
AI translation · View original & related papers at
chinarxiv.org/items/chinaxiv-202506.00016

Sora: A “Disruptor” or “Innovator” for School Education?

Authors: Xinmin Wang

Date: 2025-06-03T20:42:27+00:00

Abstract

The application of Sora in the field of education represents both opportunities and challenges. On the one hand, Sora can empower education to return to its fundamental mission of cultivating individuals: rectifying educational alienation, enriching personalized education, and visualizing both teaching and learning. On the other hand, Sora may disrupt the systematic nature of school education: resulting in educational mediocrity, causing educational disorder, and precipitating institutional crises. In the context of artificial intelligence's comprehensive integration into education, while highlighting Sora's innovative applications in the educational domain, it is imperative to mitigate its potential drawbacks and propose scientifically grounded countermeasures: innovating educational philosophies, upgrading educational practices, and reshaping the educational ecosystem, thereby fostering the harmonious development of artificial intelligence and education.

Full Text

Sora: A Disruptor or Revolutionary Force in School Education

Wang Xinmin¹

(School of Teacher Education, Jiangsu University, Zhenjiang, Jiangsu 212013, China)

¹ Wang Xinmin (1998.02), female, from Liu'an, Anhui, master's student at the School of Teacher Education, Jiangsu University, mainly engaged in basic education research.

Abstract: The application of Sora in the field of education presents both opportunities and challenges. On one hand, Sora has the potential to empower education to return to its core purpose of nurturing individuals: it can rectify the alienation of education, enrich personalized education, and visualize both

teaching and learning. On the other hand, Sora may undermine the systematic nature of school education, leading to mediocrity in education, causing educational chaos, and triggering crises in schools. In the context of artificial intelligence (AI) being fully integrated into education, while emphasizing the innovative applications of Sora in the educational field, it is also necessary to avoid its drawbacks as much as possible by proposing scientific and reasonable countermeasures: innovating educational philosophies, upgrading educational activities, and reshaping the educational ecosystem, in order to promote the harmonious development of AI and education.

Keywords: Sora; Generative Artificial Intelligence; School Education; Innovation; Disruption

As a “world simulator,” Sora is an AI model capable of creating realistic and imaginative scenes from text instructions, generating videos up to one minute long while maintaining visual quality and adhering to user prompts [1]. Although Sora remains unavailable to the public due to unresolved technical and safety issues [1], this text-to-video technology, with its incredible precision in reflecting text content, promises to fundamentally disrupt content creation across all industries. As a new product of generative AI, Sora’s application in education has multifaceted impacts. In today’s utilitarian society, school education has gradually become “alienated” to adapt to social development. Sora’s unique real-scene simulation and efficient one-on-one human-computer interaction model will greatly enrich personalized education, fully satisfy students’ individualized development needs, break through the utilitarianism of traditional education, and empower education to return to its fundamental purpose of nurturing individuals. However, as generative AI like Sora, ChatGPT, and DeepSeek become deeply integrated into education, they may also disrupt the systematic nature of education. Over-reliance on AI could cause educational chaos, violate educational principles, and lead education toward mediocrity.

I. Eliminating Utilitarianism, Empowering Education to Return to Its Fundamental Purpose

The utilitarian tendency in education expands and extremifies education’s instrumental functions, placing instrumental rationality above value rationality, causing people’s concepts and behaviors to deviate from education’s objective laws and neglect its nurturing essence [2]. While educational utilitarianism can meet social development needs to a certain extent, if education is viewed merely as a tool for promoting social development, school education will eventually become an appendage to the social development assembly line, with students becoming customized products of social development. Breaking this assembly-line talent cultivation model has been a persistent goal of the education community. As a special tool featuring real-scene simulation and human-computer interaction, Sora’s learning model transcends traditional school collective learning patterns,

further enriches personalized education, visualizes teaching and learning, fully satisfies students' individualized development needs, breaks through the "utilitarianism" phenomenon of traditional education, and promotes education's return to its nurturing foundation.

(1) Enriching Personalized Education

Generative AI's outstanding performance in learning experience, knowledge acquisition, resource integration, and intelligent teaching will break the traditional uniform, procedural "knowledge transmission" model [3]. As an advanced text-to-video AI, Sora can integrate human-computer interaction, real-scene simulation, data analysis, and adaptive technologies to provide learners with diverse personalized learning services, fully mobilize learners' interest, cultivate their autonomous learning abilities, and ensure that each learner can study in the most suitable way, achieving truly personalized education.

Sora transforms learning experience through its dynamic scene generation technology. It can record and analyze learners' progress in real-time through interaction, providing learning content that aligns with their interests, characteristics, performance, and ability levels. Interactivity is Sora's core competitiveness in education. Its unique dynamic video generation technology ensures precise alignment between video content and text descriptions. Educators can use Sora to create video learning content that immerses learners in dynamic scenarios, stimulating their interest and helping them maintain efficient learning states, thus providing a brand-new learning experience. This interactive dynamic scene learning approach is more active and profound compared to passively receiving static information in traditional education. It can transform abstract concepts into intuitive, visualized forms and allow learners to manipulate and practice in virtual environments. Strong engagement enables learners to actively explore complex concepts, independently construct knowledge systems, and form their own insights and viewpoints, thereby cultivating independent thinking and problem-solving abilities. Sora's powerful information processing capability can synthesize extensive resources, develop learning materials based on learners' personalized needs, and continuously optimize them during interaction to enrich the learning experience.

Despite continuous efforts in the education field to find methods that accommodate each learner's individualized development within established teaching time-frames and curriculum systems, the unified model of school education struggles to fully address learners' individual growth trajectories and needs, never breaking through the bottleneck of catering to universality and averages. As a text-to-video model, Sora can obviously meet the needs of different learning styles—visual, auditory, kinesthetic [5]. Its highly intelligent human-computer interaction technology can precisely focus on learners' personalized learning styles, real-time analyze and follow up on their learning processes, and targetedly meet their learning needs. Educators can fully utilize this characteristic of Sora to deeply analyze learners' progress, preferences, difficulties, and effectiveness, and

skillfully add various media forms such as audio and text to generated videos according to different learning styles, helping them better understand and remember knowledge and further improving teaching effectiveness. Additionally, educators can combine Sora with other AI tools to analyze learners' data to determine students' interests, talents, and learning styles, understand their personalized development tendencies through interaction, dynamically adjust learning content and difficulty, provide truly personalized tutoring and help for learners, achieve genuine personalized learning, and help them achieve greater success in personal growth.

AI's role in promoting students' active exploration, autonomous learning, and enhancing learning 'returns' is undeniable [6], and Sora's unique advantages open up new development opportunities for enhancing learners' motivation and abilities. First, Sora enhances learners' interest and motivation. Through advanced AI algorithms and deep learning technology, Sora can automatically generate high-quality video content, including clear images, smooth animations, appropriate sound effects, and background music. These high-quality video materials can not only enrich students' learning experiences but also enhance their interest and motivation. Due to games' natural appeal to student populations, educators can also use Sora to introduce a new gamified learning model, creating a relaxed and pleasant learning environment that mobilizes learners' enthusiasm. Second, Sora enhances learners' autonomous learning ability. Under the exam-oriented education framework, learners are typically in a passive state of receiving knowledge, lacking active thinking and self-exploration abilities. By creating virtual learning companions, virtual scenarios, and Q&A assistants, Sora creates more vivid and imaginative learning environments [7], allowing learners to generate personalized learning paths according to their own needs. Through autonomous selection of learning content, methods, and progress, learners can gradually improve their autonomous learning ability and independent problem-solving skills. This ability not only enhances learners' effectiveness but also cultivates their lifelong learning capacity.

(2) Visualizing Teaching and Learning

As a text-to-video model, Sora's unique scenario simulation and interaction functions can generate immersive teaching environments according to instructions, transforming abstract knowledge points into vivid video images. It can also provide personalized teaching videos and interactive learning methods, making teaching and learning more efficient through visualization.

Sora, as a video generative AI model, can generate realistic or imaginative high-quality videos based on text prompts, demonstrating potential to simulate the physical world [1] and creating revolutionary deep immersive virtual world experiences. With the development of VR, metaverse, and related technologies, the blended virtual-real learning approach is gradually becoming normalized [8]. Combining Sora with VR technology in teaching can easily build immersive teaching environments, achieve visualization of teaching processes, promote

learners' dynamic participation and firsthand experience, thereby enhancing the authenticity and immersion of learning. First, high-quality virtual modeling strengthens the realism perception of teaching environments. Through high-precision text-to-video models and fine dynamic simulation capabilities, Sora can restore the physical state of the real world. This enables teaching interaction scenarios to break through traditional media limitations and construct embodied, natural cognitive situations, activating learners to participate wholeheartedly in teaching processes, promoting deep integration of experiential learning, embodied cognition, and multimodal learning, and endowing teaching with more authentic, immersive, and natural interactive experiences. Second, efficient virtual modeling supports dynamic adjustment of teaching processes. Relying on Sora's efficient virtual modeling system, it can realize the creation and invocation of arbitrary life situations, allowing students to obtain multi-sensory immersive experiences and interactive feedback [9]. Learners deepen their learning through immediate interactive feedback, while teachers can dynamically generate visualized teaching scenarios with Sora. This dual-response mechanism both meets individualized learning needs and provides technical support for dynamic optimization of teaching strategies.

Teaching-evaluation integration is highly effective for improving teaching outcomes and facilitating student progress. However, practical implementation faces the realistic difficulty of lacking evaluation tools, preventing real-time feedback to teachers and students. Therefore, to solve this dilemma and make the teaching-evaluation process fully visible, the key lies in the selection of evaluation tools. Sora can integrate teaching, learning, and evaluation information and dynamically transform it into a comprehensive visual data map. Through feature mining and correlation analysis of these multi-dimensional data, it can construct multi-directional relationship models around specific teaching elements, enabling rapid data flow among teaching, learning, and evaluation, and providing effective support for implementing teaching-evaluation integration. Through Sora's analysis of visualized teaching data, it can build a dynamic learning diagnostic evaluation system, thereby truly achieving teaching-evaluation integration in teaching. First, Sora assists in "evaluation-based standard setting" before teaching. Clear teaching objectives are the prerequisite for implementing teaching-evaluation integration, directly determining whether subsequent teaching and evaluation can proceed smoothly. The important source of teaching objective establishment is learners' basic conditions, so diagnostic evaluation should be used to understand learners' development levels. Sora can display students' development data in a comprehensive, real-time, dynamic, and all-round manner [10]. Based on this and combined with learners' development situations observed in daily life, teachers can comprehensively understand students' learning status, thereby designing targeted teaching objectives and achieving teaching based on learning. Second, Sora assists in "evaluation-promoted teaching" during instruction. The implementation of teaching-evaluation integration is usually dynamic during the teaching process, making process evaluation particularly important. The implementation of teaching-evaluation integration essentially

places higher demands on teachers, requiring them to provide more high-quality and appropriate teaching supply to ensure consistency among teaching, learning, and evaluation and effective implementation of objectives. Teachers can use Sora and other AI technologies to timely arrange intelligent assessment tasks, obtain overall teaching situations and individual development situations presented in dynamic visual forms, and adjust teaching strategies accordingly to achieve precision teaching. Third, Sora assists in “evaluation-assisted learning” after teaching. Since students’ completion of learning objectives during the teaching process is not completely synchronized, attention should also be paid to implementing teaching-evaluation integration after instruction to provide differentiated tutoring for students. Teachers can provide students with real-scene-based relearning and training using Sora according to actual situations, helping deepen students’ consolidation of knowledge content. Meanwhile, teachers can also use Sora to conduct visualized simulation analysis of learners’ learning outcomes, assign layered tasks, and carry out targeted personalized tutoring after teaching, achieving “visualized evaluation and teaching according to aptitude” and promoting the implementation of teaching-evaluation integration. Of course, using Sora as a tool for teaching-evaluation integration needs to be based on smart classrooms as the carrier [11].

Sora’s scenario modeling technology can restore teaching practice fields through visualization, empowering immersive development of teacher teaching research activities and multidimensional analysis of educational research processes, providing support for improving teachers’ teaching practice ability and research level. First, it provides support for improving teachers’ teaching practice ability. Sora possesses powerful multimodal text generation and intelligent parsing technology, enabling teachers to enhance their abilities in diverse teaching scenarios with this intelligent support. As a powerful new-generation generative AI model, Sora builds a continuously updatable visualized dynamic knowledge resource base for teachers. Through intelligent interaction with Sora, teachers can achieve instant retrieval and teaching transformation of knowledge, which not only enriches the presentation methods of teaching content but also timely incorporates new disciplinary developments, making teaching more aligned with contemporary needs. Addressing teachers’ difficulties with tool operation and insufficient energy in curriculum development, Sora can automate routine tasks such as lesson preparation, resource production, learning feedback, and homework correction, optimizing efficiency for basic work and allowing teachers to focus more on innovative teaching methods and professional capacity enhancement. Second, it provides support for innovation in teachers’ educational research. With its unique intelligent advantages, Sora breaks through the limitations of human thinking patterns, creating a brand-new digital space for educational research. Traditional educational research methods usually require step-by-step deduction from basic links, making it difficult to break through fundamental cognitive frameworks. Through Sora’s scene dynamic restoration and theoretical visualized deduction technology, the educational research process is simplified, building a verification bridge between theory and practice.

This not only helps teachers comprehensively analyze teaching problems but also transforms abstract teaching theories into concrete cases, forming an effective improvement scheme verification channel.

(3) Eliminating Educational “Alienation”

Educational alienation is a new problem accompanying the rapid development of educational undertakings and educational reforms, causing educational activities to continuously deviate from educational purposes and move toward “alienation” [12]. Sora’s development also brings new opportunities for solving this problem. As an advanced text-to-video large model, Sora can customize personalized learning plans and content according to learners’ interests, needs, and abilities, and improve learners’ various abilities through providing interactive learning experiences, making education and learners’ personalized learning progress hand in hand, providing auxiliary functions for learners’ lifelong development, and fully implementing the “human-centered” view of education.

Sora, as a large text-to-video model, supported by other big data models and referencing relevant models, gradually forms assessment results of learners’ interests, foundations, and potentials [13] and presents them to students in an intuitive manner, enabling learners to understand themselves more clearly. On this basis, educators can combine Sora with other tools to analyze learning data of different learners such as learning preferences and levels, achieve judgment of students’ learning themes, behaviors, and styles, and predict various situations that may occur during learners’ learning processes, thereby providing learners with more comprehensive and suitable personalized learning services. Simultaneously, Sora can tailor the most suitable learning plans for learners by analyzing their specific needs, learning styles, interest preferences, and current ability levels, track learners’ learning records during the learning process, explore learners’ learning habits and patterns, continuously adjust and optimize learning plans, and create comprehensive, multi-level learning plans for learners. The intuitive learning plans provided by Sora enable each student to find a suitable development path and provide them with more opportunities for success. This customization of personalized learning paths based on learners’ own characteristics facilitates individual personality development to fully realize education’s individual development value. Sora’s application in education reshapes education into a visualized, efficient, and concise “wisdom path” that accompanies learners’ lifelong development.

The basic function of Sora is its ability to generate detailed, realistic, and imaginative dynamic scenes from text instructions [1], demonstrating its powerful understanding, simulation construction, imagination, and creativity of the world. Educators can use Sora to generate different scenarios to cultivate learners’ ability to solve complex problems using interdisciplinary perspectives, multi-domain integrated thinking, and multiple knowledge skills. Sora can not only assist learners in information search and data analysis but also intuitively present massive information resources through video simulation, effectively reducing

the energy learners expend on trivial matters such as data collection and analysis, enabling them to focus more time on deeper learning, critical thinking, and stimulation of innovative thinking, thereby enhancing learners' ability to solve practical problems. Meanwhile, Sora's real-scene simulation function can also cultivate learners' practical operation ability by presenting the specific process of actual operations through video, forming vivid images in learners' minds, helping them better understand the theoretical knowledge of practical operations, and enabling them to handle real operations with ease. Sora's function can not only flexibly respond to learners' instructions to meet their immediate needs but also pre-list according to learners' requirements in their learning plans, cultivating their various abilities according to their actual levels to a certain extent. Therefore, Sora can fully cultivate students' ability to solve practical problems and realize education's personal application value.

Under today's globalization trends, cultivating talents with international vision who can adapt to social development is one of education's important missions. Facing various complex human social challenges and problems, each individual needs to base themselves on the present while looking to the future, and from the perspective of harmonious coexistence between people, society, and nature, strive to adapt to and promote social development. The dynamic simulation scenarios generated by Sora can help learners understand social changes and needs immersively, and through real-time data injection, synchronize scene changes with the real world. Whether it's technological development, changes in people's lifestyles, or dynamics in economic and political aspects, all can be displayed in simulation scenarios, undoubtedly helping learners better understand social operation mechanisms and preparing them for future social adaptation. Meanwhile, Sora's dynamic simulation scenarios also feature high interactivity. Learners can play different roles in scenarios, experience different life and work situations, and interact with virtual characters. This not only enhances learners' interest and participation but also enables them to continuously try and explore in practice, gradually cultivating practical abilities and qualities to adapt to social development. Furthermore, Sora can create authentic language learning environments, provide extensive intuitive materials, and international courses through scenario simulation, enabling learners to possess cross-cultural communication and cooperation abilities, global awareness, and social responsibility to adapt to changing social environments.

II. Undermining the Systematic Nature of Education and Leading It Toward Mediocrity

Sora's powerful text-to-video technology opens new paths for educational development. While this appears to be great progress for education, over-reliance on algorithmic recommendations and intelligent matching may weaken traditional educational authority, cause knowledge monopoly, and affect education's overall quality and direction. More seriously, if education overdepends on AI technology like Sora, it may cause mental imprisonment, leading education toward

mediocrity. In this situation, students may become “robots” that only receive information and lack independent thinking and creativity, which undoubtedly runs counter to education’s original intention and goals.

(1) Knowledge Monopoly, Mental Imprisonment, and Educational Mediocrity

In today’s era of information explosion, we enjoy unprecedented knowledge resources but also face severe challenges of knowledge monopoly and mental imprisonment. Sora’s generated educational content also comes from its established database through a series of programs, resulting in content homogenization. When learners can only obtain filtered and packaged knowledge from limited channels, their vision and thinking become easily limited, making it difficult to form comprehensive and profound understanding. Over time, learners’ thinking becomes imprisoned, limiting their independent thinking and innovation abilities. When knowledge monopoly and mental imprisonment interact, they jointly constitute a breeding ground for educational mediocrity.

In traditional knowledge teaching processes, educators contact and master knowledge texts before learners and gradually establish a monopoly position in knowledge resource allocation [14]. Sora enters the learning field in a learner-adaptive manner and realizes knowledge discourse power through learners’ autonomous learning that rejects the knowledge system constructed by the education system [15]. Through intelligent recommendation algorithms and dynamic learning path adjustment mechanisms, Sora constructs a knowledge network centered on learners’ cognitive trajectories. While this decentralized technical paradigm empowers learners with stronger cognitive agency, it also reconstructs the power structure of knowledge production and transmission, forming a gradual deconstruction of the knowledge authority system of school education. First, it reduces the value attribute of knowledge. Sora’s text-to-video technology promotes the three-dimensional connection of knowledge systems, enabling learners to easily obtain massive amounts of knowledge. When massive learning resources can be instantly generated and ubiquitously disseminated, knowledge is no longer a precious resource, and the knowledge value evaluation standards dominated by schools in traditional education will be weakened. Second, it dissolves the knowledge authority of school education. By integrating massive knowledge data accumulated over thousands of years of human history, Sora establishes a knowledge base larger than school curriculum systems, continuously breaking the boundaries of knowledge in school education systems, and shaking the knowledge authority that traditional school education has long maintained. Third, it changes the manifestation of knowledge. Sora’s text-to-video technology can transform abstract knowledge into more vivid visualized forms. While this transformation enhances knowledge transmission efficiency, it also brings new challenges. Knowledge creation is based on learners’ understanding and accumulation of knowledge [16]. When dynamic videos gradually replace text interpretation as the main learning medium, although

they can help students understand complex concepts more intuitively, they may reduce opportunities for students to use language and text for abstract thinking, undoubtedly weakening students' logical thinking and expression abilities. Since one of school education's functions is to transmit cultural knowledge and cultivate students' various abilities, Sora's knowledge monopoly will inevitably lead education toward mediocrity.

Sora's efficient video generation characteristics will inevitably become learners' preferred tool for completing academic tasks. Learners can use Sora to quickly generate visualized learning outcomes that meet academic requirements. While Sora can help learners improve learning efficiency in the short term, long-term dependence on tools to complete learning tasks can easily form mental inertia, causing learners to develop spiritual and behavioral dependence on intelligent tools, and their independent thinking ability, problem reflection awareness, and innovative thinking may gradually degenerate. First, it dulls learners' independent thinking ability. Sora can provide complete learning support with its powerful functions, allowing learners to easily master knowledge without much thinking, and they become accustomed to this video content learning without deeply questioning the problems themselves, developing mental laziness and losing independent thinking ability. Second, it limits learners' reflection ability. Learning is a reflective process, and reflection, as a state of human existence, is a state that humans should have and maintain [17]. Sora's adaptive learning system may narrow the learning scope to cater to learners' preferences, and learners can easily fall into their learning comfort zone, lacking deep thinking and reflection on learning. Over time, learners may become accustomed to receiving "feeding" from Sora, and the reflection ability unique to humans will eventually be imprisoned by the convenience of AI. Third, it stifles learners' innovative thinking. The logical foundation of innovative thinking is nonlinear, infinite, divergent, active, and irregular [18]. If learners only mechanically accept limited content generated by technology in a single line without participating in the thinking process, they will form shallow cognitive dependence, lose mental activity, and ultimately have serious negative impacts on learners' innovative thinking. Innovation is the inexhaustible driving force for social development, and education is of great significance to innovation. Good education should fully exert the power of cultivating innovation, but if education becomes alienated under the coercion of AI, it will inevitably lead to educational inefficiency.

(2) Disguised Errors, Value Deviation, and Educational Chaos

As an advanced text-to-video model, Sora's generated videos have reached unprecedented levels in picture quality and detail realism. However, technical limitations are inevitable problems for AI, and Sora may also encounter disguised errors and value deviation when generating videos [19]. If Sora is used to generate misleading video content, these videos may confuse audiences and mislead learners' understanding of objective facts. In addition to disguised errors, Sora may also face value deviation problems. If Sora's generated videos

contain value deviation, they will inevitably influence students' values.

The risk of information distortion or misleading content in Sora's generated videos is a problem that cannot be ignored. Since Sora is trained based on deep learning and big data, its output results largely depend on the accuracy and diversity of training data. If errors or biases exist in training data, Sora will likely reflect these problems when generating video content. For example, if a knowledge point description in training data is inaccurate or misleading, Sora's generated video content will also contain these erroneous information, thus misleading students. Moreover, if sample selection in training data is unbalanced or biased, Sora's generated video content may also carry certain subjectivity and tendencies. This bias may have adverse effects on students' knowledge understanding and cognition, and may even aggravate bias and inequality in society. Therefore, when using Sora and other technologies to generate video content, it is necessary to ensure the accuracy and diversity of training data and avoid errors and biases as much as possible. Meanwhile, video content review and supervision should be strengthened to ensure that students receive accurate, objective, and comprehensive knowledge information. Only in this way can we fully exert the advantages of Sora and other technologies in the education field and provide students with better learning experiences and development opportunities.

Both Sora and other AI tools need to rely on data analysis technology to generate content. However, datasets have defects in diversity, representativeness, and fairness, leading to problems such as bias, "viewpoint hegemony," stereotypes, and value one-sidedness [20]. These problems are often reflected in Sora's generated video content, subtly influencing learners' thoughts and values, which will inevitably reduce education's nurturing function over time. First, value concept alienation and Western value infiltration. Sora, characterized by interactivity, provides learners with realistic scenario interactions that satisfy their various requirements, but this undoubtedly blurs the boundary between real and virtual. Producers' value biases and political tendencies will also permeate the videos generated by Sora, hiding wrong values in seemingly reasonable content. When students repeatedly watch videos generated by Sora, they will subtly identify with the values within, eventually losing discrimination of correct cultural values and making incorrect value judgments and choices. Second, "information cocoons" cause cognitive narrowing and value deviation, weakening education's nurturing function. Objective rational cognition is the logical starting point for mainstream ideology recognition. In traditional ideology communication structures, broad-coverage indoctrination is the dominant model. Sora generates videos based on learners' interest preferences and needs, but the generated content is limited to learners' existing cognition, posing a risk of "rational cognition deprivation." On one hand, "information cocoons" cause cognition to become biased and narrow. The immersive scenarios generated by Sora unconsciously separate people from diverse, three-dimensional, and efficient 多元信息 and 权威观点, causing individuals to be wrapped into information spaces created by the same value bias and fall into homogeneous information. On the other

hand, “customized” content contains hidden value traps. In Sora’s generated customized videos, everyone is the center of their own discourse, self-producing, disseminating, and selecting information. Learners in this long-term learning environment will inevitably lead to solidified thinking, fall into value confusion, weaken education’s nurturing function, and consequently affect individuals’ rational understanding of mainstream ideology, restricting the cohesion of socialist core values.

(3) Mixed Virtual-Real Educational Scenarios, Adaptive Learning, and School Crisis

While Sora brings convenience and efficiency to the education field, it may also bring a series of challenges, especially in the “virtualization” and “dehumanization” of learning scenarios. First, in virtualized teaching environments, students may lose opportunities for face-to-face communication with real teachers and classmates. This authentic interaction is an indispensable part of the education process because it helps students build interpersonal relationships, improve social skills, and receive emotional support and feedback. However, when teaching completely relies on virtual videos, students may feel lonely and isolated, which may negatively affect their emotional development. Meanwhile, over-reliance on Sora and other virtual teaching tools may also weaken students’ critical thinking and independent thinking abilities. Second, although these tools can provide massive information and knowledge, they are often presented in preset ways, lacking interaction and discussion in real classrooms. This may cause students to become accustomed to passively receiving information rather than actively thinking and exploring. Therefore, when applying Sora and other technologies in education, vigilance is needed to ensure they do not become the only way of knowledge transmission. Instead, teachers and students should be encouraged to use these tools to enhance teaching effectiveness rather than completely replace traditional face-to-face teaching methods. Additionally, more attention should be paid to students’ social and emotional development to ensure they receive adequate support and help during the learning process.

In recent years, AI technology has continuously undergone deep cross-integration with learning sciences, educational sciences, cognitive psychology, and neuroscience, effectively promoting continuous deepening of adaptive learning research and the emergence of various intelligent adaptive learning systems [21]. As a new breakthrough in AI, Sora inevitably also possesses strong adaptability, but blindly applying this technology in school education may have counterproductive effects. First, adaptive learning will dismantle the school education system. School education is a purposeful, planned, and systematic social activity for cultivating people. Therefore, this preset nature and purposefulness of school education determine that it has certain conflicts with flexible adaptive learning. Sora generates learning content based on learners’ interests, needs, and abilities, and formulates learning paths and plans for learners based on analyzed data information. Although this personalized

content and plan can satisfy students' individualized development to a certain extent, they have significant discrepancies with the educational purposes and content preset by school education, which will inevitably lead to the dismantling of the school education system in the long run. Second, school education falls into technology worship. Sora can transform multi-dimensional data such as classroom interaction and learning behavior into visualized forms to present key teaching information. While this technology optimizes teaching processes, it also implies a trend of instrumental rationality eroding educational essence. When systems increasingly replace teachers in teaching and students rely on algorithms for learning, teachers will gradually degenerate their educational abilities, and learners will gradually lose independent learning abilities. Ultimately, the subjectivity of learners and teachers as the main bodies of school education will cease to exist, and school education will become a "puppet" of AI.

III. Rational Utilization of Sora to Promote Educational Transformation

Sora's unique text-to-video technology not only redefines the manifestation of educational content but also greatly optimizes the allocation structure of educational resources, opening new development paths for the education and teaching field. However, facing the crises brought by the combination of Sora and the education system, we need to collaboratively promote three aspects: innovating educational philosophy, upgrading educational activities, and reshaping the educational ecosystem, to promote continuous improvement of education under human-machine collaboration models, enabling the education system to both maintain its core nurturing function and adapt to new challenges brought by technological transformation.

(1) Innovating Educational Philosophy

Cultivating people's subject spirit and developing people's subject consciousness are education's inherent purposes [22]. In the context of AI empowering education, we should externalize what can be externalized, delegate to machines what can be delegated, and return to nature what can be returned, achieving dynamic integration of human essence and natural essence [23]. We should not only use intelligent tools to improve teaching efficiency but also ensure that education's digital transformation always serves human development. As the latest product of current generative AI, Sora's text-to-video capability applied in education will inevitably affect the nurturing essence of traditional education. Therefore, schools should actively adapt to new educational changes and explore new educational methods. First, schools should transform teaching models and advance education into the intelligent era. Sora's powerful text-to-video function is reshaping the innovative landscape of future education, and its multimodal technical characteristics provide new practical fields for educational innovation. School education should teach learners correct methods to use AI-assisted learn-

ing, promote the development of critical thinking, and cultivate learners' ability to solve practical problems in human-machine collaboration models. Through cyclic training of "learning tools-practical application-reflection and improvement," students can maintain independent thinking when using AI for learning, develop various abilities to adapt to future development, and possess strong competitiveness in the AI era. Meanwhile, school education needs to build an education model centered on adaptive learning. Teachers should also recognize the trend of industrial transformation in intelligent society, construct human-machine collaborative education models, and help students achieve dynamic balance between intelligent tool empowerment and autonomous cognitive development. Second, school education must adhere to the core value of "nurturing-oriented," placing nurturing and technology empowerment in a dialectically unified development framework. Schools should use Sora's dynamic imaging technology to create and provide various modes of immersive teaching activities, allowing learners to understand and apply abstract knowledge through personal participation. They should use Sora-generated virtual practice scenarios to cultivate diverse thinking abilities. Meanwhile, schools must always adhere to the goal of people's all-round development, promoting the development of learners' cognition, technology mastery, and humanistic literacy, achieving organic unity of intelligent tool efficiency and humanistic educational value.

The progress of Sora's text-to-video technology brings opportunities for students' personalized learning. Sora's greatest value in education lies in promoting students' comprehensive and personalized development, enabling them to learn happily and grow healthily [24]. The realization of this educational value requires not only focusing on educational purposes during the educational process but also considering the realization of educational effects. First, promote the transformation from educational value to learning value, enhancing learners' subjectivity in learning. Sora's situational, interactive, and adaptive characteristics can greatly stimulate students' learning interest, further enrich learners' personalized learning forms, provide support for whole-process personalized learning, and effectively achieve educational equity. Educators should integrate unique advantages of human teachers, deeply explore Sora's nurturing function, introduce quantitative learning concepts in specific teaching, conduct quantitative modeling of various elements related to learners, build dynamic learner portraits with multi-level structures, sequential features, and full spatiotemporal coverage, and then accurately extract key learning features to strengthen learners' subjectivity in the learning process. Second, build learners' learning spaces and implement the "human-centered" view of education. The learning environment constructed by Sora generates resource content according to students' needs, paying more attention to students' learning subjectivity, which promotes education and teaching to develop in personalized, precise, and intelligent directions. Educators can use Sora to generate interactive learning spaces, continuously extend traditional teaching environments to cyberspace during teaching processes, and build new blended virtual-real teaching environments. In learning spaces

constructed by Sora, learners' cognitive levels, learning styles, and learning trajectories can be fully recorded and analyzed, providing support for designing personalized learning paths and effectively guaranteeing the play of students' subject positions.

(2) Upgrading Educational Activities

Sora's powerful text-to-video function generates video content infinitely close to the real world, which may trigger widespread audio-visual confusion. Sora's application in education will also bring a series of challenges to school education. Current mainstream critical thinking theoretical frameworks may find it difficult to effectively address the new cognitive dilemma of distinguishing truth from falsehood caused by Sora's highly realistic videos, posing threats to human intellectual development and survival, thus requiring learners to develop screening and critical awareness [25] when facing rapid technological development. Therefore, offering teaching-research integrated critical thinking education is particularly important. Educators must have a higher-level overall grasp of reality [26] and should stimulate learners to maintain critical thinking and judgment while guiding them to use Sora reasonably for learning. This process requires educators to treat critical thinking as one of the core competencies, permeating it through the educational process and guiding students to use Sora correctly for learning. More importantly, teachers themselves should enhance their ability and awareness in cultivating critical thinking, master the latest teaching concepts and methods, and effectively guide students to engage in critical thinking while using Sora for teaching, becoming guides and partners on students' critical thinking development path. In summary, critical thinking cultivation in the context of Sora and related AI applications is a systematic project requiring multi-dimensional approaches to jointly promote profound transformation of the education system, cultivating future social pillars who can adapt to the new AI era with independent thinking, courage to explore, and be good at innovation.

In the intelligent era, people's dependence on AI continues to deepen. However, excessive indulgence in human-computer interaction and virtual environments while neglecting real interpersonal communication and emotional connections can easily lead individuals into self-enclosure and loneliness, seriously weakening the acquisition and experience of happiness. Therefore, educators should use Sora and other AI to meet individual development needs while cultivating their abilities in various life aspects as much as possible to help them better pursue a good life. First, cultivate individuals' life abilities. The value of life abilities taught by education lies in guiding learners to master resources necessary for social collaboration and happiness pursuit [26]. Although the virtual-real combined educational scenarios provided by Sora can provide more vivid learning to a certain extent, the people cultivated by education must ultimately live in real social environments. Such virtual-real combined educational scenarios will inevitably affect students' over-reliance on technology and weaken their perception of real life. In this case, educators should focus on cultivating learners'

life abilities in real environments, helping them master various skills and attitudes to independently cope with daily life, making them more independent, confident, and responsible individuals. Second, cultivate students' emotional abilities. The videos generated by Sora according to instructions may contain simulated emotional expressions, such as simulating sounds and expressions of joy, anger, sorrow, and happiness through voice and image synthesis technology, but these expressions lack real emotional experiences and internal motivation, being merely programmed outputs. However, emotion is not just simple emotional reactions; it also contains profound cognitive, evaluative, and motivational components. When facing different situations, humans interpret and respond based on their own experiences, values, and expectations, a process full of subjectivity and complexity. Learners can achieve sufficient development in rational aspects through Sora-assisted learning, but the cultivation of emotional abilities requires further emphasis from schools. To address potential negative impacts of AI's widespread application, school education should actively guide students to cultivate compassionate feelings, expand global vision, actively explore the meaning of life, and commit to achieving organic unity of personal development's purposefulness and value.

With the rapid development of AI technology, we are currently in a profound technological revolution. This revolution has not only changed people's production and lifestyle but also posed new challenges to the education system. To enable students to possess abilities to survive and develop in future society and to better apply Sora and other AI in their learning process, AI education must be integrated into the education system to help learners correctly understand AI's "instrumental nature" [27]. First, integrate AI education into the curriculum system. Incorporate basic AI knowledge into the curriculum system from primary school to high school, ensuring students have basic understanding and knowledge from an early age, and use Sora's text-to-video technology to simulate AI application scenarios, allowing students to explore and practice in safe environments, and enabling them to learn and apply AI technology while solving specific problems. Second, cultivate AI ethics awareness. Integrate ethics education into AI education, guiding students to correctly understand and address ethical challenges brought by AI, preventing over-reliance on technology and loss of independent thinking ability. More importantly, we must cultivate students' social responsibility and humanistic care, ensuring they can respect others, protect privacy, and maintain social justice when using AI technology. Implementing AI education and promoting harmonious coexistence between individuals and AI requires joint efforts and continuous investment from the whole society. Through integrating into curriculum systems and cultivating ethics awareness, we can lay a solid foundation for cultivating future talents with AI literacy for society.

[1] <https://openai.com/index/sora/>

[2] 崔保师, 邓友超, 万作芳, 等. 扭转教育功利化倾向 [J]. 教育研究, 2020, 41(08):4-17.

[3] 严奕峰, 丁杰, 高赢, 等. 生成式人工智能赋能数字时代育人转型 [J]. 开放教育研究,2024,30(02):42-48.

[4] 单俊豪, 刘永贵. 生成式人工智能赋能学习设计研究 [J]. 电化教育研究,2024,45(07):73-80.

[5] Reynolds J, Gerstein M. Learning style characteristics: An introductory workshop[J]. The Clearing House, 1992, 66(2): 122-126.

[6] Boubker O. From chatting to self-educating: Can AI tools boost student learning outcomes?[J]. Expert Systems with Applications, 2024, 238: 121820.

[7] 王兴, 杨岱齐, 陈思宇. 基于教育元宇宙下学习生态变革与路径探析 [J]. 继续教育研究,2023,(08):40-45.

[8] 于浩, 张文兰, 杨雪琼. 生成式人工智能在教育领域的应用、问题与展望 [J]. 中国成人教育,2023,(07):30-36.

[9] 曹晓明, 谢娜. 高沉浸式学习环境: 学习环境设计的新视角 [J]. 中国教育信息化,2023,29(11):121-128.

[10] 陆道坤, 陈吉钰.Sora: 学校教育的“拯救者”还是“终结者” [J]. 新疆师范大学学报 (哲学社会科学版),2024,45(06):112-127+2.

[11] 刘选, 刘革平, 廖剑. 智慧教室结构模型构建研究——“功能—结构”关系视角 [J]. 中国远程教育,2023,43(02):45-53.

[12] 孙迎光. 教育的拥有、显现、仿真与扬弃异化 [J]. 南京师大学报 (社会科学版),2022,(02):150-160.

[13] 陈凯泉, 胡晓松, 韩小利, 等. 对话式通用人工智能教育应用的机理、场景、挑战与对策 [J]. 远程教育杂志,2023,41(03):21-41.

[14] 李荣华, 田友谊. “互联网 + 教育”背景下教师知识权威的时代转向 [J]. 教师教育学报,2019,6(04):56-62.

[15] 陆道坤, 陈吉钰.Sora: 学校教育的“拯救者”还是“终结者” [J]. 新疆师范大学学报 (哲学社会科学版),2024,45(06):112-127+2.

[16] 罗仕国. 野中郁次郎和竹内弘高的企业知识创造思想及其理论基础 [J]. 科技管理研究,2015,35(17):241-246.

[17] 赵龙. 主体性危机与对策: 人工智能时代人类何以自处 [J]. 理论导刊,2023,(05):88-95.

[18] 张晓芒. 创新思维的逻辑学基础 [J]. 南开学报,2006,(06):88-96.

[19] 何伟光, 李均.ChatGPT 何以变革教育研究范式 [J]. 深圳大学学报 (人文社会科学版),2023,40(05):15-25.

[20] 万力勇, 杜静, 熊若欣. 人机共创: 基于 AIGC 的数字化教育资源开发新范式 [J]. 现代远程教育研究,2023,35(05):12-21.

[21] 丁磊, 王杉. 人工智能自适应学习及其在学校教育中的应用研究 [J]. 中国教育技术装备,2021,(16):111-112+115.

[22] 陈祖鹏. 智能时代关于人的本质的反思与教育理论话语体系构建 [J]. 当代教育科学,2024(12):10-18.

[23] 陈宝生.ChatGPT: 教育的未来和未来的教育 [J]. 人民教育,2023(15):6-13

[24] 阿弗里卡·泰勒, 维罗妮卡·帕西尼-凯奇巴, 明迪·布莱瑟, 等. 学会融入世界: 适应未来生存的教育 [J]. 陕西师范大学学报 (哲学社会科学版),2021,50(05):137-149.

[25] 2024 年全球风险报告: 环境威胁加剧, 虚假信息成 2024 年全球最大风险.<https://cn.weforum.org/press/2024/01/global-risks-2024-disinformation-tops-global-risks-2024-as-environmental-threats-intensify-cn/>

[26] 联合国教育、科学及文化组织:《一起重新构想我们的未来为教育打造新的社会契约》, 北京: 教育科学出版社, 2022 年版, 第 69 页。

[27] 程承坪. 人工智能: 工具或主体? ——兼论人工智能奇点 [J]. 上海师范大学学报 (哲学社会科学版), 2023, 40(05): 15-25.

学版),2021,50(06):5-12.

Note: Figure translations are in progress. See original paper for figures.

Source: ChinaXiv –Machine translation. Verify with original.