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Abstract

This paper studies the regularity of weak solutions to non-degenerate divergence
form subelliptic equations on the Heisenberg group. Based on more general
assumptions on the coefficient matrix, this paper establishes, for both homo-
geneous and inhomogeneous cases, horizontal Calderén-Zygmund estimates for
weak solutions in Besov spaces. The research in this paper will enrich and
develop the nonlinear Calderén-Zygmund regularity theory on the Heisenberg

group.
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Abstract

In this paper, we study weak solutions to non-degenerate sub-elliptic equations
in the Heisenberg group and investigate the regularity of these solutions. We
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establish horizontal Calderén-Zygmund type estimates in Besov spaces under
more general assumptions on the coefficients for both homogeneous and non-
homogeneous equations. This work expands the Calderén-Zygmund theory in
the Heisenberg group.
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Introduction

The main purpose of this article is to study Besov regularity of weak solutions
to a class of sub-elliptic equations of the type

divy Az, Xu) =0 (1.1)

and
divy A(z, Xu) = divy (|[FIP2F)  (1.2)

in Q, where  is an open and bounded subdomain in the Heisenberg group
H® = R (n > 1). We refer to (1.1) and (1.2) as the homogeneous and
non-homogeneous equations, respectively. The unknown u belongs to the local
horizontal Sobolev space H Wli;cp (), which will be defined in Section 2. In both
equations, the horizontal divergence operator divy and the horizontal gradient
X are defined by

17 1)

2n
divg F =Y X,F,, Xu= (X, X, Xop 1t Xpp 1)
i—1
in the distributional sense. Moreover, A : Q x R?® — R2" is assumed to be
a Carathéodory vector field satisfying general growth and uniform ellipticity
conditions, meaning there exist constants v, L,k > 0 and 0 < p < 1 such that

p—

[Az,€) — Al )] - (€ —n) > v (12 + 6P + [n2) 7 |€—nl2,

Az, €) — Az, )| < L (2 + |67 + [n?) ™ |€— ),
)‘”%1

Az, &)| <k (u® + €[
for every £,m € R?" and almost all z € . In (1.2), F : Q — R?".

The regularity of solutions to elliptic equations in Euclidean spaces R™ has been
well studied by Iwaniec [10], DiBenedetto and Manfredi [7]. This theory was
subsequently extended to general elliptic problems; see the relevant papers [11,
12, 4, 3]. For nonlinear Calderén-Zygmund estimates in the Heisenberg group,
Goldstein and Zatorska-Goldstein [8] treated the quadratic case p = 2. Later,
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HW?bP estimates for sub-elliptic equations on H™ were proved by Mingione,
Zatorska-Goldstein and Zhong [14], who considered equations of the form

divy[b(z)a(Xu)] = divy (|F[P2F)

with b € VMO,,.(9).

Currently, research has focused on regularity estimates for weak solutions in
Besov spaces in both R™ and H™ (]2, 6, 9]). Besov spaces constitute a broader
class of functions compared to classical Sobolev spaces. Baisén [1] treated non-
linear elliptic equations in divergence form and obtained Besov regularity esti-
mates for weak solutions. Clop [5] and Lyaghfouri [13] extended these Besov
space results by establishing higher integrability of weak solutions.

For the homogeneous case (1.1), we assume there exists a function g € L*()
(0 < a < 1) such that

p—1
2

A2, ) = Ay, )| < dee(,y)*(9(x) + 9(y) (1 + [€]%)

for almost every z,y € Q and all £ € R*™. Here do(z,y) denotes the CC-
distance between points x and y in H".

For the non-homogeneous case (1.2), we assume there exists a sequence of mea-
surable non-negative functions g, € L%(Q) (k € N, 0 < o < 1) satisfying

Z ”gk”qLa(Q) <oo (1<g<o0)
k=1

and

p-1
|A(z,€) — Ay, §)| < dee(@,y)*(g(x) + g5 (y)) (1® + [€7) 2

for ¢ € R?" and almost all z,y € Q such that 2% < doo(z,y) < 27FFL

Following (A5), we abbreviate this as {g;}, € ¢1(L*(R2)).

By introducing the auxiliary function

—2

V(E) =+ *  (1.3)
with £ € R?", we present the main results of this article.

Theorem 1.1. Let 0 < a < 1 and 2 < p < 4. Assume that A satisfies
hypotheses (A1)-(A4) with 0 < p < 1. Ifu € HVV&)S(Q) is a weak solution to
(1.1), then V(Xu) € By () locally.

Theorem 1.2. Tlet 0 <a<1,2<p<4,and 1 <¢g< Q%Q2a' Assume that
hypotheses (A1)-(A3) and (A5) hold. If u € HWI%)f(Q) is a weak solution to
(1.2) with 0 < g < 1 and |F|P72F € Bg (Q), then V(Xu) € B (Q) locally.

See Section 2 for the definitions of HW'?(Q) and Bg ().
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The contribution of our main results is the study of a broad class of sub-elliptic
equations in the Heisenberg group. Our aim is to obtain Besov regularity es-
timates for weak solutions. The hypotheses (A1)-(A4) (or (A5)) represent an
extension of VMO conditions.

This article is organized as follows. In Section 2 we provide definitions and tools
such as classical inequalities, and present two lemmas concerning reverse Holder
type inequalities for weak solutions. In Sections 3 and 4 we give the proofs of
Theorem 1.1 and Theorem 1.2, respectively.

2.1 Heisenberg Group

In this section we collect basic notation and preliminaries for the Heisenberg
group.

We denote by (z,t) = (21,25, ..., Ty, t) the coordinates of points in the Heisen-
berg group H”. The group structure on H” is given by

n
(T1, T, ey Tops 1)o(Yrs Yoy ov s Yo, S) = (xl + Y1, To + Yoo oo Loy + Yop, t + 5+ Z<xjyn+j = Ty 5Y5)

J=1

An anisotropic dilation induces a homogeneous norm (gauge) on (x,t) by

(@) = (jalt + )"

For j =1,...,n, we define the left-invariant vector fields
0 Tpyj O 0 x; 0 0
X =— - - = J_ . T=_
i 9r, T2 ot T oz, 20 ot

which form a basis of the space of left-invariant vector fields on H™. The vec-
tor fields X, X, ..., X5, are called horizontal vector fields. The length of the
horizontal gradient is then given by

2n
Xul? = (Xu)
J=1

2.2 CC-distance and CC-Balls

By considering the well-known Carnot-Carathéodory metric with CC-distance
doco, we define CC-balls by

Bg(zg) ={y € H" | doe(wg,y) < R}

with center x, and radius R. Introducing the homogeneous dimension @) =
2n + 2, we obtain the Lebesgue measure of a CC-ball |By(x,)| ~ R?.
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2.3 Horizontal Sobolev Spaces and Besov Spaces

Let LP(H™) denote the Lebesgue space on the Heisenberg group. The dual space
of LP(H"™) is LP (H™) where % + % = 1. The horizontal Sobolev space with its
norm is defined by

HWYP(Q) ={u € LP(Q) : Xu € LY}, ul gwiriq) = [l o) +1Xul Lo ()

A function u belongs to HVVI})f(Q) if u e HW1P(Q) for every Q, € Q.

Let the parameters satisfy 0 < a <1, 1 < p < 0o, and 1 < ¢ < co. The Besov
spaces By () (2 C H") with their norm are defined via [16] as

”uHBO‘pyq(Q) = HUHLP(Q) + [u]BQP,q(Q>7

where the seminorm [u] Ba, (@) 1S given by

1/q
HAhuH%P(Q> dh
_— , 1< g < o0,
(e, o0 = . =i

P.q ‘

|AhuHLP(Q)
Ire— q =00
h0 |hle 7

In this article, we write A,u = u(x + h) — u(z) for brevity.

2.4 Basic Tools
For every € > 0, there exists C(e) > 0 such that for all s,¢ >0,

st <es? +C(e)t?, (2.1)

which is the classical Young inequality, where 1% + :z% = 1. In particular,

ab <ea® + C(e)b?.  (2.2)

Let By € H" be a CC-ball and f an integrable function on Bp. We define the
average of f over the CC-ball By as

1 T €Tr =~ 7Q T X. .
(e, /BRf()d R /f()d (2.3)

~ |Bgl B
We present the definition of weak solutions. If for any ¢ € C§°(Q),
/A(az,Xu) Xodr = / |FIP2F - X¢dz, (2.4)
Q Q

then u € HWlif(Q) is a weak solution to (1.2). Here we call ¢ a test function.
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2.5 Reverse Holder Type Inequalities

The higher integrability estimates for Laplace and p-Laplace equations are well
known (see [10] and [7]). In the Heisenberg group, we have the following two
results for homogeneous and non-homogeneous situations (see [14]).

Lemma 2.1. Let u € HW'P(Q) with 2 < p < 4 be a weak solution to (1.1)
under hypotheses (A1l)-(A4). There exists a constant c¢(n,p, v, k, L), indepen-
dent of u, the solution w, and the vector field A(z, Vu), such that the following
inequality holds for any CC-ball By € (:

1 o 1
— | Xu|P dx <c /
(|BR| Br [Barl Jp

Lemma 2.2. Let v € HW'P(Q) with 2 < p < 4 be a weak solution to
equation (1.2). Assume that (A1)-(A3) and (A5) hold. If F € L{ (Q), then
Xu € Li (), where ¢ € (p,00). Moreover, there exists a positive constant

C(n,p,v,L,q,a) such that

1 1/q 1 1/p 1 1/q
—/ | Xu|?dz <C 7/ (1 + | Xu|)P dx +C 7/ |F'|9 dx (2.6)
|Brl Jg, [Barl Jp,, 1 Barl Jp,,,

for any CC-ball By € (2.

1/p
(1 + | Xul)P dx) . (2.5)

2R

3 Proof of Theorem 1.1

In this section we present the proof of Theorem 1.1. Inspired by [5], for the
vector field A(z, &) appearing in (1.2), we introduce for ¢ € R?” and a CC-ball
BcCc:

Ap(6) = ﬁ [g Al &) dx, (3.1)
and define

A — A
V(x,B) = sup A, ) Ji(lg)l, (3.2)
cern (2 +[€)"T
where B C Q is a CC-ball and z € Q. It follows that if A : Q x R?™ — R?" is a

Carathéodory vector field such that (A1)-(A4) hold, then A is locally uniformly
in VMO, that is,

1

lim sup — / V(xz,B)dx =0, (3.3)
R0 o(Bjek,r(B)<R | Bl Jg (

where K € 2, and ¢(B) and r(B) denote the center and radius of the CC-ball

B, respectively.

To prove Theorem 1.1, we note that there exists a constant C > 0 such that

p—2

CH(E®+ €2+ ) Je=nl> < |VE)-V () < C (u® +|€]> + \WIQ)%Q |€&—n[%,  (3.4)
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for any &,m € R?" with |€ —n| # 0.
We are now ready to present the proof.

Proof of Theorem 1.1. Let By € € and choose a test function ¢ =
A_,(n?Ayu) for (1.1), where n € C§°(Bsg) is a cutoff function satisfying
0<n(x)<1,n(x)=1forz € By, n(xz) =0forz € Byp Byg,and | Xn| < C/R.

Testing (1.1) with this ¢ yields

/[A(Jc +h, Xu(x + h)) — A(x + h, Xu)] - n?A, Xudr = G, + Gy + G5 + G,
Q

where

G, = /[A(:E + h, Xu(z + h)) — Az + h, Xu)] - n*A, Xudz,
Q

Gy = /[A(x,Xu) — Az + h, Xu)] - n*A, Xudz,
Q

Gy = /[A(:z: + h, Xu) — A(z + h, Xu(z + h))] - 2nXnA,udz,
Q

G, = /[A(x, Xu) — Az + h, Xu)] - 2nXnApudz.
Q

We estimate each G, (1 <i <4). By (Al), it is clear that

G, > 1// (12 + [ Xu(z + B2 + | Xu2)'T |A, Xul?n2dz. (3.5)
Q

For G, using (A4) and (2.2), we obtain

p-1

|G| < C/ Rl (g(x) + g(z + h) (12 + [ Xuf?) = |A), Xuly® da
Q

<e / (12 + | Xuf?) ® A, Xul?n? da+C(e) |2 / (g(@)+g(a+h)) (12 + | Xu2)® do, (3.6)
Q Q

where € > 0 will be chosen later. By (A2) and (2.2), we deduce that

p=2
|Gl SC/(M2+\XUI2+|XU<w+h)I2) © AR XulnXnl|Ayul| dx
Q

p=2 p_2
<e / (12 + [ Xul? + [Xu(z + W)2) " A, Xuln? det+C(e) / (12 + [ Xul? + [ Xu(z + D)2 (X0 A,ul? da.
Q Q

Applying the Lagrange Mean Value Theorem, we obtain

p—

p=2
S ade<cpl [

Boryn

p=2
[ 4130 4 Xt 4 W) T P Al de < CIAP [ 2+ 210
Q Baprjn|
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To estimate G, hypothesis (A4) and (2.2) give

Gl <c / 1 (gla) + gz + b)) (42 + | Xu2) T | Xn|| Ayl da

< 6/ (1 + IXU\Q)P%UQIAhU\QdHC(&)\hIQ"‘/(g(w)+9(x+h))2 (12 + |Xul)® dz. (3.9)
Q Q

Here we note that

/(,u + | Xul?) "= n |Ahu|2dx<C\h|2/ (1 + | Xu|)Pdx. (3.10)
Q Bariinl

Combining the estimates for GG, and choosing ¢ sufficiently small, we obtain

/(;ﬂ + 1 Xu(z+ B + [ Xuf2) T A, Xul?p? de < C|h|2a/(g(x)+g(x+h))2 (12 + | Xuf?) ¥ d:c+C|h|2/

Q Q Barijn|
By the definition of V" and (3.4), we have
AL V2 < C (0% + | Xu(x + h) > + | Xul? ) |Ath|2 (3.12)

Integrating both sides of (3.12) over By and applying the properties of 1, we
get

/ A,V |2dx<C/ (12 + | Xu(z +h)|2+|Xu|) |A Xul?n? dx
B

R

< C|h|20‘/ﬂ(g(x)+g(x+h))2 (u? + \Xu|2)g dx+Ch|2/B (p+|Xul)P dz. (3.13)

2R+|h|

Dividing both sides of (3.13) by |h|?®, we obtain

A V2 P
/ ];'2&' de < C / 2)+g(@+h))? (42 + | Xul?)* da+Clh[* 2 / (| Xul)? dz = Pi+Py. (3.14)
BR

Bapryin|

Finally, we show that P, is bounded for each i. By Lemma 2.1, we have | Xul? €
LY(Q) for some ¢ > 1. In particular, | XulP € Lo (©). Choosing 0 < |h| < d <
R and using (A4), we obtain

Py < Cloleie |02+ X)) g

Since u € HW,.P(Q), we have P, < co. It follows that

ALV
sup 5o dr < 00,
|h|<é JBL |h|

that is, V(Xu) € BS (Q) locally.
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4 Proof of Theorem 1.2
For the non-homogeneous case, we need the following lemma.

Lemma 4.1. Let A : Q x R?® — R2" be a Carathéodory vector field such that
(A1)-(A3) and (A5) hold. Then A is locally uniformly in VMO, that is,

1
lim sup — / V(z,B)dx =0, (4.1)
R0 o(Bjek,r(B)<R | Bl J5 (

where V(x, B) is given in (3.2), K € Q, and ¢(B) and r(B) denote the center
and radius of the CC-ball B, respectively.

Proof. Given a point x € , let A, (z) = {y € Q: 27% < doc(z,y) < 2751}
We obtain

— [ V(e,Bdr< — [ s LN g d

L C@Qo)
|B|

Z/ doc(x,y)* (9 (®) + gx(y)) dy dz.
k YBNAL(z)

By Hoélder’s inequality, we acquire

1

Bl (gr(x) + g1 (y)* dy dz < C(Q, a, ¢)| B|” 2 | gg| Lo (-
| | BNA(x)
Choosing r > 0 small enough and observing that « + |g,| Lo (B, (z)) 18 continuous
on the set {x € Q : dist(x,0) > r}, we find that for each z, € K with r
sufficiently small,

Hgk Le(B,(z,)) —0 asr—0.

Each of the limits on the right-hand side equals zero, which completes the proof.
With the help of the preceding lemma, we can now prove Theorem 1.2.

Proof of Theorem 1.2. Assume that By € € and choose a test function
¢ = A_,(n*Apu) for (1.2), where n € C5°(Q) is a cutoff function satisfying
0<n(x)<1,n(z)=1forz € By, n(z) =0forz € Byp Byg,and | Xn| < C/R.
According to the definition of weak solution and our choice of test function, we
obtain

[A(z + h, Xu(z + h)) — A(x + h, Xu)] - n?A, Xudz
Q

+/[A(x,Xu) — Az + h, Xu)] - n*A, Xudx
Q

+ /[A(x + h, Xu) — A(z + h, Xu(xz + h))] - 2nXnA,udx
Q
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+ /[A(l‘,X’U,) — Az + h, Xu)] - 2nXnA,udz
Q

= / |F|”_2F~277Xr]Ahudx+/|F|”_2F~772Athdx,
o) o)

which we denote as G| + G, + G3 + Gy = G5+ Gy, (4.2)

We have already estimated the terms G through G, in the proof of Theorem
1.1. Thus it remains to estimate G5 and Gy.

Applying (2.2), we get

G5l < C / AL (FP2F)|| Ayl de
Q

< Clh|* / |F 2P~V dg + c/ |A,ul?n? da.
Q Q
By the Lagrange Mean Value Theorem, the second term can be controlled by

/|Ahu|2n2 dz < C’|h\2/ (4 | Xu|)Pde.  (4.3)
() B

2R+|h|
For the estimate of G, we have

Gol <€ [ 18(FP=2F) 1A, Xul? do
Q

< C|h|2a/|F|2<P-1> d:c+5/|Ath\2n2 dz. (4.4)
Q Q

Similarly, one obtains

p—2

/ |A, Xu|>n? de < pP=2 / |A, Xul?*n? dx < / (02 + [ Xu(z + h)|? + | Xu|?) * |A,Xu*>p?dx.  (4.5)
) Q o)

Combining the estimates for G;, we have

p—2
(1/—25)/(ﬂ2+|Xu(x+h)|2+|Xu|2) > AL Xul?n? dx
0

< / (g4(@)Hgx (2 +h)? (12 + | XuP) de+Cpppe / FPO-Y dz - O|h|? / (et Xul do. (4.6)
Q B.

Q 2R+|h|

Choosing € = v/4, we obtain

-2
[ Xuto 4 P+ xX0?) T |8, Xul do
Q
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<l [ (o ranarh)? (2 + 1Xu?) doscine [1PPO darC [ GetXu)rde. (47
Q Q B

2R+|h|

Using (1.3) and (3.4), we have
b2
A V2 < C(p? + [Xu(z + h)P + [ Xul?) * |4, Xul?. (4.8)

From (4.7), it follows that

/ AL V|2 dx < C|h|2/
B

R Bsryn Q

(s Xul)? da+ClhPe / (g(@) Hg (2 +1)? (12 + | XuP)F de+ Ol / G
Q

Dividing both sides of (4.9) by |h|>** and applying the properties of 1, we derive

AL V]2
/ 2.V dx<C|h|2_20‘/
B, PP
R

BaRin|

P
(r+Xul)? do+C [ (gy(o)+u(oh)? (2 +1Xu)F dar [ 1200 da,
Q Q

Taking the 1/2 power, we obtain

1/2
2
|Ahv‘ dz §O|h|170‘
|h|2a
Bpr B

+C (/Q(gk(x) + gi(x + h))? (p? + \Xu|2)% dx) 1/24—0 </Q |F|2(p—1) da:) 1/2. (4.11)

1/2
(n+ Xu|>Pdo:)

2R+|h|

Restricting to Bs with 0 < |h| < § and taking the L? norm with respect to the
measure %, we obtain

/2
/ /|Ahv2 T an
°a dx —
Bs \Up, | |h|

R

a/2
scf e[ Grixapas) oo
Bs BzRHh,\ |h‘

2(,.2 o5 9/ dh v
(/Q(gk($)+9k($+h)) (u? + | Xul?) da;) |h|Q)

Q/2 dh l/q
/ (/ |F2<P1)dx) IhQ) = P+ P,+ P;. (4.12)
B Q

1/q
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We shall show that each P; (1 < < 3) is bounded. Since |[F|P"?F € Bg ()

and 1 < ¢ < Q{—%a, we have |F|P72F € Lo (). By Lemma 2.2, we get
2

| Xu|P~2Xu € L@ % (), which implies |Xu|? € L& (Q).

To estimate P, we write the L? norm in polar coordinates. There is no harm
in assuming § = 1, so h € B; NR?" is equivalent to h = r{ with 0 < r < 1 and ¢
in the unit sphere S?"~1. Let do(€) be the surface measure on S2"~1. Setting
r, = 27F, we estimate P, as

[e'e} Tl p
P <Cy / g+ 79 + (DGR + X)L, 7 do(€) dr.
k=0 Yryq V52"

Since | Xu|P € L&(Q) and g, € L*(Q2), we have

2 2\ 2 2 2\ 2
I(gr (+rE)+g1 () (W +1Xul*) 2 | 1, ) < N9k (ATE)+98 () Lo (B, ) (17| Xul )QHLQ%(BzR).
Moreover,

94+ 7€) + 0Oy < b8, 0 + 196y < 2004 o,

for each &€ € S?" ! and ry, <r <7y, where ’ER = B3p. Therefore,

2 2\2 _
P <Ol + XuP)E] g Wil ) < o

In the Heisenberg group, a direct calculation gives

4
[ Qs = Claa.Q) [ o0 dp < o,
BgsNH™ 0

provided (1 — «)g > 0, which holds by our assumptions.
Since u € HW?(Q), we deduce that

1/q
P,<C / |h|(1-)-Q g, /
B B

Finally, because |F[P~>F € By (), we have

1/2
(p+ | Xul)P dm) < 00.

2R+|h|

P, = C||F]F| < .

La(8iL2(By )

Therefore, we complete the proof of Theorem 1.2.

chinarxiv.org/items/chinaxiv-202402.00211 Machine Translation


https://chinarxiv.org/items/chinaxiv-202402.00211

ChinaRxiv [$X]

Acknowledgments

The authors are supported by the National Natural Science Foundation of China
(NNSF Grant No. 12001333) and Shandong Provincial Natural Science Founda-
tion (Grant No. ZR2020QA005).

References

[1] Baisén A. L., Clop A., Giova R., Orobitg J., Passarelli di Napoli A., Frac-
tional Differentiability for Solutions of Nonlinear Elliptic Equations, Potential
Analysis, 2017, 46: 1-23.

[2] Balci A. K., Diening L., Weimar M., Higher Order Calder6n-Zygmund Esti-
mates for the p-Laplace Equation, Journal of Differential Equations, 2020, 268
(2): 590-635.

[3] Byun S. S., Wang L., LP-estimates for General Nonlinear Elliptic Equations,
Indiana University Mathematics Journal, 2007, 56 (6), 3193-3222.

[4] Caffarelli L. A., Peral 1., On WP Estimates for Elliptic Equations in Diver-
gence Form, Communications on Pure and Applied Mathematics, 1998, 51 (1):
1-21.

[5] Clop A., Giova R., Passarelli di Napoli A., Besov Regularity for Solutions of
p-harmonic Equations, Advances in Nonlinear Analysis, 2017, 8 (1): 762-778.

[6] Dahlke S., Diening L., Hartmann C., Scharf B., Weimar M., Besov Regularity
of Solutions to the p-Poisson Equation, Nonlinear Analysis, 2016, 130: 298-329.

[7] DiBenedetto E., Manfredi J., On the Higher Integrability of the Gradient
of Weak Solutions of Certain Degenerate Elliptic Systems, American Journal of
Mathematics, 1993, 115 (5): 1107-1134.

[8] Goldstein P., Zatorska-Goldstein A., Calderén-Zygmund type estimates for
non-linear systems with quadratic growth on the Heisenberg group, Forum
Math, 2008, 20: 679-710.

[9] Hartmann C., Weimar M., Besov Regularity of Solutions to the p-Poisson
Equation in the Vicinity of a Vertex of a Polygonal Domain, Results in Mathe-
matics, 2018, 73 (41): 1-15.

[10] Iwaniec T., Projections onto Gradient Fields and LP-estimates for Degener-
ated Elliptic Operators, Studia Mathematica, 1983, 75 (3): 293-312.

[11] Kinnunen J., Zhou S., A Local Estimate for Nonlinear Equations with
Discontinuous Coefficients, Communications in Partial Differential Equations,
1999, 24 (11-12): 2043-2068.

[12] Kinnunen J., Zhou S., A Boundary Estimate for Nonlinear Equations with
Discontinuous Coefficients, Differential and Integral Equations, 2001, 14 (4):
475-492.

chinarxiv.org/items/chinaxiv-202402.00211 Machine Translation


https://chinarxiv.org/items/chinaxiv-202402.00211

ChinaRxiv [$X]

[13] Lyaghfouri A., Global Higher Integrability of the Gradient of the A-Laplace
Equation Solution, arXiv:2104.08831, 2021.

[14] Mingione G, Zatorska-Goldstein A, Zhong X., Gradient Regularity for El-
liptic Equations in the Heisenberg Group, Advances in Mathematics, 2009, 222
(1): 62-129.

[15] Musielak J., Orlicz Spaces and Modular Spaces, Lecture Notes in Mathe-
matics, Volume 1034, Springer, 2006.

[16] Triebel H., Theory of Function Spaces, Birkhduser Verlag, Basel, 1983.
Note: Figure translations are in progress. See original paper for figures.

Source: ChinaXiv — Machine translation. Verify with original.

chinarxiv.org/items/chinaxiv-202402.00211 Machine Translation


https://chinarxiv.org/items/chinaxiv-202402.00211

	Besov Estimates for Sub-elliptic Equations in the Heisenberg Group
	Abstract
	Full Text
	Preamble
	Abstract
	Introduction
	2.1 Heisenberg Group
	2.2 CC-distance and CC-Balls
	2.3 Horizontal Sobolev Spaces and Besov Spaces
	2.4 Basic Tools
	2.5 Reverse Hölder Type Inequalities
	3 Proof of Theorem 1.1
	4 Proof of Theorem 1.2
	Acknowledgments
	References


