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Abstract

Land use and cover change (LUCC) is the most direct manifestation of the
interaction between anthropological activities and the natural environment on
Earth’s surface, with significant impacts on the environment and social econ-
omy. Rapid economic development and climate change have resulted in sig-
nificant changes in land use and cover. The Shiyang River Basin, located in
the eastern part of the Hexi Corridor in China, has undergone significant cli-
mate change and LUCC over the past few decades. In this study, we used the
random forest classification to obtain the land use and cover datasets of the
Shiyang River Basin in 1991, 1995, 2000, 2005, 2010, 2015, and 2020 based on
Landsat images. We validated the land use and cover data in 2015 from the
random forest classification results (this study), the high-resolution dataset of
annual global land cover from 2000 to 2015 (AGLC-2000-2015), the global 30 m
land cover classification with a fine classification system (GLC_{FCS30}), and
the first Landsat-derived annual China Land Cover Dataset (CLCD) against
ground-truth classification results to evaluate the accuracy of the classification
results in this study. Furthermore, we explored and compared the spatiotempo-
ral patterns of LUCC in the upper, middle, and lower reaches of the Shiyang
River Basin over the past 30 years, and employed the random forest impor-
tance ranking method to analyze the influencing factors of LUCC based on
natural (evapotranspiration, precipitation, temperature, and surface soil mois-
ture) and anthropogenic (nighttime light, gross domestic product (GDP), and
population) factors. The results indicated that the random forest classification
results for land use and cover in the Shiyang River Basin in 2015 outperformed
the AGLC-2000-2015, GLC_{FCS30}, and CLCD datasets in both overall and
partial validations. Moreover, the classification results in this study exhibited a
high level of agreement with the ground truth features. From 1991 to 2020, the
area of bare land exhibited a decreasing trend, with changes primarily occur-
ring in the middle and lower reaches of the basin. The area of grassland initially
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decreased and then increased, with changes occurring mainly in the upper and
middle reaches of the basin. In contrast, the area of cropland initially increased
and then decreased, with changes occurring in the middle and lower reaches.
The LUCC was influenced by both natural and anthropogenic factors. Climatic
factors and population contributed significantly to LUCC, and the importance
values of evapotranspiration, precipitation, temperature, and population were
22.12%, 32.41%, 21.89%, and 19.65%, respectively. Moreover, policy interven-
tions also played an important role. Land use and cover in the Shiyang River
Basin exhibited fluctuating changes over the past 30 years, with the ecological
environment improving in the last 10 years. This suggests that governance ef-
forts in the study area have had some effects, and the government can continue
to move in this direction in the future. The findings can provide crucial insights
for related research and regional sustainable development in the Shiyang River
Basin and other similar arid and semi-arid areas.
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Abstract

Land use and cover change (LUCC) represents the most direct manifestation of
interactions between human activities and the natural environment at Earth’s
surface, exerting significant impacts on both environmental conditions and socio-
economic systems. Rapid economic development and climate change have trig-
gered substantial alterations in land use and cover patterns. The Shiyang River
Basin, situated in the eastern Hexi Corridor of China, has experienced pro-
nounced climate change and LUCC over recent decades. This study employed
random forest classification to generate land use and cover datasets for the
Shiyang River Basin for the years 1991, 1995, 2000, 2005, 2010, 2015, and 2020
based on Landsat imagery. We validated the 2015 land use and cover data
from our random forest classification results against three existing datasets—
the high-resolution annual global land cover dataset from 2000 to 2015 (AGLC-
2000-2015), the global 30 m land cover classification with a fine classification
system (GLC_{FCS30}), and the first Landsat-derived annual China Land
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Cover Dataset (CLCD)—as well as against ground-truth classification results to
evaluate classification accuracy. Furthermore, we examined and compared spa-
tiotemporal LUCC patterns across the upper, middle, and lower reaches of the
basin over the past 30 years, and utilized the random forest importance ranking
method to analyze influencing factors based on both natural (evapotranspira-
tion, precipitation, temperature, and surface soil moisture) and anthropogenic
(nighttime light, gross domestic product (GDP), and population) variables.

The results demonstrated that our random forest classification for 2015 out-
performed the AGLC-2000-2015, GLC_ {FCS30}, and CLCD datasets in both
overall and partial validations, exhibiting strong agreement with ground-truth
features. From 1991 to 2020, bare land area displayed a decreasing trend, with
changes concentrated primarily in the middle and lower reaches. Grassland area
initially declined before increasing, with changes mainly occurring in the upper
and middle reaches. Conversely, cropland area first increased then decreased,
with changes focused in the middle and lower reaches. LUCC was influenced
by both natural and anthropogenic factors, with climatic variables and popula-
tion contributing significantly. The importance values for evapotranspiration,
precipitation, temperature, and population were 22.12%, 32.41%, 21.89%, and
19.65%, respectively. Policy interventions also played a crucial role. Land use
and cover in the Shiyang River Basin exhibited fluctuating changes over the 30-
year study period, with ecological conditions improving during the last decade.
This suggests that governance efforts have been effective and should continue.
These findings provide critical insights for related research and regional sustain-
able development in the Shiyang River Basin and other comparable arid and
semi-arid regions.
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1. Introduction

The Sixth Assessment Report of the Intergovernmental Panel on Climate
Change (IPCC) confirmed that anthropogenic activities have caused unprece-
dented climate warming, with global average surface temperatures rising by
1.1°C above pre-industrial levels [?]. Climate change has produced irreversible
impacts including glacier melting, increased extreme weather events, crop yield
reductions, shortened growing seasons, wetland degradation, and desertifica-
tion [?, 2, 7, ?, 7, 7, ?]. These impacts have progressively reshaped land
use and cover patterns [?], significantly affecting Earth’s surface systems,
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particularly regarding biodiversity, surface and subsurface runoff, carbon
cycling and storage, agricultural land use, urban resource availability, soil

salinization, and transportation- and pollution-related ecological problems
[?,2,2,2,2,2,2,2,7,7].

Current land use and cover classification methods include visual interpreta-
tion, single-band thresholding, spectral relationship analysis, object-oriented ap-
proaches [?, 7, ?], and machine learning techniques [?]. Research indicates that
random forest classification—a machine learning method—outperforms other
approaches in both accuracy and operational efficiency [?, ?]. Xu et al. [?]
employed multi-data fusion, temporal change detection, and random forest to
develop the high-resolution annual global land cover dataset from 2000 to 2015
(AGLC-2000-2015). Zhang et al. [?] combined high-quality training data from
the Global Spatial Temporal Spectra Library (GSPECLib) on Google Earth
Engine with random forest classification to create the global 30 m land cover
product with a fine classification system (GLC_ {FCS30}) from 1985 to 2020 at
5-year intervals. Yang and Huang [?] utilized random forest on Google Earth
Engine, based on the China land use/cover dataset, satellite time-series im-
agery, and visual interpretation samples from Google Earth, to produce the
first Landsat-derived annual China Land Cover Dataset (CLCD), comprising
30 m annual land cover and change dynamics across China from 1990 to 2019.

To effectively address ecological problems caused by LUCC, analyzing its in-
fluencing factors is essential [?]. Current research on LUCC drivers remains
inadequate, relying primarily on qualitative analyses such as logistic regression,
multiple linear regression, and principal component analysis [?, 7, ?]. However,
these methods are relatively simplistic, depend on linear models, and are less
effective at capturing complex driving mechanisms [?]. In contrast, random
forest—an ensemble machine learning approach—effectively handles highly cor-
related data and multidimensional features while combating overfitting. It can
manage numerous quantitative and qualitative explanatory variables and sys-
tematically rank input variable importance, thereby overcoming certain limita-
tions of traditional methods. Random forest demonstrates strong performance
in both classification and regression tasks [?, ?, 7, ?] and has been widely applied
in land use and cover analysis [?, 7, ?].

The Shiyang River Basin occupies a unique geographical position at the intersec-
tion of the eastern monsoon region, the arid northwest, and the Qinghai-Tibet
Plateau [?]. The upper Qilian Mountains serve as important ecological barriers
in western China, while the lower plains function as river corridors separating the
Badain Jaran and Tengger Deserts [?, ?]. Researchers analyzing multiple aspects
of the basin have concluded that it has been in an unhealthy state over recent
decades [?, ?]. Current land use and cover classification studies in the Shiyang
River Basin employ unsupervised and supervised classification combined with
visual interpretation, while LUCC driver analyses rely on qualitative, principal
component, and logistic regression methods [?, ?, ?, ?, ?]. Despite numerous
studies, limitations remain: LUCC time series are insufficiently long, different
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classification methods yield inconsistent results complicating accuracy assess-
ment, and factor analyses often depend on qualitative approaches or simplistic
linear models that inadequately capture complex driving mechanisms.

Therefore, this study aimed to explore spatiotemporal LUCC patterns and influ-
encing factors while comparing differences across the upper, middle, and lower
reaches of the Shiyang River Basin over the past 30 years. Compared to previous
research, our improvements include: a longer temporal coverage, adoption of a
three-dimensional (3D) sampling method to enhance classification accuracy, and
explicit subdivision of the study area into three sub-regions for more detailed
analysis. Analyzing LUCC in the Shiyang River Basin is crucial for regional
sustainable development and provides a theoretical foundation for studies in
similar arid and semi-arid regions.

2.1 Study Area

The Shiyang River Basin (101°07 —104°15 E, 37°07 —39°28 N) is located in the
eastern portion of the arid region of Northwest China, within the eastern Hexi
Corridor at the northern foot of the Qilian Mountains [?] (Fig. 1). The basin
covers an area of 4.1$x107{4}$ km? and contains eight rivers. The region ex-
periences an annual average temperature of 6.5°C, annual precipitation ranging
from 50-600 mm, and potential evaporation of 700-2600 mm [?, ?]. The total
population is approximately 2.16$x107{6}$ persons [?], with a gross domestic
product (GDP) of 3.03$x107{10}$ USD [?]. Elevation varies from 1245 to 5214
m, with higher terrain in the south and lower terrain in the north. The upper
and middle reaches are divided based on the 2000 m contour and land use/cover
integrity, while the boundary between middle and lower reaches follows the Min-
qin County borderline. The three sub-regions (upper, middle, and lower reaches)
cover areas of 1.2$x1014}:1:3x1004Y 4nd1.6x107{4}$ km?, respectively.

2.2 Data Sources and Preprocessing

More than 40 Landsat images at 30 m spatial resolution were acquired from the
USGS (https://earthexplorer.usgs.gov/) for the period 1991-2020. The selected
years were 1991, 1995, 2000, 2005, 2010, 2015, and 2020, focusing primarily on
June—September imagery. Adjacent years were used as references when im-
age quality was poor (Table 1). All images underwent radiometric calibration
and atmospheric correction. The classification results were validated against
three domestically published datasets—AGLC-2000-2015, GLC_ {FCS30}, and
CLCD [?, ?, ?]—which were reclassified to match our classification system.
Gaofen-1 (GF-1) imagery from 2015, obtained from the China Center for Re-
sources Satellite Data and Application (https://data.cresda.cn), was used for
partial validation.

chinarxiv.org/items/chinaxiv-202402.00215 Machine Translation


https://chinarxiv.org/items/chinaxiv-202402.00215

ChinaRxiv [$X]

The Normalized Difference Vegetation Index (NDVI) product dataset (1998-
2019) was obtained from the Resource and Environment Science and Data
Center (https://www.resdc.cn) at 1 km spatial resolution and annual temporal
resolution. Evapotranspiration (mm), precipitation (mm), temperature (°C),
surface soil moisture (m3/m?), nighttime light, GDP ($x107{6}$ USD), and
population (persons/km?) were employed to analyze LUCC drivers (Table 2).
Annual values were used for all factors. Original evapotranspiration, tempera-
ture, and precipitation data were at monthly resolution; we calculated annual
averages for temperature and annual totals for evapotranspiration and precipi-
tation for each study year. Surface soil moisture data were originally at daily
resolution; we performed format conversion and calculated annual averages from
daily values. Nighttime light, GDP, and population data were originally at an-
nual resolution. For GDP, 2019 data were used for 2020 due to data availability
(Table 2). After obtaining data for all corresponding years, we adopted a uni-
form coordinate system and performed cropping to ensure consistency.

2.3.1 Land Use and Cover Classification and Accuracy Assessment

Land use and cover classification was performed using random forest classifica-
tion in ENVI 5.3, with results subsequently refined through visual interpretation
using Google Earth. The classification system was based on frameworks from
the Chinese Academy of Sciences, the United States Geological Survey, and the
FROM-GLC database [?, ?, ?]. Considering the unique characteristics of the
Shiyang River Basin, the final system comprised eight land use and cover types:
bare land, grassland, cropland, forest, wetland, impervious surface, water body,
and glacier (Table 3).

A 3D sampling method was employed to select region of interest (ROI) samples
following Yang et al. [?] (Fig. 2). This approach applied different band com-
binations, vegetation fractional coverage, and Google Earth views to original
images to generate a 3D terrain scene, created 3D samples, projected them onto
original images, and made further adjustments to obtain final samples. The
separability of ROI samples exceeded 1.88. Vegetation fractional coverage was
computed in ArcGIS using Landsat images to calculate NDVI, followed by a
pixel-wise binary model to determine pure vegetation and pure soil pixel values,
then applying the following formulas [?]:

NIR — RED

NDVI = TR T RED

where NDVT is the Normalized Difference Vegetation Index, NIR is near-infrared
band reflectance, and RED is red-light band reflectivity.

NDVI—NDVI,,,
VEC = NDVI,,— NDVI

soil
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where VFC represents vegetation fractional coverage, NDVI_ {soil} is the NDVI
value for pure bare ground pixels, and NDVI_ {veg} is the NDVI value for pure
vegetation pixels. The upper and lower NDVI thresholds were determined using
a 5% confidence interval to obtain NDVI_ {soil} and NDVI_ {veg}.

Accuracy validation of the 2015 land use and cover data from our random for-
est classification (Landsat_ {RFC}) and the three comparative datasets (AGLC-
2000-2015, GLC__{FCS30}, and CLCD) was conducted through overall and par-
tial validations. For overall validation, 601 verification points were uniformly
distributed throughout the basin (Fig. 1). Visual interpretation using Google
Earth established ground-truth classifications, and classification accuracy rates
(Eq. 3) were calculated by comparing each dataset’s results against these ref-
erence points. For partial validation, three 100.0 km? verification regions were
selected in each of the upper, middle, and lower reaches. Ground-truth classifi-
cations were derived by applying random forest classification to GF-1 imagery
and correcting with Google Earth (Kappa coefficient >0.93). Overall accuracy
(Eq. 4) and Kappa coefficient (Eq. 5) were then calculated for all four datasets
using ENVL

N
Ar= -2t x1
"= S0l x 100%

where Ar is the classification accuracy rate (%) and N_c is the number of
correctly classified verification points.

04 = Z=t
N

x 100%

where OA represents overall accuracy (%), n is the number of classes, N_ {ii} is
the number of correctly classified pixels, and N is the total number of samples.

_ N Z:;l Nii - Z;;l Ni+N+i

k 7
N2 — 21:1 Ni+N+i

where k is the Kappa coefficient, and N__{i+} and N_ {+i} represent the sums
of class i in the classified and validation data, respectively.

Additionally, field verification was conducted at 29 points to evaluate the Land-
sat_ {RFC} results for 2020 (Fig. 3).

2.3.2 LUCC Analysis

We calculated the area of each land use and cover type for each year (1991,
1995, 2000, 2005, 2010, 2015, and 2020) in ArcGIS. Based on these data, we
analyzed the proportional coverage of each type in 2020 and the spatiotemporal
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change characteristics from 1991 to 2020. Furthermore, we employed a land
use transition matrix to analyze conversions between different land use and
cover types. This two-dimensional matrix captures the dynamic conversion
relationships in the same region across different time periods, reflecting changes
in the quantity and direction of land use and cover [?, ?]. The formula is
expressed as:

where S_ {mn} is the area (km?) of land use and cover type m in the previous
period converted to type n in the later period, and k is the number of land use
and cover types.

2.3.3 Analysis of Influencing Factors of LUCC

Random forest is an ensemble learning algorithm proposed by Breiman [?] that
combines multiple decision trees. The method employs bootstrap resampling,
randomly selecting multiple samples with replacement from the original training
set to create new training subsets, then generating numerous classification trees
to form a random forest. Classification results for new data are determined
through majority voting across all trees. Feature importance is assessed by
observing each feature’s contribution to individual trees, calculating average
contributions, and comparing contribution levels [?, ?].

In LUCC driver analysis, scholars typically use multi-year averages of factors
such as Digital Elevation Model (DEM), precipitation, temperature, population,
GDP, evapotranspiration, distance to rivers and roads, nighttime light, and
surface soil moisture as independent variables [?, 7, 7, 7, ?]. We argue that
changes in these factors drive LUCC, allowing more accurate consideration of
multiple factor impacts. The analysis was completed using the Sklearn library
from Python’s random forest package. We used the difference in each influencing
factor between the beginning and end years of a period as independent variables;
for example, the difference between 2020 and 2015 precipitation values was used
for analyzing 2015-2020 LUCC drivers. Due to data limitations, surface soil
moisture and population data were included starting in 2000. The dependent
variable was constructed using land use and cover classification results from
period beginning and end years in an ‘xy’ format, where ‘x’ represents the initial
year classification and ‘y’ represents the final year classification. Importance
values of influencing factors were obtained for six periods (1991-1995, 1995—
2000, 2000-2005, 2005-2010, 2010-2015, and 2015-2020) and averaged to derive
comprehensive results for 1991-2020.
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3.1 Land Use and Cover Classification and Accuracy Assessment Re-
sults

The Landsat_ {RFC} datasets from 1991 to 2020 were generated using random
forest classification and visual interpretation according to the classification sys-
tem in Table 3. Notable land use and cover changes occurred during this period
(Fig. 4). Overall accuracy and Kappa coefficients were calculated for all seven
years, with overall accuracy exceeding 91.10% and Kappa coefficients greater
than 0.84. Generally, Kappa values above 0.75 indicate high model effective-
ness and accuracy [?], confirming the reliability of our classification results.

Comparative validation of Landsat_ {RFC} (2015) against the three other
datasets revealed superior performance (Table 4). Landsat_ {RFC} achieved a
classification accuracy rate of 92.01%, outperforming all comparative datasets.
In partial validation across upper, middle, and lower reaches, Landsat_ {RFC}
(2015) also achieved the highest accuracy, with overall accuracy values
of 76.05%, 67.66%, and 84.33%, respectively. Field verification in 2020
showed high agreement between Landsat_ {RFC} and ground-truth features,
confirming high classification accuracy.

3.2 Land Use and Cover Pattern in 2020

In 2020, bare land dominated the Shiyang River Basin, covering 49.05% of
the total area, followed by grassland (33.90%), cropland (10.48%), and forest
(5.23%) (Fig. 5). In the upper reaches, grassland, forest, and bare land ac-
counted for 98.21% of the area, with proportions of 72.13%, 18.51%, and 7.57%,
respectively. In the middle reaches, bare land (41.57%), grassland (33.17%),
and cropland (22.61%) comprised the major land types. The lower reaches were
dominated by bare land (84.42%), with grassland (7.43%) and cropland (7.13%)
as secondary types (Fig. 5). As shown in Figures 4 and 6, bare land was pri-
marily distributed in the lower reaches; grassland was concentrated in the upper
and middle reaches; cropland and impervious surfaces were mainly in the middle
reaches; forest and glacier were predominantly in the upper reaches; wetland was
primarily found in the lower reaches; and water bodies were relatively evenly
distributed across all three sub-regions.

3.3 Spatiotemporal Analysis of LUCC During 1991-2020

NDVI serves as a crucial remote sensing indicator for vegetation monitoring and
land use/cover assessment [?]. Understanding NDVTI variations is paramount for
targeted land use and cover restoration and conservation efforts [?]. Analysis
revealed an overall increasing NDVI trend in the Shiyang River Basin from
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1998 to 2019 (Fig. 7), indicating positive ecological development. Among sub-
regions, the upper reaches exhibited the fastest rate of change, more than double
that of the entire basin.

LUCC dynamics are illustrated in Figures 8 and 9. From 1991 to 2020, bare
land decreased by 3408.7 km?, primarily in the middle (-2672.2 km?) and lower
(-998.5 km?) reaches, though it increased by 262.0 km? in the upper reaches.
Despite bare land being predominantly distributed in the lower reaches (Fig.
6), the most significant changes occurred in the middle reaches. Grassland area
decreased by 1122.3 km? from 1991 to 2010, mainly in the upper reaches, then
increased by 2438.0 km? from 2010 to 2020, with gains concentrated in the upper
and middle reaches. Cropland area increased by 1649.6 km? from 1991 to 2010,
then decreased by 618.5 km? from 2010 to 2020, with changes primarily in the
middle and lower reaches. Forest area increased by 769.8 km? overall, mainly in
the upper reaches. Impervious surface area increased by 365.7 km?, primarily
in the middle reaches. Wetland and glacier areas decreased by 67.1 km? and
9.9 km?, respectively, with wetland loss concentrated in the lower reaches and
glacier reduction in the upper reaches. Water body area decreased by 9.7 km?
from 1991 to 2000 (mainly -7.4 km? in upper reaches), then increased by 13.0
km? from 2000 to 2020, with gains primarily in the lower reaches.

The land use and cover transfer diagram (Fig. 10) reveals that decreased bare
land was primarily converted to grassland, followed by cropland. Cropland
expansion from 1991 to 2010 resulted mainly from conversion of bare land and
grassland, while post-2010 reductions were attributed to conversion back to bare
land and small amounts of impervious surface. Grassland transformed into
bare land and cropland from 1991 to 2010, but increased after 2010 through
conversion from bare land. Continuous impervious surface expansion primarily
resulted from conversion of bare land and cropland. Decreasing glacier area
was mainly transformed into bare land. Water body changes involved mutual
conversion with bare land. Generally decreasing wetland area was converted
to bare land. The overall increasing forest trend resulted from conversion from
grassland.

3.4 Analysis of the Influencing Factors of LUCC

The random forest importance ranking method assessed factor importance
across the entire basin and three sub-regions (Fig. 11). Basin-wide, LUCC was
primarily influenced by precipitation (32.41%), evapotranspiration (22.12%),
temperature (21.89%), and population (19.65%). In the upper reaches, drivers
included precipitation, population, evapotranspiration, and temperature. In
the middle reaches, population became the primary factor, exceeding natural
factors in importance. In the lower reaches, surface soil moisture (32.96%) was
the most influential factor, followed by population, precipitation, and tempera-
ture. Overall, precipitation exerted greater influence than evapotranspiration
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and temperature, while among anthropogenic factors, population had the most
significant impact, particularly in the middle reaches.

4. Discussion

4.1 Analysis of the Influencing Factors of LUCC from the Aspect
of Land Use and Cover Types Our random forest classification revealed
distinct change trends among land use and cover types (Fig. 8). Bare land
area decreased overall as various crops were cultivated and urban construction
expanded onto bare land to meet human needs and pursue rapid economic de-
velopment [?]. Fluctuating climate conditions (Fig. 12) caused mutual conver-
sion between bare land and grassland, particularly at their boundaries. Climate
change indirectly affects vegetation cover [?], and before the 2010 turning point,
accumulated precipitation and temperature created more favorable water and
thermal conditions that promoted plant growth, increased evapotranspiration,
and facilitated conversion of bare land to grassland.

Cropland area initially increased then decreased, with a turning point coincid-
ing with that of grassland. Forest area showed an upward trend. The “grain-
oriented” ideology proposed in the late 1990s and rural tax reduction policies
implemented in 2006 promoted reclamation of abandoned land, increasing grain
production and converting grassland to cropland [?, ?]. Additionally, China’s
Western Development Strategy and Grain for Green Program, initiated in 2000,
transformed steep croplands (slopes >25°) and bare land into forest and grass-
land to restore ecosystems [?].

Impervious surface area continued to increase, driven by population growth and
urban development. Field inspections in 2015 revealed numerous photovoltaic
installations to meet growing energy demands [?]. Water body area initially de-
creased, reaching a minimum around 2000, then increased, while wetland area
decreased. Excessive water resource exploitation during rapid economic devel-
opment reduced water area [?], but the 2007 “Restoration Plan for the Shiyang
River Basin” approved by the Chinese government initiated management and
protection measures that increased water area [?]. However, continued human
activities slowly reduced water body area in the middle reaches. Wetland de-
crease may be attributed to warming climate [?]. Glacier area decreased steadily
due to climate change, consistent with Qilian Mountains trends [?].

Our land use and cover type trends, except for forest, align with existing re-
search [?, ?, ?, ?]. While some studies found declining forest area [?, ?], ours
showed increasing forest, consistent with Yang and Huang’s [?] national-scale
analysis of China from 19852019, validating our classification accuracy despite
discrepancies likely arising from classification standard and study area varia-
tions.
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4.2 Analysis of the Influencing Factors of LUCC at the Sub-Regional
Level The random forest importance ranking method identified core influenc-
ing factors across the basin and sub-regions. A distinguishing feature of this
study is using inter-annual differences rather than constants as variables. Pre-
cipitation, temperature, evapotranspiration, and population emerged as main
drivers (Fig. 11), with policies exerting significant impacts. These findings align
closely with previous Shiyang River Basin studies identifying climate, popula-
tion, topography, and policy as primary LUCC factors [?, ?, 7, 7, 7], suggesting
high reliability.

In the whole basin and upper/middle reaches, precipitation, temperature, evap-
otranspiration, and population were primary drivers. Climate change affected
bare land-grassland interconversion, glacier reduction, and water body changes,
while population influenced impervious surface expansion and cropland changes,
with policies also playing roles [?, 7, ?, 7, 7, ?]. In the middle reaches, cropland
and impervious surface accounted for 69.51% and 84.73% of their respective
total basin areas, and population impact on LUCC was greater than in other
sub-regions.

In the lower reaches, surface soil moisture, temperature, precipitation, and pop-
ulation were key factors. Bare land, grassland, and cropland occupied large
proportions, with bare land comprising 85.80% of the sub-regional area. The
limited grassland and cropland coverage restricted soil moisture retention and
evaporation reduction capacity [?]. Recent ecological governance initiatives such
as “Ant Forest” have alleviated land degradation and desertification [?], while cli-
mate change enhanced soil moisture retention. Increased rainfall and decreased
evaporation raised surface soil moisture, facilitating conversion from bare land to
grassland and cropland [?, ?]. Human activities constrained impervious surface
expansion and cropland changes. Furthermore, the 2002 promotion of Mingin
Liangucheng Nature Reserve to National Nature Reserve status significantly
enhanced vegetation cover, mitigated desertification, and improved the ecologi-
cal environment [?], contributing to bare land reduction and grassland increase
after 2000.

5. Conclusions

This study analyzed the Shiyang River Basin using ArcGIS, ENVI, Python
programming, and random forest classification to generate land use and cover
datasets from 1991-2020. The classification process integrated Google Earth
imagery, band combinations, and vegetation fractional coverage to enhance ac-
curacy. We analyzed the 2020 spatial distribution, temporal changes, and tran-
sitions of land use and cover types from 1991-2020, and assessed natural and
anthropogenic factor influences using random forest importance ranking.

1. Classification Accuracy: Random forest classification of land use and
cover in the Shiyang River Basin from 1991-2020 demonstrated high ac-

chinarxiv.org/items/chinaxiv-202402.00215 Machine Translation


https://chinarxiv.org/items/chinaxiv-202402.00215

ChinaRxiv [$X]

curacy, with overall accuracy exceeding 91.10% and Kappa coefficients
greater than 0.84 for all years. Landsat_ {RFC} outperformed the three
comparative datasets (AGLC-2000-2015, GLC_{FCS30}, and CLCD) in
both overall and partial validations.

2. Dominant Land Types: Bare land, grassland, and cropland were the
main land use and cover types, accounting for over 90.00% of the basin
area. The upper reaches were dominated by grassland, forest, and bare
land, while the middle and lower reaches were dominated by bare land,
grassland, and cropland. The lower reaches featured an exceptionally high
bare land proportion (84.42% in 2020).

3. Temporal Trends: Bare land area decreased overall, with changes con-
centrated in the middle and lower reaches. Grassland area initially de-
creased then increased, while cropland area initially increased then de-
creased. Grassland changes occurred mainly in the upper and middle
reaches, whereas cropland changes were in the middle and lower reaches.
Forest and impervious surface areas increased primarily in the upper and
middle reaches, respectively. Wetland and glacier areas decreased in the
lower and upper reaches, respectively. Water body area initially decreased
then increased across all sub-regions.

4. Driving Factors: LUCC was influenced by both natural and anthro-
pogenic factors. Precipitation, evapotranspiration, temperature, and pop-
ulation were primary drivers in the upper and middle reaches, while sur-
face soil moisture, population, precipitation, and temperature dominated
in the lower reaches. Policy factors also significantly influenced LUCC in
the Shiyang River Basin.

These findings deepen understanding of LUCC trends and drivers in the Shiyang
River Basin, providing scientific significance for regional sustainable develop-
ment and a foundation for related research in similar arid and semi-arid regions.
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