
AI translation ・View original & related papers at
chinarxiv.org/items/chinaxiv-202402.00238

Chunked Feedback in Teacher-Student Interac-
tion Promotes Long-Term Learning Transfer:
A Behavioral and Near-Infrared Hyperscanning
Study
Authors: Zhu Yi, Hu Yi, Zhu Yi, Hu Yi

Date: 2024-02-24T12:18:29+00:00

Abstract
Detailed content feedback promotes deep-level learning, such as transfer.
However, how the presentation mode of feedback in teacher-student inter-
actions influences long-term learning transfer and its interpersonal neural
basis remains unclear. This study employed a face-to-face teacher-student
question-and-answer feedback task to investigate the long-term promoting
effect of chunked presentation of feedback on learning transfer, the underlying
cognitive processes, and its interpersonal neural basis through two dyadic
experiments (behavioral, fNIRS hyperscanning). The results revealed that
chunked feedback facilitated long-term transfer in students with low prior
knowledge. Chunked error correction mediated the relationship between
feedback presentation mode and long-term transfer. During the process of
providing and receiving chunked feedback, teachers and students exhibited
greater interpersonal brain synchronization in frontal and parietal regions,
and frontal interpersonal brain synchronization predicted long-term transfer
and chunked error correction. These findings provide novel insights into the
cognitive neural basis of pedagogical feedback as it authentically occurs in
classrooms from an interpersonal perspective, and offer practical implications
for enhancing the effectiveness and efficiency of teaching feedback.
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Abstract
Elaborated content feedback promotes deep learning, such as transfer. How-
ever, how the presentation format of feedback in instructor-learner interaction
influences long-term learning transfer and its interpersonal neural basis remains
unclear. This study employed a face-to-face question-and-answer feedback task
and conducted two dyadic experiments (behavioral, fNIRS hyperscanning) to in-
vestigate the long-term facilitative effects of chunked feedback on learning trans-
fer, the underlying cognitive processes, and their interpersonal neural founda-
tions. The results revealed that chunked feedback enhanced long-term transfer
in students with low knowledge foundations. Chunked error correction mediated
the relationship between feedback presentation format and long-term transfer.
During the provision and reception of chunked feedback, instructors and learn-
ers exhibited greater brain-to-brain synchrony in frontal and parietal regions,
with frontal synchrony predicting both long-term transfer and chunked error
correction. These findings offer new insights from an interpersonal perspective
into the cognitive-neural basis of pedagogical feedback as it naturally occurs
in classrooms and provide practical implications for enhancing the effectiveness
and efficiency of instructional feedback.
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1 Introduction
Teaching is inseparable from instructor-learner interaction, which constitutes
the reciprocal influence and dynamic exchange between teachers and students
(Watanabe, 2013). Instructional feedback represents a typical form of instructor-
learner interaction in authentic classrooms, typically involving teachers provid-
ing information about the gap between students’ current performance and learn-
ing goals. Feedback effectively drives attitudinal and behavioral development
as well as knowledge and skill acquisition (Hattie & Timperley, 2007). Knowl-
edge acquisition manifests as both recognition and transfer, with the latter
representing deeper learning built upon the former—involving the application
of knowledge gained in one context to another situation. Learning transfer is
widely established as an instructional objective and is closely related to students’
problem-solving abilities in novel contexts (Prenzel & Mandl, 1993). Previous
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research has demonstrated that elaborated content feedback facilitates learning
transfer; for instance, providing correct answers supplemented with explanatory
reasons or illustrative examples deepens learners’ understanding and promotes
knowledge application in new situations (Butler et al., 2013; Finn et al., 2018;
Zhu et al., 2022). However, in real instructor-learner interactions, if we maintain
identical feedback content but alter its presentation format—for example, by
chunking according to conceptual relationships—how might this affect learning
transfer? Beyond immediate learning gains, can chunked feedback produce long-
term benefits? Instructional feedback constitutes a bidirectional process involv-
ing dynamic knowledge transmission through continuous interaction between
instructors and learners. To uncover the cognitive-neural processes underlying
this dynamic, continuous, and bidirectional pedagogical process, research must
move beyond static learning materials, discontinuous learning procedures, and
single-person non-interactive or pseudo-interactive paradigms, instead adopting
an interpersonal perspective that simultaneously records and analyzes brain
signals from both interaction partners (Tan et al., 2023).

1.1 Effects of Feedback Presentation Format on Learning

Prior research indicates that maintaining identical information content while
altering presentation format influences information processing. For example,
presenting memory materials in a chunked format enhances both short-term
and long-term memory (Gobet et al., 2001). A chunk represents a collection of
elements with strong internal associations but weak connections to elements in
other chunks (Chase & Simon, 1973). In teaching and learning, emphasizing rela-
tionships among learning content helps learners acquire advanced knowledge in
ill-structured domains and facilitates problem-solving in novel situations (Spiro
et al., 1991). Presenting complex action sequences in chunked formats can al-
ter learners’ recall strategies and promote transfer (Cohen & Sekuler, 2010),
while grouping feedback information by valence (positive or negative) influences
implicit perceptual category learning (Smith et al., 2014).

Notably, chunking feedback information may simultaneously alter feedback tim-
ing, introducing feedback delay (Smith et al., 2014). Previous research on feed-
back timing has yielded inconsistent results. Some researchers argue that im-
mediate feedback more effectively prevents error encoding in memory, thereby
enhancing language, procedural knowledge, and motor skill learning (Anderson
et al., 2001). Others support delayed feedback, suggesting it reduces proactive
interference and facilitates forgetting of earlier errors while processing subse-
quent corrective information (Kulhavy & Anderson, 1972). Subsequent studies
found that delayed feedback’s facilitative effects manifest only after extended
intervals (e.g., 7 days) on tests of recognition, recall, and transfer (Butler et al.,
2007; Mullet et al., 2014; Smith & Kimball, 2010).
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1.2 Cognitive-Neural Basis of Feedback-Promoted Learning

Two primary cognitive mechanisms may underlie feedback’s learning benefits.
First, according to cognitivist learning theory, feedback’s main function is error
correction. Specific, targeted, or information-rich feedback not only corrects
knowledge errors but also helps adjust strategic processing errors (Kulhavy &
Stock, 1989; Narciss & Huth, 2004; Bangert-Drowns et al., 1991). Second,
metacognitivist theory posits that feedback effectively identifies gaps between
current performance and goals, prompting learners to invest additional cogni-
tive effort to narrow these gaps and thereby improve performance (Nicol &
McFarlane-Dick, 2006; Sadler, 1989). Feedback information that more specifi-
cally, proximally, or appropriately identifies performance-goal gaps better stim-
ulates learning engagement and cognitive effort (Song & Keller, 2001; Krijgsman
et al., 2019).

Previous research has found that feedback processing activates frontal and pari-
etal regions in recipients, including the anterior cingulate cortex (ACC), dor-
solateral prefrontal cortex (DLPFC), and parietal cortex. The ACC primarily
supports basic feedback functions such as error detection and expectancy viola-
tion (Cavanagh et al., 2012; Luft et al., 2013; Mars et al., 2005), while DLPFC
and superior parietal lobule participate in more complex feedback processing,
including error correction and performance adjustment (Crone et al., 2008; van
Duijvenvoorde et al., 2008; Zanolie et al., 2008). Frontal and parietal activity
can predict feedback-based learning performance across various domains, in-
cluding paired-associate memory (Arbel et al., 2013), motor learning efficiency
(van der Helden et al., 2010), and reading and mathematics performance (Pe-
ters et al., 2017). Feedback processing activates not only recipients’ brains but
also providers’ brains. For example, when teachers provide correctness feed-
back and monitor students’ (confederates’) associative learning performance,
teachers’ ACC activity correlates with students’ error expectancy, while teach-
ers’ insula and ventromedial prefrontal activity correlate with students’ value
expectancy (Apps et al., 2015). Therefore, to understand how feedback presen-
tation format influences learning’s cognitive-neural processes, simultaneously
investigating both parties’ brain activity during authentic instructor-learner in-
teractions is essential, though currently understudied.

1.3 Interpersonal Neural Basis of Instructor-Learner Interaction

Recent social interaction neuroscience has shifted from third-person to second-
person perspectives. This research logic holds that neural activity during authen-
tic second-person social interaction fundamentally differs from neural responses
elicited by observing social stimuli from a third-person perspective (Schilbach
et al., 2013). Hyperscanning technology, which simultaneously records brain ac-
tivity from two or more individuals during tasks, offers possibilities for revealing
the neural basis of real social interaction (Redcay & Schilbach, 2019). Research
indicates that brain-to-brain synchrony supports successful interpersonal com-
munication and likely constitutes the interpersonal neural foundation of social

chinarxiv.org/items/chinaxiv-202402.00238 Machine Translation

https://chinarxiv.org/items/chinaxiv-202402.00238


interaction (Hasson et al., 2012; Jiang et al., 2012). Although brain-to-brain
synchrony’s cognitive significance remains debated, studies consistently indicate
it serves as a key mechanism for achieving behavioral, emotional, and cognitive
alignment among interaction partners, involving behavioral coordination, emo-
tional empathy, social conformity, language comprehension, and interpersonal
bonding, thereby reflecting dynamic cognitive-neural mechanisms in complex
social interactions (Kelsen et al., 2022; Shamay-Tsoory et al., 2019; Tan et al.,
2023).

Teaching, as a form of social interaction, typically involves dynamic, contin-
uous information transmission and reception between instructors and learners.
Single-brain metrics generally reflect individual information processing and have
limited power to reveal the neural basis of instructor-learner interaction (Tan et
al., 2023). Hyperscanning studies have revealed that instructor-learner brain-to-
brain synchrony indexes effective teaching and learning (Bevilacqua et al., 2019;
Holper et al., 2013; Nguyen et al., 2022). Due to fMRI’s temporal resolution
limitations and spatial constraints on task types, it has rarely been applied to au-
thentic teaching interaction studies for simultaneous data collection. EEG and
functional near-infrared spectroscopy (fNIRS) more easily enable simultaneous
brain activity recording from both parties during instructor-learner interaction.
Compared to EEG, fNIRS offers higher spatial resolution and greater tolerance
for motion artifacts (Lloyd-Fox et al., 2010), making it more suitable for study-
ing authentic teaching contexts. fNIRS hyperscanning studies have found that
frontal or temporoparietal brain-to-brain synchrony during instructor-learner in-
teraction can indicate effective teaching strategies, such as scaffolding and high-
frequency interactive approaches (Pan et al., 2018, 2020; Zheng et al., 2018),
and predict learning performance in domains including vocal performance (Pan
et al., 2018), mathematics (Liu et al., 2019; Zheng et al., 2018), and conceptual
knowledge recognition and transfer (Pan et al., 2020; Zhu et al., 2022). During
elaborated feedback-based instructor-learner interaction, parietal brain-to-brain
synchrony reflects students’ deep conceptual understanding and predicts knowl-
edge transfer (Zhu et al., 2022). Furthermore, instructor-learner brain-to-brain
synchrony can provide process-level information about students’ knowledge un-
derstanding, such as the time point of achieving understanding and temporal lag
patterns between instructors and learners (Liu et al., 2019; Zheng et al., 2018;
Zhu et al., 2022), thereby enhancing understanding of the dynamic continuity in
authentic classroom teaching. However, most previous research has focused on
associations between brain-to-brain synchrony and immediate learning gains,
rarely examining whether brain-to-brain synchrony continues to predict long-
term learning performance.

1.4 Current Study

This study employed a conceptual teaching task based on instructor-learner
Q&A feedback (Zhu et al., 2022) and conducted two sequential experiments. Ex-
periment 1 was a dyadic behavioral experiment investigating whether maintain-
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ing identical feedback content while altering only presentation format (chunk-
ing) could further promote deep learning (transfer) and its long-term effects,
while exploring the underlying cognitive processes. Based on previous research
on chunked feedback information and chunked learning materials, chunked feed-
back was defined as simultaneously presenting answers and examples for two
related concepts (Smith et al., 2014; Cohen & Sekuler, 2010; Gobet et al., 2001;
Spiro et al., 1991). Because fNIRS offers higher spatial resolution and greater
tolerance for motion artifacts (Lloyd-Fox et al., 2010), making it more suitable
for studying dynamic, continuous multi-person teaching activities, Experiment
2 incorporated fNIRS hyperscanning to simultaneously record instructors’ and
learners’ brain activity, aiming to further investigate the neural basis of chunked
feedback presentation on students’ long-term learning transfer during instructor-
learner interaction.

In Experiment 1, students learned psychology concepts and received either chun-
ked (two related concepts) or separate (one concept) elaborated feedback (cor-
rect answer and example) from instructors. Given that prior knowledge back-
ground represents a crucial factor influencing knowledge comprehension and
transfer (Gick & Holyoak, 1987), and that students’ pre-feedback knowledge
level affects feedback effectiveness (Fyfe et al., 2012; Krause et al., 2009), a
learning introduction phase was implemented to manipulate students’ knowl-
edge foundation before receiving feedback, thereby examining potential moder-
ating effects. Experiment 1 employed a fully between-subjects design: Feedback
Presentation (Chunked vs. Separate) × Knowledge Foundation (High vs. Low).
Following the learning session, student performance was measured across recog-
nition and transfer dimensions, and cognitive effort was assessed. To investigate
long-term gains from chunked feedback, a second knowledge test was adminis-
tered after 7 days, following previous research (Butler et al., 2007; Smith &
Kimball, 2010). Additionally, chunked error correction was quantified as the
number of concept pairs that changed from incorrect to correct between pre-
and post-tests. Experiment 1 hypotheses were: (1) Novices or low-knowledge
students benefit more from supportive feedback (Paas et al., 2003; Sweller et
al., 1998), while experienced or high-knowledge students depend less on addi-
tional supportive information (Renkl & Atkinson, 2003; Sweller et al., 1998).
Elaborated feedback promotes knowledge transfer (Butler et al., 2013; Finn et
al., 2018; Zhu et al., 2022), and presenting learning content in chunks rather
than separately provides more support and opportunities for concept discrimi-
nation (Spiro et al., 1991; Chase & Simon, 1973). Therefore, we hypothesized
that for low-knowledge students, elaborated feedback presented in chunks would
more effectively support learning and promote knowledge transfer. (2) Because
chunked information benefits long-term memory (Gobet et al., 2001) and chun-
ked presentation-induced feedback delay may produce delayed-retention effects
(Kulhavy & Anderson, 1972), we hypothesized that chunked feedback would
also promote long-term learning performance, particularly transfer after 7 days.
(3) Based on potential cognitive mechanisms of feedback-promoted learning
(Bangert-Drowns et al., 1991; Nicol & McFarlane-Dick, 2006), we hypothesized
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that feedback presentation format would influence long-term knowledge transfer
through chunked error correction or cognitive effort.

In Experiment 2, fNIRS hyperscanning was added to simultaneously record in-
structors’ and learners’ brain activity during interaction. To exclude potential
confounding between feedback presentation format and timing, a pseudo-chunk
feedback condition (two less-related concepts) was added. Experiment 2 hy-
potheses were: (1) Chunked feedback would produce better long-term transfer
performance than non-chunked feedback (including pseudo-chunk and separate
feedback). (2) Feedback presentation format would influence long-term knowl-
edge transfer through chunked error correction or cognitive effort. (3) Human
feedback processing activates frontal and parietal regions in both providers and
recipients (Apps et al., 2015; Crone et al., 2008; Luft et al., 2013), while chunk
processing relies on DLPFC and posterior parietal cortex (Alamia et al., 2016;
Bor et al., 2003; Jin et al., 2020; Pammi et al., 2012). Authentic teaching inter-
action elicits synchronized brain activity in frontal and temporoparietal regions
(Tan et al., 2023; Zhu et al., 2022). Therefore, we hypothesized that chun-
ked feedback would elicit greater instructor-learner brain-to-brain synchrony in
frontal and parietal regions associated with both feedback and chunk processing.
(4) Because chunking of linguistic information depends more on frontal cortex
(Jin et al., 2020; Grodzinsky & Santi, 2008) and frontal activity relates to long-
term memory and learning performance (Sakai & Passingham, 2003; Squire et
al., 1993), and instructor-learner frontal brain-to-brain synchrony indicates ef-
fective teaching strategies (Pan et al., 2018, 2020) while chunked presentation
represents a more effective instructional approach (Spiro et al., 1991; Cohen &
Sekuler, 2010), we hypothesized that frontal brain-to-brain synchrony during
chunked feedback would positively correlate with students’ long-term transfer
performance. (5) Because social interaction-induced brain-to-brain synchrony
reflects cognitive alignment between interaction partners (Shamay-Tsoory et
al., 2019) and emerges in the mentalizing network supporting mutual under-
standing, including frontal cortex (Kelsen et al., 2022), and error correction
reflects students’ understanding converging with instructors’ understanding, we
hypothesized that frontal brain-to-brain synchrony would positively correlate
with chunked error correction.

2 Experiment 1
2.1 Participants

Referencing previous instructor-learner interaction studies, 20-24 instructor-
learner dyads per condition were recruited to achieve effect sizes of 0.20-0.25
(Liu et al., 2019; Pan et al., 2020; Zheng et al., 2018; Zhu et al., 2022).
Power analysis using G*Power 3.1 (Effect size = 0.20, 𝛼 = 0.05, 1 - 𝛽 = 0.95)
yielded a planned sample size of 81. Experiment 1 recruited 127 East China
Normal University students: 47 served as instructors, required to major in
psychology or sociology and have completed at least one education course or
have teaching experience (M age = 21.80, SD = 2.12, 18 males); 80 served as
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learners, required to major in non-psychology and non-sociology fields (M age
= 20.67, SD = 1.96, 12 males) and score below passing (<0.6) on a pre-test
matching concepts with examples. Twelve instructors (6 males), 10 instructors
(6 males), 13 instructors (3 males), and 11 instructors (3 males) were randomly
assigned to high-knowledge-chunked feedback, high-knowledge-separate feed-
back, low-knowledge-chunked feedback, and low-knowledge-separate feedback
groups, respectively. On the same day, each instructor conducted one-on-one
teaching with one or two randomly assigned unfamiliar students using the same
method. For instructors, knowledge foundation and feedback presentation
were between-subjects variables to prevent psychology majors from guessing
the experimental purpose and to enhance teaching consistency. This yielded
80 instructor-learner dyads: 20 in high-knowledge-chunked feedback, 19 in
high-knowledge-separate feedback, 21 in low-knowledge-chunked feedback,
and 20 in low-knowledge-separate feedback. All participants had normal or
corrected-to-normal vision and no neurological disorders. Each participant
read and signed an informed consent form before the experiment. The study
was approved by the university’s human subjects ethics committee.

2.2 Materials and Assessment

A separate group of psychology majors (N = 20, 4 males, M age = 24.45,
SD = 2.89) was recruited to pair 12 judgment and decision-making psychol-
ogy concepts (see Appendix 1, adapted from Rawson et al., 2015) based on
their relationships. Results showed that 20 people paired foot-in-the-door effect
with door-in-the-face effect, 16 paired availability heuristic with representative-
ness heuristic, 15 paired fundamental attribution error with self-serving bias, 14
paired hindsight bias with counterfactual thinking, 14 paired deindividuation
with social facilitation, and 9 paired observer effect with exposure effect. The
first five pairings were made by $�$70% of participants, while the sixth pairing
was made by only 45%.

These participants subsequently rated the relatedness of the first five concept
pairs on a 1-7 scale (from extremely low to extremely high). Wilcoxon signed-
rank tests revealed that the first four pairs’ relatedness ratings were significantly
above the midpoint (Ms > 4.80, ps < 0.026). However, the fifth pair (deindivid-
uation and social facilitation) showed no significant difference from the midpoint
(M = 4.00, SD = 1.00, p = 0.839). Considering these results, we selected the
first five concept pairs as experimental materials and chunked them accordingly.

Teaching materials included concept terms, definitions, and two examples (see
Appendix 1). Examples represented real-life manifestations or applications of
concepts, adapted from previous research and textbooks (Finn et al., 2018;
Rawson et al., 2015; Zimbardo et al., 2012). The same psychology majors
rated the situational similarity of each concept’s two examples on a 7-point
scale (1 = extremely low similarity, 7 = extremely high similarity). Ratings for
the 10 concepts averaged M = 4.28, SD = 0.88, ranging from 2.85 to 5.5. A
Wilcoxon signed-rank test showed no significant difference from the midpoint
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(p = 0.447). Kendall’s W coefficient for inter-rater reliability was 0.43 (p <
0.001), indicating significant consistency. The experimenter then pre-selected
examples for feedback and transfer measurement, which remained fixed across
all participants.

2.3 Procedure

The experimental task occurred in two sessions separated by approximately 4
days (Figure 1). The first session was conducted in the laboratory or online
via conferencing software, while the second session took place in the laboratory.
During the first session, instructor participants received standardized training
on teaching content and procedures (approximately 30 minutes). Afterward,
instructors took home printed teaching materials to study and memorize concept
definitions and examples. Before the second session, experimenters required
instructors to recall the teaching procedure and randomly checked two concept
definitions and examples; only after correct recall could the formal teaching task
begin.

Figure 1. Experiment 1 task and procedure

During the first session, learner participants completed a pre-learning test (15-
minute limit) measuring their prior knowledge of the 10 psychology concepts.
The test had two parts: Part 1 required matching 10 definitions to corresponding
terms; Part 2 required matching 10 examples to corresponding terms (with 12
judgment and decision-making terms as options, see Appendix 1; test format
adapted from Finn et al., 2018). Knowledge foundation was quantified by pre-
test accuracy. Pre-test accuracy did not differ significantly between feedback
presentation groups (chunked vs. separate: Part 1, 0.55 ± 0.20 vs. 0.57 ± 0.19,
F(1, 56) = 0.20, p = 0.659; Part 2, 0.23 ± 0.13 vs. 0.27 ± 0.15, F(1, 56) = 0.85,
p = 0.361) or between knowledge foundation levels (high vs. low: Part 1, 0.52
± 0.17 vs. 0.60 ± 0.21, F(1, 56) = 2.09, p = 0.154; Part 2, 0.27 ± 0.14 vs. 0.24
± 0.14, F(1, 56) = 0.66, p = 0.420), with no significant interaction effects (Part
1: F(1, 56) = 1.08, p = 0.304; Part 2: F(1, 56) = 1.27, p = 0.264).

During the second session, instructors and learners sat face-to-face approxi-
mately one meter apart. High-knowledge foundation groups included both an
introduction phase and a Q&A feedback phase, while low-knowledge founda-
tion groups included only the Q&A feedback phase. In the introduction phase,
instructors presented the 10 concept terms and definitions twice consecutively,
with order predetermined by instructors but requiring that chunked concepts not
appear consecutively. In the Q&A feedback phase, the separate feedback con-
dition comprised 10 trials, each with three stages: instructor question (stating
a concept definition and asking for the term), learner response, and instructor
feedback (providing correct term and definition plus one example). Question
order was predetermined but differed from the introduction phase (if present),
with chunked concepts not appearing consecutively. The chunked feedback con-
dition comprised 5 trials, each with five stages: instructor question 1, learner
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response 1, instructor question 2, learner response 2, instructor feedback for
both concepts (1 and 2 were pre-paired concepts). An example chunked feed-
back trial:

Instructor: “What is the psychological term for the definition: ‘When an event
has already occurred, people tend to overestimate their ability to have predicted
the outcome’?”
Learner: “Hindsight bias.”
Instructor: “Good. Let’s look at the next question. What is the psychological
term for the definition: ‘After an event occurs, people tend to imagine alterna-
tives to reality that could have happened but did not’?”
Learner: “Counterfactual thinking.”
Instructor: “These two terms are hindsight bias and counterfactual thinking.
Hindsight bias is defined as ‘When an event has already occurred, people tend
to overestimate their ability to have predicted the outcome.’ For example, some
students might slap their thighs after the teacher announces the correct answer
and say, ‘I knew it was that one!’ Counterfactual thinking is defined as ‘After
an event occurs, people tend to imagine alternatives to reality that could have
happened but did not.’ For example, right after an Olympic competition ends
and athletes receive their medals, silver medalists are often less happy than
bronze medalists. In interviews, silver medalists sometimes say, ‘I almost could
have won; that’s terrible.’ ”

The entire experiment was recorded by a digital video camera (HDR-XR100,
Sony Corporation, Tokyo, Japan). After the Q&A feedback phase, learners
completed a cognitive load assessment scale (Hart, 2006; see Appendix 2) mea-
suring mental, physical, temporal, effort, performance, and frustration dimen-
sions. Learners then completed a post-learning test (15-minute limit) measur-
ing knowledge recognition and transfer. For recognition measurement, learners
matched 10 definitions to corresponding terms; for transfer measurement, learn-
ers matched 10 new examples to corresponding terms (test format adapted from
Finn et al., 2018). Post-test content matched the pre-test. Following previous
research measuring long-term learning effects with 7-day intervals (Butler et al.,
2007; Smith & Kimball, 2010), learners completed a second post-test online via
conferencing software after 7 days (15-minute limit) with identical content to
assess long-term effects of feedback presentation format.

2.4 Data Analysis

Because each instructor was randomly paired with 1-2 students, creating a
nested structure, all analyses used linear mixed models via the R package lme4
unless otherwise specified. For multiple comparisons, the FDR method was
applied (Benjamini & Hochberg, 1995).

The analytical approach included: (1) Confirming the effectiveness of the intro-
duction phase manipulation on students’ pre-feedback knowledge foundation;
(2) Confirming that feedback-based instructor-learner interaction (regardless of
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presentation format or knowledge foundation) increased students’ conceptual
knowledge with long-term retention; (3) Investigating how students’ knowledge
foundation and feedback presentation format influenced long-term conceptual
knowledge gains; (4) Exploring relevant cognitive processes (e.g., promoting er-
ror correction, increasing cognitive effort) and conducting mediation analysis
using the R package mediation.

2.5 Results

2.5.1 Manipulation Check of Pre-Feedback Knowledge Foundation
During the learner response stage of the Q&A feedback phase, learners received
2 points for complete correct terms, 1 point for key terms, and 0 points other-
wise, with a maximum of 20 points. Response accuracy quantified pre-feedback
knowledge foundation in a linear mixed model with fixed effects of feedback pre-
sentation (chunked vs. separate) and knowledge foundation (high vs. low) and
random effects of instructor ID, gender, and teaching 次数, plus learner ID and
gender. Results showed a significant knowledge foundation effect (F(1, 54.98)
= 194.27, p < 0.001): high-knowledge foundation groups showed significantly
higher accuracy (M = 0.60, SD = 0.19) than low-knowledge groups (M = 0.10,
SD = 0.09). Feedback presentation effect was non-significant (F(1, 54.19) =
2.45, p = 0.123), as was the interaction (F(1, 54.41) = 2.28, p = 0.137). These
results confirm the effectiveness of the introduction phase manipulation.

2.5.2 Feedback-Based Instructor-Learner Interaction Enhanced
Recognition and Transfer with Long-Term Retention Separate linear
mixed models were constructed for recognition and transfer test accuracy with
fixed effects of test time (pre-learning vs. immediate post-learning vs. 7-day
post-learning), feedback presentation, and knowledge foundation, plus random
effects of instructor ID, gender, and teaching 次数, and learner ID and gender.
Transfer and recognition accuracy were included in respective models to control
for potential effects. The primary focus was the test time effect.

For recognition, test time effect was significant (F(2, 133.94) = 22.17, p < 0.001,
Figure 2a): immediate post-learning accuracy (M = 0.95, SD = 0.12, t(156) =
6.35, corrected p < 0.001, 𝛽 = 0.22, SE = 0.03) and 7-day post-learning accuracy
(M = 0.88, SD = 0.15, t(151) = 5.57, corrected p < 0.001, 𝛽 = 0.18, SE = 0.04)
were both significantly higher than pre-learning accuracy (M = 0.56, SD =
0.20). Accuracy decay over 7 days was non-significant (t(114) = 1.65, corrected
p = 0.31, 𝛽 = 0.04, SE = 0.02).

For transfer, test time effect was significant (F(2, 119.44) = 15.15, p < 0.001,
Figure 2b): immediate post-learning accuracy (M = 0.74, SD = 0.25, t(141)
= 5.19, corrected p < 0.001, 𝛽 = 0.24, SE = 0.05) and 7-day post-learning
accuracy (M = 0.66, SD = 0.26, t(135) = 4.89, corrected p < 0.001, 𝛽 = 0.21,
SE = 0.04) were both significantly higher than pre-learning accuracy (M =
0.25, SD = 0.14). Accuracy decay over 7 days was non-significant (t(107) =
1.29, corrected p = 0.198, 𝛽 = 0.04, SE = 0.03).
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For recognition, feedback presentation main effect was non-significant (F(1,
54.76) = 0.02, p = 0.890), knowledge foundation main effect was significant
(F(1, 55.51) = 5.52, p = 0.022), all two-way interactions were non-significant
(Fs < 1.14, ps > 0.292), and the three-way interaction was non-significant (F(2,
106.69) = 0.96, p = 0.385). For transfer, feedback presentation main effect was
non-significant (F(1, 61.04) = 0.01, p = 0.910), knowledge foundation main ef-
fect was non-significant (F(1, 60.90) = 2.49, p = 0.120), all two-way interactions
were non-significant (Fs < 0.14, ps > 0.711), and the three-way interaction was
marginally significant (F(2, 100.38) = 2.68, p = 0.074).

2.5.3 Chunked Feedback Benefited Long-Term Transfer More Than
Separate Feedback for Low-Knowledge Students To control for indi-
vidual differences in knowledge foundation and examine differential effects of
feedback presentation and knowledge foundation across test times, subsequent
analyses used linear mixed models for post-learning conceptual knowledge gains
(accuracy increment relative to pre-test). For immediate post-learning recogni-
tion gain (immediate post-learning minus pre-learning), the model with fixed ef-
fects of knowledge foundation and feedback presentation showed non-significant
effects of feedback presentation (F(1, 41.49) = 0.07, p = 0.797), knowledge
foundation (F(1, 41.23) = 1.20, p = 0.279), and their interaction (F(1, 40.70) =
0.06, p = 0.804). For immediate post-learning transfer gain, the model showed
non-significant effects of feedback presentation (F(1, 39.84) = 1.55, p = 0.220),
knowledge foundation (F(1, 40.66) = 0.07, p = 0.786), and their interaction
(F(1, 39.79) = 0.81, p = 0.372).

For 7-day post-learning recognition and transfer gains, parallel linear mixed
models revealed non-significant effects of feedback presentation (F(1, 39.32) =
0.05, p = 0.827), knowledge foundation (F(1, 40.82) = 0.02, p = 0.890), and their
interaction (F(1, 40.53) = 0.01, p = 0.904, Figure 3a) for recognition gain. For
transfer gain, feedback presentation effect was non-significant (F(1, 73) = 1.26,
p = 0.266), knowledge foundation effect was non-significant (F(1, 73) = 0.94, p
= 0.335), but the interaction was significant (F(1, 73) = 4.79, p = 0.032, Figure
3b). Simple effects analysis revealed that for low-knowledge students, chunked
feedback produced significantly greater 7-day transfer gain (0.49 ± 0.25) than
separate feedback (0.31 ± 0.24, t(34.90) = 2.17, p = 0.037, 𝛽 = 0.15, SE = 0.07).
For high-knowledge students, no significant difference emerged between feedback
types (0.43 ± 0.21 vs. 0.49 ± 0.21, t(37.60) = -0.73, p = 0.469, 𝛽 = -0.05, SE
= 0.07). In the separate feedback condition, high-knowledge students showed
marginally greater 7-day transfer gain than low-knowledge students (0.49 ±
0.21 vs. 0.31 ± 0.24, t(33.50) = 1.99, p = 0.054, 𝛽 = 0.15, SE = 0.07). In the
chunked feedback condition, no significant difference existed between knowledge
levels (0.43 ± 0.21 vs. 0.49 ± 0.25, t(42.20) = -0.82, p = 0.417, 𝛽 = -0.06, SE
= 0.07).

Figure 2. Conceptual knowledge levels
Figure 3. Long-term learning gains
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2.5.4 Feedback Presentation Influenced Long-Term Transfer in
Low-Knowledge Students Through Chunked Error Correction To
explore cognitive processes underlying how feedback presentation influenced
low-knowledge students’ long-term transfer, we examined chunked error
correction and cognitive effort. For each student, chunked error correction was
quantified as the number of concept pairs that changed from both incorrect
pre-learning to both correct post-learning. For rigorous hypothesis testing,
three additional chunked maintenance/change patterns were included: both
incorrect → both incorrect, both correct → both correct, and both correct
→ both incorrect. A linear mixed model was constructed for concept pair
maintenance/change patterns on the 7-day transfer test, with fixed effects
of maintenance/change pattern (incorrect→correct vs. incorrect→incorrect
vs. correct→correct vs. correct→incorrect) and feedback presentation (chunked
vs. separate), random effects of instructor ID, gender, and teaching 次数, and
learner ID and gender, controlling for initial concept pair correctness on pre-test
measure 2 and maintenance/change patterns on 7-day recognition measure.
Results showed a non-significant maintenance/change pattern effect (F(3, 166)
= 0.77, p = 0.513) and feedback presentation effect (F(1, 166) = 0.07, p =
0.791), but a significant interaction (F(3, 166) = 3.59, p = 0.015). Simple
effects analysis revealed that students receiving chunked feedback showed more
incorrect→correct concept pairs (1.62 ± 2.49) than those receiving separate
feedback (0.95 ± 1.05, t(133) = 2.47, p = 0.015, 𝛽 = 0.61, SE = 0.25) and fewer
incorrect→incorrect concept pairs (0.69 ± 0.88 vs. 1.14 ± 1.08, t(127) = -2.01,
p = 0.047, 𝛽 = -0.46, SE = 0.23). Additionally, chunked feedback students
showed more incorrect→correct pairs (1.62 ± 2.49) than incorrect→incorrect
pairs (0.69 ± 0.88, t(129) = 2.92, corrected p = 0.025, 𝛽 = 0.69, SE = 0.24),
with no other significant pairwise differences (ts < 2.13, corrected ps > 0.210).

Figure 4. Feedback presentation influences long-term transfer in low-knowledge
students through chunked error correction

Furthermore, 7-day transfer gain correlated positively with chunked error cor-
rection (r = 0.89, R2 = 79.21%, p < 0.001) and negatively with chunked error
maintenance (r = 0.69, R2 = 47.61%, p < 0.001). Mediation analysis examined
whether chunked error correction and maintenance mediated the relationship
between feedback presentation and 7-day transfer gain, with chunked feedback
coded as 1 and separate feedback as 0. Results showed a marginally significant
indirect effect of chunked error correction, ab = 0.12, bootstrap 95% CI = [-
0.02, 0.24], p = 0.072; c’ = 0.07, p = 0.063 (Figure 4b). The indirect effect of
chunked error maintenance was non-significant, ab = 0.07, bootstrap 95% CI =
[-0.03, 0.18], p = 0.184; c’ = 0.12, p = 0.050.

Next, a linear mixed model for cognitive effort with fixed effect of feedback
presentation (chunked vs. separate) revealed no significant effect (11.52 ± 3.10
vs. 12.70 ± 5.35, F(1, 18.54) = 0.86, p = 0.366). Additionally, cognitive effort
did not correlate significantly with 7-day transfer gain (r = -0.13, R2 = 1.69%, p
= 0.434). Thus, no further mediation analysis of cognitive effort was conducted.
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3 Experiment 2
3.1 Participants

Referencing previous instructor-learner fNIRS hyperscanning studies and using
G*Power 3.1 for power analysis (same parameters as Experiment 1), the planned
sample size was 68. Experiment 2 recruited 108 East China Normal University
students: 40 served as instructors, required to major in psychology or sociology
and have completed at least one education course or have teaching experience
(M age = 22.75, SD = 2.34, 13 males); 68 served as learners, required to major in
non-psychology and non-sociology fields (M age = 21.22, SD = 2.45, 17 males).
Fifteen instructors (4 males), 13 instructors (5 males), and 12 instructors (4
males) were randomly assigned to chunked feedback, pseudo-chunked feedback,
and separate feedback groups, respectively. Each instructor conducted one-on-
one teaching with 1-3 randomly assigned unfamiliar students, with only one ex-
perimental session scheduled per day. This yielded 68 instructor-learner dyads:
23 in chunked feedback, 23 in separate feedback, and 22 in pseudo-chunked
feedback. All participants had normal or corrected-to-normal vision and no
neurological disorders. Each participant read and signed an informed consent
form before the experiment. The study was approved by the university’s human
subjects ethics committee.

3.2 Materials

Test item order was randomized for both immediate and 7-day post-tests to
reduce memory effects from fixed item sequences. Other materials remained
identical to Experiment 1.

3.3 Procedure

The experimental task occurred in two sessions separated by approximately 5
days (Figure 5). The first session activities matched Experiment 1. Learner
pre-test accuracy showed no between-group differences in feedback presentation
(chunked vs. pseudo-chunked vs. separate: Part 1, 0.49 ± 0.15 vs. 0.52 ± 0.20
vs. 0.44 ± 0.17, F(2, 65) = 1.18, p = 0.314; Part 2, 0.23 ± 0.12 vs. 0.25 ± 0.14
vs. 0.26 ± 0.12, F(2, 65) = 0.32, p = 0.731).

Figure 5. Experiment 2 task and procedure, optode positions, and experimen-
tal scenario

The second session consisted of fNIRS hyperscanning and post-scan phases.
During hyperscanning, instructors and learners sat face-to-face approximately
one meter apart wearing fNIRS equipment. This phase included two stages:
rest and Q&A feedback. To ensure low knowledge foundation when receiving
feedback, Experiment 2 omitted the introduction phase for all conditions. Dur-
ing the rest stage (300s), participants closed their eyes, cleared their minds,
and minimized head and body movements. During the Q&A feedback stage,
the separate and chunked feedback procedures matched Experiment 1. In the
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pseudo-chunked feedback condition, each trial included five stages: instructor
question A, learner response A, instructor question B, learner response B, in-
structor feedback for A and B, where A and B were unrelated concepts. Question
order was predetermined with the constraint that chunked concepts did not ap-
pear consecutively. The hyperscanning phase was recorded by a digital video
camera (HDR-XR100, Sony Corporation, Tokyo, Japan). Post-scan procedures
matched Experiment 1.

3.4 fNIRS Data Acquisition and Preprocessing

During hyperscanning, brain activity was simultaneously recorded using fNIRS
(ETG-7100, Hitachi Medical Corporation, Japan). Based on previous research
(Alamia et al., 2016; Bor et al., 2003; Crone et al., 2008; Jin et al., 2020;
Luft, 2014; Moore et al., 2006; Olesen et al., 2004; Pammi et al., 2012; van
Duijvenvoorde et al., 2008; Zhu et al., 2022), frontal and parietal regions were
selected as regions of interest. Two optode arrays covered these regions: a
3$×5𝑎𝑟𝑟𝑎𝑦𝑜𝑣𝑒𝑟𝑓𝑟𝑜𝑛𝑡𝑎𝑙𝑐𝑜𝑟𝑡𝑒𝑥(8𝑒𝑚𝑖𝑡𝑡𝑒𝑟𝑠𝑎𝑛𝑑7𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟𝑠𝑓𝑜𝑟𝑚𝑖𝑛𝑔22𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠, 𝑛𝑢𝑚𝑏𝑒𝑟𝑒𝑑1−
22)𝑎𝑛𝑑𝑎3×$3 array over left parietal cortex (5 emitters and 5 detectors forming
12 channels, numbered 23-34), with specific positions shown in Figure 5b.
fNIRS channel locations were determined using a 3D virtual positioning
system (Singh et al., 2005). Only left parietal cortex was targeted due to
left hemisphere language lateralization (Vigneau et al., 2006) and the close
relationship between conceptual knowledge learning and language function.

fNIRS recorded optical signals at wavelengths of 695 and 830 nm with a sampling
rate of 10 Hz. Data preprocessing used MATLAB (R2018a, MathWorks, Natick,
MA, U.S.A) functions and the Homer2 toolbox (v2.2, Huppert et al., 2009). Raw
light intensity signals were converted to optical density (OD). Channels with
OD signals exceeding 5 standard deviations were excluded. OD signals were in-
spected and motion artifacts were corrected using a channel-wise wavelet-based
method with Daubechies 5 wavelet and adjustment parameter set to 0.1 (Cooper
et al., 2012; Molavi & Dumont, 2012). OD signals were band-pass filtered at
0.01-1 Hz to remove low-frequency drift and high-frequency noise. Modified
Beer-Lambert law converted OD signals to oxyhemoglobin (HbO) and deoxy-
hemoglobin concentration changes (Cope & Delpy, 1988). This study focused
primarily on HbO concentration changes because they reflect cerebral blood flow
changes during brain activity, offer higher signal-to-noise ratio (Hoshi, 2007),
and are more widely used in fNIRS hyperscanning studies of social interaction
(Cheng et al., 2015; Jiang et al., 2015; Yang et al., 2020).

3.5 Data Analysis

3.5.1 Behavioral Data Analysis Because each instructor was randomly
paired with 1-3 students, creating a nested structure, all analyses used linear
mixed models via the R package lme4 unless otherwise specified. For multiple
comparisons, the FDR method was applied (Benjamini & Hochberg, 1995).
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The analytical approach included: (1) Confirming that feedback-based Q&A
interaction (regardless of presentation format) increased students’ conceptual
knowledge with long-term retention; (2) Investigating long-term effects of feed-
back presentation format on conceptual knowledge gains; (3) Exploring relevant
cognitive processes (e.g., promoting error correction or increasing cognitive ef-
fort) and conducting mediation analysis using the R package mediation.

3.5.2 fNIRS Data Analysis Wavelet Transform Coherence (WTC).
Instructor-learner brain-to-brain synchrony was computed using WTC algo-
rithm, yielding frequency- and time-based correlation values between two time
series (Grinsted et al., 2004). Preprocessed HbO time series from the same brain
location (channel) were extracted from both instructor and learner (e.g., signals
i and j from channel 15), then WTC was calculated using the formula:

WTC(t, s) = |S(s−1W��(t, s))|2 / (S(s−1|W�(t, s)|2) ・S(s−1|W�(t, s)|2))

where t represents time points, s represents wavelet scales, <・> denotes smooth-
ing across time and scale, and W represents continuous wavelet transform. This
yielded a two-dimensional (time × frequency) WTCmatrix. This study included
only WTC analysis of corresponding channels.

We focused on feedback-related instructor-learner brain-to-brain synchrony.
Based on experimental videos, feedback onset and offset times were marked
and adjusted for the 6-second delay-to-peak effect (Cui et al., 2009; Jiang et
al., 2015).

Cluster-Permutation Test. For each dyad and channel pair, WTC time series
during feedback and rest stages (excluding first and last 30s for stability) were av-
eraged separately and converted to Fisher-z values. Cluster-permutation testing
identified frequency-channel clusters comprising at least two adjacent channels
and two adjacent frequency points where feedback-stage WTC exceeded rest-
stage WTC. This non-parametric method is suitable for multi-channel, multi-
frequency neural data, offering greater sensitivity to individual differences than
single-channel/frequency multiple comparison corrections (Maris & Oostenveld,
2007). Step 1: Linear mixed models for WTC difference (feedback minus rest)
were constructed at each frequency point and channel with fixed effect of pre-
sentation format (chunked vs. pseudo-chunked vs. separate) and random effects
of instructor ID, gender, and teaching 次数, and learner ID and gender. Step
2: Channels and frequency points (0.01-1 Hz) showing significant presentation
format effects with values satisfying chunked > pseudo-chunked, chunked >
separate, and chunked > rest were identified. Based on Experiment 1 results
showing better transfer under chunked feedback, we focused on these directional
effects. Frequency points related to respiration (0.15-0.30 Hz) and heartbeat
(>0.70 Hz) were excluded (Nozawa et al., 2016). Step 3: Clusters comprising at
least two adjacent channels and frequency points were constructed, with cluster
statistics calculated as the sum of F-values within each cluster. Step 4: Data
were randomly permuted by pairing each learner’s data with a different instruc-
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tor’s data (Jiang et al., 2012; Long et al., 2021). To accommodate different data
lengths, longer data were truncated to match shorter data (Reindl et al., 2018).
WTC computation and Step 1 analysis were repeated on permuted data 1000
times to generate a distribution of null cluster statistics. Step 5: Real cluster
statistics were compared to the permuted distribution (square-root transformed
for normalization) to compute p-values (Theiler et al., 1991). Step 6: For
significant clusters, average WTC differences were calculated and linear mixed
models with fixed effect of presentation format and random effects as above were
constructed. If presentation format effects were significant, post-hoc pairwise
comparisons were conducted. Clusters satisfying chunked > pseudo-chunked
and chunked > separate with FDR-corrected p < 0.05 were considered related
to chunked feedback processing.

Brain-to-Brain Synchrony Confirmation. Because Step 4 used feedback-
rest WTC differences, significant results could theoretically occur if feedback-
stage synchrony was lower than rest-stage synchrony. Given that interpersonal
interaction should produce greater synchrony than rest (Cui et al., 2012; Jiang
et al., 2012), confirmatory analyses were conducted in the chunked feedback
group. Step 1: Linear mixed models for average WTC values in each cluster
were constructed with fixed effect of task (chunked feedback vs. rest) and random
effects as above. Step 2: Chunked feedback WTC values were compared to
1000 permuted null WTC values to compute p-values. Step 3: WTC differences
(chunked feedback minus rest) were compared to 1000 permuted null WTC
differences to compute p-values. Clusters satisfying significant fixed effects in
Step 1 and p < 0.05 in Steps 2-3 were considered to reflect authentic chunked
feedback-based teaching interaction rather than shared task or environmental
factors.

3.5.3 Brain-Behavior Correlation Analysis Relationships between chun-
ked feedback-related brain-to-brain synchrony and learning performance were
analyzed. To control for pre-learning knowledge foundation, relative accuracy
(post-test accuracy minus pre-test accuracy) was used to quantify learning per-
formance. Pearson correlations were computed between instructor-learner brain-
to-brain synchrony during chunked feedback and students’ recognition and trans-
fer accuracy, as well as chunked error correction.

3.6 Results

3.6.1 Pre-Feedback Knowledge Foundation A linear mixed model for
pre-feedback response accuracy with fixed effect of feedback presentation (chun-
ked vs. pseudo-chunked vs. separate) showed no significant effect (0.07 ± 0.08
vs. 0.07 ± 0.08 vs. 0.08 ± 0.10, F(2, 36.58) = 0.10, p = 0.907), confirming low
and equivalent knowledge foundation across groups.

3.6.2 Feedback-Based Instructor-Learner Interaction Enhanced
Recognition and Transfer with Long-Term Retention Linear mixed
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models for recognition and transfer accuracy included fixed effects of test
time (pre-learning vs. immediate post-learning vs. 7-day post-learning) and
feedback presentation, with random effects as above, controlling for respective
transfer/recognition accuracy.

For recognition, test time effect was significant (F(2, 156.20) = 22.50, p < 0.001,
Figure 6a): immediate post-learning accuracy (M = 0.91, SD = 0.13, t(185) =
6.43, corrected p < 0.001, 𝛽 = 0.22, SE = 0.03) and 7-day post-learning accuracy
(M = 0.81, SD = 0.20, t(183) = 4.92, corrected p < 0.001, 𝛽 = 0.15, SE = 0.03)
were both significantly higher than pre-learning accuracy (M = 0.48, SD =
0.17). Accuracy significantly decayed over 7 days (t(139) = -2.94, corrected p
= 0.011, 𝛽 = -0.06, SE = 0.02).

For transfer, test time effect was significant (F(2, 153.14) = 18.55, p < 0.001,
Figure 6b): immediate post-learning accuracy (M = 0.71, SD = 0.23, t(185)
= 5.34, corrected p < 0.001, 𝛽 = 0.21, SE = 0.04) and 7-day post-learning
accuracy (M = 0.64, SD = 0.25, t(177) = 5.84, corrected p < 0.001, 𝛽 = 0.20,
SE = 0.03) were both significantly higher than pre-learning accuracy (M = 0.25,
SD = 0.13). Accuracy did not significantly decay over 7 days (t(141) = -0.44,
corrected p = 0.661, 𝛽 = -0.01, SE = 0.03).

For recognition, feedback presentation main effect was non-significant (F(2,
24.43) = 2.20, p = 0.132), and test time × feedback presentation interaction
was non-significant (F(4, 135.30) = 0.44, p = 0.778). For transfer, feedback pre-
sentation main effect was non-significant (F(2, 27.43) = 1.74, p = 0.195), while
the interaction was marginally significant (F(4, 130.73) = 2.22, p = 0.070).

Figure 6. Conceptual knowledge levels

3.6.3 Chunked Feedback Benefited Long-Term Transfer More Than
Non-Chunked Feedback To control for individual knowledge foundation
differences and examine differential effects of feedback presentation across test
times, subsequent analyses used linear mixed models for post-learning concep-
tual knowledge gains (accuracy increment relative to pre-test). For immediate
post-learning recognition gain, the model with fixed effect of feedback presenta-
tion (chunked vs. pseudo-chunked vs. separate) showed no significant effect (0.44
± 0.19 vs. 0.38 ± 0.21 vs. 0.45 ± 0.16, F(2, 38.57) = 0.74, p = 0.483). For im-
mediate post-learning transfer gain, feedback presentation effect was marginally
significant (0.53 ± 0.16 vs. 0.41 ± 0.20 vs. 0.44 ± 0.23, F(2, 62.67) = 2.64, p =
0.079).

For 7-day post-learning recognition gain, feedback presentation effect was non-
significant (0.37 ± 0.21 vs. 0.30 ± 0.19 vs. 0.34 ± 0.21, F(2, 30.95) = 0.20, p =
0.823, Figure 7a). For 7-day post-learning transfer gain, feedback presentation
effect was significant (0.53 ± 0.17 vs. 0.30 ± 0.25 vs. 0.37 ± 0.22, F(2, 61.70)
= 6.11, p = 0.004, Figure 7b): chunked feedback produced significantly greater
7-day transfer gain than separate feedback (t(29.9) = 2.49, p = 0.019, corrected
p = 0.028, 𝛽 = 0.15, SE = 0.06) and pseudo-chunked feedback (t(32) = 3.20,
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p = 0.0031, corrected p = 0.009, 𝛽 = 0.20, SE = 0.06), while pseudo-chunked
and separate feedback did not differ (t(26.7) = -0.76, p = 0.455, corrected p =
0.455, 𝛽 = -0.05, SE = 0.06).

Figure 7. Long-term learning gains

3.6.4 Feedback Presentation Influenced Long-Term Transfer Through
Chunked Error Correction To explore cognitive processes underlying feed-
back presentation effects on long-term transfer, we examined chunked error
correction and cognitive effort. Given that pseudo-chunked and separate
feedback showed no significant difference in long-term transfer, these were
combined into a non-chunked feedback group for comparison with the chunked
feedback group. A linear mixed model was constructed for maintenance/change
patterns on 7-day transfer measure with fixed effects of maintenance/change
(incorrect→correct vs. incorrect→incorrect vs. correct→correct vs. cor-
rect→incorrect) and feedback presentation (chunked vs. non-chunked), random
effects as above, controlling for initial concept pair correctness and recognition
maintenance/change patterns. Results (Figure 8a) showed a significant change
pattern effect (F(3, 261.15) = 9.37, p < 0.001): incorrect→correct concept
pairs (1.26 ± 0.26) were more numerous than incorrect→incorrect pairs (0.78
± 0.83, t(197) = 3.71, corrected p = 0.002, 𝛽 = 0.42, SE = 0.11), with no
other significant comparisons (ts < 2.16, corrected ps > 0.096). Feedback
presentation effect was non-significant (F(1, 249.65) = 0.36, p = 0.549). The
change pattern × presentation interaction was significant (F(3, 260.06) = 8.23,
p < 0.001). Simple effects analysis revealed that chunked feedback students
showed more incorrect→correct concept pairs (1.74 ± 1.05) than non-chunked
feedback students (1.02 ± 0.99, t(214) = 4.13, p < 0.001, 𝛽 = 0.69, SE = 0.17)
and fewer incorrect→incorrect pairs (0.48 ± 0.73 vs. 0.93 ± 0.84, t(213) = -2.71,
p = 0.007, 𝛽 = -0.45, SE = 0.17). Additionally, chunked feedback students
showed more incorrect→correct pairs (1.74 ± 1.05) than correct→incorrect
pairs (0.00 ± 0.00, t(240) = 3.66, corrected p < 0.001, 𝛽 = 0.87, SE = 0.24),
correct→correct pairs (0.22 ± 0.42, t(241) = 3.16, corrected p = 0.004, 𝛽
= 0.75, SE = 0.24), and incorrect→incorrect pairs (0.48 ± 0.73, t(198) =
6.15, corrected p < 0.001, 𝛽 = 1.19, SE = 0.19). No other comparisons were
significant (ts < 1.36, corrected ps > 0.209).

Figure 8. Feedback presentation influences long-term transfer through chunked
error correction

Furthermore, 7-day transfer gain correlated positively with chunked error cor-
rection (r = 0.81, R2 = 65.61%, p < 0.001) and negatively with chunked error
maintenance (r = -0.52, R2 = 27.04%, p < 0.001). Mediation analysis examined
whether chunked error correction and maintenance mediated the relationship
between feedback presentation and 7-day transfer gain, with chunked feedback
coded as 1 and non-chunked as 0. Results showed significant partial mediation
by chunked error correction, ab = 0.12, bootstrap 95% CI = [0.03, 0.21], p =
0.008; c’ = 0.07, p = 0.046 (Figure 8b). Chunked error maintenance also showed
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significant partial mediation, ab = 0.06, bootstrap 95% CI = [0.01, 0.11], p =
0.024; c’ = 0.14, p = 0.009.

A linear mixed model for cognitive effort with fixed effect of feedback presen-
tation (chunked vs. non-chunked) revealed that chunked feedback students re-
ported higher cognitive effort (12.19 ± 4.84) than non-chunked feedback stu-
dents (10.58 ± 3.80, F(1, 61.08) = 4.36, p = 0.041). Cognitive effort correlated
significantly with the frustration dimension of cognitive load (r = 0.32, R2 =
10.24%, p = 0.011), and chunked feedback students reported greater learning
frustration (7.24 ± 4.53) than non-chunked feedback students (5.45 ± 4.92, F(1,
32.94) = 4.32, p = 0.045). However, cognitive effort did not correlate signifi-
cantly with 7-day transfer gain (r = -0.05, R2 = 0.25%, p = 0.700), so no further
mediation analysis was conducted.

3.6.5 Chunked Feedback Elicited Stronger Instructor-Learner Brain-
to-Brain Synchrony in Frontal and Parietal Regions Analysis examined
whether chunked feedback elicited significantly greater instructor-learner brain-
to-brain synchrony than non-chunked feedback (including pseudo-chunked and
separate). Three significant frequency-channel clusters were identified: two in
frontal cortex and one in left parietal cortex.

Cluster 1 included channels 21 and 22, located in right superior and middle
frontal gyri, frequency 0.019-0.028 Hz (Figure 9a). Cluster statistic = 5.16,
permutation test p < 0.001 (Figure 9b). Presentation format effect on Cluster
1 synchrony increase (feedback minus rest) was significant (F(2, 65) = 3.83,
p = 0.027, Figure 9c). Post-hoc comparisons revealed that chunked feedback
synchrony increase (0.07 ± 0.16) was significantly greater than pseudo-chunked
feedback (-0.05 ± 0.16, t(32.6) = 2.32, p = 0.027, corrected p = 0.045, 𝛽 =
0.12, SE = 0.05) and separate feedback (-0.05 ± 0.17, t(31.1) = 2.28, p =
0.030, corrected p = 0.045, 𝛽 = 0.12, SE = 0.05), with no difference between
pseudo-chunked and separate feedback (t(27.1) = -0.04, p = 0.966, corrected p
= 0.966, 𝛽 = -0.00, SE = 0.05). Confirmatory analyses verified that chunked
feedback synchrony (0.40 ± 0.10) was significantly greater than rest synchrony
(0.33 ± 0.13, F(1, 29.52) = 5.00, p = 0.033, Figure 9d), greater than permuted
null synchrony values (p = 0.022, Figure 9e), and the synchrony increase was
greater than permuted null increases (p = 0.032, Figure 9f).

Cluster 2 included channels 7, 11, 12, and 17, located in bilateral superior
frontal gyri, frequency 0.010-0.015 Hz (Figure 9g). Cluster statistic = 7.62,
permutation test p < 0.001 (Figure 9h). Presentation format effect on Cluster
2 synchrony increase was significant (F(2, 62.51) = 8.05, p < 0.001, Figure 9i).
Chunked feedback synchrony increase (0.11 ± 0.14) was significantly greater
than pseudo-chunked feedback (-0.07 ± 0.20, t(31.5) = 2.79, p = 0.009, corrected
p = 0.013, 𝛽 = 0.18, SE = 0.06) and separate feedback (-0.14 ± 0.28, t(30.2) =
3.76, p < 0.001, corrected p = 0.002, 𝛽 = 0.24, SE = 0.06), with no difference
between pseudo-chunked and separate feedback (t(26.0) = 0.98, p = 0.337,
corrected p = 0.337, 𝛽 = 0.06, SE = 0.06). Confirmatory analyses verified
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that chunked feedback synchrony (0.48 ± 0.12) was significantly greater than
rest synchrony (0.37 ± 0.12, F(1, 22) = 15.47, p < 0.001, Figure 9j), greater
than permuted null synchrony values (p = 0.008, Figure 9k), and the synchrony
increase was greater than permuted null increases (p < 0.001, Figure 9l).

Cluster 3 included channels 25 and 28, located in left inferior parietal lobule,
frequency 0.027-0.034 Hz (Figure 9m). Cluster statistic = 4.72, permutation
test p < 0.001 (Figure 9n). Presentation format effect on Cluster 3 synchrony
increase was significant (F(2, 36.43) = 6.29, p = 0.005, Figure 9o). Chunked
feedback synchrony increase (0.08 ± 0.11) was significantly greater than pseudo-
chunked feedback (-0.03 ± 0.12, t(36.5) = 2.88, p = 0.007, corrected p = 0.010,
𝛽 = 0.12, SE = 0.04) and separate feedback (-0.04 ± 0.13, t(34.5) = 3.04, p =
0.005, corrected p = 0.010, 𝛽 = 0.13, SE = 0.04), with no difference between
pseudo-chunked and separate feedback (t(32.6) = 0.20, p = 0.842, corrected p
= 0.842, 𝛽 = 0.01, SE = 0.04). Confirmatory analyses verified that chunked
feedback synchrony (0.37 ± 0.08) was significantly greater than rest synchrony
(0.29 ± 0.10, F(1, 22) = 12.87, p = 0.002, Figure 9p), greater than permuted
null synchrony values (p = 0.006, Figure 9q), and the synchrony increase was
greater than permuted null increases (p < 0.001, Figure 9r).

Figure 9. Stronger instructor-learner brain-to-brain synchrony in frontal and
parietal regions during chunked feedback

3.6.6 Frontal Brain-to-Brain Synchrony During Chunked Feedback
Predicted Long-Term Transfer and Chunked Error Correction We
examined whether instructor-learner brain-to-brain synchrony during chunked
feedback predicted students’ long-term learning performance. Cluster 1 syn-
chrony difference (chunked feedback minus rest) correlated marginally positively
with immediate post-learning recognition gain (r = 0.37, R2 = 13.69%, p =
0.082) and 7-day post-learning recognition gain (r = 0.38, R2 = 14.44%, p
= 0.070), and correlated significantly positively with immediate post-learning
transfer gain (r = 0.64, R2 = 40.96%, p = 0.001) and 7-day post-learning trans-
fer gain (r = 0.55, R2 = 30.25%, p = 0.006, Figure 10a). No other clusters
correlated significantly with learning performance (rs < 0.37, ps > 0.078).

Additionally, Cluster 1 synchrony difference correlated positively with immedi-
ate post-learning error correction concept pairs (r = 0.69, R2 = 47.61%, p <
0.001), marginally negatively with immediate post-learning error maintenance
pairs (r = -0.24, R2 = 5.76%, p = 0.052), positively with 7-day post-learning
error correction pairs (r = 0.54, R2 = 29.16%, p = 0.007, Figure 10b), and non-
significantly with immediate error maintenance pairs (r = -0.14, R2 = 1.96%, p
= 0.260).

Figure 10. Frontal brain-to-brain synchrony during chunked feedback predicts
long-term transfer and chunked error correction
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4 General Discussion
Experiment 1 compared chunked versus separate feedback in instructor-learner
interaction, revealing long-term effects of feedback presentation format: chun-
ked feedback was more beneficial than separate feedback for students’ long-term
transfer, but only for those with lower prior knowledge. To exclude an alterna-
tive explanation that delayed feedback timing alone produced these benefits, Ex-
periment 2 added a pseudo-chunked feedback (non-chunked but delayed) condi-
tion. Results showed chunked feedback produced significantly better long-term
transfer than both non-chunked conditions, while pseudo-chunked and sepa-
rate feedback did not differ, ruling out pure delay effects. These findings align
with previous research showing that emphasizing relationships among learning
content or presenting materials in chunks promotes knowledge acquisition and
transfer to new situations (Cohen & Sekuler, 2010; Spiro et al., 1991). No-
tably, chunked feedback promoted knowledge transfer rather than recognition,
the transfer benefits were long-term rather than immediate, and effects occurred
only in low-knowledge students.

First, different presentation formats of elaborated content feedback affected only
transfer, not recognition. Previous research found elaborated feedback promoted
both recognition and transfer (Finn et al., 2018) or only transfer (Butler et al.,
2013), possibly depending on test type or difficulty. Notably, recognition per-
formance showed ceiling effects, likely reflecting low measurement difficulty or
masking condition differences. Future research could employ cued recall instead
of associative recognition to increase difficulty and examine feedback presenta-
tion effects on recognition. Additionally, ceiling effects and lack of condition
differences in recognition help rule out alternative explanations that feedback
presentation effects on transfer were driven by recognition failures or differences.

Second, long-term effects likely emerged because chunked feedback promoted
deeper cognitive processing of conceptual knowledge, thereby slowing transfer
decay over time. According to Chunking Theory (Chase & Simon, 1973) and
Template Theory (Gobet & Simon, 1996), learning occurs through the devel-
opment of discrimination networks that are continuously influenced by the sys-
tem’s current state and environmental input. Theoretically, chunked environ-
mental input helps discrimination networks develop higher-level structures that
likely index procedural or semantic information in long-term memory. In this
study, chunked versus separate feedback input helped low-level learners better
discriminate similarities and differences between related concepts, promoting ad-
vanced network structures. These higher-level network structures created more
durable semantic memory indexes that supported long-term retrieval and appli-
cation of conceptual knowledge in novel contexts, producing long-term transfer
gains.

Third, the restriction of chunked feedback’s long-term transfer effects to low-
knowledge students can be explained by the Expertise Reversal Effect (Kalyuga
& Sweller, 2004). For novices lacking relevant background knowledge, novel
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tasks easily overload working memory, making their performance more depen-
dent on external supportive guidance. In contrast, more experienced learners
can draw on existing schemas to complete tasks without working memory over-
load, rendering external guidance redundant (Renkl & Atkinson, 2003; Sweller
et al., 1998). In this study, chunked feedback served as supportive external
guidance that more effectively helped low-prior-knowledge students process feed-
back, correct errors, and promote transfer to new contexts. For high-knowledge
learners, chunked feedback may have been redundant, providing no additional
learning gains.

Furthermore, Experiment 1 manipulated pre-feedback knowledge foundation
through the presence or absence of an introduction phase, yet found no signifi-
cant differences between knowledge levels in recognition or transfer performance.
This suggests the introduction phase may have provided redundant instructional
support, while Q&A feedback without introduction actually improved learning
efficiency—achieving equivalent outcomes with streamlined instruction and re-
duced time. However, the introduction phase involved presenting concept terms
and definitions twice consecutively, which may have excessively elevated knowl-
edge foundation, obscuring potential feedback presentation effects. Future re-
search could revise the introduction phase to produce smaller knowledge gains,
such as reducing presentation repetitions from two to one or inserting longer
intervals (e.g., one day) between introduction and Q&A phases, to further exam-
ine whether feedback presentation affects learning in relatively higher-knowledge
students.

4.2 Feedback Presentation Promotes Long-Term Transfer in Low-
Knowledge Students Through Chunked Error Correction

This study found an indirect pathway from feedback presentation to long-term
transfer in low-knowledge students through whole-concept-pair error correction,
highlighting the importance of chunked error correction. This result aligns with
cognitivist learning theory’s proposal that specific, targeted, or information-rich
feedback promotes learning through more effective error correction (Kulhavy &
Stock, 1989; Narciss & Huth, 2004; Bangert-Drowns et al., 1991), while extend-
ing it by demonstrating that organizing feedback content through presentation
format promotes organized correction of conceptual knowledge in low-prior-
knowledge students, yielding long-term transfer gains. Integrating Chunking
and Template Theories, chunked versus separate feedback input likely helped
low-level learners more effectively identify and correct misunderstandings or
errors in conceptual knowledge, enabling discrimination networks to develop ad-
vanced structures. These advanced structures created more durable semantic
memory indexes that supported effective retrieval and application of conceptual
knowledge in novel contexts after extended time intervals.

Unlike Experiment 1, Experiment 2 found that chunked feedback students re-
ported greater cognitive effort and learning frustration than non-chunked feed-
back students. This may occur because chunked feedback more clearly identifies
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gaps between current performance and goals, increasing learning frustration and
stimulating cognitive effort. This finding partially aligns with metacognitivist
theory, which posits that feedback promotes learning only when it effectively
indicates performance-goal gaps that motivate learners to invest cognitive effort
to reduce them (Nicol & McFarlane-Dick, 2006; Sadler, 1989). However, no rela-
tionship was found between cognitive effort and long-term transfer, suggesting
feedback presentation cannot achieve long-term transfer gains through cognitive
effort alone. Although this study does not support cognitive effort as the mech-
anism, more precise measurement of cognitive effort (Laufer & Hulstijn, 2001;
Golonka et al., 2015) is needed in future research.

4.3 Interpersonal Neural Basis of Chunked Feedback in Instructor-
Learner Interaction

Experiment 2 used fNIRS hyperscanning to investigate the interpersonal neural
basis of chunked feedback during instructor-learner interaction. Results showed
that providing and receiving chunked feedback elicited greater brain-to-brain
synchrony between instructors and learners in frontal and parietal regions, in-
cluding superior frontal gyrus, middle frontal gyrus, and inferior parietal lobule.
These regions are spatially close to those previously implicated in feedback pro-
cessing (ACC, DLPFC, and parietal cortex; Cavanagh et al., 2012; Crone et al.,
2008; Luft et al., 2013; Mars et al., 2005; van Duijvenvoorde et al., 2008; Zano-
lie et al., 2008) and chunk processing (DLPFC and posterior parietal cortex;
Alamia et al., 2016; Bor et al., 2003; Jin et al., 2020; Pammi et al., 2012). They
also align with regions showing brain-to-brain synchrony during general or elab-
orated feedback-based instructor-learner interaction (frontal or temporoparietal
regions; Pan et al., 2020; Zheng et al., 2018; Zhu et al., 2022). This suggests
that frontal and parietal brain-to-brain synchrony supports feedback process-
ing during instructor-learner interaction and is sensitive to changes in feedback
presentation format.

Furthermore, Experiment 2 found that frontal (but not parietal) brain-to-brain
synchrony related to chunked feedback positively correlated with learners’ long-
term transfer performance and error correction. This suggests frontal brain-to-
brain synchrony may constitute the interpersonal neural basis through which
chunked feedback promotes error correction and facilitates long-term deep learn-
ing like transfer. Previous research has shown that chunking linguistic informa-
tion depends on frontal cortex (Jin et al., 2020; Grodzinsky & Santi, 2008),
frontal activity relates to long-term memory retention and delayed task perfor-
mance (Sakai & Passingham, 2003; Squire et al., 1993), and abstract knowledge
structures or schemas relate to medial prefrontal function (Gilboa & Marlatte,
2017). Thus, our findings support a critical role for frontal cortex in deep
knowledge representation, possibly supporting the development of higher-level,
more abstract knowledge structures in discrimination networks that promote
long-term transfer gains. Additionally, previous research found that frontal
brain-to-brain synchrony indicates effective teaching strategies such as scaffold-
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ing and high-frequency interaction (Pan et al., 2018, 2020), and chunked presen-
tation represents an effective instructional strategy (Spiro et al., 1991; Cohen &
Sekuler, 2010). Our results thus support frontal brain-to-brain synchrony’s role
in distinguishing teaching strategy effectiveness. However, previous research
also indicates that adults rely more on parietal cortex than ACC for processing
effective feedback to adjust performance or correct errors (Crone et al., 2008;
van Duijvenvoorde et al., 2008; Zanolie et al., 2008), that parietal brain-to-
brain synchrony during separate feedback predicts immediate transfer (Zhu et
al., 2022), and that temporoparietal synchrony relates to interactive teaching
strategy selection (Zheng et al., 2018). Future research should further inves-
tigate distinct roles and relationships of frontal versus parietal brain-to-brain
synchrony in supporting feedback processing, effective teaching, and promoting
immediate versus long-term deep learning.

Notably, frontal brain-to-brain synchrony correlated positively with chunked er-
ror correction, which reflects students’ understanding gradually aligning with in-
structors’ understanding during feedback-based teaching interaction, indicating
enhanced cognitive alignment. This supports brain-to-brain synchrony as a neu-
ral basis for cognitive alignment and mutual understanding during interaction
(Shamay-Tsoory et al., 2019; Kelsen et al., 2022). In contrast, single-brain met-
rics reflect individual information processing and have limited power to reveal
neural mechanisms underlying complex, continuous, naturalistic stimuli without
predefined events (Hasson et al., 2004). Authentic classroom teaching involves
dynamic, continuous, bidirectional information exchange, making instructor-
learner brain-to-brain synchrony more effective than single-brain metrics for
reflecting whether mutual understanding is achieved—an essential foundation
for effective teaching (Tan et al., 2023). Additionally, brain-to-brain synchrony
can reflect the dynamic process of achieving alignment, including time points of
understanding and temporal lag patterns (Liu et al., 2018; Zheng et al., 2018;
Zhu et al., 2022). Thus, instructor-learner brain-to-brain synchrony can provide
timely, objective evidence for adjusting and optimizing classroom instruction;
for example, persistently low synchrony may indicate student comprehension
problems preventing shared understanding.

4.4 Limitations and Future Directions

Several issues warrant attention. First, feedback’s metacognitive effects repre-
sent another important aspect of feedback’s impact on learning. Research shows
feedback helps correct high-confidence errors (Butterfield & Metcalfe, 2001) and
calibrate metacognitive errors for low-confidence correct answers (Butler et al.,
2008). Thus, chunked feedback may trigger deeper conceptual understanding
that updates or revises initial metacognitive assessments. Future research could
measure students’ confidence in their answers to examine metacognitive effects
of feedback presentation format.

Second, social factors play crucial roles in feedback-based social interaction,
including interaction partners (e.g., instructor-learner, peer-peer) and interper-
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sonal relationships (e.g., trust, rapport). Future research should investigate
these social factors and reveal broader interpersonal neural mechanisms of feed-
back in social interaction.

Third, limited fNIRS channels restricted brain activity recording to frontal and
left parietal regions, leaving other brain areas unexplored. Given the asym-
metrical roles of instructors and learners in feedback-based interaction, future
research should examine cross-brain, temporally-lagged interpersonal neural syn-
chrony between different brain regions in both parties.

Fourth, instructor-learner brain-to-brain synchrony related to chunked feedback
occurred primarily in the 0.01-0.03 Hz frequency range. While this overlaps with
frequencies found in previous fNIRS hyperscanning studies using communication
paradigms (Jiang et al., 2012, 2015) and teaching tasks (Zheng et al., 2018;
Zhu et al., 2022), the functional significance of brain-to-brain synchrony in the
frequency domain requires further investigation.

Fifth, chunked feedback in this study simultaneously introduced feedback delay.
Although such delayed feedback better promoted transfer, previous research
found learners subjectively prefer more immediate feedback (Lefevre & Cox,
2017; Mullet et al., 2014). Whether learners also prefer immediate separate feed-
back over chunked feedback, and the underlying cognitive-neural mechanisms,
warrant future investigation.

Finally, although both experiments attempted to include diverse gender par-
ticipants with some opposite-sex dyads, female participants and female-female
dyads outnumbered males. Therefore, caution is needed when generalizing find-
ings across genders.

5 Conclusion
This study conducted two dyadic experiments (behavioral, fNIRS hyperscan-
ning) to investigate how maintaining identical feedback content while altering
presentation format influences long-term learning transfer, cognitive processes,
and interpersonal neural basis during authentic instructor-learner interaction.
Conclusions are: (1) Chunked feedback promoted long-term transfer in low-
knowledge students, excluding the possibility that these gains resulted simply
from altered feedback timing; (2) Feedback presentation format influenced long-
term transfer through chunked error correction; (3) Providing and receiving
chunked feedback elicited greater brain-to-brain synchrony in frontal and pari-
etal regions between instructors and learners; (4) Frontal brain-to-brain syn-
chrony during chunked feedback predicted long-term transfer and chunked error
correction.
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Appendix 1: Concept Definitions and Examples
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Term Definition
Example 1 (for
feedback)

Example 2 (for
transfer)

Availability
Heuristic

When judging
the likelihood of
an event, people
tend to base
their judgment
on how easily
specific examples
come to mind.

1. In a study
estimating causes
of death, people
overestimated
murders, car
accidents, and
fires (which
appear
frequently in
news) despite
more deaths
from lung
disease.

2. When
deciding
post-task
rewards, partners
who invested
equal time/effort
both believe they
contributed more
because they
more easily recall
their own
actions.

Representativeness
Heuristic

When judging
whether
something
belongs to a
category, people
assess similarity
to typical
category
examples.

1. “If it looks
like a duck,
walks like a
duck, and quacks
like a duck, it’s
probably a
duck.”

2. People judge
“HTHTH” as
more likely than
“HHHHT” when
expecting
random
sequences, as the
former appears
more “random.”

Foot-in-the-Door
Effect

After agreeing to
a small request,
people become
more likely to
agree to a
subsequent
larger request.

1. A friend first
asks you to
accompany them
to a nearby
store, then to a
farther mall;
you’re more
likely to comply
with the second
request.

2. Animal shelter
workers first ask
people to wear
“Adopt Don’t
Shop” badges,
then later ask
them to adopt;
compliance
increases.

Door-in-the-Face
Effect

After refusing an
extreme large
request, people
become more
likely to agree to
a subsequent
more reasonable
request.

1. After refusing
a 1000 RMB
alumni donation
request, a person
agrees to donate
100 RMB when
asked.

2. Students
asking for
assignment
extensions first
request one
week, but are
more likely to
receive 2 days.
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Term Definition
Example 1 (for
feedback)

Example 2 (for
transfer)

Hindsight Bias After an event
occurs, people
tend to
overestimate
their ability to
have predicted
the outcome.

1. After celebrity
breakups, people
claim they “saw
it coming.”

2. After stock
market crashes,
investors say
“the market was
obviously due for
correction.”

Counterfactual
Thinking

After an event,
people imagine
alternatives to
reality that could
have occurred
but didn’t.

1. Olympic silver
medalists are less
happy than
bronze medalists,
thinking “I
almost won.”

2. After a minor
scooter accident,
someone thinks
how much worse
it could have
been without a
helmet.

Deindividuation In groups,
behavioral
constraints relax,
increasing
impulsive and
deviant behavior.

1. Sports fans
throw bottles
after their team
loses.

2. In 1967, 200
Oklahoma
students chanted
“Jump!” to a
suicidal peer,
who ultimately
jumped.

Social
Facilitation

Presence of
others improves
performance on
simple tasks but
impairs complex
task
performance.

1. Bosses should
have employees
work publicly for
simple tasks but
privately for
challenging ones.

2. New postal
workers sort mail
slower with
colleagues
present, but
experienced
workers sort
faster.

Fundamental
Attribution
Error

When explaining
others’ behavior,
people
overestimate
internal
dispositional
factors and
underestimate
external
situational
factors.

1. We judge an
admissions clerk
as unfriendly
when they’re
actually stressed
from handling
complaints.

2. In a quiz
game,
questioners are
rated as smarter,
ignoring their
role advantage.
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Term Definition
Example 1 (for
feedback)

Example 2 (for
transfer)

Self-Serving Bias For positive
outcomes, people
attribute to
internal factors;
for negative
outcomes, to
external factors.

1. Students
attribute good
grades to
ability/effort but
poor grades to
test difficulty or
poor teaching.

2. Drivers blame
weather/roads
for accidents but
credit their own
alertness for
near-misses.

Note: The first 10 concepts were used for teaching. Adjacent concepts formed
chunks. Example 1 was used for feedback; Example 2 for transfer measurement.
Concepts 11-12 provided additional options for the 12-alternative test.

Appendix 2: Cognitive Load Rating Scale
This scale has six dimensions. Please read each dimension’s description carefully,
then mark the line corresponding to your actual experience during the task.

Mental Demand: How much mental activity (observing, remembering, think-
ing, searching) was required? Was the task easy or difficult mentally? Simple
or complex? Relaxed or tense muscles?

Physical Demand: How much physical activity (pushing, pulling, turning,
controlling movements) was required? Was the task easy or difficult physically?

Temporal Demand: Was the task pace slow or fast? Leisurely or rushed?

Effort: How much effort (mental and physical) was required to achieve your
performance level?

Performance: How successful were you in achieving goals? How satisfied were
you with your performance?

Frustration: How much frustration, annoyance, or stress did you experience
during the task?

Note: Figure translations are in progress. See original paper for figures.

Source: ChinaXiv — Machine translation. Verify with original.
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