine failure, potentially causing personal injury or unforeseen
claim events. Without adequate ESG knowledge reserves and risk awareness, in-
surance companies may fail to identify high-risk exposure customers, negatively
impacting overall competitiveness [?]. Auto insurance can also learn from agri-
cultural insurance experience by introducing relevant weather indicators into
the auto insurance system to enhance companies’ ability to respond to ESG-
related risks and ensure business resilience after disasters [?]. As an important
component of property insurance, vehicle insurance must also integrate ESG
strategic thinking to promote green transformation of business.
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Chapter 3: Main Content and Basic Arguments

3.1 Auto Insurance Ratemaking Process Under Pan-Generalized Non-
linear Framework (Including Special Auto Insurance)

As mentioned above, this paper primarily studies the role of pan-generalized
nonlinear methods in auto insurance ratemaking (including special auto insur-
ance). With increasing data dimensions, complex data types, and external en-
vironmental impacts (mainly weather factors), single modeling approaches can
hardly meet both accuracy and risk identification requirements simultaneously,
making pan-generalized nonlinear modeling more suitable. Weather index auto
insurance, as a new type of vehicle and insurance product, makes models more
flexible.

In reality, vehicle insurance data naturally exhibit grouping characteristics, such
as insurance agency affiliation, geographic scope of insured vehicles, and vehicle
brand or model categories. In weather index auto insurance, hierarchical models
can be constructed to combine meteorological exposure and accident risk across
different geographic divisions, using weather indicators like rainfall and visibility
as primary metrics with a city-level structure to better highlight how weather
risk characteristics affect vehicle accident probability.

One typical fusion method is Local GLMnet, which uses the interpretability of
Generalized Linear Models and neural networks to fit more complex relation-
ships between variables. Another fusion method combines Generalized Additive
Models (GAM) with LocalGLMnet, specifically using GAM to model variable
effects for each smoothed single-variable effect while possessing local regression
and feed-forward neural network characteristics. This GAM approach enables
independent modeling of main effect variables through smoothing functions,
ensuring model interpretability of main effects while better fitting complex non-
linear relationships.

Traditional weather index insurance based on thresholds primarily covers situ-
ations where rainfall exceeds 50mm for compensation. Under pan-generalized
nonlinear conditions, spline functions enable nonlinear representation of the
impact of weather factors like temperature and precipitation on events, obtain-
ing response functions corresponding to extreme weather accidents. Beyond
requiring stability and fairness in index trigger mechanisms, weather index auto
insurance pricing must address the greatest difficulty—the basis risk between
compensation and actual loss—requiring models with uncertainty evaluation
methods, using confidence interval estimation to assess uncertainty levels of
compensation.

In insurance purchase decisions, consumers may exhibit clear risk aversion, and
because risk and risk aversion are correlated (i.e., low-risk individuals are also
more risk-averse), low-risk policyholders tend to purchase more insurance. Pro-
fessor Shi Peng et al. [?] inferred that for the same reason, high-risk policyholders
have lower risk aversion and may even be risk-seeking individuals, making them

chinarxiv.org/items/chinaxiv-202506.00059 Machine Translation


https://chinarxiv.org/items/chinaxiv-202506.00059

ChinaRxiv [f)]

less likely to purchase insurance, potentially not buying at all. This mechanism
may lead to a negative correlation between risk and insurance coverage, known
as “advantageous selection.” To avoid this outcome from a pricing perspective—
ensuring high-risk policyholders purchase products with less coverage or higher
prices while low-risk policyholders purchase products with more coverage or bet-
ter prices—pricing model differentiation becomes necessary, forming part of the
theoretical foundation for the dual-model system.

Most scholars point out that the main factors influencing consumer auto insur-
ance purchasing behavior are consumers’ personality characteristics and demo-
graphic features [?], which provides important value for insurance companies
designing insurance products and marketing strategies. Current compulsory
traffic accident liability insurance only provides basic protection for driver and
passenger life safety, making it difficult to cover complex and diverse real-world
situations or meet consumer protection needs. Therefore, in the transition from
traditional to modern risk society, promoting the “dual-model system” to the
auto insurance market is a necessary response to demand.

At this stage, the “TC pricing method” or “anchor pricing method” is adopted,
setting three (or more) price point options for users (which should be ordered)
to guide rational choices within a certain range. The middle price point is set
as traditional premium for non-dual-model system users, determined by histor-
ical averages calculated using GLM pricing methods. The lowest price point
takes the basic premium of the “dual-model system,” i.e., the so-called “quasi-
traditional premium” with smaller coverage scope. The highest price point is
the comprehensive premium of the “dual-model system,” i.e., the “advanced pre-
mium” with larger coverage scope. Other specific measures include providing
insurance liability discounts, premium discounts, and more convenient and effi-
cient claims services for new energy vehicles, low-carbon travel, and high-level
autonomous driving vehicles. Conversely, for vehicle models with inherently
high accident rates or high carbon emission intensity, premiums should be in-
creased, using premium adjustments and dynamic risk assessment for feedback.

3.2 Post-Pricing Risk Response Mechanism for Auto Insurance Under
Pan-Generalized Nonlinear Framework

Although insurance companies conduct auto insurance pricing based on rich
historical data and actuarial models, future uncertainties mean insurers still
face various risk challenges in subsequent operations.

Due to the potential high claim frequency characteristics of auto insurance in
the short term, insurers need to consider increasing premiums for multiple-claim
users. For such problems, Boucher et al. [?] adopted Kappa-N models and
Bonus-Malus Scale (BMS) models. The commonality between these two mod-
els is directly embedding historical claim payment functions for this insurance
type into the mean parameter of count distributions, with claim rates gradually
decreasing when no claims occur and gradually increasing when claims appear.
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Under pan-generalized nonlinear assumptions, letting the mean parameter have
both linear and nonlinear logarithmic link function components with covariates
yields expected premiums under three indicator variables: claim frequency, per-
claim amount, and total claim amount (including intercept terms).

Formulas A3, A4, and A5 mainly differ in that function f( - ) has different mean-
ings, with only the specific meanings of independent and dependent variables
being the same. As an auxiliary risk avoidance tool, the BMS system can be
applied not only to auto insurance systems but also to other property insur-
ance as one of the risk mitigation means to protect low-risk users’ interests and
maintain high-risk user thresholds.

Most existing auto insurance pricing models primarily consider general claim
frequency and payment amounts but often lack methods to judge and resolve
extreme risk points (such as major traffic accidents, chain collisions, or concen-
trated claims for certain models). Huge losses under extremely low probability,
despite low occurrence frequency, have severe impacts. Failure to consider these
factors in reserves may lead to decreased insurer solvency, affecting financial sta-
bility and industry confidence.

Key post-pricing risks for auto insurance include: First, claim payment uncer-
tainty. Accidents are sudden and 18#14, with probabilities potentially increasing
sharply due to extreme weather conditions, major human-caused traffic acci-
dents, etc., causing concentrated claim peaks in long-term business. For exam-
ple, during year-end closing periods, numerous cases from such accidents may
lead to insufficient survey and loss assessment capacity. Second, for some major
accident auto insurance, tail risk exists where some large claims may require
long-term pursuit for final determination, with compensation accumulating on
the loss ratio from accident occurrence until claim settlement, resulting in higher
payments after litigation concludes.

To prevent post-pricing risks, insurers generally establish reserves. Auto insur-
ance actuarial work mainly studies outstanding claim reserves, requiring insurers
to estimate future payment amounts based on available information for future
disbursements. The two most important reserves are: Incurred But Not Re-
ported (IBNR) reserves, which cover liabilities that have occurred but have not
yet been noticed or reported by the insured; and catastrophe reserves, which ad-
dress large claim phenomena caused by natural disasters, malignant accidents,
large-scale traffic jams, or chain accidents. Such events have low occurrence
probability but cause severe consequences, significantly impacting normal oper-
ations and solvency. Insurers generally extract a certain amount from collected
premiums for catastrophe reserves and purchase reinsurance to prepare for catas-
trophes, making corresponding adjustments to catastrophe reserves based on
historical catastrophe data.

chinarxiv.org/items/chinaxiv-202506.00059 Machine Translation


https://chinarxiv.org/items/chinaxiv-202506.00059

ChinaRxiv [f)]

Chapter 4: Research Methods, Key Difficulties, and Inno-
vations

4.1.1 Literature Research Method

By reviewing domestic and foreign literature, this research systematically or-
ganizes knowledge of actuarial theory, risk pricing methods, and insurance re-
serves. By analyzing different theoretical perspectives, it summarizes applicable
scenarios, advantages, and disadvantages of current methods, laying the foun-
dation for subsequent research.

4.1.2 Data Analysis Method

In the pan-generalized nonlinear framework, models are highly data-dependent.
This study will utilize real auto insurance data and appropriately reference
simulated data at more complex levels to validate the effectiveness of different
pricing models (such as Generalized Additive Models).

4.1.3 Model Construction and Optimization Method

Constructing the pan-generalized nonlinear framework requires parameter es-
timation and model optimization. When facing different module processing,
different optimization methods (such as Light GBM) are used to improve mod-
els, with comparative analysis of different models.

4.1.4 Computer Simulation Method

Since insurance involves future risk prediction, future research needs to employ
computer simulation.

4.1.5 Comparative Analysis Method

This research will compare practical experiences in auto insurance pricing and
reserve assessment across different environments and explore impacts of different
conditions on pricing models and reserve methods.

4.2 Key Difficulties

Property and Casualty (P&C) insurance faces numerous challenges in modeling
claim frequency and claim severity: traditional GLM methods are too rigid;
while machine learning methods are more flexible, they relatively lack inter-
pretability; strong heterogeneity exists among insureds; nonlinear and interac-
tion effects exist between claims and covariates; certain correlations exist be-
tween insurance types; and data exhibit characteristics such as multimodality
and overdispersion [?].
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4.2.1 Data Quality and Risk Heterogeneity

How to simultaneously address data quality and risk heterogeneity issues in ac-
tual actuarial modeling? This directly determines modeling effectiveness and the
rationality of modeling approaches. Data quality affects modeling results—even
with correct methods, poor input data quality leads to incorrect predictions.
However, high-quality data is often difficult to obtain, typically requiring strict
data validation and institutional guarantees. Except for some open datasets
for reference, there are also artificially processed contents. For publicly pub-
lished data, processing factors, methods, and whether processing occurred are
unknown.

Such data facilitates compliance and transparency but significantly reduces
model reliability and generalization. On one hand, scarcity of high-quality
data becomes a major obstacle to modeling. Actuarial models heavily de-
pend on data. In auto insurance pricing, numerous feature variables and high-
dimensional data are involved. Data bias, missing values, or errors directly
affect model stability and prediction accuracy, while high-quality, large-scale
data is generally only held by insurance companies. Insurance data collection
standards exceed those of other industries, with better completeness and up-
date frequency than public data. However, due to user privacy concerns and
various regulatory factors, future research cannot directly obtain these critical
core data from insurers, only using artificially processed public datasets. Such
datasets can only complete basic data preprocessing, meeting only fundamental
functional requirements and cannot serve as complete basis for accuracy require-
ments, as some variables cannot present complete situations, ultimately leading
to compressed or distorted feature spaces that affect conclusions from model
training and validation, making them lack generalizability for actual business
scenarios.

Beyond these challenges, risk heterogeneity makes modeling more difficult. Tra-
ditional credibility theory assumes risk is homogeneous, i.e., risk parameter is
constant, with errors completely determined by random terms. In reality, the
auto insurance business environment is not so ideal, with significant differences
in vehicle attributes, driving behavior, geographic location, and usage habits
among insured objects. Due to differences between auto insurance objects, risk
characteristics vary among different insureds, creating risk heterogeneity that in-
creases modeling difficulty and demands higher flexibility and expressive power
from models. For example, the LocalGLMnet model can theoretically model
local nonlinearity and spatial structural differences, but in practice, due to com-
plex modeling processes and high sensitivity to neural network structure design
and hyperparameter tuning, over-modeling may occur if data quality and risk
heterogeneity do not reach certain levels, leading to wasted computational re-
sources and erroneous conclusions.

In this process, data quality and risk heterogeneity are not independent issues
but rather interwoven factors affecting model construction success. Historical
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experience data shows that errors include both random disturbance effects
and potential structural biases. When samples contain more high-information
features, the theoretical predictive power of models improves, but due to
increased interaction between features and risk differences, the “information
enhancement-heterogeneity increase” phenomenon makes parallel enhancement
of predictive power and robustness more difficult. Expanding credibility theory
under Bayesian frameworks can reveal the nature of parameter modeling under
risk heterogeneity, i.e., risk parameter should be modeled as a random vari-
able following some prior distribution (structural function), creating statistical
correlations between different risk levels.

For example, based on Bayesian axioms, the Biihlmann credibility model esti-
mates risk levels using linear combinations of observations, providing credibility
premium formulas as one of the important pricing tools for determining non-
homogeneous risks. The model construction process must consider data quality
and risk heterogeneity issues, requiring modelers to have strong data preprocess-
ing and modeling capabilities to ensure models have predictive functions while
demonstrating interpretability and practicality.

4.2.2 Feasibility Issues of Weather Index Auto Insurance

Although weather index insurance models have been applied to agricultural
insurance and can theoretically be extended to auto insurance, some unforeseen
problems remain when applied to auto insurance.

Spatiotemporal matching is a major challenge. Auto insurance accidents have
strong individual attributes, but in reality, only regional average meteorological
data or meteorological station data can be obtained, making it impossible to
precisely locate weather conditions at the exact time of a specific accident. Even
with high-resolution remote sensing data or ground meteorological stations, this
“insufficient representativeness” problem cannot be completely solved, affecting
compensation trigger accuracy and fairness [?]. Some scholars use windshield
wiper status data, NCDC meteorological station data, and related weather ac-
cident data to better achieve this purpose.

There is no quantitative boundary for compensation triggers. Traditional in-
surance business loss determination is decided by surveyors with strong subjec-
tivity. Index insurance triggers require strict adherence to objective standard
procedures for loss determination. The problem lies in how to set a quantitative
measurement standard that accurately reflects real risk while maintaining stabil-
ity, and how this quantitative benchmark leads to “basis risk”—whether actual
claims occur but cannot trigger compensation because the meteorological risk
threshold is not met, or whether claims have actually occurred but the meteo-
rological risk threshold is exceeded, leading to institutional-level compensation
issues.

There are no precedents for index insurance application in the auto insurance
field, with no mature successful examples for future research to draw upon. Only
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because agricultural product growth and maturity heavily depend on weather
and geographic factors has agricultural index insurance development benefited
from policy subsidies, reinsurance support, and strong government support.
Auto insurance, as a high claim frequency insurance type, easily leads to ex-
tremely sensitive compensation standards. Moreover, weather index auto insur-
ance is an innovative insurance type based on a new conceptual framework, and
even if feasible, its market acceptance is unknown. Nevertheless, weather in-
dex auto insurance theoretically helps improve model prediction accuracy while
avoiding moral hazard, benefiting pricing efficiency. Future research similarly
requires in-depth study within a certain scope, such as matching meteorological
and vehicle risk data, suitable model selection, reasonable compensation logic
design, and maintaining product fairness. Solving these related problems re-
quires deep research collaboration between meteorology, actuarial science, and
big data, combined with market development environments and strong national-
level promotion and support. Using experimental methods, such as operating
demonstrations in simulated environments or meeting with potential insurance
consumers, can help obtain evaluation information through testing, ultimately
helping people understand and accept index insurance products [?]. Clark [?]
criticized that economists should focus more on optimizing insurance product
design to achieve optimal quality, avoiding situations where incorrectly designed
insurance products cause harm to consumers or insureds due to insurance com-
panies or government launches.

4.3.1 Constructing a Predictable Vehicle Insurance Actuarial Rating
System

Currently, China’s auto insurance system design still has many unreasonable as-
pects, requiring continuous enrichment and improvement in product structure,
with problems in price formation mechanisms and risk response capabilities,
especially evident for high-value vehicles, high-compensation accidents, and di-
versified usage scenarios [?]. Related to pricing, traditional insurance systems
have become difficult to adapt to current requirements in risk identification, loss
compensation, and cost allocation. Insurance companies only model static fac-
tors like people, vehicles, and roads through a few fixed variables (age, vehicle
model, etc.), without considering consumers’ dynamic factors (driving habits,
road conditions, etc.), resulting in relatively average premium distribution and
inability to achieve precise risk pricing. Meanwhile, traditional auto insurance
products also suffer from high sales costs, overlapping channel charges, and
other drawbacks, which not only hinder fair operation of the insurance indus-
try but also fundamentally weaken the scientific nature of actuarial pricing and
regulatory recognition.

Under current circumstances, building China’s predictable vehicle insurance ac-
tuarial rating system is a critical step in adjusting unreasonable imbalances in
the current insurance market structure and improving the entire society’s risk
governance system. “Predictable” refers to applying advanced data technol-
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ogy and modeling methods to discover potential risks in advance, proactively
preparing before occurrence to achieve early warning, early prevention, and
early disposal—a new working mechanism. “Vehicle-like” provides reference
significance for other vehicle type insurance. Based on integrated modeling
and complex data fusion modeling ideas from the pan-generalized nonlinear
system, and leveraging the optimization capabilities of machine learning algo-
rithms like Light GBM and neural networks’ complex data modeling capabil-
ities, the model achieves unified high standards in interpretability, nonlinear
expression capability, and high-dimensional variable applicability. In actuarial
modeling, Local GLMnet and LocalGAMnet models are used to fit nonlinear re-
lationships between claim amounts and risk factors, ensuring predictive power
while guaranteeing interpretability and considering issues like model overfitting
and dimensionality disaster. Only by holistically utilizing institutional recon-
struction, mechanism updates, and technology empowerment to form synergies
can we truly achieve fundamental transformation of auto insurance from pas-
sive compensation to active risk control, from single products to comprehensive
services, and from price orientation to risk orientation.

4.3.2 Pioneering ESG Pricing for Auto Insurance

Traditional auto insurance pricing is based on historical accident data combined
with specific object data about vehicles and drivers, using empirical rate stan-
dards to determine underwriting costs. This empirical rate pricing based on
past experience does not consider factors affecting accident occurrence rates
and loss severity, ignoring the potential impact of climate conditions on vehicle
accidents. Especially under climate warming background, climate conditions
have shown strong systematic risk characteristics. Therefore, it is necessary to
integrate climate factors into auto insurance pricing models, introducing climate
factors in addition to human and vehicle factors.

To streamline climate types involved in weather indices, future research will
only explore two typical regions: long-term hot regions and rainy regions. This
approach helps reduce variable numbers, ensure model stability, and facilitates
subsequent promotion and expansion to other climate region types.

During modeling, high-resolution meteorological data will be fused with histori-
cal auto insurance claims data to obtain weather-accident correlation regression
models, generating “weather index auto insurance” combined with weather in-
formation and accident location information. When vehicles have accidents on
high-temperature days with claim amounts below threshold values, the system
can achieve automatic compensation based on matching relationships between
weather information and vehicle accident information without manual survey
and claim approval, greatly improving claim timeliness, reducing claim disputes,
and providing good customer experience.

Practical operations attempt to introduce a second dual-model system com-
bining traditional models with weather index models beyond the underlying
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modeling logic. One is the main model based on the pan-generalized nonlinear
framework, using a pan-generalized nonlinear framework to model conventional
characteristics (including age, mileage, driving score, and historical claims). The
other is a sub-model specifically modeling relationships between weather factors
and accidents (including accident frequency and accident compensation). Com-
bining their outputs allows consideration of natural environment impacts during
claim cost setting, making pricing more realistic.

The ESG auto insurance pricing and claims framework proposed in this pa-
per can be easily extended or transplanted. As meteorological data acquisition
accuracy continues to improve, technical means combining IoT (e.g., onboard
meteorological monitoring) and 5G communication technology will continue to
iterate, maintaining research advancement while enabling implementation in ac-
tual business. Most index insurance still concentrates on agricultural insurance
and reinsurance levels. Extending such mechanisms to individual auto insurance
dimensions remains an innovative attempt. Especially in the Chinese market,
current auto insurance products suffer from serious homogenization and lack
differentiated customer experience. The ESG pricing mechanism designed in
this study can effectively promote auto insurance research development under
dual drivers of policy and technology.

Chapter 5: Dissertation Writing Schedule
5.1 Dissertation Writing Schedule Arrangement

1. Data Collection and Learning Phase (January 2025 - May 2025):
Collect data, study relevant statistical knowledge, modeling methods,
and related modeling techniques.

2. Data Processing and Modeling Phase (June 2025 - September
2025): Conduct data preprocessing and feature engineering, perform
modeling experiments.

3. Draft Completion Phase (October 2025 - January 2026): Analyze
experimental results, interpret models, conduct visualization and com-
parison experiments, and perform deep revisions after preliminary defense.

4. Final Revision Phase (February 2026 - March 2026): Revise re-
search reports, organize experimental code and data, conduct final sum-
mary and discussion, and finalize the manuscript.

Literature Review

“Research on Auto Insurance Actuarial Rating Systems and Related
Risks with a Pan-Generalized Nonlinear Framework”
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Auto insurance pricing, as one of the core issues in actuarial science, affects
insurers’ profitability and cash flow. This literature review briefly elaborates on
different auto insurance developments across regions and discusses issues related
to auto insurance ratemaking systems, special auto insurance pricing, no-claim
discount reward-penalty theory, and reserve assessment methods. The review
uses statistical distributions and model structures as entry points to analyze spe-
cific operational logic of models, focusing discussion on literature establishing
pricing frameworks and reserve assessment based on Tweedie distribution fami-
lies, Generalized Additive Models, LocalGLMnet modeling methods, and most
methods based on frequentist and Bayesian schools. To demonstrate the appli-
cation effects of risk modeling thinking on real business, this paper also includes
literature on BMS systems, GAM reserve assessment models, etc., to explore
a construction method for risk dynamic adjustment mechanisms in auto insur-
ance. Regarding reserve research, literature includes assessment methods under
both homogeneity and heterogeneity assumptions, specifically using traditional
methods like chain ladder for aggregate accident claim data prediction model-
ing, and using machine learning technology to improve models for individual
accident claim data prediction modeling on existing algorithmic foundations.

Beyond general auto insurance, the review also investigates weather index in-
surance, using remote sensing data and ground observation data to establish
multi-dimensional input methods to improve model identification capabilities
for extreme meteorological events. Empirical findings show this model performs
well in compensation stability and regional risk differences.

Based on data levels, this literature review selects real auto insurance and
weather insurance claim data as case studies, setting control groups for differ-
ent modeling approaches to analyze and evaluate similarities and differences in
prediction effects. This paper focuses on constructing a replicable and scalable
insurance modeling method in the property insurance field, comprehensively
considering regulatory and data modeling factors to improve property insurers’
quantitative pricing capabilities, promoting new practical experience and theo-
retical foundations for property insurance industry digital transformation and
actuarial pricing.

Keywords: Auto Insurance, Local GLMnet, Generalized Additive Model, Feed-
Forward Neural Network

I. Analysis of Auto Insurance Practice

Analysis is conducted on six representative countries and regions: Japan,
UAE, Brazil, South Africa, China, and India (ranked by vehicle density
at approximately 624, 540, 249, 200, 173, and 30 vehicles per thousand
people respectively) and North America, Australia-New Zealand, UK-Ireland,
Germany-France, Northern Europe, and Singapore-Malaysia regions. The total
number of vehicles in these countries and regions is approximately 1.26 billion.
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According to International Energy Agency (IEA) data, global vehicle ownership
in 2020 was about 1.4 billion, with these countries and regions accounting for
about 90% of the global total, covering six continents (all global continents
except Antarctica), including North America (US-Canada AC), South America
(Brazil B), Europe (UK-Ireland EI, Germany-France GF, Northern Europe
NE), Africa (South Africa S), Oceania (Australia-New Zealand AN), and Asia
(Japan J, UAE A, Singapore-Malaysia SM, China C, India I), with codes
abbreviated using English initials.

(1) Analysis of American Auto Insurance Practice In the early 19th
century, the United States established compulsory insurance laws providing
legal support for subsequent auto insurance business development. However,
without modern tools like computers, actuarial pricing could only rely on sub-
jective judgment and experience, temporarily lacking scientific theoretical and
analytical systems.

Entering the 1980s, Coutts’ [?] auto insurance premium pricing method was
highly complete and systematic. The research considered not only underwriting
factors, claim frequency, and claim amounts but also had unique insights into
reasonably incorporating external factors like inflation into premium calcula-
tions. To make premium pricing more scientific and accurate, Coutts used mod-
ern statistical methods such as Orthogonal Weighted Least Squares (OWLS)
to study the impact of factors like vehicle age, policyholder age, and vehicle
type on different vehicles’ claim frequencies based on historical claims data,
establishing a vehicle pricing model combining historical loss ratios and price
indices. This model enables accurate premium assessment for different vehicles,
achieving high coverage within reasonable price ranges and providing scientific
pricing basis for insurers, making pricing work clearer and more straightfor-
ward. Brockman et al. [?] addressed Johnson & Hey’s shortcomings in handling
incomplete policy years through GLIM models and overdispersion parameters,
proposing more accurate auto insurance rate pricing. More detailed parameteri-
zation improves pricing accuracy, enhances pricing precision, deepens theoretical
research, and provides references for future rate pricing.

As the auto insurance industry matured in pricing, Generalized Linear Mod-
els gradually became the foundation of modern auto insurance pricing, though
some theories hold that Generalized Additive Models are more suitable for real-
world auto insurance pricing. Meanwhile, Usage-Based Insurance (UBI) prod-
ucts began to emerge. Since 2004, companies have launched behavior-based
insurance products such as Progressive’s Snapshot, Allstate’s Drivewise, GE-
ICO’s DriveEasy, Liberty Mutual’s RightTrack, and Tesla’s Autopilot. Boucher
J.P. et al. [?] noted that with the explosion of telematics data, UBI insurance
is the trend the auto insurance market will follow.

Compared to North America, South American auto insurance markets are much
smaller, with Brazil as the largest South American market accounting for only
about half of the entire South American market. Although Brazil’s auto insur-
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ance market accounts for 60% of its automotive industry, only 27% of vehicles
have adequate insurance coverage. For Brazil, many factors influence auto in-
surance rates, with the most important being vehicle and driver personal in-
formation. For example, sports cars and vehicles with premium parts (alloy
wheels, fog lights) are more susceptible to theft or robbery, resulting in higher
premiums. Although most Brazilian vehicles use gasoline, diesel, and other en-
ergy sources, insurance amounts do not differ based on fuel type. Brazilians
fear their cars being stolen more than being in accidents, so insurance rates
are not determined solely by vehicle price and brand, nor are luxury vehicles
necessarily subject to high premiums while economy vehicles enjoy preferential
policies. For instance, Volkswagen Golf is one of Brazil’s lowest-priced models,
but due to expensive parts, its insurance price is slightly higher relative to its
vehicle price.

Beyond vehicle type, insurance rates are also determined by vehicle parking
location. For Brazil, vehicle location is an important factor in determining
premiums, whether vehicles are in garages, on streets, or parked at workplaces
or schools, affecting insurers’ risk assessments. Connected vehicle technology
can enhance vehicle safety and reduce premiums. Using vehicle registration
postal codes can determine premium prices. Although some areas have higher
crime rates leading to premium increases, more importantly, different regions
have different driver habits and accident probabilities.

(2) Analysis of European Auto Insurance Practice The UK-Ireland re-
gion has been at the forefront of global maritime insurance due to “the empire on
which the sun never sets” maritime hegemony, global economic trade networks,
and unique maritime and geographical structural and policy system advantages.

Before 1930, the UK passed the Road Traffic Act, becoming the world’s first
country to implement compulsory auto insurance, requiring owners or drivers to
provide protection for property damage or personal injury caused to others on
roads. Socioeconomic development and non-life insurance prosperity also pro-
vided impetus for new insurance types like auto insurance, presenting diversified
development trends in the insurance industry.

Ireland’s auto insurance development history demonstrates the development of
social transportation methods and changes in transportation legislation. At
the end of World War I in the early 20th century, people acquired their first
automobiles, bringing risks of traffic accidents, injuries, and property damage.
In the UK, the 1933 Road Traffic Act brought all motor vehicles into compul-
sory insurance scope, providing help for risks endangering people’s lives, health,
and property damage, greatly protecting victims’ rights. Over time, insurers
launched various insurance products for increasingly numerous cars, including
fire and theft insurance and special insurance types for cars or electric vehicles
in recent years. Some insurance is legally mandated, such as Ireland’s Road
Traffic Act, which clearly states that no motor vehicle can operate on roads
without legally required insurance, with violators facing various negative conse-
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quences including high fines, license revocation, and even vehicle confiscation,
strengthening effective management of public safety and road risks [?].

In 1939, Germany implemented compulsory motor vehicle third-party liability
insurance, requiring all motor vehicle owners to purchase third-party liability
insurance, marking the transition of auto insurance from voluntary to state-
mandated management. In France, all vehicle owners must purchase auto insur-
ance, with 70% of vehicles insured beyond compulsory traffic accident liability
insurance, including third-party liability, vehicle damage, and other commercial
insurance. Different insurers propose different deductibles, though third-party
liability does not allow deductibles. France’s reward-penalty system is legally
mandated: the initial coefficient is 1, increasing by 25% if an accident occurs
within a year, and decreasing by 5% if no accident occurs. The coefficient lower
limit is between 0.5 and 3.5 (with some exceptions). Final premiums are cal-
culated by multiplying differentiated premiums by reward-penalty coeflicients

7.

Currently, besides the US, Germany and France have the world’s most powerful
property insurance companies and insurers themselves. In the decades after
World War 11, they have been one of Europe’s major industrialized regions, with
the largest global market share in property and insurance companies, covering
almost any accessible region worldwide. However, the global pandemic’s impact
spread to Germany and France’s auto insurance markets. Although initial data
showed decreased travel kilometers and accident rates, they soon rose, with both
incidence and damage severity increasing. Additionally, supply chain issues
caused parts price increases, requiring insurers to spend more on auto accident
claims processing, so auto losses will exceed pre-pandemic prices. These factors
will continue to affect insurers’ need to adjust rates upward. Considering recent
high accident incidence and continuously increasing claim amounts, introducing
an efficient and fast auto insurance claims process is necessary, highlighting the
importance and necessity of auto insurance pricing research [?].

Northern Europe’s auto insurance dates back to the early 20th century. With au-
tomobile popularization and frequent traffic accidents, auto insurance gradually
improved. In the early 20th century, Sweden already had its first company, the
Swedish National Insurance Company, providing auto insurance for first-time
car buyers, mainly covering physical damage and owner liability compensation.
Later development continued through the late 1910s when Norway already had
auto insurance, though still following the form of owners’ own selection with
certain industry practices. Before and after World War II, Sweden adopted com-
pulsory third-party liability insurance requiring owners to purchase insurance to
compensate third-party property, influencing not only domestic auto insurance
market development but also improving insurance industry standardization. Be-
sides France, Denmark and Finland also adopted compulsory insurance systems
in the 1940s-1950s, greatly promoting insurance industry development. Swe-
den’s auto insurance research is also very important. Northern Europe’s actu-
arial development is relatively advanced, including Jung J. et al’s [?] insurance
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rate estimation improvement models, and Delong L. et al. [?] analyzing claim
influencing factors based on Swedish motorcycle insurance, providing more ex-
perimental support for industry preference in Poisson-gamma parameterization.

From the perspective of auto insurance ESG compliance, the EU can be con-
sidered the most active region in legislation globally, having successively intro-
duced strong laws and regulations including the Sustainable Finance Disclosure
Regulation (SFDR) and EU Sustainable Taxonomy (EUT). These provisions
mainly aim to gradually meet environmental, social, and governance require-
ments in business operations for enterprises or financial institutions. Insurers
must comply with the EU Sustainable Taxonomy, especially regarding prod-
uct transparency and environmental responsibility, and can incorporate climate
adaptation measures (such as weather index insurance) into non-life insurance
underwriting processes to address emerging risks. For example, weather index
auto insurance based on high-temperature conditions can provide product re-
sponses to indirect greenhouse gas emissions mentioned in PCAF initiatives.

(3) Analysis of African and Oceanian Auto Insurance Practice In
global economic development, the African continent can be considered the least
developed region, with its insurance industry overall development also relatively
backward. Limited by low motor vehicle ownership, weak insurance awareness,
and imperfect systems, auto insurance struggles to form scaled market mecha-
nisms.

To date, only a very small number of African countries have compulsory motor
insurance laws, largely depending on motor vehicle owners’ voluntary participa-
tion in commercial insurance and public risk awareness. South Africa is a rela-
tively mature insurance market on the African continent, with premium income
accounting for about 70% of total African premium income. However, there
is no compulsory motor insurance system, with only 1/3 of vehicles on roads
having insurance [?]. Therefore, the South African government formulated cor-
responding laws and regulations and established a “Road Accident Fund” as
an alternative social security mechanism, forcibly collecting part of the fees or
fuel surcharges from vehicles purchasing fuel locally as fund sources to provide
compensation for traffic accident victims.

Similarly, Namibia is one of five sub-Saharan African countries (including Eswa-
tini, Botswana, and Lesotho) that levy fuel taxes to support road injury victims
[?]. Since MVAF implementation in 1990, there has been little research on its
impact, particularly from the perspective of users or health workers providing
services. Any person injured in a car accident or family members of those killed
in car accidents can apply for assistance from MVAF. Some surveyed individ-
uals reported that MVAF covered all their medical expenses [?]. Like some
compulsory insurance, MVAF operation also has many problems, such as its
system design relying on accident reporting and police filing, leading to large
numbers of accidents in rural areas lacking law enforcement that fail to obtain
claim qualifications.
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In the Australia-New Zealand region, legislation progressed unevenly across
states, with all states achieving compulsory auto insurance only after Western
Australia passed relevant acts in 1943. Previously, Victoria attempted multiple
times but failed, with Tasmania taking the lead in introducing it in 1935 [?].
Victoria, Australia also implemented a plan similar to MVAF called the Traf-
fic Accident Commission (TAC), funded through statewide vehicle registration
taxes. TAC helps promote communication between health professionals, pro-
vides comnsistent and up-to-date information, and coordinates service delivery.
Case managers’ care coordination not only facilitates timely access to assistance
but also achieves cost reduction and efficiency improvement [?].

(4) Analysis of Asian Auto Insurance Practice At the end of the 20th
century, the UAE’s gradual opening of its insurance market led to rapid devel-
opment, but due to religious reasons, many insurance products were restricted
from listing, leading to the sale of many religious or Sharia-compliant products
not found in other countries, creating a special situation in the UAE’s insurance
industry—coexistence of traditional insurers and Islamic insurers (Takaful).

Among Asian countries, Singapore and Malaysia’s special history places their
actuarial development at the world forefront, such as early introduction of BMS
systems [?]. Malaysia is a religious country that, like the UAE, has religious
insurance products, but differs in considering this type of auto insurance as an
important component of the national Islamic financial strategy core [?]. Takaful
auto insurance has developed for nearly 50 years since 1985, representing a
relatively mature special type of vehicle insurance market globally.

Singapore’s rapid increase in automobile numbers in the 1970s, combined with
limited land space and high population density, exacerbated traffic congestion
[?], leading the government to formulate strict traffic rules such as area licensing
schemes, which indirectly facilitated future auto insurance development through
electronic device access identification. Nowadays, in the Singapore-Malaysia re-
gion, auto insurance is the largest proportion business for comprehensive insur-
ers, accounting for about 36% of the entire market.

Japan, as an Asian country that established modern insurance systems earlier,
has a relatively complete actuarial system and mature insurance regulatory sys-
tem. As early as 1914, Tokyo Marine Insurance Company, which pioneered
motor vehicle insurance business in Japan, first operated motor vehicle insur-
ance. In reality, Japanese car owners attach great importance to risk distri-
bution management. According to statistics, since 2011, “limited driver” auto
insurance contracts have exceeded “unlimited driver” contracts in market pro-
portion, with “policyholder and spouse only” insurance contracts reaching 70%

7).
India, as one of the world’s most populous countries, has huge differences in

traffic management status between states. Therefore, the Indian government
requires all motor vehicles operating in public places to be insured, with driving
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uninsured vehicles considered illegal behavior. Third-party liability insurance
belongs to the compulsory insurance category, intended to provide correspond-
ing compensation for life and property damage caused by motor vehicles oper-
ating in public places. The reason is that motor vehicles operating in public
places inherently possess certain danger, and vehicle users may have limited
financial capacity to provide sufficient compensation to victims. Regarding in-
surance duration, Indian law originally stipulated mostly one-year motor vehicle
insurance, but according to Supreme Court guidance, since September 1, 2018,
newly purchased four-wheeled vehicles must have three-year third-party insur-
ance, and two-wheeled vehicles five-year insurance. The purpose is to improve
auto insurance continuity, reduce uninsured driving, and strengthen insurance
system enforcement and social security functions.

Since 1980, China has gradually recognized insurance’s role in risk management
and resource allocation in socio-economic development, shifting from exclusive
operation by People’s Insurance Company of China to the current multi-operator
business model. China officially implemented the “Regulations on Compulsory
Traffic Accident Liability Insurance for Motor Vehicles” in 2006 and launched
three sets of industry-unified clauses (A, B, C) in 2009. However, due to short
development time and difficulty adapting to economic development and traffic
condition changes, problems gradually emerged including high legal risks, nar-
row coverage scope, and non-transparent clauses. For a long time, the auto
insurance industry also faced consumer complaints about high premiums, diffi-
cult claims, and over-insurance with under-compensation, with service levels far
from public expectations. To break these bottlenecks, promote market-oriented
premium mechanisms, and improve risk pricing capabilities, the China Bank-
ing and Insurance Regulatory Commission launched commercial auto insurance
reform pilots in 2015, marking China’s commercial auto insurance entering a
new stage of refinement, specialization, and differentiation, with auto insur-
ance pricing systems evolving from unified rates to limited autonomous pricing
[?]. In 2017, commercial auto insurance reform was implemented nationwide,
introducing the no-claim reward-penalty mechanism implemented in Taiwan re-
gion since 1996, providing premium discounts for customers with consecutive
claim-free years and increasing premiums for those with claims, providing more
reliable institutional tools for professional auto insurance actuarial pricing in
China.

II. Auto Insurance Data Analysis and Processing

(1) Nature of Auto Insurance Data The accuracy of auto insurance rate
determination is an important manifestation of insurance companies’ risk man-
agement capabilities. For reasonable pricing, insurers must consider various
uncertain factors in risk analysis that can predict partial parameters of loss
distributions. Loss distributions describe the probability distribution of loss
amounts (i.e., insurance claim amounts) during specific periods and are neces-
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sary tools for insurers to assess risks.

In practice, loss distributions play crucial roles in insurance pricing, especially
for more complex insurance contracts where loss distribution selection and pa-
rameter estimation are important. For insurance, loss distributions are con-
strained not only by accident incidence but also by accident severity, claim
amounts, and economic data conditions. In auto insurance pricing, loss distri-
butions are generally divided into two parts: loss frequency distribution and loss
severity distribution. The former represents the number of accidents, while the
latter represents claim amounts per accident, with their combination forming
total loss distribution.

Frequency distributions record accident occurrence counts within certain time
periods, generally following discrete distributions such as Poisson Distribution
or Negative Binomial Distribution, helping insurers predict how many accidents
occur during certain periods. Severity distributions use continuous distributions
such as Gamma Distribution or Lognormal Distribution, enabling insurers to
predict approximate loss amounts per insurance event.

Common loss distributions in auto insurance pricing include:

Poisson Distribution: Models insurance accident frequency, assuming
accident occurrence probability is independent per time unit with average
occurrence A. The probability density function is:

Aee=A
k!

P(k;\) =

where ) is average accident frequency and k is actual accident count. In auto in-
surance pricing, Poisson distribution estimates accident occurrence counts dur-
ing certain periods. For example, assuming a region’s vehicles have average
annual traffic accidents A = 0.15, Poisson distribution helps insurers calculate
expected accidents per policy in the next year.

Negative Binomial Distribution: Represents the probability of exactly k
successes (or n failures) on the (n+k)th attempt, typically modeling overdis-
persed frequency data (where actual data variance exceeds the mean). The
probability density function is:

P(n;k,p) = (n Zf; 1>p’“(1 —p)"

where n+k is trial count, p is success probability, n is accident count, and k
is non-accident count. Negative binomial distribution better captures accident
occurrence volatility and is more suitable than Poisson distribution for some
overdispersed data situations.

Gamma Distribution: Models severity distributions, especially suitable for
describing skewed and asymmetric claim amounts. The probability density
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where o and A\ are shape and scale parameters. Gamma distribution can de-
scribe situations with small claim amounts but occasional large compensations,
suitable for describing right-skewed insurance claims.

Lognormal Distribution: Suitable for modeling claim amounts composed of
products of multiple independent random variables. The probability density
function is:

1 _(n z—m2

T, 0) = ——e€ 20
flz;p,0) T

where and o are the mean and variance of data logarithms, used to describe
extremely asymmetric loss amounts, especially suitable for modeling extreme
claim events.

After determining reasonable loss distributions and parameters, insurers can
estimate future compensation situations based on certain confidence levels for
policy pricing, risk management, and reserve extraction. Starting from histor-
ical experience data, using loss frequency and severity calculations, pricing is
determined according to insurance contracts. Through loss distribution models,
insurers can better predict potential compensation losses and price reasonably.
For example, gamma distribution calculates large compensation risks; Poisson
distribution represents accident occurrence probability distributions. Through
loss distribution analysis, insurers can further test and adjust capital adequacy.
If large compensation losses occur, reserves need to be increased for future claim
needs. Loss distribution analysis also enables insurers to anticipate future huge
compensation situations and configure appropriate mechanisms for catastrophe
transfer.

Based on loss distributions, frequency and severity distributions jointly calcu-
late auto insurance compound losses, serving as important tools for reasonable
pricing, reserve extraction, and risk evaluation. The Tweedie distribution is a
compound Poisson distribution widely used in insurance fields, mostly used to
characterize data with zero values and continuous positive value distributions,
such as insurance claim data.

In statistics, the Tweedie distribution family is a very important distribution
family, widely used for modeling overdispersed data, continuous non-negative
data, and discrete data. The Tweedie distribution family is valued for its ability
to adjust distributions according to different exponential parameters (typically
denoted ¢) to describe different loss data. For example, in insurance pricing,
Tweedie distribution families describe situations with both continuous losses and
a few large losses.
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The Tweedie distribution family is an exponential family distribution with
probability density function (PDF):

F(ys 11, 6) = aly, ¢) exp (249—“(9)>

¢

where is the mean parameter, ¢ is the distribution parameter generally related
to distribution variance and scale; is a function related to mean ; a(y, ¢) is a
normalization constant ensuring PDF integration equals 1.

The Tweedie distribution family’s notable characteristic includes logarithmic
link functions in exponential functions, enabling determination of specific dis-
tribution types based on actual conditions and suitability for describing various
data types with different characteristics. For different ¢ values, the Tweedie
distribution family can produce different loss characteristics, including common
probability distributions such as normal, Poisson, and gamma distributions.
When ¢ = 0, Tweedie distribution degenerates to normal distribution with PDF:

1 _ww?
fly) = WorT ¢

When ¢ = 1, Tweedie distribution becomes Poisson distribution for describing
event occurrence counts. When ¢ = 2, Tweedie distribution becomes gamma
distribution, particularly important in insurance risk modeling for describing
continuous positive losses. Typically, auto insurance uses Tweedie distribution
with ¢ in the (1,2) interval, around 1.65, belonging to Poisson-gamma compound
distribution. This distribution generally assumes claim event counts follow Pois-
son distribution while each claim amount follows gamma distribution.

When ¢ = 3, Tweedie distribution becomes inverse Gaussian distribution,
commonly used to model work completion within fixed time periods with PDF:

A My — )2
f(y;/% )\> = \/;exp (_(g'quM)>

The Tweedie distribution family has important properties making it suitable for
handling insurance data, financial risks, and other random phenomena. Impor-
tant properties include: second-order moment existence (except for special cases
with parameters less than or equal to two, most Tweedie distribution families
have second-order moments with variance typically dependent on distribution
parameters); exponential family property (belonging to exponential family dis-
tributions, enabling easy separation and parameter estimation using statistical
methods to improve accuracy); representation as sums of simple distributions
(Tweedie distribution is also a collection class function of simple distributions);
flexibility in skewness and kurtosis adjustable through parameter ¢ changes
(larger ¢ leads to larger skewness and kurtosis).
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In auto insurance pricing models, Tweedie distribution is often used to model
compensation amounts. Under normal conditions, most compensation amounts
are relatively small, but serious accidents or high-value vehicle damage may
require large payments. Tweedie distribution with ¢ close to 2 better represents
this characteristic. =~ Tweedie distribution family parameters are typically
obtained using Maximum Likelihood Estimation (MLE), finding parameters
that maximize sample data likelihood functions. Since Tweedie distribution
likelihood functions are difficult to solve, numerical optimization methods are
required. Assuming n independent samples (yy, ..., v ), the Tweedie distribution
likelihood function is:

L &5915 ) = [ [ @i 10)
i=1
Maximum likelihood estimates are obtained through log transformation and
derivative calculation of the likelihood function.

(2) Discrimination and Fairness in Pricing In auto insurance, insurers
typically consider driver characteristics like age and gender for parametric pric-
ing, but some factors may raise compliance and regulatory issues for discrimi-
nation and fairness reasons.

For example, based on age factors, young drivers without driving experience or
with short driving time have higher rates than experienced drivers. In terms
of gender, males have relatively higher accident rates, so from an actuarial
perspective, male rates should be higher. In 2011, the EU ruled to prohibit gen-
der discrimination in auto insurance pricing [?]. Similar regulations exist that
prohibit insurers from using certain characteristics within pricing frameworks,
constituting illegal discrimination. Simply ignoring protected policyholder at-
tributes is not an appropriate solution, as this still allows inference of protected
attributes from unprotected covariates, leading to proxy discrimination phe-
nomena. Under pressure, insurers must find new variables that are acceptable
and do not reduce accident prediction accuracy. For example, policyholder per-
sonal information (age, gender, claim history) and vehicle characteristics (price,
seat count, operational purpose) have only indirect correlations with insurance
losses in subsequent modeling. New technological developments should prompt
insurers to explore UBI premium modeling methods [?].

Chen et al. [?] studied non-discriminatory pricing formulas for weighted mixed
male-female mortality rates, avoiding direct and indirect discrimination. Al-
though the NDP formula only uses non-discriminatory features as rating factors,
Lindholm M. [?] introduced an adjustment requiring knowledge of policyholders’
discriminatory characteristics, providing an explicit mathematical method to
eliminate indirect discrimination, forming part of the theoretical foundation for
feature selection in pan-generalized nonlinear framework modeling. Meanwhile,
Lindholm M. [?] argues that avoiding proxy discrimination does not guarantee
group fairness. Simply ignoring protected information cannot ensure absence
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of discrimination in pricing. When statistical associations exist between covari-
ates used in pricing, unprotected covariates may serve as proxies for undesirable
variables like gender or race. From a regulatory perspective, closely linking in-
surance policies to actual risks compared to overly broad actuarial categories
can improve actuarial fairness and reduce cross-subsidization [?].

III. Auto Insurance Actuarial Rating Framework

(1) Known Pricing Models and Methods Auto insurance actuarial rate
pricing methods—assuming claim counts follow Poisson distribution and individ-
ual claim amounts follow gamma distribution, with total claim costs conforming
to Tweedie compound Poisson distribution.

Smyth and Jgrgensen [?] addressed the problem of formulating fair and accu-
rate insurance rates based on aggregated insurance data, proposing the use of
Tweedie compound Poisson models for dispersed modeling of insurance claim
data, establishing linked linear models for mean cost and dispersion separately to
simultaneously model mean and dispersion in generalized linear models. When
only total claim costs are observed, approximate maximum likelihood estimates
for mean and dispersion coefficients are obtained by alternating between two
generalized linear models; approximate REML methods are also introduced to
adjust dispersion estimates. When both claim costs and frequencies are ob-
served, joint likelihood functions are used for parameter estimation, also us-
ing approximate REML methods. Using 1977 Swedish third-party auto insur-
ance data as an example, log-linear models were fitted, finding all three ex-
planatory factors (vehicle brand, annual kilometers, no-claim reward level) had
significant main effects on both mean and dispersion, with dispersion effects
being more significant. When claim counts are unavailable, Gao G. [?] fits
marginal Tweedie compound Poisson models and proposes a new model fitting
method using Expectation-Maximization (EM) algorithm, equivalent to itera-
tively reweighted Poisson-gamma regression on expanded datasets to improve
pure premium model fitting effects. Jorgensen and de Souza [?] applied Tweedie
compound Poisson models to insurance claim data, using iterative least squares
methods from generalized linear models, employing stable Newton-Raphson al-
gorithms, and utilizing parameter orthogonality to calculate standard errors for
parameter estimates.

Traditional auto insurance pricing models are typically GLM models dependent
on historical data, with premiums depending on self-reported rating variables
(e.g., age, gender, driving history, postal code) that capture policyholder and in-
sured vehicle characteristics and are typically only indirectly related to accident
risk, with key factors being age, license age, postal code, engine power, vehicle
usage, and claim history. However, the relationship between accident count and
driving distance is not necessarily linear; in other words, vehicle driving distance
and accident risk are not necessarily proportional [?, ?].
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Regarding modeling random effects and nonlinear relationships, Breslow N.E.
[?] proposed approximate inference methods for generalized linear mixed mod-
els, comparing PQL, MQL, Bayesian methods (such as Gibbs sampling), and
other methods (such as Generalized Estimating Equations GEE) through sim-
ulation studies, elaborating on their advantages and disadvantages. Verbelen
R. [?] used generalized additive models and component predictors to quantify
and explain the impact of telematics variables on expected claim frequency,
using Wood S Ns [?] approximate tests to conclude that random effects were
unnecessary. Boucher J.P. [?] used GAM models to model 71,489 PAYD auto
insurance policies in the Spanish market, covering mileage, risk exposure time,
policyholder age, vehicle age, gender, and parking type information, analyzing
the combined impact of mileage and risk exposure time on accident risk. Re-
search shows accident risk changes slowly after mileage reaches certain values,
meaning long-time drivers’ skill improvement may be one reason for reduced ac-
cident risk. Beyond GAM models, Lee et al. [?] proposed a flexible generalized
varying coefficient regression model that relaxes restrictions on covariate type
differentiation and interaction terms in traditional varying coefficient models,
providing penalized least squares estimation, sieve estimation, and kernel esti-
mation methods, deriving their convergence rates and asymptotic properties.
The GAM framework only applies to loss distribution modeling under exponen-
tial families; however, many distributions do not belong to this category, such as
negative binomial, multivariate negative binomial, and beta-negative binomial
distributions. To handle loss assessment problems under broader frameworks,
generalized additive models for location, scale, and shape (GAMLSS) can be con-
sidered. In property insurance, GAMLSS can be used for spatial data analysis,
such as for auto theft data [?]. De Bastiani et al. [?] considered spatial compo-
nents of Gaussian Markov random fields in GAMLSS models, while Ramires et
al. [?] proposed a GAMLSS clustering method considering latent variables to
minimize or correct anomalies, such as addressing difficult-to-explain bimodal
phenomena.

GAM, GAMM, and GAMLSS models all involve spline functions such as cubic
regression splines, B-splines, and P-splines. They are all forms of basis func-
tions, typically using linear combinations of given functions to represent non-
linear relationships. Basis functions construct relationships between response
and explanatory variables, while link functions establish connections between
response variables and linear predictors.

Beyond regression methods like GLM, Bayesian methods are also convenient
and efficient choices, especially when dealing with random or complex scenar-
ios. Unlike GLM’s fixed nature that may lead to unreasonable results due to
incomplete or uncertain data, Bayesian methods can continuously adjust mod-
els based on known situations, with each new change improving upon previous
changes. Unlike traditional pricing methods, Bayesian methods can not only
increase accuracy by adding more features but also accommodate complex in-
teractions between features.
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Dimakos X. & Frigessi A. [?] proposed a full Bayesian method based on hi-
erarchical models with latent variables for non-life risk premium assessment,
using Bayesian estimation-based interactive regional latent variables to correct
traditional GLM estimates when calculating claim counts, while considering
uncertainty factors in claim counts. A simulated investment portfolio contain-
ing 5,000 policies was used to compare different models. Results showed that
if missing covariates had relatively smooth inter-regional distributions, models
with interactive regional latent variables showed stronger predictive power than
ordinary models. Using the above model to analyze actual Norwegian auto theft
insurance data found that under data sparsity and lack of spatial smoothing, la-
tent variable models did not perform much better than classic GLM for making
good predictions. Due to hierarchical Bayesian models’ characteristics that fully
reflect various uncertainty factors, they can theoretically improve performance,
but when applied to real data, they still cannot provide effective data support
for real auto theft situations.

Chung Y. [?] used nonparametric Bayesian methods for conditional distribution
modeling, specifically examining variable selection and hypothesis testing under
conditional distributions with multiple predictors. Few studies have addressed
this area, especially the inability to simultaneously handle discrete and continu-
ous multi-predictor situations. The paper proposes a general Bayesian nonpara-
metric model applicable to most situations, aiming to construct flexible sparse
models without pre-fixing mixture weights, establishing Probit Stick-Breaking
Process (PSBP) to fully facilitate calculation of marginal likelihood functions
and posterior probabilities. PSBP mixture models (PSBPM) also allow selec-
tion mechanisms in both regression coefficients and mixture weights, enabling
selection of any number of parameters under PSBP to examine local and overall
contributions of various predictors to conditional distributions. Besides appli-
cability to continuous predictors, this method also naturally incorporates mul-
tiple categorical variables within the framework. PSBPM methods show high
test power and low Type I error rates in most simulation experiments, though
improvements are still needed for modeling and good interaction hypothesis
testing under high-dimensional predictors with small sample sizes.

Insurance companies’ classic actuarial risk factors classify insured populations
by region, age, gender, etc., generally involving about fifty different covariate
factors including vehicle condition, owner information, policy content, and ge-
ography. Delong et al. [?] research results show that age, category, and other
factors affect claim frequency and amounts. Gao [?] used waiting time models
to establish relationships between claim frequency and severity, finding vehi-
cle value also significantly affects claim frequency through AIC solutions for
suitable covariates.

With telematics technology development, insurers have more driving data in-
cluding GPS, dashboard readings, and three-axis acceleration, and can record
driving behavior and style, generating high-density time series data about GPS
location, speed, and acceleration. Therefore, statistical analysis of telematics
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auto driving data has become a rapidly developing field in actuarial science.
Since traditional auto insurance risk factors and causal relationships caused by
actual situations fail to fully reflect, leading to unstable rates, market demand
prompted UBI product emergence. This product’s price is based on insured driv-
ing behavior habits, greatly improving insurance rate determination accuracy.
Moreover, UBI can monitor driver behavior in real time, closely linking insur-
ance premiums with driver habits, achieving finer customer segmentation and
higher driving behavior supervision that breaks information asymmetry-induced
adverse selection and moral risk between insurers and policyholders [?].

Due to the short development history of UBI insurance pricing models, many
recent studies have attempted new systems. For example: Toledo T. et al. [?]
introduced a new system called IVDR and conducted verification tests, show-
ing in short-term tests that this system had certain testing value for driving
behavior and reduced car collision numbers and risk indices. Based on the
above research, Paefgen J. et al. [?] used more data materials (such as including
data from 1,600 motor vehicles, PAYD measurement platforms with onboard
data recorders, and actual accident risk multivariate exposure models). They
used collected data (i.e., auto insurance data from 1,600 vehicles from European
PAYD insurance service providers from 2009-2011, selecting 600 vehicles with
traffic accidents and 1,000 vehicles without accidents), fusing these into total
exposure matrices and adding different variable factors (such as time and road
type) based on actual conditions to infer different driving exposure impacts on
vehicles. They ultimately found that driving distance and accident risk are not
linearly related. Guo [?], as one of the main contributors in such database re-
search, used natural driving data from 100 vehicles (including 102 drivers with
about 2 million kilometers of driving mileage and nearly 43,000 hours of driv-
ing time) as data sources, calculating an indicator for final consideration. He
classified safety-related events into three categories: Collision, Near collision,
and Critical incident event (CIE), evaluating individual driver risk levels based
on three event types and predicting high-risk drivers. In more recent research,
Gao Y. [?] identified major driving risk factors: average speed, daily trip count,
nighttime driving proportion, sudden braking times, and intersection turning
proportions. Research proves these factors are typically nonlinear [?], with com-
plex interactions between features, providing new perspectives and data support
for UBI insurance pricing models.

Huang Y. [?] worked on auto insurance classification ratemaking based on telem-
atics driving data, proposing a new UBI product ratemaking framework and
validating it from risk classification and claim frequency prediction perspec-
tives. To address model interpretability issues, Huang used regression tree
algorithms for continuous variable binning, building prediction models using
five techniques: logistic regression, support vector machines, random forests,
XGBoost, and artificial neural networks, using annual mileage logarithm as off-
set terms and Poisson regression models for model testing. AUC and RMSE
were used to test risk classification models and claim frequency prediction mod-
els respectively. Research found that adding driving behavior variables to risk
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classification greatly improves framework performance, with better results af-
ter binning variable processing than raw variables. Binning methods effectively
mitigate overfitting problems, and combining traditional variables with driving
behavior variables can provide more accurate claim frequency prediction results
in theory and practice.

Huang Y. [?] further focused on insurance loss prediction problems based on
BNP regression frameworks, proposing a Gaussian mixture model using Dirich-
let processes as priors, incorporating covariate effects into mixture component
weights through probit stick-breaking methods (PSBM) to improve regression
coefficient hierarchical structures. Slice sampling methods are used for parame-
ter estimation. BNP regression shows better performance in goodness-of-fit and
prediction accuracy compared to gamma regression, inverse Gaussian regression,
GB2 regression, and Dirichlet Process ANOVA (DDP ANOVA) models. Com-
pared to previous BNP regression studies, this model breaks through “single-p”
model limitations, better characterizing loss distributions in insurance data, can
incorporate prior knowledge to avoid biases in classic sampling methods, and
achieves good results across different auto insurance dataset types.

Current UBI pricing research mostly approaches from risk classification and
traditional actuarial dimensions. While having certain calculation accuracy in
practical applications, driving behavior variable applications are relatively sin-
gle, lacking focus on specific influencing factors, leading to poor model inter-
pretability. Gao [?] proposed two claim frequency prediction methods based
on telematics data—using speed heatmaps and single-trip scores to improve
prediction effects. Scholars represented by Shengwang Meng [?] focused analy-
sis on covariate extraction and descriptive statistical calculations, introducing
confidence-based average risk scores, combining single-trip 1D CNN and GLM
modeling methods to directly predict risk values for data preprocessing. After re-
moving null values, calculating speed and acceleration changes, selecting stable
factors, and time series characterization, experimental results show this method
effectively improves out-of-sample prediction capability and reveals deeper differ-
ences in insurance customer groups, helping drive safe driving habits formation.
Various driving methods mentioned above can better complete claim frequency
prediction work theoretically and practically.

Additionally, weather risks cannot be ignored [?], with current safety field papers
mostly focusing on visibility impacts on driving behavior [?].

(2) Post-Pricing Risk Response Mechanisms For post-pricing risk re-
sponse mechanisms, whether regulatory and technical balance can be main-
tained is debatable. The BMS discount system, as an important means of auto
insurance premium adjustment, mostly sets up tiered systems based on driver
conditions, vehicle equipment, safety devices, or insurance behavior, lacking
mechanisms for post-pricing premium adjustments based on dynamic data.

Although rigidly embedded structured data maps with effective explanatory
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rules exist, achieving true compatibility between explanatory power and flex-
ibility remains difficult, especially in auto insurance markets with large-scale
multi-dimensional interactions. For example, Japan’s Insurance Business Law
Implementation Rules impose rigid regulations on pure rate difference multi-
ples caused by different risk factors used in insurance pricing: if age is used
as a factor, pure rate differences between age groups cannot exceed 3 times; if
gender is used, differences between genders can only be limited to 1.5 times;
if regional attributes are input, pure rate differences between all regional fac-
tors cannot exceed 1.5 times. This means even if models are well-built and can
detect high-risk and low-risk groups, results must be “artificially compressed”
during output to comply with regulations. Artificially narrowing variable gaps
affects real explanatory power of explanatory variables, weakening model pre-
dictive power and economic rationality. Some auto insurance pricing systems
have adjustment mechanisms like “no claims but tier upgrade,” and some stip-
ulate that if insured objects do not appear in insurance contract terms for a
certain year, they risk not enjoying corresponding protection. For example,
very strict age regulations for drivers (e.g., only those 21 or 26 years and older
can drive) are actually policy precautions for high-risk youth, but these rules
are rigid prevention ideas without detailed risk group characterization based on
risk types.

Many countries adopt multi-tier rate systems, dividing different policyholders
into 1-20 levels based on claim history, age, gender, vehicle conditions, and in-
surance factors, grouping different vehicles into 1-9 applicable rate groups based
on historical claim payment situations. An ordinary hatchback rising to tier 3
for one personal injury claim, with other accident types causing classifications:
property damage rises to tier 3, driver/passenger injury rises to tier 4, and ve-
hicle damage rises to tier 3, while high-end sports cars under the same accident
circumstances may rise to tiers 6, 5, 4, or 9. Different vehicle models also have
1-9 applicable rate levels set according to historical claim risk. While this mech-
anism appears to strengthen risk identification and differentiation, it still relies
on preset rules and personal experience judgments, failing to fully reflect data-
based individualized risk characteristics. Consequently, although luxury models
have advantages in active and passive safety equipment and theoretically should
have lower personal injury claim rates, higher repair costs and stronger theft
attraction objectively cause more severe claim losses after accidents, leading
to more significant rate level adjustments for such high claim intensity risks,
representing trade-offs insurers make based on claim frequency and severity.

However, note that new vehicles’ first insurance basically have no historical
claim records, and the initial stage is based on observable factors (e.g., vehicle
displacement, price) without historical data support, unable to accurately reflect
each individual’s real risk.

The main reason for insurance company crisis events is insufficient reserve ex-
traction. China’s “Insurance Company Non-life Business Reserve Management
Measures” stipulate that non-life business reserves consist of unearned premium
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reserves and outstanding claim reserves. In practice, some insurers also establish
catastrophe risk reserves and indirect claim expense reserves. Outstanding claim
reserves are subdivided into Reported But Not Settled (RBNS) and Incurred
But Not Reported (IBNR).

Mainly used reserve assessment methods include: loss development methods
(chain ladder, average claim payment method, reserve development method),
loss ratio method, and combined methods (Bornhuetter-Ferguson method) [?].
For RBNS reserve assessment methods, regulations advocate case-by-case es-
timation and average assignment methods; for IBNR portions, chain ladder,
average claim payment, reserve development, loss ratio methods, or other meth-
ods approved by regulators are advocated. Notably, the chain ladder method is
most commonly used in practice due to its convenience and easy implementa-
tion. However, deterministic models represented by chain ladder can only pro-
duce point estimates of reserves, not providing estimated uncertainty ranges.
Using stochastic models with probability distributions can estimate both ex-
pected values and confidence intervals, increasing scientific risk identification.

In specific modeling paths, stochastic chain ladder models are considered nat-
ural extensions of chain ladder methods. Kremer [?] first proposed lognor-
mal distribution-based stochastic chain ladder models using claim amount log-
arithms as linear regression response variables, introducing accident year and
development year dimensions to construct regression models. During this pe-
riod, Pollard [?] proposed PPCI (average claim payment for incurred cases) and
Reid [?] proposed PPCF (average claim payment for finalized cases) models.
PPCI models the stage from occurrence to payment, while PPCF represents
the process from occurrence to final payment completion.

Beyond parametric models, Mack’s [?] nonparametric stochastic chain ladder
model is currently one of the most commonly used models. This model only has
mean and variance assumptions without specifying random term distribution
forms, making it more general than previous models. However, some believe
the Mack model fails to consider real factors in historical data, such as calendar
year effects. Mario V. W. [?] proposed a more generalized nonparametric model
including the Mack model as a special case, modifying the Mack model to better
fit actual conditions.

In addition to frequentist methods, Bayesian methods and their extensions are
introduced. In non-life actuarial science, Bithlmann [?] first attempted Bayesian
methods by combining prior knowledge with data observations to obtain pos-
terior parameter distributions for reserve inference. Commonly used Bayesian
inference techniques today include conjugate distribution methods, MCMC sam-
pling methods, and credibility theory approximation methods. Variational in-
ference in recent years has improved Bayesian method operability and compu-
tational speed for large-scale data [?]. In Bayesian modeling, De Alba [?] con-
structed three-parameter lognormal distribution models to address potential
negative values in claim data; Mario V. W. [?, ?] detailed Bayesian estimation
accuracy research based on Mean Squared Error (MSE); Gisler and Mario V.
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W. [?] studied chain ladder methods from a Bayesian framework, proving that
under exponential family and conjugate distribution assumptions, credibility
distributions are exact Bayesian estimates.

The pan-generalized nonlinear framework focuses on individual reserve calcu-
lation, conducting theoretical research on model selection, optimization algo-
rithms, and post-pricing risks based on Ticconi [?] and Gao Guangyuan et
al. [?] research on individual reserves. When GLM structural assumptions are
overly restrictive, neural networks are one solution to help GLM address non-
linear relationships and higher data complexity [?]. In reality, most stochastic
claim reserve methods ignore the huge impact of outliers, with some extreme
observations potentially appearing in upper triangular areas, negatively affect-
ing existing reserve models [?]. Robust GAM models use stratified sampling
bootstrap methods [?], producing results similar to traditional models when
outliers are absent, and showing significant advantages in estimation accuracy
and efficiency when outliers exist through accident period effect and develop-
ment period effect spline smoothing.

(3) Weather Index Insurance Related Research According to National
Highway Traffic Safety Administration (NHTSA) data, about 22% of accidents
annually are caused by weather factors, with over 6,000 deaths and more than
445,000 injuries [?], making weather an unavoidable topic in future auto insur-
ance. In the pan-generalized nonlinear framework, weather index auto insurance
mainly considers weather factors’ biological or physical impacts on drivers, such
as fatigue levels and driving visibility.

Driver fatigue driving has become the most prominent hidden danger in current
traffic accidents, with fatigue driver accident incidence accounting for about
10%-15% of accident cases, and fatigue driving accident probability being 8
times that of sober driving [?]. In the long term, some anti-drowsiness methods
(such as opening windows or radios) have no positive effects on driving, with
the only countermeasure to drowsiness being sleep [?]. Once in a drowsy state
for long periods, only rapid sleep supplementation can provide relief.

Increased environmental temperature can lead to shortened sleep duration,
most noticeably shortened deep sleep periods [?], revealing human sensitivity
to weather changes to some extent. Ahn S et al. [?] used multimodal EEG,
ECG, eye movement, and near-infrared spectroscopy signals to more deeply
explore sleep’s impact on drivers, pointing out that sleep deprivation causes
severe mental fatigue. When drivers are sleep-deprived, relative power levels
of alpha waves in right central parietal regions significantly increase; relative
power levels of beta waves in frontocentral regions decrease; average heart rate
significantly decreases; driving condition levels and relative driving condition
levels show significant increases in driver fatigue. These conclusions provide ev-
idence that “weather affects drivers’ mental states and physiological indicators,
thereby increasing driving risk.”
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[TABLE:AZ2]
[TABLE:A3]

Sun Xianglong et al. [?] used international standard thermal comfort level stan-
dards for experimental grouping, using data from bus driver sleep quality scales,
fatigue scales, and driving behavior scales under high-temperature weather to
analyze and find that bus drivers’ physical and mental states under different
high temperatures affect safe driving conditions.

High-temperature weather mainly affects fatigue levels, while rainy weather
mainly affects driving visibility. Some studies concluded that accidents increase
by 100% or more during rainfall due to blocked vision [?], while other studies
found milder but still statistically significant increases [?]. Druta et al. [?] used
SHRP 2 NDS data to analyze driver adaptive behavior under adverse weather
(rain, low visibility). By matching driving scenarios of the same drivers under
normal and adverse weather conditions, they compared changes in speed, situ-
ational awareness, and visibility responses. Results found most accidents and
critical situations occurred in rainy conditions, with critical situation numbers
being twice accident numbers, showing drivers often avoided collisions through
sudden braking and steering. Most critical situations occurred in rear-end col-
lisions and side slips during merging or lane changes, mainly due to failure to
adjust speed in time. Ahmed et al. [?] developed a method based on windshield
wiper status variables to extract rain-related trips from the SHRP2 database,
finding drivers were more likely to reduce speed by over 5 kph on rainy days,
with probabilities of speed reduction 23% and 29% higher in light and heavy
rain than in sunny conditions [?].

Current index insurance pricing models include compound Poisson process mod-
els as earlier methods, modeling catastrophe indices as compound Poisson pro-
cesses with nonnegative jumps to capture disaster event suddenness and inten-
sity, or using exponential Lévy processes to model loss dynamics at various
stages.

Agricultural weather index insurance mainly considers precipitation factors.
Conradt S [?] used cumulative precipitation indices to explore special insurance
pricing methods. Biagini et al. [?] proposed whole-process models encompass-
ing entire loss accumulation to subsequent assessment result calculations, using
time-nonhomogeneous compound Poisson processes and Lévy processes respec-
tively for modeling. Chen et al. [?] used deep learning methods like neural net-
works to reduce basis risk in traditional contracts, providing theoretical support
for pan-generalized nonlinear frameworks. Ken Seng Tan et al. [?] introduced
penalized spline methods to design more flexible compensation functions, giving
this method advantages in depicting relationships between meteorological vari-
ables and agricultural yield losses. Applied to empirical data from Illinois corn
producers with rainfall and evapotranspiration as meteorological index variables
to formulate corresponding index insurance.

Weather insurance mostly serves as an additional contract to traditional agri-
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cultural insurance or as a supplementary product providing more protection for
policyholders. However, research on whether optimal contracts exist remains in
early stages. Zhang et al. [?] theoretically proved their existence and noted their
structure depends on policyholders’ utility functions, premium levels, and com-
pensation limits. To partially overcome weather insurance basis risk, Zhang [?]
created a hybrid insurance product combining traditional compensation insur-
ance and index insurance, using multi-output neural networks to design trigger
mechanisms and determine index compensation levels, organically combining
these two insurance methods. Comparative results from its application to Iowa
soybean insurance show that when using traditional compensation insurance or
index insurance alone, policyholders’ average utility is lower; only hybrid insur-
ance introducing more production-investment factors in trigger links achieves
policyholder utility maximization. Because this method retains model inter-
pretability advantages while maintaining strong flexibility, it can be expanded
to more property and casualty insurance applications, such as weather index
auto insurance.
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Figure 1: Figure 1

Weather Temperature ~ Driver Basic Information Minimum Value ~ Maximum Value Average Value  Standard Deviation Number of Aeople / person

Age/ year 29 56 44.32 6.808
A-Class License Driving Experience /a 3 21 12.10 4.251

<26C 89
Current Route Driving Time /a 3 9 5.87 1.440
Working Hours / (h « d™1) 9.5 12.5 11.07 0.945
Age/ year 31 56 44.79 6.542
A-Class License Driving Experience / a 3 22 12.01 4.585

26~30C 117
Current Route Driving Time / a 3 9 5.52 1.236
Work Hours / (h - d*) 9.5 12.5 10.95 0.940
Age/ year 31 58 4.79 6.731
A-Class License Driving Experience /a 3 22 12.38 4.691

>30C 94
Current Route Driving Time / a 2 8 5.69 1.503
Work Hours / (h - d7) 9.5 12.5 11.08 0.970

Figure 2: Figure 3

Source: ChinaXiv — Machine translation. Verify with original.
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Influencing Factors Air Temperature
<26°C 26~30 °C >30°C F P
Scale Item
Mean SD Mean SD Mean SD
Sleep Quality 1.31 0.873 1.33 0.922 1.54 0.904
Sleep Latency 0.83 0.739 0.83 0.739 0.84 0.788
] Sleep Duration 1.09 0.621 1.12 0.756 1.47 0.834
Pittsburgh
Sleep Quality Sleep Efficiency 0.35 0.557 0.44 0.592 0.49 0.611 10 0 0.000
Index Sleep B i
@sQn  Distubances 071 0.671 0.80 0.603 1.32 0.737
Use of Sleepin,
Modicanon . 0.19 0.394 0.13 0.338 0.19 0.394
Daytime
Dysfunction 0.85 0.575 0. 87 0.597 1,12 0.518
PSQI Score 5.33 2.885 5.52 2.751 6.97 2. 841
Lack of Energy 5.60 1.393 6.52 1.439 6.69 1.625
Physical Exertion 3.85 1.572 4.19 1. 686 5.10 1.925
Physical 3.25 1.038 4.75 1.459 5.50 1.460
Fatigue ~ Discomfort ] ' : 29.78 0. 000
Lack of Motivation 4.38 1. 650 4.25 1.579 515 1.513
Sleepiness 3.84 1. 668 4.16 1. 502 5.79 1.513
Fatigue Score 4.18 1.289 4.77 1.366 5.65 1.387
Ordinary Violations ~ 1.28 0.251 1.36 0.312 1.44 0.365
Aggressive
: 1§Iations 1.49 0.626 1.56 0.709 1.61 0.531
Risky Errors 1.55 0.673 1.56 0.705 1.57 0.629
Driving 3.86 0.022
Behavior Lapses 1.68 0.312 1.71 0.405 1.73 0.423
Positive Drivin;
“Behavior .g 2.80 0.539 2.63 0.489 2.60 0.708
DrvngRevior i 1i7s 0.290 1.76 0.265 1.79 0.275

Figure 3: Figure 4
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