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Abstract
A new Monte Carlo optimization (MCO) method named Hybrid Adaptive Re-
sponse Surface Methodology Genetic Algorithm (RSM-GA) Monte Carlo Opti-
mization (HRG-MCO) is proposed to address the strong empirical dependence
and low efficiency of global multi-parameter optimization in traditional neutron-
ics design. HRG-MCO integrates the advantages of Response Surface Methodol-
ogy (RSM) and Genetic Algorithm (GA). Specifically, neutron MC simulation
results are iteratively utilized to adaptively construct an RSM model, ensur-
ing the required accuracy. Subsequently, GA is employed to perform multi-
parameter optimization based on the constructed RSM model, which makes it
possible to rapidly determine the optimal design parameters. Then, these op-
timized parameters are fed back into the MC simulation model to derive the
final optimized values. The superior optimization efficiency of the HRG-MCO
method is demonstrated through a comparative analysis with the exhaustive enu-
meration (EE) method and the standalone GA. To further validate its effective-
ness, the method is applied to the optimization design of moderator-collimator
for accelerator-based thermal neutron radiography. Two optimization tasks are
performed in this study: (1) determining the optimal efficiencies under different
source neutron energies and (2) optimization of thermal neutron-induced photon
yield ratio. The results underscore the effectiveness and practical applicability
of the HRG-MCO method in neutronics optimization design.

Full Text
Preamble
A new Monte Carlo optimization (MCO) method named Hybrid Adaptive Re-
sponse Surface Methodology-Genetic Algorithm (RSM-GA) Monte Carlo Opti-
mization (HRG-MCO) is proposed to address the strong empirical dependence
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and low efficiency of global multi-parameter optimization in traditional neutron-
ics design. HRG-MCO integrates the advantages of Response Surface Methodol-
ogy (RSM) and Genetic Algorithm (GA). Specifically, neutron MC simulation
results are iteratively utilized to adaptively construct an RSM model, ensur-
ing the required accuracy. Subsequently, GA is employed to perform multi-
parameter optimization based on the constructed RSM model, which makes it
possible to rapidly determine the optimal design parameters. These optimized
parameters are then fed back into the MC simulation model to derive the final op-
timized values. The superior optimization efficiency of the HRG-MCO method
is demonstrated through a comparative analysis with the exhaustive enumera-
tion (EE) method and the standalone GA. To further validate its effectiveness,
the method is applied to the optimization design of moderator-collimator for
accelerator-based thermal neutron radiography. Two optimization tasks are
performed in this study: (1) determining the optimal efficiencies under different
source neutron energies and (2) optimization of thermal neutron-induced photon
yield ratio. The results underscore the effectiveness and practical applicability
of the HRG-MCO method in neutronics optimization design.

Keywords: Neutronics Optimization Design, Monte Carlo Optimization
(MCO), Response Surface Methodology (RSM), Genetic Algorithm (GA),
Thermal Neutron Radiography

INTRODUCTION
In recent years, neutron-based nuclear technologies—such as advanced nu-
clear energy systems, boron neutron capture therapy (BNCT), and neutron
radiography—have undergone rapid development [?, ?, ?, ?, ?]. The Monte
Carlo Optimization (MCO) method is widely used in neutron system design due
to its intuitive modeling and high computational accuracy [?, ?, ?, ?, ?, ?, ?, ?].
However, traditional MCO methods, which rely on exhaustive enumeration
(EE) method or gradient-based approaches, require significant expertise from
designers and struggle to balance multiple design factors and objectives, leading
to optimization results that lack systematic and global efficiency [?, ?].

Genetic Algorithm (GA), with its powerful multi-parameter optimization ca-
pabilities, has been widely applied in MCO in recent years. For example, in
2019, Byoungil Jeon et al. proposed an optimization method combining GA
with MC simulations to simultaneously calculate energy calibration parameters
and gamma response functions [?]. In the same year, Guang Hu et al. used
GA to optimize the moderator structure based on the neutron energy spectrum
output from MCNP5 [?]. In 2020, M.F. Yan et al. proposed an optimization
method that integrates GA with MCNP for the design of fast neutron imag-
ing collimators to enhance neutron intensity, uncollided fraction, and the n/𝛾
ratio [?]. In 2022, S. Bagheri applied an intelligent method based on GA, inte-
grated with the MCNP program, to optimize the radiation shielding system of
a small nuclear reactor, demonstrating higher optimization efficiency compared
to traditional design methods [?]. In 2023, F. Cordella et al. combined GA with

chinarxiv.org/items/chinaxiv-202506.00032 Machine Translation

https://chinarxiv.org/items/chinaxiv-202506.00032


MCNP6 and Geant4 for radiation shielding optimization [?]. Although GA of-
fers higher optimization efficiency than EE, the inherent randomness in their
crossover and mutation processes can lead to a significant number of redundant
computations. As a result, in large-scale, high-precision optimization problems
or those involving variable boundary conditions, GA still becomes impractical
due to the high computational cost of MC simulations.

Response Surface Methodology (RSM), on the other hand, optimizes by con-
structing multi-parameter function surface models and is currently another
well-established multi-parameter optimization method. Due to the fast com-
putational speed of function models, RSM offers high optimization efficiency.
However, the accuracy of the RSM model construction directly impacts the final
optimization results [?, ?, ?, ?, ?]. Therefore, building a high-accuracy RSM
analysis model is key to the successful application of RSM.

This study presents a novel hybrid methodology that synergistically integrates
RSM and GA to enhance neutronic design optimization efficiency. As a proof
of concept, we apply this approach to optimize the moderator-collimator config-
uration for accelerator-based thermal neutron radiography systems, effectively
addressing concurrent optimization challenges including moderation efficiency
under different source neutron energies and thermal neutron-induced photon
yield ratio.

II. RESEARCH METHODS
A. Theory for the Method

1. Monte Carlo Simulation Method The MC method is a computational
technique based on probability and statistics, which leverages computer simula-
tions of stochastic processes to obtain approximate solutions [?, ?]. The primary
MC simulation software with neutron transport capabilities includes MCNP [?],
OpenMC [?], and Geant4 [?]. In this study, the Geant4 software package is em-
ployed. Developed by CERN using C++ object-oriented technology, Geant4 is
a large-scale open-source software package capable of simulating the physical
transport processes of various particles, including neutrons, in matter. Due to
its versatility and scalability, Geant4 has been widely applied across various
fields, including nuclear technology applications. To further improve the com-
putational efficiency of neutron transport, this study also employs the Gamos
extension package compatible with Geant4 to achieve geometry importance sam-
pling acceleration [?].

2. Latin Hypercube Sampling Latin Hypercube Sampling (LHS) adopts a
stratified sampling strategy that ensures each variable is uniformly distributed
within its defined domain. The core idea is to divide the range of each vari-
able into multiple equally spaced intervals and then randomly select one sample
point from each interval, while avoiding overlap in lower-dimensional projec-
tions. This effectively reduces correlations between variables and enhances the
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overall space-filling quality of the samples [?]. This means that regardless of
the dimensionality, LHS can ensure a uniform distribution of sampling points
across the space.

Although LHS has advantages in ensuring uniform distribution across each di-
mension, it may still fail to fully capture the true characteristics of the sampling
space in certain scenarios. To overcome this limitation, several optimization cri-
teria have been proposed, including the maximin and minimax distance criteria
[?]. The maximin criterion aims to maximize the minimum distance between
sample points, promoting dispersion, while the minimax criterion seeks to mini-
mize the maximum distance between any point and its neighbors. In this study,
the maximin criterion was adopted to ensure uniform distribution of sample
points across the design space, thereby improving space-filling and coverage.
This is particularly important for thoroughly exploring the design space and
minimizing uncovered regions, ultimately enhancing the accuracy and reliabil-
ity of the optimization results.

3. Response Surface Methodology RSM is a method that employs sys-
tematic experimental design to obtain data and uses a multivariate quadratic
regression equation to model the functional relationship between influencing
factors and response values [?]. The analysis of the regression equation facili-
tates the identification of optimal parameter combinations, thereby providing
an effective means for addressing multivariate optimization problems.

The multivariate quadratic regression equation is expressed as:

𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖 + ∑ 𝛽𝑖𝑖𝑥2
𝑖 + ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗 + 𝜀 (1)

where 𝑦 represents the predicted response value; 𝛽0 denotes the regression in-
tercept; 𝛽𝑖, 𝛽𝑖𝑖, and 𝛽𝑖𝑗 correspond to the coefficients of linear, quadratic, and
interaction terms, respectively; 𝑥𝑖 and 𝑥𝑗 are coded values of process variables;
and 𝜀 accounts for residuals and experimental errors.

The traditional RSM typically employs second-order polynomials for response
surface modeling, while higher-order polynomials are also widely used as fitting
functions in RSM. It has been demonstrated that higher-order polynomials can
effectively approximate various surface shapes within limited regions [?]. How-
ever, higher-order models tend to exhibit unstable behavior in unexplored re-
gions of the design space and inherently demand greater computational resources
to improve prediction accuracy [?]. Since higher-order polynomials involve more
unknown coefficients and result in more complex functions, the selection of the
polynomial order should be carefully considered.

In this study, given the requirements for optimized moderator-collimator sys-
tem parameters and the semi-automated nature of the RSM process, the compu-
tational cost associated with implementing higher-order polynomials becomes
negligible compared to the substantial resources required for MC simulations.
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Therefore, higher-order polynomial models with different orders are self-adopted
for response surface analysis to achieve the target accuracy in system optimiza-
tion.

4. Genetic Algorithm GA is an optimization algorithm designed for search-
ing optimal solutions, characterized by its ability to directly manipulate struc-
tural objects, operate without relying on derivatives or function continuity con-
straints, and exhibit implicit parallelism and global optimization capabilities. It
adaptively adjusts search directions through probabilistic methods [?, ?, ?]. By
simulating natural selection and genetic mutation processes, GA intelligently
explores solutions to complex problems. The algorithm maintains a diverse
population and iteratively improves solution quality through operations such as
selection, crossover, and mutation, enabling effective exploration of potential
optimal regions in the solution space without requiring gradient information
from the objective function [?, ?].

As an efficient multi-parameter optimization technique, GA has demonstrated
significant computational load reduction in MCO applications. Figure 1
schematically illustrates the standard workflow for GA-based MCO [?].

[FIGURE:1]

In this study, GA-Based MCO is used to compare with the HRG-MCO to
demonstrate the performance of the new method.

B. Establishment of HRG-MCO

The proposed method, named Hybrid Adaptive RSM-GA Monte Carlo Opti-
mization (HRG-MCO), integrates RSM, MC, and GA using Python. The de-
tailed optimization design workflow is illustrated in Figure 2.

First, HRG-MCO sets the preset accuracy of the RSM model. Then, based on
the formulated optimization problem, the objective function and optimization
variables for the GA are defined. LHS is used to select the initial trial points
of the multidimensional design parameters to be optimized. These points are
subsequently input into the MC model to calculate the neutron beam target
parameters under different conditions. Unlike conventional GA-Based MCO,
this approach does not directly use the MC-computed values for GA iteration.
Instead, the calculated objective values are used to construct an adaptive RSM
model. Since the fitting process of the RSM model is significantly faster than the
MC computation of validation points, the adaptive modeling process fits eight
RSM models from the third to the tenth order. LHS is also used to generate
model validation points, which are then evaluated via MC simulations. Once
the MC validation results are obtained, all models are validated for accuracy
using Equation 2:

𝐸 = |𝑦1 − 𝑦2|
𝑦2

× 100% (2)
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Here, 𝑦1 represents the predicted value, 𝑦2 denotes the simulated value, and 𝐸
represents the relative error between the two. After evaluating the accuracy of
all fitted models, their performance is compared against a predefined accuracy
threshold to determine whether the required accuracy has been achieved. If
none of the models meet the accuracy criteria, the validation data from the
current iteration are incorporated into the model fitting process, and a new
set of validation points is generated through resampling for the next round of
accuracy assessment. This process is repeated until at least one model satisfies
the accuracy requirement. If models of different orders meet the criteria in the
same round, the one with the highest accuracy will be selected for the subsequent
GA optimization. The GA then identifies the optimal set of design variables
based on the selected model. Finally, an MC simulation is conducted using
these optimized variables to obtain the final optimized target value. To enhance
the clarity and interpretability of the figures, only the data obtained from the
highest accuracy model and its two neighboring order models are presented.

As the dimensionality of the optimization problem increases, the computational
cost of constructing high-accuracy models grows exponentially. Appropriately
relaxing the model accuracy requirements can significantly accelerate the con-
vergence to a solution. In this study, the model validation error thresholds are
set according to the problem dimensionality: 1% for two-dimensional problems,
3% for three-dimensional problems, and 5% for four-dimensional problems.

[FIGURE:2]

C. Validation of HRG-MCO

To validate the effectiveness of HRG-MCO, a two-factor Monte Carlo model was
developed based on the classical optimization problem of D-T neutron source
moderation design. A schematic diagram of the model is presented in Figure
3. The model consists of two cylindrical layers: (1) a tungsten multiplier layer
with a diameter of 40 cm, and (2) a polyethylene moderation layer of the same
diameter. The optimization range for both layers is confined to 1-20 cm. The
14 MeV source neutrons are incident from the left along the central axis of the
cylinders. A thermal neutron point detector is positioned 20 cm to the right of
the moderator surface along the model central axis to record thermal neutrons
below 0.5 eV produced by the moderation process. During the initial and model
validation phases, the LHS sampling size was set to 10 sample points in each
case. The stopping criterion for the response surface model accuracy was set as
1%. The objective of the GA optimization was to maximize the thermal neutron
flux recorded by the point detector.

[FIGURE:3]

Figure 4 shows the iterative results of the RSM model accuracy, with the red
dashed line representing the 1% validation threshold. After four iterations,
the verification error of the fourth-order model reached 0.84%, which was the
minimum among all orders, satisfying the algorithm’s criterion. Based on this
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Figure 1: Figure 4
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function model, the GA optimization was performed to determine the optimal
parameters, which were identified as a neutron multiplier layer thickness of
8.0 cm and a moderation layer thickness of 5.7 cm. Under these parameter
conditions, MC simulations yielded a moderation efficiency of 6.610 × 10−5 for
the system.

To verify the efficiency of HRG-MCO and the accuracy of its optimization re-
sults, the outcomes from HRG-MCO were compared with those produced by
EE and GA-based MCO. Here, the calculation in EE was performed using a
thickness interval of 0.1 cm; the parameters used for GA were as follows: a
population size of 10, a crossover probability of 0.5, and a mutation probability
of 0.2. The comparative results are presented in Figure 5 and Table 1. Fig-
ure 5 illustrates the comparison between the response surface model established
by HRG-MCO (red) and that constructed via EE (blue), where 𝑥1 represents
the multiplier layer thickness and 𝑥2 represents the moderator layer thickness,
showing good consistency between the two across various contour levels. Ta-
ble 1 details that the model validation errors during HRG-MCO convergence
were consistently below the manually set 1% accuracy threshold across all three
trials, confirming its robust performance. Furthermore, under the same MC
model cumulative computation count, the GA results deviate by 7.17% relative
to EE, while the deviation is reduced to 0.50% under triple computation count.
These results indicate that HRG-MCO not only achieves higher optimization
efficiency compared to both EE and GA but also maintains a high degree of
computational accuracy.

III. APPLICATION OF HRG-MCO IN THE OPTIMIZA-
TION OF MODERATOR-COLLIMATOR DESIGN FOR
COMPACT THERMAL NEUTRON RADIOGRAPHY
SYSTEMS
A. Study on Moderation Efficiency Under Different Incident Neutron
Energies

Compact thermal neutron radiography systems typically utilize accelerator-
based neutron sources [?, ?, ?]. Depending on the specific neutron-producing
reaction channels or the accelerator beam energy, the energy of the source
neutrons can be adjusted as needed. Since the energy of source neutrons
directly influences the thermalization efficiency of the moderator-collimator
system, determining the optimal moderation efficiency performance across
different neutron energies is essential for selecting both the neutron source
and the accelerator beam energy in neutron radiography systems design.
In traditional methods, obtaining the moderation efficiency curve requires
designing and optimizing the moderator-collimator for each discrete energy
point, which is a time-consuming process. This limitation significantly restricts
the rapid generation of the moderation efficiency curve and further complicates
the quantitative assessment of how different heavy metal multipliers affect its
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Figure 2: Figure 5
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optimal configuration.

To address these issues, we conducted relevant research using HRG-MCO. First,
an MC model of the moderator-collimator is established. Figure 6 shows a
cross-sectional view along the central axis, where the yellow region represents
the heavy metal multiplier layer, the green region represents the polyethylene
moderator layer, and the blue region represents the graphite reflector. The inner
wall of the collimation channel is lined with a Cd thermal neutron shielding layer,
while the outermost layer of the moderator-collimator is a BC4 thermal shield.
A 0.5 eV threshold thermal neutron point detector is placed at a collimation
ratio (L/D) of 10. The detailed dimensions of the model are specifically marked
in Figure 6. A mounting space for the accelerator target is reserved at the
left entrance of the collimator. To simplify the model, the detailed structure
of the accelerator target chamber was not included. Instead, a planar neutron
source with a diameter of 20 mm was defined and placed perpendicular to the
moderator-collimator axis on the left side of the multiplier layer. In the model,
the parameters labeled 1 through 4 correspond to four optimization variables:
(1) the thickness of the front-side neutron multiplier layer, (2) the thickness
of the outer-side neutron multiplier layer, (3) the thickness of the polyethylene
moderator layer, and (4) the energy of the source neutrons. Since the theoretical
optimum for the reflector thickness is infinite, practical design constraints are
taken into account. Accordingly, the radial graphite reflector thickness is set to
20 cm, and the axial graphite reflector thickness is set to 39 cm.

[FIGURE:6]

For the optimization design calculation, both the initial LHS sampling and the
verification sampling were performed with a sample size of 100 points, and
the RSM model verification accuracy was set to 5%. Figure 7 shows the final
iterative calculation results for the RSM modeling verification accuracy, in which
W was used as the neutron multiplying material. It can be observed that after
multiple iterations, the verification accuracy of the eighth-order polynomial fit
reached 4.96%, thereby achieving the targeted accuracy.

[FIGURE:7]

To obtain the optimal neutron moderating efficiency curve as a function of
energy, energy values ranging from 1 to 14 MeV were sequentially input into
the established RSM model at 0.5 MeV intervals. The output of the RSM
model at each energy point was then used as the fitness function in the GA
optimization process. The GA settings were as follows: a population size of 100,
a crossover probability of 0.5, a mutation probability of 0.2, and 50 iterations.
Figure 8 presents the dependence of optimized structural thicknesses on source
neutron energy (a), and the variation of optimal moderation efficiency with
respect to source neutron energy (b). A comparison of the data trends in the two
figures indicates that the outer-side neutron multiplier layer becomes effective
at relatively lower source neutron energies than the front-side layer. However,
it primarily serves to slow the decline in moderation efficiency. In contrast, the
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front-side neutron multiplier layer becomes active only at energies above 6 MeV,
but it has a pronounced impact on enhancing the moderation efficiency.

Further analysis of Figure 8(b) reveals that the optimal moderation efficiency
first decreases and then increases with rising incident neutron energy in the 1-14
MeV range, forming a broad V-shaped trend. This behavior can be attributed
to the dominant moderation mechanisms at different energy levels. In the low
to intermediate energy region, neutrons are primarily moderated via inelastic
scattering. As the incident energy increases, more collisions are required for
effective moderation, resulting in a gradual decline in moderation efficiency.
However, when the incident energy exceeds the multiplication threshold of the
material, a substantial number of secondary neutrons are generated through
multiplication reactions. These secondary neutrons are then moderated, leading
to a recovery in overall moderation efficiency.

To comparatively investigate the performance differences among multiplier layer
materials including W, Pb, and depleted uranium (DU), the optimal moderation
efficiency curves of Pb and DU were calculated using the same methodology
described earlier. The comparative results are presented in Figure 9. The
optimized parameters of each material layer are compared in Figure 10. As
clearly demonstrated in Figure 9, a similar V-shaped trend is observed in three
curves. However, DU consistently outperforms Pb and W in terms of overall
efficiency. Figures 10(a) and 10(b) further indicate that the DU multiplier layer
achieves this pronounced enhancement even with a relatively small thickness.
To explain these observations, the neutron cross-sections of the three materials
were obtained from the ENDF database and are presented in Figure 11. As
shown in the figure, DU uniquely features a fission reaction channel, which
enables the release of additional neutrons through fission, thereby significantly
improving moderation efficiency. In addition, DU has a lower (n,2n) reaction
threshold—approximately 6 MeV—compared to Pb and W, whose thresholds
exceed 7 MeV (about 7 MeV for Pb and 7.5 MeV for W), making it more effective
at lower incident neutron energies.

Further comparison of Figures 10(a) and 10(b), and Figure 11 reveals that the
front-side multiplier layer tends to appear only after the (n,2n) reaction thresh-
old is reached, whereas the lateral multiplier layer is present even at incident
neutron energies below this threshold for all three materials. This can be at-
tributed to the relatively high elastic scattering cross-sections of heavy metals,
which enable them to reflect high-energy leakage neutrons back into the moder-
ator region even before the onset of (n,2n) reactions. Such reflection enhances
neutron utilization and contributes to improved moderation efficiency.

[FIGURE:8]

[FIGURE:9]

[FIGURE:10]

[FIGURE:11]
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B. Optimization of Thermal Neutron-Induced Photon Yield Ratio

The combination of a neutron conversion screen and an optical imaging system
is the most widely adopted imaging scheme in thermal neutron radiography
systems [?, ?, ?]. In accelerator-based neutron sources, the source neutrons
typically possess high energies. As a result, imaging quality is influenced not
only by the thermal neutron flux but also degraded by the leakage of high-
energy neutrons. This is primarily because high-energy neutrons are not con-
strained by the collimator channels and therefore do not exhibit the parallel-
beam characteristics as thermal neutrons. Consequently, maximizing the ratio
of thermal neutron-induced photon yield in the conversion screen becomes an-
other key optimization objective in the design of the moderator-collimator for
accelerator-based thermal neutron radiography. However, an inherent trade-
off exists between thermal neutron flux and the photon yield ratio: improving
the thermal neutron-induced photon yield ratio requires adding high-energy
neutron-absorbing materials, but excessive use of these materials can reduce
the transport efficiency of thermal neutrons.

Using the HRG-MCO method, this study investigates the optimization of the
thermal neutron-induced photon yield ratio based on the same model shown
in Figure 6, except that the source neutron energy is fixed at 14.1 MeV, cor-
responding to a D-T neutron source. W was selected as the metallic neutron
multiplier layer due to its balanced performance characteristics and commercial
availability.

Figure 12(a) shows the variation in photon yield of the 6LiF/ZnS thermal neu-
tron conversion screen with incident neutron energy, which was obtained in
previous research [?]. By convolving this curve with the neutron energy spec-
trum obtained from MC simulations of the moderator, the overall photon yield
induced by the entire neutron field can be quantitatively assessed. As a prelim-
inary study, to enhance computational efficiency, neutron energy is categorized
into four energy regions: the thermal neutron region, epithermal neutron re-
gion, resonance neutron region, and fast neutron region, which are delineated
in Figure 12(a) with red vertical dashed lines. The decision variables are con-
sistent with the first three variables described in Section III.A. Figure 12(b)
illustrates the high-order RSM validation results, where the sixth-order model
first achieves the 3% accuracy target (red dashed line) after three iterations.

[FIGURE:12]

To optimize the thermal neutron-induced photon yield ratio, a GA objective
function is constructed as defined in Equation 3:

max 𝐹(𝑥1, 𝑥2, 𝑥3) = 𝑤1𝐹 1 + 𝑤2𝐹 2 + 𝑤3𝐹 3 + 𝑤4𝐹 4 (3)

Here, 𝐹5 represents the function that describes the thermal neutron-induced
photon yield ratio relative to the total photon yield. The coefficients 𝑤1 to
𝑤4 correspond to the photon yield weights of thermal neutrons, epithermal
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neutrons, resonance neutrons, and fast neutrons, as derived from Figure 12(a)
and detailed in Table 2. 𝐹1 to 𝐹4 represent the neutron flux rates in the four
energy regions, calculated based on the established RSM functions.

Based on Equation 3, the following NSGA-II optimization constraint functions
can be further established, as expressed in Equation 4:

max {max 𝐹1(𝑥1, 𝑥2, 𝑥3)
max 𝐹5(𝐹1, 𝐹2, 𝐹3, 𝐹4) (4)

subject to:

0 < 𝑥1 ≤ 20
0 < 𝑥2 ≤ 20
0 < 𝑥3 ≤ 20

Here, 𝐹 represents the overall objective function, 𝑥1 to 𝑥3, which represent three
thicknesses to be optimized, were constrained to the range of 0 to 20 cm. The
parameters for the NSGA-II are set as follows: The initial population size is 100,
the parent population size (𝜇) is 100, the offspring population size (𝜆) is 200, the
crossover probability is 0.5, the mutation probability is 0.2, and the maximum
number of generations is 100. A blended crossover operator is employed, and
Gaussian mutation is applied to balance solution diversity and convergence.

Figure 13 presents the Pareto front solutions from GA optimization, reveal-
ing a nonlinear inverse relationship between thermal neutron flux and thermal
neutron-induced photon yield ratio. As the thermal neutron flux increases, the
ratio decreases gradually. Analyzing the variation in the slope of the relation-
ship curve indicates that when the thermal neutron-induced photon yield ratio
is below 90%, the decline in thermal neutron flux is relatively moderate. How-
ever, once the ratio exceeds 90%, the thermal neutron flux begins to drop at a
significantly accelerated rate.

[FIGURE:13]

The model parameters corresponding to the thermal neutron-induced photon
yield ratio of 90% (𝑥1 = 3.8 cm, 𝑥2 = 5.6 cm, 𝑥3 = 19.4 cm) were incorporated
into the MC model to recalculate the corresponding neutron energy spectrum, as
shown in Figure 14(a). Based on this spectrum, the distribution of the thermal
neutron-induced photon yield ratio as a function of neutron energy was further
computed (Figure 14(b)). The results reveal that non-thermal neutrons domi-
nate the total neutron flux, accounting for 91.8%. However, their contribution
to the overall photon yield is only 9.9%. In contrast, thermal neutrons represent
merely 8.2% of the total flux but are responsible for 90.1% of the overall photon
yield.

[FIGURE:14]
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IV. CONCLUSION
A novel method, Hybrid Adaptive RSM-GA Monte Carlo Optimization (HRG-
MCO), is proposed and applied to the design of a moderator-collimator system
for accelerator-based thermal neutron radiography. The key findings are sum-
marized as follows:

1. Compared to EE and GA-based MCO approaches, HRG-MCO achieves
high optimization accuracy (error < 1%) using only about 50 sample
points, demonstrating notable efficiency and robustness.

2. The optimal moderation efficiency curve across incident neutron energies
(1-14 MeV) exhibits a V-shaped trend. Among the evaluated materials,
depleted uranium (DU) shows the best performance due to its superior
neutron multiplication characteristics.

3. In optimizing the photon yield for D-T neutron source-based radiography,
a nonlinear trade-off is observed between thermal neutron flux and thermal
neutron-induced photon yield ratio. Maintaining a 90% yield ratio allows
retention of approximately 85% of the maximum thermal neutron flux.

While HRG-MCO demonstrates excellent efficiency and applicability, several
limitations remain:

1. The current Latin Hypercube Sampling (LHS) provides uniform distribu-
tion across the design space but lacks targeted sampling in high-response
regions. Introducing adaptive sampling strategies could improve conver-
gence by focusing sample density where model sensitivity is highest.

2. Due to the stochastic nature of GA and the complexity of high-dimensional
nonlinear problems, the optimization process may occasionally converge
to local optima. Enhancing mutation strategies or combining GA with
adaptive sampling techniques could further improve global search perfor-
mance.

3. The polynomial-based RSM used in this study may struggle to capture
intricate or localized nonlinear behavior, particularly in sparsely sampled
regions. Future studies could explore more advanced surrogate models or
hybrid fitting techniques to improve prediction accuracy and stability.

In conclusion, HRG-MCO proves to be a highly efficient and generalizable Monte
Carlo-based optimization framework. Beyond thermal neutron radiography, it
holds significant potential for broader applications, such as reactor shielding
design, beam shaping assembly (BSA) optimization in BNCT systems, and par-
ticle transport modeling in radiation detection and protection technologies.
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