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Abstract

Natural language is considered closely intertwined with human cognition, with
linguistic structures posited to offer profound insights into the cognitive system.
However, as a coding system, natural language encodes diverse objects into uni-
fied forms; its prominent formal features capture people’s attention, such as
lexical combinatorial rules, which tend to overshadow those form-independent
structures. Here, I present knowledge-level, logic-level, task-level, and model-
level semantic structures inherent in natural language. These structures are
discovered by shifting the research focus from coding forms of natural language
to the objects they encode, unveiling different semantic layers integrated within
sentences. The cognitive functions of these structures are evident both in them-
selves and in models developed from them. I therefore introduce four models
to demonstrate their capabilities in memorization, reasoning, learning, natural
language generation, and understanding. These findings advance our under-
standing of natural language and provide a framework for investigating the
cognitive system’s information processing through structural analysis of natural
language.
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(1-3). However, as a coding system, natural language encodes diverse objects
into unified forms; its prominent formal features capture people’s attention, such
as lexical combinatorial rules, which tend to overshadow those form-independent
structures. Here, I present knowledge-level, logic-level, task-level, and model-
level semantic structures inherent in natural language. These structures are
discovered by shifting the research focus from coding forms of natural language
to the objects they encode, unveiling different semantic layers integrated within
sentences. The cognitive functions of these structures are evident both in them-
selves and in models developed from them. I therefore introduce four models
to demonstrate their capabilities in memorization, reasoning, learning, natural
language generation, and understanding. These findings advance our under-
standing of natural language and provide a framework for investigating the
cognitive system’s information processing through structural analysis of natural
language.

1. Introduction

Natural language is a mode of communication, serving as a medium for encoding
and transmitting information among individuals (4-6). This perspective raises
two fundamental inquiries in studying natural language: What is encoded in
natural language (i.e., coding content or meaning)? How is the content encoded
(i.e., coding form)? The same content can be encoded with different forms,
which means that the distinct arbitrary signs, lexicons, syntaxes, and grammars
adopted in different languages actually function as coding forms. Therefore,
investigations into linguistic structures grounded in these coding forms primarily
address the latter inquiry.

Efforts to explore the former inquiry posit the existence of a semantic system
that governs natural language. Various approaches have been developed to
delineate and characterize this system, including semantic theories (7-10), se-
mantic web (11), corpus-based semantic models (12-16), and language models
(17-19). Despite these approaches’ diligent efforts to mitigate the influence
of coding forms on extracting and modeling coding contents, the reality is that
they are still more or less conceived, constructed, or trained based on the coding
forms. Consequently, limited progress has been achieved in discerning semantic
constituents and structures of natural language.

Jerry Fodor argued that the meaning of lexical concepts (i.e., coding content) is
determined by their relationships with the world rather than their relationships
with other lexical concepts (20). Inspired by this view, I have reexamined cate-
gories of linguistic units (see Tables 1 and 2, Fig. 1E [FIGURE:1]) based on the
objects they encode, surpassing the influence of superficial coding forms to unveil
the actual coding contents. From these categories, I propose knowledge-level,
logic-level, task-level, and model-level semantic structures that structurally de-
compose natural language according to its coded contents.

To further illustrate semantic structure’s roles in shaping and influencing human
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cognition, I introduce four models grounded in these structures, demonstrating
their contributions to memorization, reasoning, learning, natural language gener-
ation, and understanding. The mental spatial model (MSM), a semantic model
(Fig. 2B
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Figure 1: Figure 2

), reveals how humans encode and recall the spatial position information of en-
tities in the physical world. By offering a relational positioning system that
mirrors human spatial cognition, the MSM enables human-machine interaction.
The hierarchical coding model (HCM), another semantic model (Fig. 3A [FIG-
URE:3]), uncovers how humans construct conceptual systems. It presents a
coding system in which various sensory inputs are labeled as elementary at-
tributes that combine to encode entities in the physical world. Surprisingly, the
combination coding strategy employed by the HCM for establishing hierarchical
structures explains how humans can effectively learn from small sample sizes.
By abstracting the general structural features of semantic models like HCM and
MSM, I propose a novel type of data model—the continuous data model. This
model integrates a conceptual system with an algebraic system, demonstrating
how computation can be applied to reasoning problems and thereby expand-
ing the range of questions that computers may solve. Finally, the knowledge
base-driven language model (KLM) adopts the classic framework of the com-
puter system, comprising two main components: the knowledge base and the
program. Within this framework, natural language generation is defined as the
process of knowledge acquisition and encoding triggered by specific requests,
while learning involves extracting knowledge from natural language and incor-
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porating it into the knowledge base. Moreover, KLM validates and instantiates
the hypothesis that understanding is a process (21) that involves acquiring and
appropriately using knowledge to satisfy specific goals (22). By validating and
operationalizing the foundational assumption in cognitive science that informa-
tion processing in humans resembles that in computers, KLM provides valuable
insights for investigating and interpreting human cognitive activities.

Through these models, I demonstrate the existence of the semantic system un-
derpinning natural language and detail the methods for constructing them. Fur-
thermore, they offer valuable insights into how specific cognitive functions are
instantiated within these models, shedding light on the underlying mechanisms
of human cognition. This work represents a pioneering formulation of the in-
tricate interplay between natural language, the semantic system, and human
cognition.

2. Semantic structures

The relations among natural language, the physical world, human cognition, and
knowledge can be depicted as shown in Fig. 1A: Individuals continuously receive
sensory inputs from the physical world (process pl in Fig. 1A), which undergo
cognitive processing to form structured information or data (i.e., knowledge)
stored within the brain. These processes occur across diverse environments,
resulting in variations in knowledge among individuals. To bridge these knowl-
edge gaps, natural language is employed as the primary tool for encoding and
transmitting knowledge between individuals (process p2 in Fig. 1A). This obser-
vation implies that knowledge, a product of human cognition, constitutes one
of the contents encoded within natural language.

Knowledge-level structure

Knowledge involves how humans understand and describe the physical world,
and it is also defined as a belief that is both true and justified (23, 24). Under-
standing interrelations among entities in the physical world pertains to knowl-
edge, which can be depicted by the structure: [Concept 1] + [Relation] + [Con-
cept 2], known as the knowledge-level structure (see Fig. 1C and D). Within
this structure, conceptual components represent objects associated with entities,
while relational components illustrate relations among these objects.

To identify linguistic units representing these components, I reexamine classifica-
tions of linguistic units and propose object-oriented categories (Table 1 ), which
exemplify three primary subcategories of linguistic units: conceptual, relational,
and functional classes. The conceptual class contains words and phrases used
to label entities, with the goal of representing the entities themselves and their
attributes, which are further categorized into entity words and phrases, as well
as various types of attributes (see Fig. 1E [FIGURE:1]) including elementary
attributes, extended attributes, advanced attributes, and attribute domains.
The relational class contains words and phrases depicting relations among en-
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tities. Linguistic units in the functional class represent specific functions and
instructions; for example, the word “the” intends to point out specific objects
in the context, and the punctuation “?” indicates specific tasks. These object-
oriented categories highlight the conceptual and relational components within
sentences (see examples in SI Appendix, Fig. S2B), facilitating the extraction
of knowledge segments encoded within natural language.

Furthermore, unlike certain coding systems that maintain a strict one-to-one
correspondence between coding characters and coding objects (e.g., ASCII and
Unicode), natural language often allows a single unit to encode multiple objects,
thereby leading to multiple word senses and ambiguity phenomenon.

Logic-level structure

The logic-level structure (Fig. 1B [FIGURE:1]) serves as an additional layer
of abstraction above the knowledge-level structure, describing two states of the
relation in a knowledge-level structure: existent and non-existent. Words and
phrases such as “is/is not”, “have/have not”, and “can/cannot” function as
logical decisions to encode these two states. The usage of the logic-level structure
enables the description of the non-existent state of a relation in a knowledge-level
structure, thereby doubling the range of knowledge-level structures that natural
language can describe (see examples in SI Appendix, Fig. S2B). Without the
ability to describe the non-existent state of a relation, communication would
face significant challenges.

Task-level structure

During communication, individuals alternate between the roles of speaker and
hearer. Speakers generate sentences while hearers understand them. The moti-
vation for speakers to produce a sentence may align with the goal of hearers in
understanding it. Therefore, I reclassify sentences by examining the speaker’s
motivations and objectives for producing them and propose the task-oriented
categorization, as detailed in Table 2 . The term “task” refers to the implied re-
quests of speakers encoded in sentences, such as knowledge sharing, verification,
retrieval, and instruction execution. As exemplified in Fig. 1D [FIGURE:1], the
task-level structure involves how these tasks are encoded in sentences through
iconic words, punctuation marks, and specific combinatorial rules. The discov-
ery of task-level structure unveils the essence of language—sentences can be
viewed as tasks published by speakers.

Model-level structure

Based on the above findings, I reclassify sentence components by examining
their roles in the said tasks and propose a function-oriented categorization of
sentence components, as shown in Fig. 1E [FIGURE:1]. This categorization,
which defines the functions of sentence components, formalizes the structural
framework of tasks, known as the model-level structure. Distinguished from
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the other three structures, the model-level structure incorporates not only ex-
plicit task components expressed in languages, such as execution requests and
contents, but also task participants responsible for task publication and exe-
cution, which often exist as contextual information. Serving as a task model,
the model-level structure suggests a fundamental cognitive framework that for-
malizes tasks designed by speakers to fulfill specific requirements and assigns
them to hearers for execution. This mechanism facilitates communication and
cooperation among individuals, thereby fostering community advancement.

3. Two semantic models

Semantic models, or knowledge models, are products of human cognition and
can be viewed as mental representations of the physical world. Given that nat-
ural language encodes and transmits knowledge stored in human brains, we can
reconstruct these semantic models by integrating knowledge segments extracted
from natural language. Below, I introduce two models, their construction meth-
ods, and associated cognitive functionalities.

MSM
The MSM is constructed based on the knowledge-level structure: [Concept 1] +
[Spatial relation] + [Concept 2]:

Table 3 presents three commonly employed types of spatial relations in nat-
ural language, accompanied by their respective reference frames (RF) (25).
These include 1) scope relation, encompassing both inclusion and exclusion re-

lations, with the inclusion relation forming RFs = { inclusion —————— =}
2) directional relation, further subdivided into 2.1) absolute directional relation
consisting of four fixed directions forming RFa = { east————, west————,
north—————, south—————}, and 2.2) relative directional relation compris-
ing six fixed directions forming RFr = { f ront , bottom—————, —————,
back————}; and 3) distance relation.

In contrast to reference frames (26, 27) that rely on “conceptual anchors”, these
spatial relation-centered reference frames exhibit enhanced integrity and univer-
sal applicability. Figure 2B

illustrates the MSM architecture, which is structured based on spatial relations,
wherein physical entities in the real world are represented as nodes, and their
spatial relations are described by directed edges. The MSM integrates graphs
(Fig. 2C and D

) for depicting spatial directional relations among entities and the tree structure
(Fig. 2E

) for illustrating spatial scope relations. As a relational positioning system
that mirrors human spatial cognition, the MSM can function as a bridge for
information exchange between humans and machines (SI Appendix, Fig. S1),
supplementing existing numerical positioning systems such as GPS. Moreover, it
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offers excellent flexibility in expanding its structure to accommodate numerous
entities; the nodes and edges within the MSM can be easily updated to reflect
changes in entities’ spatial positions, while datasets can also be constructed
to record trajectories of movable entities. In summary, the MSM empowers
machines with memory patterns akin to those observed in humans, thereby
facilitating human-machine interactions.

HCM

The HCM presents a coding system that encodes entities in the physical world
with attributes perceived by human sensory organs, uncovering how humans
construct conceptual systems (Fig. 3A [FIGURE:3]). It is established by exam-
ining interrelations among the categories of linguistic units within the concep-
tual class. In the HCM, nodes represent concepts associated with entities, and
directed edges describe inclusion relations among them. Therefore, each node
in the HCM is characterized by all its descendant nodes, while a group of child
nodes with the same parent node can be represented by this parent node.

A node positioned at a higher hierarchical level possesses a greater degree of
abstraction, that is, richer semantics. In the HCM, the elementary attribute
layer (highlighted in red dotted boxes in Fig. 3A [FIGURE:3]) functions as a
transitional or interface layer between the physical world and human memories,
where various sensory inputs are labeled as elementary attributes.

The remaining layers of HCM are structured by employing the combination
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coding strategy (Fig. 3B and C [FIGURE:3]) introduced below.

Combination coding refers to establishing combinations by selecting m(m <
N) elements from n sets based on certain rules (each set contains a limited
number of distinct elements, and the total number of elements in n sets is N),
and utilizing these combinations for encoding specific objects. For instance, the
three attribute groups (combinations) shown in Fig. 3B [FIGURE:3] are used
to encode the objects “lemon2”; “grapel”, and “carl”.

The combination coding suggests that elementary attributes perceived by hu-
man sensory systems are employed as elements for encoding physical world
entities. Moreover, the combination coding strategy provides strong generaliza-
tion performance for the HCM. It is evident in the limited impact that certain
range variations of elements within subsets (child nodes) have on the overall
combination (parent node). This mechanism is particularly pronounced when
the elements within subsets follow a normal distribution.

Therefore, combination coding provides theoretical support for humans’ ability
to learn from small samples (concept learning), suggesting that a pattern (i.e., a
combination) established based on a small sample can represent the majority of
the same kind of samples. Additionally, the pattern’s generalization capacity is
enhanced with an increasing number of elements within subsets. Given that the
human brain, with over ten billion neurons, employs both combination coding
and population coding (28)—an established coding strategy in neuroscience—
this framework explains how humans can efficiently and robustly encode (or
memorize) a vast number of physical world entities.

4. Continuous data model

A data model can be classified as a continuous data model if its structure, which
refers to the set of relations establishing connections between data elements
within the model, is an algebraic system. For instance, the relation set of the
HCM: RHCM = { }, along with the corresponding operation rule fHCM: +
=, form the algebraic system: (RHCM, fHCM); thus, the HCM is a continuous
data model.

A continuous data model integrates a conceptual system (i.e., the set of data
elements) with an algebraic system (i.e., the set of relations). This means that
relations between data elements (i.e., concepts) are computable, enabling the
reasoning of unknown knowledge from known knowledge. For example, by lever-
aging the known knowledge: “Food Fruit” and “Fruit Lemon”, as shown in
Fig. 3A [FIGURE:3|, we can deduce the new knowledge: “Food Lemon”.

Structural comparison

The structural comparison of the continuous data model, knowledge graph (29),
and widely used relational data model (30) provides insight into their respec-
tive advantages in establishing world models. Both the continuous data model
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and knowledge graph are grounded in graph structures; however, they differ
in focus. The continuous data model is relation-centric, distinguished by the
same types and computable relations that support relation-based reasoning and
search operations. In contrast, the knowledge graph is concept-centric, where
data elements are typically linked by diverse types of relations that are not com-
putable, thereby rendering reasoning operations unfeasible while still ensuring
search functionality.

The relational data model employs a table structure, where the term “relation”
refers to a two-dimensional table denoted as “Relation(domainl, domain2, ..,
domainn)”. In contrast to the continuous data model and knowledge graph,
which depict stable relations between data elements (concepts), the relational
data model focuses on recording changeable attributes of a set of entities. Each
row in the table represents a set of changeable attributes of a specific entity,
while columns correspond to different attribute types (i.e., attribute domains).
These attribute domains, as well as the data elements within them, are mu-
tually independent. Consequently, performing relation-based reasoning opera-
tions on a relational data model becomes infeasible. On the positive side, this
data independence effectively protects data during numerous accesses and op-
erations, addressing the significant challenge of managing and utilizing large
shared databases (30).

5. KLM and its applications

The KLM consists of two main components: the knowledge base and the pro-
gram (Fig. 4 [FIGURE:4]). It adheres to the classical framework employed by
computer systems, which separates data from its processing requests (31, 32).
The knowledge base functions similarly to human memory, consisting of diverse
knowledge models that reconstruct the mental representations of the physical
world as perceived and understood by humans, and it is both editable and in-
finitely expandable. The program component contains instructions designed to
manipulate knowledge to achieve specific goals.

In contrast to neural network-based language models, the KLM is distinguished
by its separate definition and modeling of processing objects (i.e., execution
contents) and their corresponding processing requests (i.e., execution requests).
This design ensures transparency and traceability, thereby enhancing the
model’s credibility and applicability in various scenarios. Subsequent sections
will detail the methods for natural language generation, understanding, and
learning based on the existing knowledge base comprising MSM and HCM.

Natural language generation

Sentences are tasks published by speakers, which include fixed components such
as execution contents, execution requests, and executors. In the KLM, natural
language generation is defined as a sequence of operations aimed at obtaining
the task components from corresponding models followed by encoding them into
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sentences after necessary processing (SI Appendix, Fig. S2A and B).

The KLM’s sentence generation logic fundamentally differs from prevailing lan-
guage models. The latter approach language generation as a statistical inference
process based on prior knowledge (i.e., corpora) (33-35), while sentences gen-
erated by the KLM encode tasks designed to fulfill specific requirements for
higher-order tasks. Therefore, in the KLM, what is encoded in sentences is
determined by the requirements rather than their probability of occurrence in
prior knowledge. This opens up a new direction for research in natural language
generation.

Furthermore, knowledge can be seen as humanity’s collective understanding of
the physical world, with knowledge and its representation forms being mutu-
ally independent. The KLM framework, which decouples knowledge from its
representation forms, enables it to provide translation and multilingual gener-
ation services using distinct coding forms. This capability addresses concerns
that language models, which are consistently based on majority languages for
cost considerations, might exacerbate existing inequalities by disadvantaging
speakers of less prevalent languages (36).

Natural language understanding

Understanding an object involves acquiring knowledge about its features, com-
position, and functions (22, 37). In the KLM, the first two types of knowledge
can be obtained through identification operations within relevant knowledge
models. For example, by identifying the knowledge “Sour +—————— inclu-
sion Lemon” and “Lemon ¢—————— inclusion Fruit” in the HCM, one can
discern the attribute “Sour” and category “Fruit” of the “Lemon”. Similarly,
MSM provides location information of the “Lemon”. Object functions, which
relate to the object’s role in specific tasks, are defined by relevant task mod-
els (Fig. 1E [FIGURE:1]). Consequently, functional knowledge can also be
acquired through identification operations within corresponding task models.

Natural language encodes multiple types of objects, including knowledge and
tasks. In the KLM, natural language understanding involves initially identify-
ing these objects from sentences and then acquiring relevant knowledge about
them (see ST Appendix, Fig. S2C). Consequently, understanding is defined as a
process consisting of a sequence of identification operations. Within this process,
not all identification attempts succeed; the knowledge obtained from successful
operations represents the outcomes of understanding. The abundance of these
outcomes can be used to gauge the degree of understanding achieved. The ex-
tent of knowledge acquired during these understanding processes depends on
the number of models available and the volume of relevant data incorporated
into them. Therefore, when evaluating KLLM’s capability for understanding, the
abundance of its knowledge base serves as a more direct and effective indicator
than traditional performance metrics (38-40).

Moreover, the further processing of outcomes in understanding constitutes other
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cognitive activities. For example, the subsequent identification operations per-
formed on the acquired knowledge can be referred to as association (SI Ap-
pendix, Fig. S2C), while additional manipulation of acquired knowledge, such
as sorting, comparison, and reasoning operations, constitutes advanced cognitive
activities like analysis, decision-making, and planning.

Learning

Humans employ diverse learning approaches, such as experiential learning,
where knowledge is gained through direct practice (e.g., tasting a lemon to
discern its sourness), and indirect learning, where knowledge is obtained from
others (e.g., being told that lemons are sour). The KLM exemplifies the
latter approach, where learning involves extracting knowledge encoded in
natural language and updating the knowledge base accordingly. This process
encompasses incorporating (memorizing) new knowledge (SI Appendix, Fig.
S2C) and revising existing knowledge. Unlike prevailing machine learning
methods (41-44), which predominantly extract statistical patterns from massive
datasets (45), the KLM introduces a novel learning paradigm distinguished
by its cumulative nature and cost-effectiveness, broadening the spectrum of
available learning methods.

6. Conclusion

I have proposed four semantic structures, induced by the novel categories of lin-
guistic units, that decompose natural language based on the objects it encodes.
Combined with the introduced models and their associated cognitive functions,
the feasibility of investigating the human cognitive system through linguistic
analysis is demonstrated. I hope further efforts will continue exploring the in-
tersection of natural language, human cognition, and human-like intelligence.
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Table 1 . Examples of object-oriented categories of linguistic units

Category

Linguistic unit Conventional Object-oriented ~ Coding object

The lemon Noun phrase Entity phrase - represents
the specific
entity “lemon”
in a specific
scenario.

Lemon Noun Entity word - represents the

lemon group.
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Category
Linguistic unit Conventional Object-oriented ~ Coding object
Yellow, sour Adjective Elementary Yellow - a
attribute label for a
segment of

Merlot, Pinot
Noir

Color, strain

Extended attribute

Attribute domain

- the strains of
grapes, which
label the
collections of
selected
attributes used
to distinguish
these two types
of grapes, as
exemplified in
Fig. 3A.

- represent the
categories of
attributes.

visible light
perceived by
human eyes,
which
encompasses a
wavelength
range from 577
to 597
nanometers.
Sour — a label
for the specific
group of
molecules and
ions perceived
by human
noses and
tongues.
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Category

Linguistic unit Conventional

Object-oriented

Coding object

Ripe, unripe Advanced attribute

Squeeze Verb (vt.)

Squeeze Verb (vt.)

- represent the
classification
results of
entities’
ripeness,
labeling
collections of
selected
attributes that
serve as
indicators for
ripeness.
Advanced
attribute (Type
1 object)

Instruction
(Type 2 object)

- represents
the attribute
sequences that
record the
attribute
changes of an
entity when it
is squeezed,
e.g., the
changes in the
contour and
pulp of a
lemon when it
is squeezed.

- represents
the attribute
sequences
recording the
changes in
attributes of
the agent
performing the
squeezing
action, such as
the posture
changes of the
hand and
fingers when
executing a
lemon squeeze.
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Category
Linguistic unit Conventional Object-oriented ~ Coding object
Squeeze Verb (vt.) Instruction - the
(Type 3 object)  instruction for
implementing
the squeezing
action. It can
refer to either
a sequence of
nervous
impulses that
coordinate
muscle groups
to execute a
squeezing
action or a pre-
programmed
set of
instructions
for machines
to perform the
squeezing
action.
The, this Article; pronoun Demonstrative - symbols that
(46) point out
specific objects
in the context.
“ro«pr Punctuation Separator; Task - segment
identifier sentences and
indicate their
task types.
Have, has Preposition Inclusion -
relation
Of, ’s Preposition Inclusion -
relation
Before, after Conjunction Temporal -
relation
Because Conjunction Causal relation -

Table 2 . Task-oriented categories of sentences
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Category Conventional Task-oriented Coding object

Declarative & exclamatory Knowledge sharing This category of the

sentences sentence sentence implies the
speaker’s
expectation that the
hearer can

memorize the
contents shared
within sentences.
For example,
teachers expect
students to
remember what was
taught in class;
authors expect
readers to
understand and
retain the concepts
and methods
presented in their
papers. This
expectation can be
seen as
requests(tasks)
published by
speakers and
assigned to hearers
for subsequent
execution.
Compared to
declarative
sentences,
exclamatory
sentences typically
omit the subject, as
it is already implied
in the context.
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Category Conventional Task-oriented

Coding object

Yes-no question Knowledge
verification sentence

Wh-question Knowledge retrieval
sentence

Sentences of this
category are
generated when
speakers intend to
verify the existence
of a relation within
a piece of
knowledge, as
exemplified in Fig.
1C and D (K1-1).
They convey
speakers’ requests
for the hearers to
provide answers to
these questions.
Such sentences are
formed when
speakers lack
specific data, as
exemplified in Fig.
1C (K1-2 and
K1-3). Speakers can
employ wh-words to
replace the missing
data and adjust the
sentence structure
accordingly (refer to
K1-2 and K1-3 in
Fig. 1D) to convey
their requests for
hearers to provide
the requested data.
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Category Conventional

Task-oriented

Coding object

Imperative sentence

Instruction sentence

Instruction
sentences are
typically structured
without explicitly
stating the
executors (i.e.,
subjects); instead,
the intended hearers
are implicitly
designated as the
executors to carry
out the instructions
represented by
verbs. Note that the
verbs that convey
these instructions
correspond to the
Type 3 object, as
previously detailed
in Table 1.

Table 3 . The classification of spatial relations employed in natural language

Spatial relations

Lexical representations

Reference system

1. Scope relations

2. Directional
relations

3. Distance relations

Inclusion: in, at..Exclusion:
outside of...

Absolute directional
relations: East: east
of...West: west of..North:
the north side of ...South:
the south side of...Relative
directional relations: Top:
on, above, over, on top
of..Bottom: below, under,
beneath...Left: left
of..Right: the right side
of..Front: before, in front
of..Back: behind, back of...
by, near, next to, beside...

RFa = { east————,

west————,
north—————
south————— }RFr
= { front—————,
bottom—————,
back————— }

Source: ChinaXiv — Machine translation. Verify with original.
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