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Abstract

Cosmic-ray muon sources exhibit distinct scattering angle distributions when in-
teracting with materials of different atomic numbers (Z values), facilitating the
identification of various Z-class materials, particularly those radioactive high-
Z nuclear elements. Most of the traditional identification methods are based
on complex muon event reconstruction and trajectory fitting processes. Super-
vised machine learning methods offer some improvement but rely heavily on
prior knowledge of target materials, significantly limiting their practical appli-
cability in detecting concealed materials. For the first time, transfer learning
is introduced into the field of muon tomography in this work. We propose
two lightweight neural network models for fine-tuning and adversarial trans-
fer learning, utilizing muon tomography data of bare materials to predict the
Z-class of coated materials. By employing the inverse cumulative distribution
function method, more accurate scattering angle distributions could be obtained
from limited data, leading to an improvement by nearly 4% in prediction accu-
racy compared with the traditional random sampling based training. When
applied to coated materials with limited labeled or even unlabeled muon to-
mography data, the proposed method achieves an overall prediction accuracy
exceeding 96%, with high-Z materials reaching nearly 99%. Simulation results
indicate that transfer learning improves prediction accuracy by approximately
10% compared to direct prediction without transfer. This study demonstrates
the effectiveness of transfer learning in overcoming the physical challenges asso-
ciated with limited labeled /unlabeled data, highlights the promising potential
of transfer learning in the field of muon tomography.
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ABSTRACT

Cosmic-ray muon sources exhibit distinct scattering angle distributions when
interacting with materials of different atomic numbers (Z values), facilitating
the identification of various Z-class materials, particularly radioactive high-Z
nuclear elements. Most traditional identification methods rely on complex sta-
tistical iterative reconstruction or simple trajectory approximation. While su-
pervised machine learning methods offer some improvement, they depend heav-
ily on prior knowledge of target materials, significantly limiting their practical
applicability in detecting concealed materials. For the first time, this work
introduces transfer learning into the field of muon tomography. We propose
two lightweight neural network models for fine-tuning and adversarial transfer
learning, utilizing muon scattering data from bare materials to predict the Z-
class of materials coated by typical shieldings (e.g., aluminum or polyethylene),
simulating practical scenarios like cargo inspection and arms control. By intro-
ducing a novel inverse cumulative distribution-based sampling method, more
accurate scattering angle distributions can be obtained from data, leading to
an improvement of nearly 4% in prediction accuracy compared with traditional
random sampling-based training. When applied to coated materials with lim-
ited labeled or even unlabeled muon tomography data, the proposed method
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achieves an overall prediction accuracy exceeding 96%, with high-Z materials
reaching nearly 99%. Simulation results indicate that transfer learning improves
prediction accuracy by approximately 10% compared to direct prediction with-
out transfer. This study demonstrates the effectiveness of transfer learning in
overcoming physical challenges associated with limited labeled/unlabeled data
and highlights the promising potential of transfer learning in muon tomography.

Keywords: Transfer learning - Muon scattering - Z-class identification +Neural
network

INTRODUCTION

Muons were discovered in cosmic rays by Carl D. Anderson and Seth H. Ned-
dermeyer in 1937. These muons are generated when primary cosmic rays collide
with atomic nuclei in the upper atmosphere, initiating nuclear-electromagnetic
cascades. Most cosmic-ray muons originate from the decays of charged pions
and kaons generated in these interactions. Below 1 GeV, the cosmic-ray muon
energy spectrum is nearly flat, but it steepens in the energy range of 10-100
GeV, closely following the primary cosmic-ray spectrum. Above 100 GeV, the
spectrum becomes even steeper because high-energy pions are more likely to
interact with the atmosphere before decaying into muons [1]. At sea level, they
are the most abundant charged particles, with an intensity of approximately 1
em~2 min~! [2, 3]. Like other charged particles, muons interact with atomic
matter, leading to energy loss and multiple scattering. However, their interac-
tions with matter are purely electroweak, resulting in significantly lower energy
loss compared to most other particles, which grants them exceptional penetra-
tion capability. Consequently, over the past decades, muon tomography has
demonstrated an important role in detection and imaging [4-7].

In 1970, muon transmission was first developed for discovering new chambers
inside a pyramid by Alvarez et al. [8]. Since then, muon techniques have been
widely applied to many fields such as nuclear safeguard [9], volcano studies
[10], and underground tunneling [11]. Cheng et al. applied muon radiography
to investigate the internal density distribution of the Laoheishan volcanic cone
[12]. In 2003, the Los Alamos National Laboratory (LANL) first introduced the
application of muon scattering tomography to security detection and material
identification [13-15], underscoring its immense potential in detecting special
nuclear materials such as illicit uranium concealed within cargo and containers.
Leveraging the distinctive physical properties of muons, this technology has
become an effective method for detecting large-scale, high-density objects.

As groupings of materials based on their atomic number, typically divided into
low-Z, mid-Z, and high-Z categories, Z classification reflects both physical char-
acteristics (e.g., scattering behavior) and practical needs in inspection and nu-
clear verification tasks [16]. Z-class identification of materials based on muon
scattering is a crucial task for security screening and industrial applications.
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Xiao et al. presented a modified multi-group model to improve the image res-
olution of high-Z materials [17]. Ji et al. proposed a method for imaging ma-
terials using the ratio of secondary particles produced by muons [18]. A novel
imaging reconstruction method with big voxel and angle capping was proposed
to reduce time and storage consumption at the Institute of Modern Physics,
CAS [19]. While most traditional identification methods rely on complicated
reconstruction of the muon event and track fitting process, which significantly
increases the design and calculation cost of the algorithm.

Compared to traditional physics-based reconstruction methods, deep learning
models can automatically extract and learn complex features from data. This
end-to-end learning paradigm significantly improves computational accuracy
and efficiency [20, 21]. Deep learning techniques have demonstrated outstand-
ing performance in various fields, including image reconstruction [22-24], nuclear
physics, and particle physics [25-27]. Common deep learning methods rely on
supervised learning, which is based on labeled samples for training. Gao et
al. proposed a convolutional neural network model for feature extraction to re-
alize the classification and recognition of materials based on muon scattering
[28]. Our previous work also explored a feasible solution for muon-based mate-
rial identification using supervised deep learning [29, 30]. However, in practical
identification scenarios, obtaining labeled scattering angle data for coated ma-
terials is the major challenge. The scarcity of labeled data limits the practical
application of supervised learning in coated material prediction.

As a critical deep learning strategy, transfer learning enables knowledge learned
from one domain (the source domain) to be transferred to another related do-
main (the target domain), effectively mitigating the problem of limited labeled
data in the target domain [31-33]. This inspires a proposal of a lightweight
neural network model based on transfer learning for Z-class identification of
coated materials using muon scattering data. In this study, we define the Z-
class identification of bare materials as the source domain task and that of
coated materials as the target domain task. This formulation is inspired by
realistic application scenarios—such as cargo inspection [34], nuclear safeguard
verification, and arms control [35, 36]—where the internal composition is un-
known or only partially known. By introducing a novel data preprocessing and
sampling method, the model transfers the feature-label mapping learned from
bare material scattering angles to the Z-class prediction of coated materials. We
designed two coated material scenarios, where Al and PE served as the coating
materials (Fig. 1 [Figure 1: see original paper]). Utilizing two transfer learning
paradigms, fine-tuning [37] and Domain-Adversarial Neural Network (DANN)
[38], we achieve Z category classification for nine coated materials, which include
three materials from each of the high, mid, and low-Z categories.

To evaluate the effectiveness of our proposed approach, we conducted a series
of simulations on the Z-class classification task with muon scattering angle data
using Geant4 Monte Carlo simulation [39]. The results demonstrate that this
approach effectively transfers scattering angle features from bare materials, en-
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abling accurate classification of coated ones. Our method not only reduces
reliance on large-scale labeled data for coated materials but also maintains ex-
cellent Z-class classification accuracy in a few minutes, particularly achieving
superior accuracy in the more application-critical high-Z class identification.
The contributions of our work lie in the following three aspects:

1. Proposing a novel sampling method combining inverse cumulative distri-
bution function (CDF), integration, and interpolation that improves the
feature expression ability of muon scattering angle samples, optimizing
the training effect of neural networks.

2. Development of a fine-tune based transfer learning model for fast Z-class
prediction in cases of scarce coated material labels, and a DANN transfer
learning model based on adversarial ideas for stable Z-class prediction
when coated material labels are completely unknown.

3. Comprehensive result analysis and physical correlation interpretation,
demonstrating the potential application scenarios of each method, which
provides a diversified scheme for the application and expansion of
transfer learning in muon techniques such as cargo inspection and nuclear
safeguard.

To the best of our knowledge, this is the first study to apply transfer learning
strategies to the field of muon tomography. This research provides an alternative
machine learning scheme for traditional identification methods. It demonstrates
the great potential of transfer learning in mitigating the high-cost reconstruction
and data scarcity challenges in muon-based applications with similar scenarios.

Fig. 1: Flow diagram of material Z classification with transfer learning. The
bare material is defined as the source domain, while the coated material is
defined as the target domain.

II. MUON SCATTERING SIMULATION AND SAM-
PLING METHOD

A. Simulation Setups

The scattering angle data are provided by Geant4 simulation incorporating the
CRY (Cosmic-Ray Shower Library) software [40], which generates muons with
the energy and angular distribution of cosmic muons at sea level. The dimension
of the object is 10 cm x 10 cm X 10 cm; it may be coated on all six sides with
a 1 cm thick layer, resulting in an overall size of 12 cm x 12 cm x 12 cm for
the coated object. Four position-sensitive detectors of size 30 cmm x 30 cm are
placed above and below the object to measure the trajectories of the incident and
emergent muons for subsequent angle calculations. A spacing of 20 cm is placed
between the second and third detector for positioning the tested materials at
the center of this gap. The distance between detector 1, 2 and detector 3, 4 is
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the same 35 mm. It is worth noting that the detector used in the simulation is
an ideal detector, and detector characteristics like detector noise are not taken
into account. This setup is illustrated in Fig. 2 [Figure 2: see original paper].

Fig. 2: Schematic of the Geant4 simulation setup.

First, we set up a muon source with an energy of 1 GeV and conducted scattering
angle simulations for nine bare materials (Mg, Al, Ti, Fe, Cu, Zn, W, Pb, U) to
verify the reliability of the simulated data. Fig. 3 [Figure 3: see original paper]
presents the probability distribution statistics of the simulated scattering angle
data using kernel density estimation (KDE), categorized by both Z classes and
different materials. The results indicate significant differences in the scattering
angle distributions among different Z-class materials, as well as among materials
within the same Z class. In the formal experiment, we performed simulations
based on the energy and angular distributions of cosmic-ray muons at sea level.
For each material in different scenarios (bare, Al coated, or PE coated), 500,000
muon scattering angle data were simulated. The scattering angle in our simu-
lation is the included angle between incoming and outgoing muon tracks in 3D
space using the formula:

f = arccos <lﬁm ' 'Ljout >
|lu1n| |/j‘out |

B. Inverse CDF Sampling

As shown in Fig. 3, the primary distinguishing feature of muon scattering
through different materials lies in the variations of their scattering angle distri-
butions. Additionally, high-quality training samples contribute to the training
of more effective neural networks [41, 42]. When employing a neural network
as a mapping function between scattering angle data and material properties,
it is desirable for the model to learn features that facilitate differentiation be-
tween various materials based on their respective scattering characteristics. To
effectively capture the distribution characteristics of the simulation data, we in-
troduce a sampling method called the inverse cumulative distribution function.
First, we uniformly select a set of quantile points within the range of the overall
scattering angle distribution for a given material and use non-parametric meth-
ods to estimate the probability density function (PDF) of the overall data at
these quantile points. The corresponding CDF values are then computed based
on these PDF values. Finally, we obtain training samples through inverse CDF
sampling. The complete sampling process is shown in Fig. 4 [Figure 4: see origi-
nal paper], and the process pseudocode is referred to in Appendix 1. Compared
with the traditional random sampling (RS) method, the samples generated us-
ing this method share the same probability distribution as the overall simulation
data.

We employed two non-parametric estimation methods: KDE [43] and histogram
estimation (HE), to compute the probability density values for selected quantile

chinarxiv.org/items/chinaxiv-202506.00045 Machine Translation


https://chinarxiv.org/items/chinaxiv-202506.00045

ChinaRxiv [$X]

points within the overall data. The fundamental idea of KDE is to use a smooth
kernel function to perform weighted averaging of total data points, thereby ob-
taining an estimate of the probability density. In other words, we calculate
the weighted contribution of data points at a given quantile point. Selecting
specific quantile points rather than drawing the entire data ensures computa-
tional efficiency and accurate distribution estimation, mitigating the impact of
fine-grained details that could disrupt the smoothness of the overall probability
distribution. For a selected quantile point X, its kernel density estimation of
PDF is given by:

o=y ()

where K is the kernel function, A is the bandwidth parameter controlling the
smoothness of the estimation, and X, are the true data values in the overall
data. We employ a Gaussian function as the kernel function, along with the
Silverman method for automatic bandwidth adjustment.

In contrast, the HE method is more straightforward and intuitive. It uniformly
divides the overall data range into b bins and counts the number of data points
falling within each bin:

fu(z) = Z 71()(2; Bj)

where h is the bin width, n is the total number of samples. The expression
1(X; € B;) represents an indicator function, which indicates whether the data
point X falls within the bin B;. If so, the function takes the value of 1, otherwise
it takes the value of 0. The KDE method provides a smoother estimation of
the PDF values, enabling the subsequent acquisition of higher-quality samples.
However, for sparse data or the presence of extreme values, KDE may lose some
accuracy. On the other hand, the HE method is more stable, but improper bin
selection can lead to overfitting or underfitting of the data distribution. Given
the peak and long-tailed distribution characteristics of the simulation data, we
incorporate both methods into the sampling process.

To convert discrete PDF values into continuous CDF values, the compound
trapezoidal rule (Eq. 4) and cubic spline interpolation (Eq. 5) are employed
during the converting process. Dividing the integral interval into multiple sub-
intervals and applying the trapezoidal rule within each one improves integration
accuracy:
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where f(X,) is obtained from Eq. 2 or Eq. 3, depending on which method of
calculating PDF is taken. A smooth and continuous CDF is obtained by using
cubic spline interpolation between discrete CDF values, and the parameters a,
b;, and ¢; are determined by zero, one, and two-order boundary conditions for

J
different pairs of CDF values:

Fi(z) = a;(x — X,)3 + bj(z — X,)?%+ cj(z —X;) +4;
Based on the CDF values obtained from the above calculations and converting,
N, rounds of sampling are conducted for various materials’ simulation data
under different experimental scenarios. In each iteration, n random numbers u,,
that satisfy uniform distribution U ~ (0, 1) are generated, and the inverse CDF
method is utilized to obtain n scattering angle data points {zy, z,, ..., z, }:

z; = F(u,;)

To prevent overfitting and a loss of robustness due to high similarity between
samples, a similarity check mechanism is incorporated. By calculating the Eu-
clidean distance between samples generated in each iteration, those with exces-
sive similarity are filtered out, ultimately resulting in NV, diverse samples that
align with the overall simulation data distribution. The parameters related to
the sampling process are set in Table 1 .

TABLE 1 : Parameter setting of sampling process.

Parameter Value Description

tot mat sim data 500,000 Total number of materials

smp num (Ns) 1,000 Simulated muon scattering
data for each material

scat num (n) 1,000 The number of samples
generated for a material

qtl point 1,000 The number of muon

scattering data contained in
each sample

bin num 1,000 The number of quantile
points where KDE
calculating PDF values

Silverman - Bandwidth adjustment mode
in

sim thd 5 x 1073 The threshold of similarity
discrimination between
samples

In different scenarios (bare, Al coated, or PE coated), 1,000 samples were ac-
quired for each material. While in specific training and prediction phases, a
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consistent train-test split will be applied across different materials. The specific
data partitioning ratios for various phases will be detailed in the corresponding
parameter tables. In addition, the traditional random sampling method, which
directly samples from the raw simulated scattering angle data and is denoted as
RS, is also applied to the study. The sample size generated by the RS method
is the same as that of inverse CDF sampling. According to the comparison of
training accuracy, the superiority of the inverse CDF sampling method can be
demonstrated.

ITII. TRANSFER LEARNING-BASED Z-CLASS IDENTI-
FICATION

There are some implicit correlation features between source domain tasks and
target domain tasks, which constitutes the practical feasibility basis of trans-
fer learning [31-33]. In this study, we adopt two transfer learning paradigms:
fine-tuning learning and adversarial transfer learning with DANN. Based on a
pretrained model trained in the source domain, fine-tuning performs limited
parameter adaptation in the target domain and enables efficient learning of
feature-label relationships even when target domain data is scarce. Adversarial
transfer learning, on the other hand, is applicable when target domain labels
are completely unknown. By extracting shared discriminative features, it aligns
the feature distributions between the source and target domains, enabling clas-
sification in an unsupervised manner.

A. Pre-training and Fine-tuned Transfer

As an essential technique for transferring neural network tasks, fine-tuning is
widely applied in transfer learning due to its low computational cost and high
training efficiency under limited target domain data conditions. In this study,
we constructed a unified lightweight neural network with two hidden layers for
both pre-training and fine-tuning processes (P&F model). The scattering angle
sample data is first received by the input layer, then processed through two
hidden layers for feature extraction, and finally classified by the output layer.
The detailed network structure is shown in Fig. 5 [Figure 5: see original paper].

TABLE 2 : Parameter setting in pre-training & fine-tuning task. Unless speci-
fied with asterisks, certain parameters are shared between the pre-training and
fine-tuning stages.

Parameter Value Description

input dim 1000 The number of nodes in the
P&F model input layer

hidden dim1 256 The number of nodes in the

P&F model first hidden layer
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Parameter Value Description

hidden dim?2 256 The number of nodes in the
P&F model second hidden
layer

output dim 3 The number of nodes in the
P&F model output layer

tt ratiop 0.3 Ratio of source samples in

training set to test set during
pre-training

tt ratiof 0.3 Ratio of target samples in
training set to test set during
fine-tuning

batch size 64 The number of samples

trained for each material in
one iteration

epochp 50 The number of epochs in the
pre-training process

epochf 50 The number of epochs in the
fine-tuning process

Ir 0.001 The learning rate of the P&F

model in the training process

Since the P&F model is designed for multi-classification tasks, we use cross-
entropy as the loss function [44]:

N C
Lpgr=—»_> y,;log(Softmax(z, )

i=1 j=1

where N is the batch-size and C is the number of classes (low, mid, and high).
Given a sample i, the ground-truth class label y, ; is encoded in a One-Hot
format and automatically converted by PyTorch. The corresponding logits z; ;
represent the raw predictions of the neural network, which will be normalized by
the Softmax activation function. The model is trained on the training set, and
its prediction accuracy on the test set is recorded to evaluate its generalization
performance and robustness. The specific parameter settings are detailed in

Table 2.

TABLE 3 : Classification accuracies of pre-trained model on source dataset. The
“Total” column represents overall prediction accuracies across three categories.

Sampling Method 7 categories Low-Z Mid-Z High-Z Total

RS 0.923  0.947  0.967 0.946
KDE 0.967  0.987  0.993 0.983
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Sampling Method Z categories Low-Z Mid-Z High-Z Total
HE 0.960  0.983  0.990 0.980

For the pre-training process, we trained the P&F model with feature-label pair
samples (z,,y,) obtained from the source domain through three different sam-
pling methods. The detailed training process is shown in Fig. 6 [Figure 6: see
original paper|. The goal is to learn the mapping between the scattering angle
data of bare materials and their Z categories. After pre-training, the hidden
layers, which serve as the key structures for feature extraction, have their pa-
rameters optimized to effectively extract high-order features from the original
scattering angle data. In the subsequent fine-tuning process, the parameters of
the input and hidden layers will be frozen, while training only the parameters
between the last hidden layer and the output layer using a smaller number of
target domain training samples.

In the pre-training stage, we aimed at nine different materials from the high,
mid, and low-Z categories and conducted supervised training on the training
dataset. The training results in Table 3 indicate that the pre-trained model
achieves high prediction accuracy on the test dataset, confirming the effective-
ness of neural networks in learning the mapping between scattering angle data
and Z categories. The accuracy metric is the ratio of correct predictions to total
sample number in their respective scenarios.

Before applying the fine-tuned transfer learning method, we first directly eval-
uated the pre-trained model on the two target domains where Al and PE serve
as coating materials. The test results are shown in Table 4 (Pre-train). Un-
der training with samples obtained using two inverse CDF sampling methods
(KDE and HE), the classification accuracy in the Al-coated target domain de-
creased by approximately 12%, with the most significant drop occurring in the
prediction accuracy of low-Z materials (about 30%). This phenomenon can be
attributed to the fact that, as a low-Z material, the relative influence of Al
coating on the scattering angle distribution of the coated material is inversely
proportional to the intrinsic Z value of the coated material. Meanwhile, in the
PE-coated target domain, the pre-trained model’s prediction accuracy remained
almost unchanged (a decrease of only about 1%). Since PE, as a hydrocarbon
compound, can be considered an ultra-low-Z material, its coating has minimal
impact on the scattering angle distribution of metallic materials. In contrast,
when the model was trained with RS data, the randomness of the sampling
process hindered the prediction results from following the physically consistent
patterns observed in inverse CDF-based training.

In our P&F model architecture, the first hidden layer is designed to extract
fundamental features reflecting low-level scattering physics. These features are
largely invariant across domains, given the shared nature of the input data struc-
ture between source and target domains. Therefore, freezing the first hidden
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layer is intended to preserve these transferable, physically meaningful represen-
tations. Regarding the second hidden layer, although it captures more domain-
specific cues, our empirical studies showed that fine-tuning this layer—while
the first remains frozen—often leads to overfitting due to the limited size of
the target dataset. On the other hand, freezing both hidden layers stabilizes
performance by retaining shared representations and reducing the influence of
domain-specific noise. Additionally, freezing both layers reduces the number of
trainable parameters, which is especially beneficial in low-cost scenarios.

For the fine-tuning process, we freeze the corresponding parameters and fine-
tune the P&F network with a smaller number of target domain training samples
(z4,y;). This enables the pre-trained model to be adapted to target domain
tasks efficiently. For the two different target domains of Al-coated and PE-
coated materials, the classification accuracy of the fine-tuned model on the
target test dataset is presented in Table 4 (Fine-tune). Benefiting from the well-
optimized parameters obtained during pre-training, the fine-tuned P&F model
demonstrates excellent predictive performance across both tasks. The detailed
training process is shown in Fig. 7 [Figure 7: see original paper].

TABLE 4: Prediction accuracies on target dataset before/after fine-tune trans-
fer.

Training Stage Dataset Sampling Method 7 categories Low-Z Mid-Z High-Z Total
Pre-train Al-coated RS 0.617  0.853  0.967 0.813
KDE 0.700  0.880  0.987 0.857
HE 0.693  0.877  0.987 0.853
Fine-tune Al-coated RS 0.843  0.957  0.993 0.933
KDE 0.933  0.987  1.000 0.973
HE 0.930  0.987  1.000 0.973
Pre-train PE-coated RS 0.930  0.967  0.987 0.960
KDE 0.967  0.987  0.997 0.983
HE 0.967  0.987  0.997 0.983
Fine-tune PE-coated RS 0.967  0.987  0.997 0.983
KDE 0.987  0.997  1.000 0.993
HE 0.987  0.997  1.000 0.993

It should be noted that, due to the globally shared parameters of the neural
network, the fine-tuning process aims to enhance overall classification accuracy
rather than optimizing each class individually. As the model improves its dis-
criminative ability for certain categories, performance on others may deteriorate
slightly, resulting in parameter competition and trade-offs. This phenomenon
may cause a minor decrease in prediction accuracy for specific classes. However,
the overall classification performance on the target task still improves. More-
over, the observation that the training loss exceeds the testing loss, with the
training curve showing greater fluctuation while the test curve remains smooth,
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can be primarily attributed to the limited size of the training set. Since only
30% of the total data is used for training, the model becomes more sensitive to
outliers and difficult samples, leading to higher average loss and increased vari-
ance during optimization. In contrast, the larger testing set (70%) provides a
more reliable and representative performance estimate, effectively averaging out
anomalies and resulting in a smoother and lower loss curve. Furthermore, as pa-
rameter updates occur solely on the training set, its loss is expected to fluctuate
across batch iterations, whereas the testing loss remains relatively stable.

B. Transfer Learning with DANN Model

The identification of the Z-class of an unknown coated material, as an unlabeled
target domain problem, presents a more significant challenge. However, by iden-
tifying common scattering angle features between the coated material and its
bare counterpart, we can train a neural network to achieve superior classification
performance in the unknown domain. Traditional domain alignment methods
typically compute specific mathematical relationships between the source and
target domains and incorporate them into the training process as part of the loss
function [45, 46]. However, given that different transfer learning tasks exhibit
distinct data characteristics, determining the optimal mathematical relationship
as a training objective remains a highly challenging task.

The concept of adversary in neural networks was first introduced in [47], where
adversarial models generate adversarial samples to enhance model robustness.
The DANN extends adversarial training to transfer learning by incorporating
a domain discriminator that enforces feature distribution alignment between
the source and target domains through adversarial training, thereby facilitating
unsupervised learning in the target domain. This approach fully exploits the
fitting capabilities of neural networks and enables effective feature alignment
without requiring an explicit definition of the feature relationships between a
specific source and target domain.

Our DANN model, as illustrated in Fig. 8 [Figure 8: see original paper], consists
of three main components: a feature extractor, a classifier, and a domain dis-
criminator. During training, the labeled scattering angle data of bare materials
and the unlabeled scattering angle data of coated materials are both fed into the
feature extractor. The total extracted features are then passed into the domain
discriminator, while the extracted source domain features and corresponding
labels serve as input to the classifier.

First, the domain discriminator determines whether the input features originate
from the source or target domain and simultaneously computes the loss function
Lgisc to optimize itself, aiming to improve domain feature discrimination. Since
the domain discriminator only classifies whether the received features belong to
the source domain or the target domain, we use binary cross-entropy as the loss
function:
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N
Lyise = — Z [y; log(Sigmoid(—z;)) + (1 — y;) log(1 — Sigmoid(—z;))]

K3

where the ground-truth label y, € {0,1} indicates the source domain class or
the target domain class. The model outputs logits z; representing the raw
predictions before applying the Sigmoid activation function. Unlike the default
definition for Softmax in cross-entropy, the binary cross-entropy loss requires
explicitly defining Sigmoid as the activation function in the output layer.

Second, when receiving a sample (F(x,),y,) from the source domain, the clas-
sifier computes the loss function L, for the conventional multi-classification
task, similar to the pre-training and fine-tuning approaches. Consequently, the
loss function L is also defined as cross-entropy, with the same expression as
Eq. 7. Finally, the overall loss function:

Ltotal = Lcls - )‘Ldisc

is used to train the extractor, where L, is responsible for improving the predic-
tion accuracy of the extractor and classifier, while the reversal discrimination
loss —ALg;.. is used to train the extractor in a way that gradually extracts
shared features between the source and target domains, thereby achieving do-
main alignment. Gradient reversal ensures that the extractor and discriminator
form an adversarial relationship during training, eventually reaching equilibrium
after iterative optimization. The gradient reversal parameter A is employed to
balance the weight distribution between feature alignment and classification ac-
curacy improvement in the network model. In this study, feature alignment
is more challenging than classification. Moreover, due to the minimal feature
distribution discrepancy between the source and target domains, L4, . remains
relatively low. Based on this analysis, we assign a higher weight to A in our
training process to enhance training performance. After this training stage, the
extractor and classifier possess the ability to extract common features from both
the source and target domains and perform effective classification. Detailed neu-
ral network hyperparameter settings are shown in Table 5.

TABLE 5 : Parameter setting of DANN transfer. Considering DANN as an
integrated model, the input layers of both the classifier and the discriminator
correspond to the hidden layers of the entire network.

Parameter Value Description

input dimf 1000 The number of nodes in the
feature extractor input layer

hidden dimfl 256 The number of nodes in the
feature extractor first hidden
layer
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Parameter Value Description

hidden dimf2 256 The number of nodes in the
feature extractor second
hidden layer

hidden dimc 256 The number of nodes in the
classifier input layer

output dimc 3 The number of nodes in the
classifier output layer

hidden dimd1 256 The number of nodes in the
discriminator input layer

hidden dimd2 256 The number of nodes in the
discriminator hidden layer

output dimd 1 The number of nodes in the
discriminator output layer

tt ratio 0.3 Ratio of samples in training
set to test set

batch size 64 The number of samples
trained simultaneously in one
iteration

epoch 50 The number of epochs in the
training process

Irf 0.001 The learning rate of the

feature extractor in the
training process

Irc 0.001 The learning rate of the
classifier in the training
process

Ird 0.001 The learning rate of the
discriminator in the training
process

grad rev (\) 0.5 Parameters for gradient
reversal

The training process and final results of DANN are presented in Fig. 9 [Fig-
ure 9: see original paper| and Table 6 . Training results indicate that, when
trained with inverse CDF sampled data, DANN exhibits slightly lower predic-
tion accuracy for low-Z materials compared to mid and high-Z materials. This
phenomenon is consistent with the results obtained when the pre-trained model
performs inference directly in the target domain, which can be attributed to
the significant change in the scattering angle distribution of low-Z materials
after being coated in Al, making feature alignment more challenging than for
mid-Z and high-Z materials. Meanwhile, the introduction of a large gradient
reversal coefficient —\ causes the overall training loss to become negative, as
it includes the adversarial loss from the domain discriminator. However, this
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does not affect the evaluation on the test set, where the domain discriminator
and gradient reversal are not involved. Therefore, the test loss, calculated solely
based on the standard cross-entropy loss, remains positive. This behavior is ex-
pected and does not impact the assessment of model performance on the target

classification task.

TABLE 6: Prediction accuracies on target dataset after DANN transfer.

Dataset Sampling Method 7 categories Low-Z Mid-Z High-Z Total
Al-coated RS 0.800  0.940  0.993 0.913
KDE 0.900 0.980  1.000 0.967
HE 0.897  0.980  1.000 0.967
PE-coated RS 0.967  0.987  0.997 0.983
KDE 0.987  0.997  1.000 0.993
HE 0.987  0.997  1.000 0.993

IV. RESULTS AND DISCUSSION

The overall prediction accuracy of the pre-trained model, the fine-tuned model,
and the DANN model in the target domain is summarized in Table 7 . The
training results indicate that the introduction of the inverse CDF sampling
method effectively improves sample quality, thereby enhancing prediction ac-
curacy. Due to the randomness of the RS method and the inherent black-box
nature of neural networks, with RS methods, it is difficult to provide a clear
physical explanation for the variation of the training results in the source and
target domain. However, since the inverse CDF sampling method effectively
captures the scattering angle data distribution, it offers stronger interpretabil-
ity to the result. Additionally, as stated in [48], a total of 1,400 scattering
instances is sufficient to construct a statistically reliable muon scattering angle
probability distribution. Although we compute the CDF at selected data points,
our global interpolation acts on a total of 500,000 instances, which is far beyond
this threshold. Therefore, in practical applications, as long as sample diversity is
maintained, the total amount of training data required can be further reduced.

For the two target domain tasks we considered, since PE coating has a minimal
impact on the muon scattering angle distribution, the prediction accuracy of
the model in the PE task only slightly improved (close to 100%) after transfer
learning. However, in the Al task, transfer learning improves prediction accuracy
by approximately 10%. When comparing the two transfer learning methods,
fine-tuning and DANN, the training results show that the fine-tuned model
achieves slightly higher prediction accuracy than the DANN model. As seen in
the previously summarized results in Section III, fine-tuning benefits from the
supervised learning process, leading to more balanced prediction accuracy across
different Z-class materials. In contrast, although DANN improves the prediction
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accuracy of low-Z materials by more than 20% compared to the pre-trained
model without transfer learning, its accuracy remains slightly lower than that
of fine-tuning due to the unsupervised training in the target domain. However,
this also highlights one of DANN’s key advantages: it does not require any labels
from the target domain, yet it achieves prediction accuracy comparable to fine-
tuning. Moreover, since the DANN-based transfer learning approach focuses
on extracting shared features between the source and target domains, whereas
fine-tuning involves learning the entire feature space of the source domain before
transferring to the target domain, this may capture irrelevant features that do
not contribute to the target domain task. As a result, the training process
indicates that DANN achieves greater stability and robustness compared to
fine-tuning. This makes DANN particularly valuable for real-world applications
where fully unsupervised transfer learning is often required.

Parameters of the two models are in the 105 ~ 10° magnitude (P&F model
contains 72,579 parameters and DANN model contains 323,332 parameters). In
our implementation, the two transfer learning methods require running memory
on the order of 102 ~ 10%> MB and run in a few minutes on a local Intel Core i9-
14900K (24-core, 32-thread, up to 6.0 GHz) computer. The model architectures,
training process, and data loading were implemented using PyTorch libraries.
The above analysis can fully prove that our model and algorithm have relatively
low deployment and training costs.

TABLE 7: Prediction accuracies on total target dataset (all Z-categories) with
different training methods. Pre-training is a direct prediction without transfer.

Training Method Dataset Sampling Method Total

Pre-train Al-coated RS 0.813
KDE 0.857
HE 0.853
Fine-tune Al-coated RS 0.933
KDE 0.973
HE 0.973
DANN Al-coated RS 0.913
KDE 0.967
HE 0.967
Pre-train PE-coated RS 0.960
KDE 0.983
HE 0.983
Fine-tune PE-coated RS 0.983
KDE 0.993
HE 0.993
DANN PE-coated RS 0.983
KDE 0.993
HE 0.993
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V. CONCLUSION

We developed a novel transfer learning method for identifying material Z-class
using muon scattering angle data, which serves as an alternative to traditional
identification methods based on complex physical model reconstruction. First,
Monte Carlo simulations were conducted using Geant4 to obtain scattering an-
gle data for specified materials in both bare and coated states. A series of
fitting techniques, including computation and interpolation, were employed to
derive the probability distribution of material scattering angles. Based on this
distribution, we generated a sampled dataset that better conforms to the over-
all distribution, resulting in an approximately 4% improvement in prediction
accuracy in the target domain and enhancing the physical interpretability of
the training process.

Meanwhile, in real-world application scenarios, the correspondence between scat-
tering angle data and the coated material is often unknown. To address this
challenge, we introduced two novel lightweight neural networks trained using
transfer learning. By employing either fine-tuned supervised learning or ad-
versarial unsupervised learning on the coated material, these models transfer
source-domain knowledge learned from bare material data to the target domain
of coated materials. In the PE target domain task, where the scattering angle
distribution remains largely unchanged before and after coating, the prediction
accuracy reaches 99%. In contrast, for the more challenging Al-coated task,
the prediction accuracy improves by approximately 10% compared to the pre-
transfer learning model. The results demonstrate that our method achieves
high prediction accuracy even when the mapping between coated material and
scattering data is scarce or completely unknown.

We analyzed the results under different tasks and scenarios, verifying that Z-
class identification based on machine learning aligns with the physical principles
of muon interactions, validating the feasibility of Z-class prediction for coated
materials via transfer learning. Furthermore, this study reveals that features
learned from data through machine learning exhibit transferability, rather than
merely relying on the repeated application of domain-specific expertise across
different scenarios. This suggests that machine learning methods based on trans-
fer learning can serve as a cost-effective training approach for conducting physics
research tasks in similar situations.

In future research, incorporating additional physical variables such as muon
momentum beyond the scattering angle into the training data is expected to
further improve the accuracy and robustness of Z classification. Real-world de-
tection challenges include detector noise and electronic fluctuations that bias
scattering angle measurements, resolution limitations that reduce the model’s
ability to distinguish materials with similar scattering properties, and system
inefficiencies—such as dead time and low detection efficiency—that degrade
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overall data quality. We may introduce some noise-aware training to boost
the model’s robustness and generalization in real environments. Furthermore,
by introducing more statistics and enhancing the generalization ability of the
model, transfer learning methods are expected to be extended to Z-value iden-
tification tasks in more complex scenarios.
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APPENDIX: ALGORITHMIC PSEUDO-CODE

Algorithm 1: Data Conversion and Sampling Process

Input: total material M, Z-class dictionary of materials Z, total simulation data
.root

Output: training dataset D
n X ry)

Parameters: number of simulation data for each material N*; number of samples
N,, number of scattering angle n in each sample; similarity threshold &, number
of mean quantile points in total data ¢; ratio of training dataset to test dataset
Ty Tg.

(M x Ny xnxry), test dataset D, , (M X N x

train

// data format conversion
// time complexity: O0(N*) space complexity: O(N*)
1. for material m in M do
read .root data for material m
if .root data is not None then
remove NaN values and trim to same size
(features, label) $\leftarrow$ (processed .root, Z-class of the material)
total dataset table D*_M $\leftarrow$ (features, label) with .csv format
end

0 ~NO Ok WwN

return D*

// sampling process

// time complexity: O0(m $\times$ (N* + N$~{2}$ $\times$ n)) space complexity: O(m $\times$ 1!
9. for data of material m D*x_m in D* do

10. X $\leftarrow$ features in D*_m

11. Y $\leftarrow$ label in D*_m

12. X_q $\leftarrow$ selected q point in X
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13. £(X_q) $\leftarrow$ PDF values calculated on X_q

14. CDF with Composite Trapezoidal Rule: F(X) $\leftarrow$ (X_{q+1} - X_q)/2 $\times$ [f (X
15. cubic spline interpolation

16. for I $\leftarrow$ 1 to N_s do

17. build sample list D_m $\leftarrow$ for material m

18. u_n $\leftarrow$ n numbers satisfy U (0, 1)

19. x_i $\leftarrow$ F {-1}(u_i), where i =1, 2, ..., n

20. x_I $\leftarrow$ {x_1, ..., x_n}

21. if D_m is not empty and similarity between (x_I, y) and samples in D_m > k then
22. I $\leftarrow$ I - 1

23. add (x_1, y) to D_m

24. return D_m = {(x_1, y), ..., (x_{N_s}, y%

25. end

26. integrate all material sample lists into dataset D_M
27. divide the training dataset and test dataset: D_{train} $\leftarrow$ D_M $\times$ r_1, I
28. return D_{train} and D_{test}

Algorithm 2: Pre-training and Fine-tune Transfer Learning

S T

train» Source test

Input: source training dataset Dy, ..., target training dataset D
dataset Dy _,, target test dataset DI,

Output: pre-trained model © p(x,0,,), fine-tuned model © p(z, 0 )

Parameters: batch-size N, number of epoch T, learning rate a, optimizer Adam,

neural network model O(z, 6)

// Pre-training process
1. for t $\leftarrow$ 1 to T do

2. // Iterate over dataset D_{train}"S with batch-size N

3. for D_{train} in D_{train}"S do

4. X_i $\leftarrow$ labels in D_{train}

5. Y i $\leftarrow$ features in D_{train}

6. Y_i $\leftarrow$ O(X_i, )

7. loss function CrossEntropy: L = -1/N _{j=1}"3 Y_{i,j} log Y_{i,j}, where j is Z cate
8. loss.backward()

9. _p $\leftarrow$ update model weights with Adam in $\alpha$

10. acc_{train} $\leftarrow$ cumulate accuracies with Y_i and Y_i

11. end

12. for D_{test}"N in D_{test}"S do

13. X_i* $\leftarrow$ labels in D_{test}

14. Y_i* $\leftarrow$ features in D_{test}

15. Y ix $\leftarrow$ B(X_ix*, )

16. acc_{test} $\leftarrow$ cumulate accuracies with Y_i* and ¥_ix

17. (acc_1, acc_2, acc_3) $\leftarrow$ cumulate accuracies of (Low-Z, Mid-Z, High-Z) witl
18. end

19. store acc_{train}, acc_{test}, acc_1, acc_2, acc_3
20. return pre-trained model B_P(x, _p)
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// Fine-tuning process

21. load model B_P(x, _p)

22. B_F(x, ) $\leftarrow$ update only the last fully connected layer of B_P(x, _p)

23. train model B_F(x, ) with D_{train}"T and test with D_{test} T (same training process a
24. store acc_{train}, acc_{test}, acc_1, acc_2, acc_3

25. return fine-tuned model B_F(x, _f)

Algorithm 3: Training Process of DANN
S

train’

T
train’

Input: source training dataset D target training dataset D
dataset DL,

Output: trained feature extractor F'(z, f), classifier C(z, ¢), and domain discrim-
inator D(z,d)

Parameters: batch-size N, number of epochs T', learning rate ay, oy, inversion
parameter \; feature extractor F, classifier C', domain discriminator D

target test

// Training process of DANN
1. for t $\leftarrow$ 1 to T do

2. for D_{train} "N from D_{train}”"S and D_{test} N from D_{train}"T do

3. (X_S, Y.8), (X_T, ) $\leftarrow$ D_{train}

4, F_S $\leftarrow$ F(X_S), F_T $\leftarrow$ F(X_T)

5. Y S $\leftarrow$ C(F_S)

6. cls_{loss} $\leftarrow$ CrossEntropy(Y_S, Y_S)

7.

8. // Update domain discriminator

9. domain_{labels} $\leftarrow$ [1 for F_S, O for F_T]

10. domain_{pred} $\leftarrow$ D([F_S, F_T])

11. disc_{loss} $\leftarrow$ BinaryCrossEntropy(domain_{pred}, domain_{labels})
12. disc_{loss}.backward()

13. d* $\leftarrow$ update D(x, d) weights d with Adam in $\alpha$_2

14.

15. // Update feature extractor and classifier

16. total_{loss} $\leftarrow$ cls_{loss} - $\lambda$ $\times$ disc_{loss}

17. total_{loss}.backward()

18. fx, cx $\leftarrow$ update F(x, f) and C(x, c) weights f and ¢ with Adam in $\alpha$
19. acc_{train} $\leftarrow$ cumulate accuracies with ¥ S and Y_S

20. end

21.

22. // Evaluation on target domain
23. set every model to evaluation mode (disable gradient updating)
24. for D_{test} N* from D_{test} T do

25. (X, Y) $\leftarrow$ D_{test}

26. F_T $\leftarrow$ F(X)

27. ¥ $\leftarrow$ C(F_T)

28. acc_{train} $\leftarrow$ cumulate accuracies with ¥ and Y
29. compute accuracies for each category (Low-Z, Mid-Z, High-Z)
30. end
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31. store acc_{train}, acc_{test}, accuracy for each category (low-Z, mid-Z, high-Z)
32. return trained model F(x, fx), C(x, c*) and D(x, dx)
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