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Abstract

The Shanghai High repetition rate XFEL and Extreme light facility (SHINE)
utilizes high-Q 1.3 GHz superconducting radio-frequency (SRF) cavities for par-
ticle acceleration. These cavities, with an ultra-narrow bandwidth of approx-
imately 32 Hz, are highly susceptible to Lorentz force detuning (LFD) and
microphonics, which can destabilize the cavity resonance frequency and com-
promise system performance. This paper presents a novel detuning compensa-
tion scheme that combines an autoregressive least-mean-square (LMS) adaptive
filter and active noise control (ANC) in a parallel configuration to mitigate
microphonic-induced detuning. A real-time simulation model, incorporating
the cavity’s mechanical eigenmodes, was developed to evaluate the proposed
approach. Simulation results demonstrate significant reductions in amplitude
and phase errors by approximately 90% and 70%, respectively, compared to
the open-loop tuning configuration, achieving the stringent operational require-
ments. This study introduces an innovative detuning compensation strategy for
high-Q SRF cavities, providing a robust framework for optimizing RF system
design and ensuring stability in complex noise environments.
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The Shanghai HIgh repetitioN rate XFEL and Extreme light facility (SHINE)
utilizes high-Q 1.3GHz superconducting radio-frequency (SRF) cavities for par-
ticle acceleration. These cavities, with an ultra-narrow bandwidth of approxi-
mately 32Hz, are highly susceptible to Lorentz force detuning (LFD) and micro-
phonics, which can destabilize the cavity resonance frequency and compromise
system performance. This paper presents a novel detuning compensation scheme
that combines an autoregressive least-mean-square (LMS) adaptive filter and
active noise control (ANC) in a parallel configuration to mitigate microphonic-
induced detuning. A real-time simulation model, incorporating the cavity’s
mechanical eigenmodes, was developed to evaluate the proposed approach. Sim-
ulation results demonstrate significant reductions in amplitude and phase errors
by approximately 90% and 70%, respectively, compared to the open-loop tuning
configuration, achieving the stringent operational requirements. This study in-
troduces an innovative detuning compensation strategy for high-Q SRF cavities,
providing a robust framework for optimizing RF system design and ensuring sta-
bility in complex noise environments.

Keywords: Microphonics, RF cavity model, Tuning Loop

Introduction

Superconducting radio frequency (SRF) cavities are widely employed in modern
particle accelerators [1]2][3]. Their high Q-factor design significantly reduces
the operational costs of high-power systems but also introduces the risk of detun-
ing due to their extremely narrow bandwidth [4][5]. Under high-load operating
conditions, even minor frequency deviations in the cavity resonance caused by
microphonics can severely affect the amplitude and phase stability within the
cavity, leading to a significant increase in power demands [6][7][8]. In such
scenarios, greater attention must be directed toward the tuning loop, requiring
faster response times to compensate for detuning frequencies caused by external
disturbances.

Cavity detuning primarily arises from two factors: Lorentz Force Detuning
(LFD) and microphonics. LFD, caused by the interaction between the elec-
tromagnetic field and wall currents, deforms the cavity and excites mechanical
modes. However, when operating in continuous-wave (CW) mode, LFD can be
effectively mitigated by pre-setting cavity detuning compensation in advance
[9][10]. Microphonics, on the other hand, which has a significant impact in CW
mode [11], includes disturbances in specific frequency bands caused by equip-
ment such as cryogenic systems and vacuum pumps. These can be compensated
using Active Noise Control (ANC), a method validated in facilities like Linac
Coherent Light Source II (LCLS-II) [12]. For stochastic factors such as ground
vibrations, adaptive filters are currently the most viable compensation approach.

These detuning challenges demand fast response capabilities from the tuning
loop. Taking Shanghai High repetition rate XFEL and Extreme light facility
(SHINE) as an example, the target is to maintain the Root Mean Square (RMS)
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detuning frequency below 1.5Hz [13]. Of course, there are also other meth-
ods, such as Disturbance Observer-Based control (DOB) and Iterative Learning
Control (ILC) [14][15], feedforward-based control [16], and Active Disturbance
Rejection Control (ADRC) [17][18], among others.

To verify the effectiveness of various control measurements and algorithms in
meeting the amplitude and phase stability requirements within the RF cavity,
it is necessary to establish a real-time cavity simulation [19]. In addition to in-
corporating the cavity equivalent model and amplitude-phase feedback loops, it
is crucial to develop a comprehensive and accurate tuning loop model. The tun-
ing actuators responsible for compensating cavity detuning frequencies include
stepper motor for slow tuning and piezo for fast tuning [20][21]. Both the piezo
and the mechanical eigenmodes of the cavity are considered in the model. Using
SHINE accelerating cavities as an example, control parameters are ultimately
adjusted to achieve an RMS amplitude stability of less than 0.02% and an RMS
phase stability of less than 0.02°.

The structure of this paper is as follows: It begins with a detailed discussion of
the sources of detuning in high-Q SRF cavities, focusing on the characteristics
of microphonics and its impact on cavity stability. Sec. II evaluates various
tuning loop control strategies and selects the Least Mean Squares (LMS) algo-
rithm as the core for detuning compensation, analyzing potential instabilities
in combination with system characteristics. Sec. III establishes a real-time sim-
ulation model incorporating the mechanical eigenmodes of the cavity to verify
the effectiveness of different control strategies, with an in-depth analysis of the
combined effects of ANC and LMS on suppressing amplitude and phase errors.
Sec. IV concludes the paper.

II. Control Strategy
A. Cavity Detuning Frequency and Changes in Control Strategies

In traditional normal conducting RF cavities or low-Q superconducting RF
cavities, the half-bandwidth of the RF cavity is typically wide, and the tuning
loop bandwidth is usually designed to be relatively low to avoid coupling with
the amplitude-phase loop [22]. For example, the half-bandwidth of the 500 MHz
superconducting cavity in the Shanghai Synchrotron Radiation Facility (SSRF)
storage ring is approximately 1.25 kHz. In this case, a few Hertz of detuning
has a minimal impact on the amplitude-phase stability of the accelerating field
inside the cavity. Therefore, a slow tuning loop with a response frequency of
approximately 1-10 Hz is sufficient, while the bandwidth of the amplitude-phase
loop is generally 0.1-1.4 kHz [23].

In contrast, the SHINE main accelerating cavity has a resonance frequency
of 1300 MHz and a loaded Q-factor as high as 4 x 1077, resulting in a half-
bandwidth of only about 16.25Hz [24]. Under these conditions, detuning of
just a few Hz can significantly degrade the amplitude-phase stability of the
accelerating field, necessitating real-time compensation via fast tuning loop.
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However, simply increasing the tuning loop bandwidth may result in coupling
with the amplitude-phase loop, and when the bandwidth reaches the scale of
hundreds of Hz, it can even lead to system instability [25][26].

We enabled the amplitude-phase loop with small gain in SHINE RF cavity test,
when the RF cavity was operating roughly in the steady-state region, utilizing
the widely adopted Schilcher cavity model based on state-space representation
to inversely calculate the cavity detuning frequency [27][28][29]:

o) = [ o] Berto] + e [Vt

Ve and V; represent the RF voltage and input voltage, respectively. The sub-
scripts 7 and ¢ indicate the real and imaginary components. wy , represents the
cavity half-bandwidth, Aw is the cavity detuning angular frequency, and g is
the coupling coefficient, which is typically much greater than 1 in high-Q loaded
cavities. Under CW operation mode, the cavity detuning angular frequency at
a steady state at time n can be expressed as:

B+1

Aw(n) = V2, (n) + VZ,(n)

(VC,i(n)Vf,r(n) - VC,r(n)Vf,i<n))

Under steady-state operating conditions, the time-domain and frequency-
domain plots of cavity detuning frequency are shown in Fig. 1 [FIGURE:1].
Since the impact of LFD under steady-state CW operation is negligible [30],
the detuning is primarily caused by microphonics. During the prolonged
testing, it was observed that the frequency detuning remained relatively stable
within the range of -3Hz to +3Hz. A 25-second sample was selected for
analysis. Fig. 1(a) shows the time-domain spectrum of the frequency detuning.
During this period, the detuning frequency may exhibit a slight increase,
potentially due to the influence of external ground vibrations. This sudden
change further highlights the generalization ability and adaptability of the
tuning algorithm in responding to external disturbances. Fig. 1(b) presents
the frequency-domain spectrum of the frequency detuning. By analyzing the
spectral plot of the detuning frequency, its primary characteristics can be
identified. Prominent spectral components are observed at DC and specific
frequency points. After shutting off the vacuum pump, the 50Hz and nearby
vibrational noise interference significantly decreased, indicating that the noise
in certain frequency bands is caused by mechanical vibrations from components.
When these devices are turned off, the corresponding noise levels are notably
reduced. This suggests that optimizing noise sources to minimize mechanical
vibrations is an effective mitigation strategy. Additionally, control algorithms
targeting specific frequency points, such as ANC, can be employed to further
suppress these noise components.
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Second, the remaining spectral components are mainly distributed below 250Hz,
where scattered random noise dominates. This frequency range also coincides
with the mechanical eigenmodes of the cavity. The next section will focus on the
use of real-time adaptive filters to suppress noise within this frequency band.

In summary, the proposed control logic block diagram is presented in Fig. 2
[FIGURE:2]. Here, |a| denotes the magnitude, and Za represents the phase
angle. The amplitude-phase loop employs PID control, while the tuning loop
adopts a real-time adaptive filter combined with the ANC for better suppression
of cavity detuning. Regardless of the source of noise, the process ultimately
applies forces to the cavity, causing deformation and resulting in changes to the
cavity’s resonant frequency. This process is modeled in the Cavity Mechanical
Model block, which will be discussed in greater detail in Sec. III. The Lorentz
force generated by RF fields is referred to as Fj,,, while the force caused by
microphonics is denoted as F,,,. The feedback loop applies a force through the
piezo, which is labeled as Fi .

B. Control Algorithm

An adaptive filter is a dynamic filter capable of automatically adjusting its pa-
rameters based on changes in the input signal. Its core functionality lies in
minimizing the error signal through iterative algorithms, enabling effective sig-
nal extraction and noise suppression. Unlike traditional fixed-parameter filters,
adaptive filters do not require pre-defined filtering parameters. Instead, they
utilize algorithmic optimization techniques to dynamically update filter coeffi-
cients in real-time, allowing them to adapt to time-varying signal environments
[31].

If cavity frequency detuning is considered as interference noise, suppressing this
noise typically requires a reference noise signal that is correlated with the target
noise to be suppressed. In the RF cavity operating environment, the reference
noise signal can be selected as the previously suppressed noise from the last time
step, implementing an uncommon autoregressive strategy.

To evaluate the effectiveness of this control strategy, this study uses a single-
frequency 20Hz signal with a signal-to-noise ratio (SNR) of 30 as the test signal.
This type of test signal aligns with the characteristics of the microphonics de-
scribed in Chapter II A. The signal is subjected to autoregressive suppression
using three different adaptive filtering methods: LMS adaptive filter, Recursive
Least Squares (RLS) filter, and Kalman adaptive filter.

The FIR filter structure is defined by:

Wy, = [wo(”)a wy (n)’ W (n>]T
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e(n) = d(n) — y(n)
z(n+1) =e(n)

As shown in Fig. 3 [FIGURE:3], in this FIR filter, the filter coefficients w,, are
updated at each time step, representing the filter weights at the current time,
the length of this weight vector is N. The reference noise signal z,, is an input
vector containing the current time step and the previous N — 1 time steps, with
a length of V. It represents the historical data used for noise suppression. The
output of the filter, y(n), is calculated by taking the dot product of the current
filter coefficients w,, and the reference noise signal x,,. The desired output d(n)
is the sum of the expected zero detuning target and the cavity detuning caused
by factors such as microphonics. Meanwhile, the difference between y(n) and
d(n) forms the error e(n), which is also the reference signal xz(n + 1) for the
next time step. This error is used to adjust and update the filter coefficients
w,,. By continuously updating these filter coefficients, the FIR filter is able
to progressively suppress noise and optimize based on new input data, thus
achieving effective noise suppression.

The parameter values of each algorithm are shown in Table 1 .

TABLE 1 Adaptive Filter Parameters

Algorithm  Parameters

LMS p=1x10"3
RLS P=1Iy.y,A=0.999
Kalman P=103x Iy, n,Q@=0.1,R=10

The basic form of the LMS filter is represented by:

Wy = W, + pe(n)z,

where the only parameter requiring initial configuration is the learning rate p.

The RLS filter is represented by:
P.x

_ nwn

n TP o 41

n nTn

wn+1 = wy, + Kne(n)

1
P -

ol = )\(Pn—K 2I'P)

nsn n

where K, is the RLS gain, which determines the step size for weight updates,
thereby affecting the rate of adjustment of the filter coefficients. The covari-
ance matrix P, describes the uncertainty of the model parameters at the n-th
time step. When P, is large, it indicates higher uncertainty in the parameter
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estimates, resulting in a larger K, and a larger weight update step. This is
typically applicable in the early stages of model development or when the data
exhibits high variability. When P, is small, the current parameter estimates are
more certain, leading to a smaller K, and a smaller weight update step. The
forgetting factor A\ controls the influence of historical data on model updates.
If X\ is large (close to 1), the algorithm places more weight on historical data,
making it suitable for systems with slow changes. If A is small, the algorithm
focuses more on the current data, making it suitable for systems with rapid
changes.

The Kalman filter is represented by:

Pn\n—l = Pn—1|n—1 + Q

o Pn\nfl‘rn

" xzpn\nflxn +R
Wy = Wy, + Kne(n)

The Kalman gain K, is similar to the RLS gain, determining the step size
for weight updates. The left and right sides of the subscript | represent state
estimates at different time points. Specifically, the left side refers to the current
state estimate, while the right side indicates the estimate updated or predicted
based on past information or observations. For instance, P, ; represents the
covariance matrix at time n based on the state estimate and prediction model
from time n—1, reflecting the uncertainty of the predicted state estimate without
the current observation data. In contrast, P, is the updated covariance matrix
at time n, incorporating the current observation data, providing the most precise
uncertainty of the state estimate. () is the process noise covariance matrix,
indicating the uncertainty of process noise in the model. A larger ) implies
greater uncertainty in the system model, causing the filter to rely more on
new observation data, leading to faster response to signal changes. R is the
observation noise covariance matrix, describing the noise level in the observation
data. A larger R makes the filter more sensitive to noise, resulting in smaller
gains and fewer adjustments based on noisy observations.

The test signal is subjected to autoregressive suppression using the three adap-
tive filters with N = 8 mentioned above. As shown in Fig. 4 [FIGURE:4],
the LMS method reaches optimal suppression more slowly compared to RLS
and Kalman filters. However, regardless of how the parameters of RLS and
Kalman filters are adjusted, the final suppression effectiveness is nearly identi-
cal across all three methods. This conclusion is further supported by the FIR
tap coefficients.

As shown in Fig. 5 [FIGURE:5], the tap coefficients of all three algorithms
ultimately converge to the same values. Although the RLS and Kalman filters
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achieve faster convergence, they involve intensive matrix operations, including
multiplications and inversions, which increase computational complexity. In
contrast, the LMS algorithm offers a simpler structure and easier implementa-
tion. Despite its slower convergence and relatively poorer timing performance,
LMS is selected in this study as the core algorithm for the adaptive filter, con-
sidering the balance between performance and practical implementation.

The above discussion focuses on using adaptive filters to suppress uncertain
noise. In contrast, a 2019 solution proposed by Cornell University introduced
an ANC approach for RF cavities [4], which effectively suppresses noise at fixed
frequencies:

usno(t) = Z (£, (1) cos(w,,t) — @, (t) sin(w,, 1)]
I (TL + 1) (TL - 6fcomp(n) ’ COS((JJmt - ¢m (n)>
Q (TL + 1) Qm (’I’L) v 5fcomp(n) : Sin<wmt - (bm (n>>

¢ ( ) (bm n) - 6fcomp(n> ' [Im<n) Sin("‘}mt - ¢m (n)) + Qm(”) COS(UJmt - (bm (n)>]

The output of the ANC controller, denoted as u 4 ¢, is the input to the tuner.
u,, represents the ANC suppression at the m-th frequency point, which can
be specifically decomposed into in-phase and quadrature components. v and 7
are the learning rates of I,,/Q,, and ¢,,, respectively. Jeomp Tepresents the
frequency detuning of the cavity caused by the combined effects of Lorentz force,
microphonics, and the tuner’s frequency control. Here, the adaptation of ¢,,
is designed to compensate for the phase of the actuator at the corresponding
frequency point. It is worth noting that when ¢,, is nonzero, the closed-loop
transfer function formed by ANC may exhibit loop gain greater than 1 nearby
the set frequency. This results in the unintended amplification of noise at the
surrounding frequencies, even though ANC significantly suppresses noise at the
set frequency.

C. Potential Instabilities

Adaptive filters employing autoregressive strategies must pay particular atten-
tion to potential instability issues. These primarily arise due to the absence of
an external reference signal, as filter coefficient adjustments rely on historical
estimation data derived from the autoregressive process [35][36]. This makes
the performance heavily dependent on the dynamic changes in noise and the
rate of filter tap coefficients update. Specifically, if the loop delay is excessively
large, the autoregressive non-standard reference signal may exhibit weak cor-
relation with the current external noise signal, which consequently leads to a
degradation in the filtering performance. Fortunately, the update period of the
adaptive filter is on the order of milliseconds, whereas the loop delay is on the
order of microseconds, suggesting that the loop delay has a negligible impact
on the stability of the loop. Additionally, the rate of change of the filter tap
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coeflicients must be carefully considered. If the rate is too small, the filter may
struggle to accurately track and suppress noise. Conversely, if the rate is too
large, it can result in self-excitation and instability.

The specific parameters that need to be configured include the order N of the
FIR filter, the LMS update frequency f,r, and the LMS learning rate u. The
cavity detuning data shown in Fig. 1 is used as the test noise. The following
analysis only discusses the LMS single-loop configuration, meaning that other
loops in the RF system are not considered, and only the loop shown in Fig. 3
is focused on.

As shown in Fig. 6 [FIGURE:6], when the filter order increases and the LMS
update frequency decreases, the suppression of the main lobes in the filter re-
mains relatively consistent. For example, at the frequency points of 50Hz and
100Hz, the closed-loop gain is almost identical. However, in the side lobe re-
gion, the gain is more refined, meaning the filter’s resolution within the specified
frequency range is improved, which in turn enhances noise suppression perfor-
mance.

The NLMS (Normalized LMS) algorithm is proposed to address the issue of
uneven coefficient update rates caused by the LMS algorithm. The update
equation for NLMS is as follows:

i
T e

Wy =W
In Eq. 8, the denominator of the update rate is the energy of the reference
signal combined with a very small constant C' (to ensure the denominator is
not zero). This allows for dynamically adjusting the learning rate based on the
energy of the autoregressive signal, increasing the convergence speed when the
signal energy is low and decreasing it when the energy is high, the step size for
each update remains relatively uniform.

Similarly, the cavity detuning data mentioned in Fig. 1 is used as the test noise
for simulation testing. As shown in Fig. 7

, compared to NLMS, LMS is more prone to instability and causing the tap
coefficients to diverge, resulting in a narrower range of variability for its learning
rate p. For example, when =1 x 1072 and g = 1 x 107, the tap coefficients
diverge at 16.5s and 1s, respectively, leading to system instability. In contrast,
NLMS exhibits nearly linear convergence progress before reaching stability. At
this stage, concerns about potential system instability caused by a large p value
can be disregarded. Once the system reaches a steady state, the optimal learning
rate p for the LMS algorithm can be derived accordingly.

It should be noted that the NLMS algorithm requires storing historical N refer-
ence signals, which consumes a certain amount of computational resources. To
address this issue, we recommend using the NLMS algorithm to determine the
learning rate p during the tuning loop testing phase. At this stage, concerns
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Figure 1: Figure 7

about potential system instability caused by a large p value can be disregarded.
Once the system reaches a steady state, the optimal learning rate p for the LMS
algorithm can be derived accordingly.

ITI. Simulation Model and Test Results
A. Mechanical Eigenmodes of the Cavity

The mechanical characteristics of the cavity determine the extent to which ex-
ternal forces can couple to the eigenmodes of structure, potentially exciting
unwanted oscillations. In piezo-based detuning control, it is crucial to measure
the transfer function between the piezo drive signal and the cavity detuning [32],
specifically, this involves measuring the final cavity detuning frequency under
piezo driving signals at different frequencies. The smoothed test results for the
SHINE test cavity are shown below:

Fig. 8 [FIGURE:8| shows the cavity frequency detuning response to sine wave
excitations of different frequencies on piezo. The response transfer function
contains the following terms in the Laplace domain [33]:

1 K, -Q? o
His) = g Hols) + Z His) - 5 QZ—/QZ»; T2 Haetay(s) - 7Tt
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In Eq. 9, to account for the influence of low-frequency and DC modes outside the
measurement range, a first-order low-pass transfer function H(s) is introduced,
where K, is its gain and 7 is its time constant. Each mechanical response mode
of cavity corresponds to a second-order system H,(s), where K, €, and @,
represent the gain, resonance frequency, and quality factor of the i-th mode,
respectively. Hdezay(3> represents the phase shift caused by the group delay
of the signal in the tuner medium. The SHINE test cavity fitting results are
Ky =40, 7 =226 x 107, 7., = 1.3 x 107%, and the second-order system
parameters are shown in Table 2 .

TABLE 2 Parameters of the mechanical modes

Mode K, (Hz/V) Q,; (Hz) Q,

1 0.85 45.2 150
2 0.92 98.7 180
3 0.45 156.3 200
4 0.31 203.5 220

The final fitted transfer function results are shown in Fig. 8. The magnitude-
frequency response is well-fitted within 400Hz, while the phase-frequency re-
sponse is accurately fitted within 300Hz. Based on the noise influence analysis
in Fig. 1(b), it can be concluded that the fitting range is sufficient to meet the
requirements.

What is observed in the control loop is the process that starts with the piezo
drive signal AV, followed by the force AFpp applied to the tuner, resulting
in cavity deformation AL, and ultimately causing a change Af in the cavity’s
resonant frequency. The process is illustrated in Fig. 9 [FIGURE:9).

In mechanical dynamics, cavity deformation can be decomposed into a set of me-
chanical modes. When a specific mode is excited, it produces the corresponding
mode displacement. Since the applied forces remain within the cavity’s linear
elastic limit, these modes can be represented as a set of damped harmonic oscil-
lators [37]:

02

Q

Gils) =k
SQ—I—Qfs—&—Qf

%

Where k; is the gain for each modal, 2,, and @); as mentioned in Eq. 9, consider-
ing that the piezo response is relatively flat below 1kHz, meaning that the force
applied under the same voltage is nearly constant across different frequencies.
That is, the v in Fig. 9 is a constant, and assuming that cavity deformation is
linearly related to cavity frequency detuning (¢ ~ 3.4 x 10® Hz/m), from the
Eq. 11:
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Hi(s)|s—o =7 Gi(8)|s=0 € = K; =7 -¢/kg

Where the cavity stiffness kg = 3 x 10 N/m, we can derive the gain v, and
further obtain the transfer function G with the modal gains ;.

By using the least-squares method, it is possible to approximate the forces
exerted on the cavity due to microphonics, as shown in Fig. 10 [FIGURE:10],
which are the time-domain and frequency-domain plots of the forces.

In CW mode, although the effect of LFD on the cavity frequency shift is negli-
gible, we still incorporate it into the overall cavity mechanical model. The force
exerted by the LFD on the cavity can be expressed by Eq. 12.

Ve
Fint = ZFint,i = klfdw

Where k; ;4 is the LFD constant [34], with units of Hz/(MV m™')?, V, represents
RF acceleration voltage, L is effective cavity length.

B. Amplitude-Phase Loop and Tuning Loop in Closed-Loop Opera-
tion

During the steady-state operation of the RF system, the LLRF operates in GDR
(Generator Driven Resonator) mode. The working frequency of the GDR mode
is strictly determined by the MO (Master Oscillator) signal, so the cavity’s
resonant frequency must be close to the MO frequency range to ensure efficient
coupling of RF power into the cavity. In this study, various operating states of
the tuning loop were observed through simulation, including open-loop, closed-
loop using only the LMS algorithm, closed-loop using only the ANC algorithm,
and closed-loop with both LMS and ANC loops in parallel. The impact of
different tuning loop configurations on cavity detuning compensation caused by
factors such as microphonics was analyzed. Prior to this, Table 3 shows the
cavity and LLRF parameters used for the simulation.

TABLE 3 Cavity and LLRF parameters

Parameter Value
Cavity frequency f, 1.3 GHz
Loaded quality factor Q; 4.1 x 107
Setpoint Vi 12 MV
Loop delay 1/Q loop 0.2 pis
1/Q loop K, 0.2

I/Q loop K, 0.2

chinarxiv.org/items/chinaxiv-202506.00047 Machine Translation


https://chinarxiv.org/items/chinaxiv-202506.00047

ChinaRxiv [f)]

The fitting speed of the cavity detuning by the tuning loop under different
parameter configurations can be clearly observed from Fig. 11 [FIGURE:11].
First, using the parameter set M = 50, u = 1 x 10719 and f,r = 1000 Hz
as the baseline (indicated by the yellow curve), the system almost becomes
unstable at around 12 seconds. Then, when the learning rate p is increased to
5 x 10719 (indicated by the red curve), although the fitting speed accelerates,
the excessively large learning rate causes the cavity frequency to detune at 16
seconds, leading to divergence and eventually system instability. When the filter
order is increased to 80 (indicated by the purple curve), it is evident that the
system’s fitting performance improves, and no abrupt changes appear during the
fitting process. This suggests that increasing the filter order within a certain
range helps improve the system’s stability. Furthermore, when the LMS update
frequency f,p is adjusted to 400 Hz (indicated by the green curve), although
the fitting speed slows down, the final fitting performance is comparable to
the baseline condition. This further confirms that the optimization conclusions
regarding the learning rate, filter order, and LMS update frequency in the closed-
loop control system are consistent with those derived from the analysis of the
single-loop case in Sec. II C. By appropriately adjusting the LMS parameters,
the system’s stability and fitting performance can be effectively improved, and
these adjustments are of significant guiding importance in closed-loop systems.

Incorporating the ANC algorithm to compare the fitting performance of the
tuning loop on cavity detuning under three conditions: LMS only, ANC only,
and the combined effect of ANC+LMS. The ANC is designed to suppress fre-
quencies at 50Hz and 100Hz, while the LMS parameter set is chosen as M = 80,
p=1x10"1 and f, = 1000 Hz.

As shown in Fig. 12 [FIGURE:12], compared to the LMS algorithm, ANC
exhibits significantly faster noise suppression at specific frequency points. The
LMS algorithm gradually adjusts the closed-loop gain by modifying the learning
rate, thereby implementing noise suppression across the entire frequency band.
However, its suppression speed for specific noise frequencies is relatively slow
and requires gradual increase to adapt to changes in other frequency bands. In
contrast, ANC directly targets and suppresses specific frequency points quickly,
addressing the slow suppression effect of LMS at certain frequencies. However,
the main limitation of ANC when used alone is its inability to track the DC
component, as evidenced by its loop fitting performance. When LMS and ANC
are combined, they complement each other’s weaknesses. The system is able to
maintain a high noise suppression speed while ensuring effective suppression of
low-frequency and DC components, thus improving overall performance.

Subsequently, this study compares the impact of open-loop and closed-loop tun-
ing on the cavity amplitude and phase stability. As shown in Fig. 13 [FIG-
URE:13], the figure presents the amplitude error (a) and phase error (b) curves
under steady-state conditions for both open-loop and closed-loop tuning (with
LMS+ANC), with data recorded after the system reached steady state over a
10-second interval. The RMS values of amplitude error over this period for
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the two configurations are 0.0033% and 0.0002%, respectively, while the RMS
values of phase error are 0.0498° and 0.0138°, respectively. It is worth noting
that the results at this point are theoretical values based on simulation, which
cannot be fully realized in practical applications due to hardware imperfections
and ADC accuracy limitations, and are intended to illustrate that this tuning
scheme can effectively reduce the amplitude-phase error. From the data, it is ev-
ident that even under the open-loop tuning condition, the amplitude error can
reach the target only through the amplitude-phase loop; however, the phase
stability requirements are far from being met. In contrast, under closed-loop
tuning (LMS+ANC), both the amplitude and phase errors are significantly re-
duced, indicating that the closed-loop tuning system can better enhance the
system’s stability and meet stringent accuracy requirements. This confirms the
important role of combining LMS and ANC in noise suppression and system
optimization.

C. Hardware Implementation Evaluation

A brief evaluation of the hardware implementation of the proposed tuning
scheme is provided. The SHINE low-level system uses the Xilinx Zynqg 7100
series chip, which is equipped with 2020 DSP48E1 units. Each DSP unit con-
tains a 25x18 multiplier. The currently available high-speed parallel ADC has
a data bit width of 16 bits.

First, consider the implementation of the adaptive filtering algorithm. In the
data output section shown in Eq. 3, the Nth-order filter requires N DSP units.
For the tap coefficient iterative calculation shown in Eq. 8, the dot product oper-
ation in the denominator requires N multiplications and (N —1) additions, plus
one additional addition with the constant C', requiring a total of N DSP units.
In the numerator section, multiplying three 16-bit signed numbers requires 3N
DSP units. The division operation is implemented using pipelining, requiring
1 DSP unit. Therefore, the adaptive filtering algorithm requires approximately
(5N + 1) DSP units.

Next, for the ANC algorithm, the calculation of the first output expression
in Eq. 7 requires 2 DSP units. The trigonometric calculation part uses the
CORDIC algorithm, which does not require additional DSP resources. In the
1Q iteration section, the common term calculation requires multiplying two 16-
bit signed numbers, resulting in a 31-bit signed number, requiring 1 DSP unit.
This result is then multiplied by two 16-bit trigonometric terms, each of which
requires 2 DSP units. The phase iteration section similarly requires 7 DSP
units. In summary, the total DSP resources required for the ANC algorithm at
each frequency point is 14 DSP units.

Assuming a filter order N of 50, and the ANC algorithm processes 4 frequency
points, the total DSP resource requirement for the system is approximately 307
DSP48 units, which accounts for about 15% of the total resources.
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IV. Conclusion

This study addresses the high-demand operational requirements of the SHINE
by proposing a detuning compensation scheme that significantly improves sys-
tem amplitude and phase stability. Through an in-depth comparison of com-
monly used adaptive filtering algorithms, and considering both performance and
hardware implementation costs, the autoregressive LMS algorithm was selected.
Its parameter design and potential instabilities were analyzed, focusing on fil-
ter order, update frequency, and learning rate. Simulations demonstrated the
algorithm’s effectiveness in suppressing uncertain noise.

To accurately simulate the operating environment of RF cavities, a simulation
model incorporating the cavity’s mechanical eigenmodes was established. Com-
bined with amplitude-phase feedback and tuning loops, the performance of var-
ious control algorithms was analyzed in detail. Experimental and simulation
results showed that the parallel scheme of the autoregressive LMS and ANC
algorithm effectively suppressed microphonic detuning. Compared to the open-
loop tuning configuration, the amplitude error and phase error were reduced
by approximately 90% and 70%, respectively, meeting SHINE’s operational re-
quirements. This study not only demonstrates the potential of adaptive filters
in suppressing RF cavity detuning but also establishes a foundational framework
for further tuning loop optimization through the construction of the cavity sim-
ulation model. However, the cavity frequency detuning tested so far, or in other
words, the noise sources, have been relatively stable, meaning there have been
no sudden changes in noise in specific frequency bands. In extreme cases, this
tuning method may not achieve perfect compensation in a short period. Fu-
ture work will focus on enhancing the robustness of the proposed scheme in
dynamic environments, supporting the stable operation of the SHINE facility
and providing insights for the design of high-demand particle accelerators.
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