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Abstract
This paper studies the regularity of weak solutions to non-degenerate divergence
form subelliptic equations on the Heisenberg group. Based on more general
assumptions on the coefficient matrix, this paper establishes, for both homo-
geneous and inhomogeneous cases, horizontal Calderón-Zygmund estimates for
weak solutions in Besov spaces. The research in this paper will enrich and
develop the nonlinear Calderón-Zygmund regularity theory on the Heisenberg
group.
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Abstract
In this paper, we study weak solutions to non-degenerate sub-elliptic equations
in the Heisenberg group and investigate the regularity of these solutions. We
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establish horizontal Calderón-Zygmund type estimates in Besov spaces under
more general assumptions on the coefficients for both homogeneous and non-
homogeneous equations. This work expands the Calderón-Zygmund theory in
the Heisenberg group.

Keywords: Heisenberg group; sub-elliptic equations; regularity; Besov spaces.

Mathematics Subject Classification (2020): 35R03, 35H20, 35J70.

*F. Zhou is the corresponding author.

Introduction
The main purpose of this article is to study Besov regularity of weak solutions
to a class of sub-elliptic equations of the type

div𝐻 𝐴(𝑥, 𝑋𝑢) = 0 (1.1)

and
div𝐻 𝐴(𝑥, 𝑋𝑢) = div𝐻 (|𝐹 |𝑝−2𝐹) (1.2)

in Ω, where Ω is an open and bounded subdomain in the Heisenberg group
ℍ𝑛 = ℝ2𝑛+1 (𝑛 ≥ 1). We refer to (1.1) and (1.2) as the homogeneous and
non-homogeneous equations, respectively. The unknown 𝑢 belongs to the local
horizontal Sobolev space 𝐻𝑊 1,𝑝

loc (Ω), which will be defined in Section 2. In both
equations, the horizontal divergence operator div𝐻 and the horizontal gradient
𝑋 are defined by

div𝐻 𝐹 =
2𝑛
∑
𝑖=1

𝑋𝑖𝐹𝑖, 𝑋𝑢 = (𝑋1𝑢, 𝑋2𝑢, … , 𝑋2𝑛−1𝑢, 𝑋2𝑛𝑢)

in the distributional sense. Moreover, 𝐴 ∶ Ω × ℝ2𝑛 → ℝ2𝑛 is assumed to be
a Carathéodory vector field satisfying general growth and uniform ellipticity
conditions, meaning there exist constants 𝜈, 𝐿, 𝑘 > 0 and 0 < 𝜇 < 1 such that

[𝐴(𝑥, 𝜉) − 𝐴(𝑥, 𝜂)] ⋅ (𝜉 − 𝜂) ≥ 𝜈 (𝜇2 + |𝜉|2 + |𝜂|2)
𝑝−2

2 |𝜉 − 𝜂|2,

|𝐴(𝑥, 𝜉) − 𝐴(𝑥, 𝜂)| ≤ 𝐿 (𝜇2 + |𝜉|2 + |𝜂|2)
𝑝−2

2 |𝜉 − 𝜂|,

|𝐴(𝑥, 𝜉)| ≤ 𝑘 (𝜇2 + |𝜉|2)
𝑝−1

2

for every 𝜉, 𝜂 ∈ ℝ2𝑛 and almost all 𝑥 ∈ Ω. In (1.2), 𝐹 ∶ Ω → ℝ2𝑛.

The regularity of solutions to elliptic equations in Euclidean spaces ℝ𝑛 has been
well studied by Iwaniec [10], DiBenedetto and Manfredi [7]. This theory was
subsequently extended to general elliptic problems; see the relevant papers [11,
12, 4, 3]. For nonlinear Calderón-Zygmund estimates in the Heisenberg group,
Goldstein and Zatorska-Goldstein [8] treated the quadratic case 𝑝 = 2. Later,
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𝐻𝑊 1,𝑝 estimates for sub-elliptic equations on ℍ𝑛 were proved by Mingione,
Zatorska-Goldstein and Zhong [14], who considered equations of the form

div𝐻 [𝑏(𝑥)𝑎(𝑋𝑢)] = div𝐻 (|𝐹 |𝑝−2𝐹)

with 𝑏 ∈ 𝑉 𝑀𝑂loc(Ω).
Currently, research has focused on regularity estimates for weak solutions in
Besov spaces in both ℝ𝑛 and ℍ𝑛 ([2, 6, 9]). Besov spaces constitute a broader
class of functions compared to classical Sobolev spaces. Baisón [1] treated non-
linear elliptic equations in divergence form and obtained Besov regularity esti-
mates for weak solutions. Clop [5] and Lyaghfouri [13] extended these Besov
space results by establishing higher integrability of weak solutions.

For the homogeneous case (1.1), we assume there exists a function 𝑔 ∈ 𝐿𝛼(Ω)
(0 < 𝛼 < 1) such that

|𝐴(𝑥, 𝜉) − 𝐴(𝑦, 𝜉)| ≤ 𝑑𝐶𝐶(𝑥, 𝑦)𝛼(𝑔(𝑥) + 𝑔(𝑦)) (𝜇2 + |𝜉|2)
𝑝−1

2

for almost every 𝑥, 𝑦 ∈ Ω and all 𝜉 ∈ ℝ2𝑛. Here 𝑑𝐶𝐶(𝑥, 𝑦) denotes the CC-
distance between points 𝑥 and 𝑦 in ℍ𝑛.

For the non-homogeneous case (1.2), we assume there exists a sequence of mea-
surable non-negative functions 𝑔𝑘 ∈ 𝐿𝛼(Ω) (𝑘 ∈ ℕ, 0 < 𝛼 < 1) satisfying

∞
∑
𝑘=1

‖𝑔𝑘‖𝑞
𝐿𝛼(Ω) < ∞ (1 ≤ 𝑞 < ∞)

and
|𝐴(𝑥, 𝜉) − 𝐴(𝑦, 𝜉)| ≤ 𝑑𝐶𝐶(𝑥, 𝑦)𝛼(𝑔𝑘(𝑥) + 𝑔𝑘(𝑦)) (𝜇2 + |𝜉|2)

𝑝−1
2

for 𝜉 ∈ ℝ2𝑛 and almost all 𝑥, 𝑦 ∈ Ω such that 2−𝑘 ≤ 𝑑𝐶𝐶(𝑥, 𝑦) < 2−𝑘+1.
Following (A5), we abbreviate this as {𝑔𝑘}𝑘 ∈ ℓ𝑞(𝐿𝛼(Ω)).
By introducing the auxiliary function

𝑉 (𝜉) = (𝜇2 + |𝜉|2)
𝑝−2

2 (1.3)

with 𝜉 ∈ ℝ2𝑛, we present the main results of this article.

Theorem 1.1. Let 0 < 𝛼 < 1 and 2 ≤ 𝑝 < 4. Assume that 𝐴 satisfies
hypotheses (A1)-(A4) with 0 < 𝜇 < 1. If 𝑢 ∈ 𝐻𝑊 1,𝑝

loc (Ω) is a weak solution to
(1.1), then 𝑉 (𝑋𝑢) ∈ 𝐵𝛼

2,∞(Ω) locally.

Theorem 1.2. Let 0 < 𝛼 < 1, 2 ≤ 𝑝 < 4, and 1 ≤ 𝑞 < 2𝑄
𝑄−2𝛼 . Assume that

hypotheses (A1)-(A3) and (A5) hold. If 𝑢 ∈ 𝐻𝑊 1,𝑝
loc (Ω) is a weak solution to

(1.2) with 0 < 𝜇 < 1 and |𝐹 |𝑝−2𝐹 ∈ 𝐵𝛼
2,𝑞(Ω), then 𝑉 (𝑋𝑢) ∈ 𝐵𝛼

2,𝑞(Ω) locally.

See Section 2 for the definitions of 𝐻𝑊 1,𝑝(Ω) and 𝐵𝛼
2,𝑞(Ω).
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The contribution of our main results is the study of a broad class of sub-elliptic
equations in the Heisenberg group. Our aim is to obtain Besov regularity es-
timates for weak solutions. The hypotheses (A1)-(A4) (or (A5)) represent an
extension of VMO conditions.

This article is organized as follows. In Section 2 we provide definitions and tools
such as classical inequalities, and present two lemmas concerning reverse Hölder
type inequalities for weak solutions. In Sections 3 and 4 we give the proofs of
Theorem 1.1 and Theorem 1.2, respectively.

2.1 Heisenberg Group
In this section we collect basic notation and preliminaries for the Heisenberg
group.

We denote by (𝑥, 𝑡) = (𝑥1, 𝑥2, … , 𝑥2𝑛, 𝑡) the coordinates of points in the Heisen-
berg group ℍ𝑛. The group structure on ℍ𝑛 is given by

(𝑥1, 𝑥2, … , 𝑥2𝑛, 𝑡)∘(𝑦1, 𝑦2, … , 𝑦2𝑛, 𝑠) = (𝑥1 + 𝑦1, 𝑥2 + 𝑦2, … , 𝑥2𝑛 + 𝑦2𝑛, 𝑡 + 𝑠 +
𝑛

∑
𝑗=1

(𝑥𝑗𝑦𝑛+𝑗 − 𝑥𝑛+𝑗𝑦𝑗)) .

An anisotropic dilation induces a homogeneous norm (gauge) on (𝑥, 𝑡) by

‖(𝑥, 𝑡)‖ = (|𝑥|4 + 𝑡2)1/4 .

For 𝑗 = 1, … , 𝑛, we define the left-invariant vector fields

𝑋𝑗 = 𝜕
𝜕𝑥𝑗

− 𝑥𝑛+𝑗
2

𝜕
𝜕𝑡 , 𝑋𝑛+𝑗 = 𝜕

𝜕𝑥𝑛+𝑗
+ 𝑥𝑗

2
𝜕
𝜕𝑡 , 𝑇 = 𝜕

𝜕𝑡 ,

which form a basis of the space of left-invariant vector fields on ℍ𝑛. The vec-
tor fields 𝑋1, 𝑋2, … , 𝑋2𝑛 are called horizontal vector fields. The length of the
horizontal gradient is then given by

|𝑋𝑢|2 =
2𝑛
∑
𝑗=1

(𝑋𝑗𝑢)2.

2.2 CC-distance and CC-Balls
By considering the well-known Carnot-Carathéodory metric with CC-distance
𝑑𝐶𝐶 , we define CC-balls by

𝐵𝑅(𝑥0) = {𝑦 ∈ ℍ𝑛 ∣ 𝑑𝐶𝐶(𝑥0, 𝑦) < 𝑅}

with center 𝑥0 and radius 𝑅. Introducing the homogeneous dimension 𝑄 =
2𝑛 + 2, we obtain the Lebesgue measure of a CC-ball |𝐵𝑅(𝑥0)| ≈ 𝑅𝑄.
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2.3 Horizontal Sobolev Spaces and Besov Spaces
Let 𝐿𝑝(ℍ𝑛) denote the Lebesgue space on the Heisenberg group. The dual space
of 𝐿𝑝(ℍ𝑛) is 𝐿𝑝′(ℍ𝑛) where 1

𝑝 + 1
𝑝′ = 1. The horizontal Sobolev space with its

norm is defined by

𝐻𝑊 1,𝑝(Ω) = {𝑢 ∈ 𝐿𝑝(Ω) ∶ 𝑋𝑢 ∈ 𝐿𝑝(Ω)}, ‖𝑢‖𝐻𝑊 1,𝑝(Ω) = ‖𝑢‖𝐿𝑝(Ω) +‖𝑋𝑢‖𝐿𝑝(Ω).

A function 𝑢 belongs to 𝐻𝑊 1,𝑝
loc (Ω) if 𝑢 ∈ 𝐻𝑊 1,𝑝(Ω0) for every Ω0 ⋐ Ω.

Let the parameters satisfy 0 < 𝛼 < 1, 1 ≤ 𝑝 < ∞, and 1 ≤ 𝑞 ≤ ∞. The Besov
spaces 𝐵𝛼

𝑝,𝑞(Ω) (Ω ⊂ ℍ𝑛) with their norm are defined via [16] as

‖𝑢‖𝐵𝛼𝑝,𝑞(Ω) = ‖𝑢‖𝐿𝑝(Ω) + [𝑢]𝐵𝛼𝑝,𝑞(Ω),

where the seminorm [𝑢]𝐵𝛼𝑝,𝑞(Ω) is given by

[𝑢]𝐵𝛼𝑝,𝑞(Ω) =

⎧{{
⎨{{⎩

(∫
ℍ𝑛

‖Δℎ𝑢‖𝑞
𝐿𝑝(Ω)

|ℎ|𝛼𝑞
𝑑ℎ

|ℎ|𝑄 )
1/𝑞

, 1 ≤ 𝑞 < ∞,

sup
ℎ≠0

‖Δℎ𝑢‖𝐿𝑝(Ω)
|ℎ|𝛼 , 𝑞 = ∞.

In this article, we write Δℎ𝑢 = 𝑢(𝑥 + ℎ) − 𝑢(𝑥) for brevity.

2.4 Basic Tools
For every 𝜀 > 0, there exists 𝐶(𝜀) > 0 such that for all 𝑠, 𝑡 ≥ 0,

𝑠𝑡 ≤ 𝜀𝑠𝑝 + 𝐶(𝜀)𝑡𝑝′ , (2.1)

which is the classical Young inequality, where 1
𝑝 + 1

𝑝′ = 1. In particular,

𝑎𝑏 ≤ 𝜀𝑎2 + 𝐶(𝜀)𝑏2. (2.2)

Let 𝐵𝑅 ⋐ ℍ𝑛 be a CC-ball and 𝑓 an integrable function on 𝐵𝑅. We define the
average of 𝑓 over the CC-ball 𝐵𝑅 as

(𝑓)𝐵𝑅
= 1

|𝐵𝑅| ∫
𝐵𝑅

𝑓(𝑥) 𝑑𝑥 ≈ 𝑅−𝑄 ∫
𝐵𝑅

𝑓(𝑥) 𝑑𝑥. (2.3)

We present the definition of weak solutions. If for any 𝜙 ∈ 𝐶∞
0 (Ω),

∫
Ω

𝐴(𝑥, 𝑋𝑢) ⋅ 𝑋𝜙 𝑑𝑥 = ∫
Ω

|𝐹 |𝑝−2𝐹 ⋅ 𝑋𝜙 𝑑𝑥, (2.4)

then 𝑢 ∈ 𝐻𝑊 1,𝑝
loc (Ω) is a weak solution to (1.2). Here we call 𝜙 a test function.
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2.5 Reverse Hölder Type Inequalities
The higher integrability estimates for Laplace and 𝑝-Laplace equations are well
known (see [10] and [7]). In the Heisenberg group, we have the following two
results for homogeneous and non-homogeneous situations (see [14]).

Lemma 2.1. Let 𝑢 ∈ 𝐻𝑊 1,𝑝(Ω) with 2 < 𝑝 < 4 be a weak solution to (1.1)
under hypotheses (A1)-(A4). There exists a constant 𝑐(𝑛, 𝑝, 𝜈, 𝑘, 𝐿), indepen-
dent of 𝜇, the solution 𝑢, and the vector field 𝐴(𝑥, ∇𝑢), such that the following
inequality holds for any CC-ball 𝐵𝑅 ⋐ Ω:

( 1
|𝐵𝑅| ∫

𝐵𝑅

|𝑋𝑢|𝑝 𝑑𝑥)
1/𝑝

≤ 𝑐 ( 1
|𝐵2𝑅| ∫

𝐵2𝑅

(𝜇 + |𝑋𝑢|)𝑝 𝑑𝑥)
1/𝑝

. (2.5)

Lemma 2.2. Let 𝑢 ∈ 𝐻𝑊 1,𝑝(Ω) with 2 < 𝑝 < 4 be a weak solution to
equation (1.2). Assume that (A1)-(A3) and (A5) hold. If 𝐹 ∈ 𝐿𝑞

loc(Ω), then
𝑋𝑢 ∈ 𝐿𝑞

loc(Ω), where 𝑞 ∈ (𝑝, ∞). Moreover, there exists a positive constant
𝐶(𝑛, 𝑝, 𝜈, 𝐿, 𝑞, 𝑎) such that

( 1
|𝐵𝑅| ∫

𝐵𝑅

|𝑋𝑢|𝑞 𝑑𝑥)
1/𝑞

≤ 𝐶 ( 1
|𝐵2𝑅| ∫

𝐵2𝑅

(𝜇 + |𝑋𝑢|)𝑝 𝑑𝑥)
1/𝑝

+𝐶 ( 1
|𝐵2𝑅| ∫

𝐵2𝑅

|𝐹 |𝑞 𝑑𝑥)
1/𝑞

(2.6)

for any CC-ball 𝐵𝑅 ⋐ Ω.

3 Proof of Theorem 1.1
In this section we present the proof of Theorem 1.1. Inspired by [5], for the
vector field 𝐴(𝑥, 𝜉) appearing in (1.2), we introduce for 𝜉 ∈ ℝ2𝑛 and a CC-ball
𝐵 ⊂ Ω:

𝐴𝐵(𝜉) = 1
|𝐵| ∫

𝐵
𝐴(𝑥, 𝜉) 𝑑𝑥, (3.1)

and define
𝑉 (𝑥, 𝐵) = sup

𝜉∈ℝ2𝑛

|𝐴(𝑥, 𝜉) − 𝐴𝐵(𝜉)|
(𝜇2 + |𝜉|2)

𝑝−1
2

, (3.2)

where 𝐵 ⊂ Ω is a CC-ball and 𝑥 ∈ Ω. It follows that if 𝐴 ∶ Ω × ℝ2𝑛 → ℝ2𝑛 is a
Carathéodory vector field such that (A1)-(A4) hold, then 𝐴 is locally uniformly
in VMO, that is,

lim
𝑅→0

sup
𝑐(𝐵)∈𝐾,𝑟(𝐵)<𝑅

1
|𝐵| ∫

𝐵
𝑉 (𝑥, 𝐵) 𝑑𝑥 = 0, (3.3)

where 𝐾 ⋐ Ω, and 𝑐(𝐵) and 𝑟(𝐵) denote the center and radius of the CC-ball
𝐵, respectively.

To prove Theorem 1.1, we note that there exists a constant 𝐶 > 0 such that

𝐶−1 (𝜇2 + |𝜉|2 + |𝜂|2)
𝑝−2

2 |𝜉−𝜂|2 ≤ |𝑉 (𝜉)−𝑉 (𝜂)|2 ≤ 𝐶 (𝜇2 + |𝜉|2 + |𝜂|2)
𝑝−2

2 |𝜉−𝜂|2, (3.4)
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for any 𝜉, 𝜂 ∈ ℝ2𝑛 with |𝜉 − 𝜂| ≠ 0.
We are now ready to present the proof.

Proof of Theorem 1.1. Let 𝐵3𝑅 ⋐ Ω and choose a test function 𝜙 =
Δ−ℎ(𝜂2Δℎ𝑢) for (1.1), where 𝜂 ∈ 𝐶∞

0 (𝐵3𝑅) is a cutoff function satisfying
0 ≤ 𝜂(𝑥) ≤ 1, 𝜂(𝑥) ≡ 1 for 𝑥 ∈ 𝐵𝑅, 𝜂(𝑥) ≡ 0 for 𝑥 ∈ 𝐵3𝑅 �𝐵2𝑅, and |𝑋𝜂| ≤ 𝐶/𝑅.

Testing (1.1) with this 𝜙 yields

∫
Ω

[𝐴(𝑥 + ℎ, 𝑋𝑢(𝑥 + ℎ)) − 𝐴(𝑥 + ℎ, 𝑋𝑢)] ⋅ 𝜂2Δℎ𝑋𝑢 𝑑𝑥 = 𝐺1 + 𝐺2 + 𝐺3 + 𝐺4,

where

𝐺1 = ∫
Ω

[𝐴(𝑥 + ℎ, 𝑋𝑢(𝑥 + ℎ)) − 𝐴(𝑥 + ℎ, 𝑋𝑢)] ⋅ 𝜂2Δℎ𝑋𝑢 𝑑𝑥,

𝐺2 = ∫
Ω

[𝐴(𝑥, 𝑋𝑢) − 𝐴(𝑥 + ℎ, 𝑋𝑢)] ⋅ 𝜂2Δℎ𝑋𝑢 𝑑𝑥,

𝐺3 = ∫
Ω

[𝐴(𝑥 + ℎ, 𝑋𝑢) − 𝐴(𝑥 + ℎ, 𝑋𝑢(𝑥 + ℎ))] ⋅ 2𝜂𝑋𝜂Δℎ𝑢 𝑑𝑥,

𝐺4 = ∫
Ω

[𝐴(𝑥, 𝑋𝑢) − 𝐴(𝑥 + ℎ, 𝑋𝑢)] ⋅ 2𝜂𝑋𝜂Δℎ𝑢 𝑑𝑥.

We estimate each 𝐺𝑖 (1 ≤ 𝑖 ≤ 4). By (A1), it is clear that

𝐺1 ≥ 𝜈 ∫
Ω

(𝜇2 + |𝑋𝑢(𝑥 + ℎ)|2 + |𝑋𝑢|2)
𝑝−2

2 |Δℎ𝑋𝑢|2𝜂2 𝑑𝑥. (3.5)

For 𝐺2, using (A4) and (2.2), we obtain

|𝐺2| ≤ 𝐶 ∫
Ω

|ℎ|𝛼(𝑔(𝑥) + 𝑔(𝑥 + ℎ)) (𝜇2 + |𝑋𝑢|2)
𝑝−1

2 |Δℎ𝑋𝑢|𝜂2 𝑑𝑥

≤ 𝜀 ∫
Ω

(𝜇2 + |𝑋𝑢|2)
𝑝−2

2 |Δℎ𝑋𝑢|2𝜂2 𝑑𝑥+𝐶(𝜀)|ℎ|2𝛼 ∫
Ω

(𝑔(𝑥)+𝑔(𝑥+ℎ))2 (𝜇2 + |𝑋𝑢|2)
𝑝
2 𝑑𝑥, (3.6)

where 𝜀 > 0 will be chosen later. By (A2) and (2.2), we deduce that

|𝐺3| ≤ 𝐶 ∫
Ω

(𝜇2 + |𝑋𝑢|2 + |𝑋𝑢(𝑥 + ℎ)|2)
𝑝−2

2 |Δℎ𝑋𝑢|𝜂|𝑋𝜂||Δℎ𝑢| 𝑑𝑥

≤ 𝜀 ∫
Ω

(𝜇2 + |𝑋𝑢|2 + |𝑋𝑢(𝑥 + ℎ)|2)
𝑝−2

2 |Δℎ𝑋𝑢|2𝜂2 𝑑𝑥+𝐶(𝜀) ∫
Ω

(𝜇2 + |𝑋𝑢|2 + |𝑋𝑢(𝑥 + ℎ)|2)
𝑝−2

2 |𝑋𝜂|2|Δℎ𝑢|2 𝑑𝑥. (3.7)

Applying the Lagrange Mean Value Theorem, we obtain

∫
Ω

(𝜇2 + |𝑋𝑢|2 + |𝑋𝑢(𝑥 + ℎ)|2)
𝑝−2

2 |𝑋𝜂|2|Δℎ𝑢|2 𝑑𝑥 ≤ 𝐶|ℎ|2 ∫
𝐵2𝑅+|ℎ|

(𝜇2 + 2|𝑋𝑢|2)
𝑝−2

2 |𝑋𝑢|2 𝑑𝑥 ≤ 𝐶|ℎ|2 ∫
𝐵2𝑅+|ℎ|

(𝜇+|𝑋𝑢|)𝑝 𝑑𝑥. (3.8)
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To estimate 𝐺4, hypothesis (A4) and (2.2) give

|𝐺4| ≤ 𝐶 ∫
Ω

|ℎ|𝛼(𝑔(𝑥) + 𝑔(𝑥 + ℎ)) (𝜇2 + |𝑋𝑢|2)
𝑝−1

2 𝜂|𝑋𝜂||Δℎ𝑢| 𝑑𝑥

≤ 𝜀 ∫
Ω

(𝜇2 + |𝑋𝑢|2)
𝑝−2

2 𝜂2|Δℎ𝑢|2 𝑑𝑥+𝐶(𝜀)|ℎ|2𝛼 ∫
Ω

(𝑔(𝑥)+𝑔(𝑥+ℎ))2 (𝜇2 + |𝑋𝑢|2)
𝑝
2 𝑑𝑥. (3.9)

Here we note that

∫
Ω

(𝜇2 + |𝑋𝑢|2)
𝑝−2

2 𝜂2|Δℎ𝑢|2 𝑑𝑥 ≤ 𝐶|ℎ|2 ∫
𝐵2𝑅+|ℎ|

(𝜇 + |𝑋𝑢|)𝑝 𝑑𝑥. (3.10)

Combining the estimates for 𝐺𝑖 and choosing 𝜀 sufficiently small, we obtain

∫
Ω

(𝜇2 + |𝑋𝑢(𝑥 + ℎ)|2 + |𝑋𝑢|2)
𝑝−2

2 |Δℎ𝑋𝑢|2𝜂2 𝑑𝑥 ≤ 𝐶|ℎ|2𝛼 ∫
Ω

(𝑔(𝑥)+𝑔(𝑥+ℎ))2 (𝜇2 + |𝑋𝑢|2)
𝑝
2 𝑑𝑥+𝐶|ℎ|2 ∫

𝐵2𝑅+|ℎ|

(𝜇+|𝑋𝑢|)𝑝 𝑑𝑥. (3.11)

By the definition of 𝑉 and (3.4), we have

|Δℎ𝑉 |2 ≤ 𝐶 (𝜇2 + |𝑋𝑢(𝑥 + ℎ)|2 + |𝑋𝑢|2)
𝑝−2

2 |Δℎ𝑋𝑢|2. (3.12)

Integrating both sides of (3.12) over 𝐵𝑅 and applying the properties of 𝜂, we
get

∫
𝐵𝑅

|Δℎ𝑉 |2 𝑑𝑥 ≤ 𝐶 ∫
Ω

(𝜇2 + |𝑋𝑢(𝑥 + ℎ)|2 + |𝑋𝑢|2)
𝑝−2

2 |Δℎ𝑋𝑢|2𝜂2 𝑑𝑥

≤ 𝐶|ℎ|2𝛼 ∫
Ω

(𝑔(𝑥)+𝑔(𝑥+ℎ))2 (𝜇2 + |𝑋𝑢|2)
𝑝
2 𝑑𝑥+𝐶|ℎ|2 ∫

𝐵2𝑅+|ℎ|

(𝜇+|𝑋𝑢|)𝑝 𝑑𝑥. (3.13)

Dividing both sides of (3.13) by |ℎ|2𝛼, we obtain

∫
𝐵𝑅

|Δℎ𝑉 |2
|ℎ|2𝛼 𝑑𝑥 ≤ 𝐶 ∫

Ω
(𝑔(𝑥)+𝑔(𝑥+ℎ))2 (𝜇2 + |𝑋𝑢|2)

𝑝
2 𝑑𝑥+𝐶|ℎ|2−2𝛼 ∫

𝐵2𝑅+|ℎ|

(𝜇+|𝑋𝑢|)𝑝 𝑑𝑥 =∶ 𝑃1+𝑃2. (3.14)

Finally, we show that 𝑃𝑖 is bounded for each 𝑖. By Lemma 2.1, we have |𝑋𝑢|𝑝 ∈
𝐿𝑡(Ω) for some 𝑡 > 1. In particular, |𝑋𝑢|𝑝 ∈ 𝐿 𝑄

𝑄−2𝛼 (Ω). Choosing 0 < |ℎ| < 𝛿 <
𝑅 and using (A4), we obtain

𝑃1 ≤ 𝐶‖𝑔‖2
𝐿𝛼(Ω) ∥(𝜇2 + |𝑋𝑢|2)

𝑝
2 ∥

𝐿
𝑄

𝑄−2𝛼 (Ω)
< ∞.

Since 𝑢 ∈ 𝐻𝑊 1,𝑝
loc (Ω), we have 𝑃2 < ∞. It follows that

sup
|ℎ|<𝛿

∫
𝐵𝑅

|Δℎ𝑉 |2
|ℎ|2𝛼 𝑑𝑥 < ∞,

that is, 𝑉 (𝑋𝑢) ∈ 𝐵𝛼
2,∞(Ω) locally.
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4 Proof of Theorem 1.2
For the non-homogeneous case, we need the following lemma.

Lemma 4.1. Let 𝐴 ∶ Ω × ℝ2𝑛 → ℝ2𝑛 be a Carathéodory vector field such that
(A1)-(A3) and (A5) hold. Then 𝐴 is locally uniformly in VMO, that is,

lim
𝑅→0

sup
𝑐(𝐵)∈𝐾,𝑟(𝐵)<𝑅

1
|𝐵| ∫

𝐵
𝑉 (𝑥, 𝐵) 𝑑𝑥 = 0, (4.1)

where 𝑉 (𝑥, 𝐵) is given in (3.2), 𝐾 ⋐ Ω, and 𝑐(𝐵) and 𝑟(𝐵) denote the center
and radius of the CC-ball 𝐵, respectively.

Proof. Given a point 𝑥 ∈ Ω, let 𝐴𝑘(𝑥) = {𝑦 ∈ Ω ∶ 2−𝑘 ≤ 𝑑𝐶𝐶(𝑥, 𝑦) < 2−𝑘+1}.
We obtain

1
|𝐵| ∫

𝐵
𝑉 (𝑥, 𝐵) 𝑑𝑥 ≤ 1

|𝐵| ∫
𝐵

sup
𝜉∈ℝ2𝑛

|𝐴(𝑥, 𝜉) − 𝐴(𝑦, 𝜉)|
(𝜇2 + |𝜉|2)

𝑝−1
2

𝑑𝑦 𝑑𝑥

≤ 𝐶(𝑄, 𝛼)
|𝐵| ∑

𝑘
∫

𝐵∩𝐴𝑘(𝑥)
𝑑𝐶𝐶(𝑥, 𝑦)𝛼(𝑔𝑘(𝑥) + 𝑔𝑘(𝑦)) 𝑑𝑦 𝑑𝑥.

By Hölder’s inequality, we acquire

1
|𝐵| ∫

𝐵∩𝐴𝑘(𝑥)
(𝑔𝑘(𝑥) + 𝑔𝑘(𝑦))𝛼 𝑑𝑦 𝑑𝑥 ≤ 𝐶(𝑄, 𝛼, 𝑞)|𝐵|− 𝛼

𝑄 ‖𝑔𝑘‖𝐿𝛼(𝐵).

Choosing 𝑟 > 0 small enough and observing that 𝑥 ↦ ‖𝑔𝑘‖𝐿𝛼(𝐵𝑟(𝑥)) is continuous
on the set {𝑥 ∈ Ω ∶ dist(𝑥, 𝜕Ω) > 𝑟}, we find that for each 𝑥𝑟 ∈ 𝐾 with 𝑟
sufficiently small,

‖𝑔𝑘‖𝐿𝛼(𝐵𝑟(𝑥𝑟)) → 0 as 𝑟 → 0.

Each of the limits on the right-hand side equals zero, which completes the proof.

With the help of the preceding lemma, we can now prove Theorem 1.2.

Proof of Theorem 1.2. Assume that 𝐵3𝑅 ⋐ Ω and choose a test function
𝜙 = Δ−ℎ(𝜂2Δℎ𝑢) for (1.2), where 𝜂 ∈ 𝐶∞

0 (Ω) is a cutoff function satisfying
0 ≤ 𝜂(𝑥) ≤ 1, 𝜂(𝑥) ≡ 1 for 𝑥 ∈ 𝐵𝑅, 𝜂(𝑥) ≡ 0 for 𝑥 ∈ 𝐵3𝑅 �𝐵2𝑅, and |𝑋𝜂| ≤ 𝐶/𝑅.

According to the definition of weak solution and our choice of test function, we
obtain

∫
Ω

[𝐴(𝑥 + ℎ, 𝑋𝑢(𝑥 + ℎ)) − 𝐴(𝑥 + ℎ, 𝑋𝑢)] ⋅ 𝜂2Δℎ𝑋𝑢 𝑑𝑥

+ ∫
Ω

[𝐴(𝑥, 𝑋𝑢) − 𝐴(𝑥 + ℎ, 𝑋𝑢)] ⋅ 𝜂2Δℎ𝑋𝑢 𝑑𝑥

+ ∫
Ω

[𝐴(𝑥 + ℎ, 𝑋𝑢) − 𝐴(𝑥 + ℎ, 𝑋𝑢(𝑥 + ℎ))] ⋅ 2𝜂𝑋𝜂Δℎ𝑢 𝑑𝑥
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+ ∫
Ω

[𝐴(𝑥, 𝑋𝑢) − 𝐴(𝑥 + ℎ, 𝑋𝑢)] ⋅ 2𝜂𝑋𝜂Δℎ𝑢 𝑑𝑥

= ∫
Ω

|𝐹 |𝑝−2𝐹 ⋅ 2𝜂𝑋𝜂Δℎ𝑢 𝑑𝑥 + ∫
Ω

|𝐹 |𝑝−2𝐹 ⋅ 𝜂2Δℎ𝑋𝑢 𝑑𝑥,

which we denote as 𝐺1 + 𝐺2 + 𝐺3 + 𝐺4 = 𝐺5 + 𝐺6. (4.2)

We have already estimated the terms 𝐺1 through 𝐺4 in the proof of Theorem
1.1. Thus it remains to estimate 𝐺5 and 𝐺6.

Applying (2.2), we get

|𝐺5| ≤ 𝐶 ∫
Ω

|Δℎ(|𝐹 |𝑝−2𝐹)||Δℎ𝑢|𝜂 𝑑𝑥

≤ 𝐶|ℎ|2𝛼 ∫
Ω

|𝐹 |2(𝑝−1) 𝑑𝑥 + 𝐶 ∫
Ω

|Δℎ𝑢|2𝜂2 𝑑𝑥.

By the Lagrange Mean Value Theorem, the second term can be controlled by

∫
Ω

|Δℎ𝑢|2𝜂2 𝑑𝑥 ≤ 𝐶|ℎ|2 ∫
𝐵2𝑅+|ℎ|

(𝜇 + |𝑋𝑢|)𝑝 𝑑𝑥. (4.3)

For the estimate of 𝐺6, we have

|𝐺6| ≤ 𝐶 ∫
Ω

|Δℎ(|𝐹 |𝑝−2𝐹)||Δℎ𝑋𝑢|𝜂2 𝑑𝑥

≤ 𝐶|ℎ|2𝛼 ∫
Ω

|𝐹 |2(𝑝−1) 𝑑𝑥 + 𝜀 ∫
Ω

|Δℎ𝑋𝑢|2𝜂2 𝑑𝑥. (4.4)

Similarly, one obtains

∫
Ω

|Δℎ𝑋𝑢|2𝜂2 𝑑𝑥 ≤ 𝜇𝑝−2 ∫
Ω

|Δℎ𝑋𝑢|2𝜂2 𝑑𝑥 ≤ ∫
Ω

(𝜇2 + |𝑋𝑢(𝑥 + ℎ)|2 + |𝑋𝑢|2)
𝑝−2

2 |Δℎ𝑋𝑢|2𝜂2 𝑑𝑥. (4.5)

Combining the estimates for 𝐺𝑖, we have

(𝜈 − 2𝜀) ∫
Ω

(𝜇2 + |𝑋𝑢(𝑥 + ℎ)|2 + |𝑋𝑢|2)
𝑝−2

2 |Δℎ𝑋𝑢|2𝜂2 𝑑𝑥

≤ 𝐶|ℎ|2𝛼 ∫
Ω

(𝑔𝑘(𝑥)+𝑔𝑘(𝑥+ℎ))2 (𝜇2 + |𝑋𝑢|2)
𝑝
2 𝑑𝑥+𝐶|ℎ|2𝛼 ∫

Ω
|𝐹 |2(𝑝−1) 𝑑𝑥+𝐶|ℎ|2 ∫

𝐵2𝑅+|ℎ|

(𝜇+|𝑋𝑢|)𝑝 𝑑𝑥. (4.6)

Choosing 𝜀 = 𝜈/4, we obtain

∫
Ω

(𝜇2 + |𝑋𝑢(𝑥 + ℎ)|2 + |𝑋𝑢|2)
𝑝−2

2 |Δℎ𝑋𝑢|2𝜂2 𝑑𝑥
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≤ 𝐶|ℎ|2𝛼 ∫
Ω

(𝑔𝑘(𝑥)+𝑔𝑘(𝑥+ℎ))2 (𝜇2 + |𝑋𝑢|2)
𝑝
2 𝑑𝑥+𝐶|ℎ|2𝛼 ∫

Ω
|𝐹 |2(𝑝−1) 𝑑𝑥+𝐶|ℎ|2 ∫

𝐵2𝑅+|ℎ|

(𝜇+|𝑋𝑢|)𝑝 𝑑𝑥. (4.7)

Using (1.3) and (3.4), we have

|Δℎ𝑉 |2 ≤ 𝐶 (𝜇2 + |𝑋𝑢(𝑥 + ℎ)|2 + |𝑋𝑢|2)
𝑝−2

2 |Δℎ𝑋𝑢|2. (4.8)

From (4.7), it follows that

∫
𝐵𝑅

|Δℎ𝑉 |2 𝑑𝑥 ≤ 𝐶|ℎ|2 ∫
𝐵2𝑅+|ℎ|

(𝜇+|𝑋𝑢|)𝑝 𝑑𝑥+𝐶|ℎ|2𝛼 ∫
Ω

(𝑔𝑘(𝑥)+𝑔𝑘(𝑥+ℎ))2 (𝜇2 + |𝑋𝑢|2)
𝑝
2 𝑑𝑥+𝐶|ℎ|2𝛼 ∫

Ω
|𝐹 |2(𝑝−1) 𝑑𝑥. (4.9)

Dividing both sides of (4.9) by |ℎ|2𝛼 and applying the properties of 𝜂, we derive

∫
𝐵𝑅

|Δℎ𝑉 |2
|ℎ|2𝛼 𝑑𝑥 ≤ 𝐶|ℎ|2−2𝛼 ∫

𝐵2𝑅+|ℎ|

(𝜇+|𝑋𝑢|)𝑝 𝑑𝑥+𝐶 ∫
Ω

(𝑔𝑘(𝑥)+𝑔𝑘(𝑥+ℎ))2 (𝜇2 + |𝑋𝑢|2)
𝑝
2 𝑑𝑥+𝐶 ∫

Ω
|𝐹 |2(𝑝−1) 𝑑𝑥. (4.10)

Taking the 1/2 power, we obtain

(∫
𝐵𝑅

|Δℎ𝑉 |2
|ℎ|2𝛼 𝑑𝑥)

1/2

≤ 𝐶|ℎ|1−𝛼 (∫
𝐵2𝑅+|ℎ|

(𝜇 + |𝑋𝑢|)𝑝 𝑑𝑥)
1/2

+𝐶 (∫
Ω

(𝑔𝑘(𝑥) + 𝑔𝑘(𝑥 + ℎ))2 (𝜇2 + |𝑋𝑢|2)
𝑝
2 𝑑𝑥)

1/2
+𝐶 (∫

Ω
|𝐹 |2(𝑝−1) 𝑑𝑥)

1/2
. (4.11)

Restricting to 𝐵𝛿 with 0 < |ℎ| < 𝛿 and taking the 𝐿𝑞 norm with respect to the
measure 𝑑ℎ

|ℎ|𝑄 , we obtain

⎛⎜
⎝

∫
𝐵𝛿

(∫
𝐵𝑅

|Δℎ𝑉 |2
|ℎ|2𝛼 𝑑𝑥)

𝑞/2
𝑑ℎ

|ℎ|𝑄
⎞⎟
⎠

1/𝑞

≤ 𝐶 ⎛⎜
⎝

∫
𝐵𝛿

|ℎ|(1−𝛼)𝑞 (∫
𝐵2𝑅+|ℎ|

(𝜇 + |𝑋𝑢|)𝑝 𝑑𝑥)
𝑞/2

𝑑ℎ
|ℎ|𝑄

⎞⎟
⎠

1/𝑞

+𝐶 (∫
𝐵𝛿

(∫
Ω

(𝑔𝑘(𝑥) + 𝑔𝑘(𝑥 + ℎ))2 (𝜇2 + |𝑋𝑢|2)
𝑝
2 𝑑𝑥)

𝑞/2 𝑑ℎ
|ℎ|𝑄 )

1/𝑞

+𝐶 (∫
𝐵𝛿

(∫
Ω

|𝐹 |2(𝑝−1) 𝑑𝑥)
𝑞/2 𝑑ℎ

|ℎ|𝑄 )
1/𝑞

=∶ 𝑃1 + 𝑃2 + 𝑃3. (4.12)
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We shall show that each 𝑃𝑖 (1 ≤ 𝑖 ≤ 3) is bounded. Since |𝐹 |𝑝−2𝐹 ∈ 𝐵𝛼
2,𝑞(Ω)

and 1 ≤ 𝑞 < 2𝑄
𝑄−2𝛼 , we have |𝐹 |𝑝−2𝐹 ∈ 𝐿 𝑄

𝑄−2𝛼 (Ω). By Lemma 2.2, we get
|𝑋𝑢|𝑝−2𝑋𝑢 ∈ 𝐿 2𝑄

𝑄−2𝛼 (Ω), which implies |𝑋𝑢|𝑝 ∈ 𝐿 𝑄
𝑄−2𝛼 (Ω).

To estimate 𝑃1, we write the 𝐿𝑞 norm in polar coordinates. There is no harm
in assuming 𝛿 = 1, so ℎ ∈ 𝐵1 ∩ ℝ2𝑛 is equivalent to ℎ = 𝑟𝜉 with 0 ≤ 𝑟 < 1 and 𝜉
in the unit sphere 𝑆2𝑛−1. Let 𝑑𝜎(𝜉) be the surface measure on 𝑆2𝑛−1. Setting
𝑟𝑘 = 2−𝑘, we estimate 𝑃1 as

𝑃1 ≤ 𝐶
∞

∑
𝑘=0

∫
𝑟𝑘

𝑟𝑘+1

∫
𝑆2𝑛−1

‖(𝑔𝑘(⋅ + 𝑟𝜉) + 𝑔𝑘(⋅))(𝜇2 + |𝑋𝑢|2) 𝑝
2 ‖𝑞/2

𝐿1(𝐵2𝑅)𝑟𝑄−1 𝑑𝜎(𝜉) 𝑑𝑟.

Since |𝑋𝑢|𝑝 ∈ 𝐿 𝑄
𝑄−2𝛼 (Ω) and 𝑔𝑘 ∈ 𝐿𝛼(Ω), we have

‖(𝑔𝑘(⋅+𝑟𝜉)+𝑔𝑘(⋅))(𝜇2+|𝑋𝑢|2) 𝑝
2 ‖𝐿1(𝐵2𝑅) ≤ ‖𝑔𝑘(⋅+𝑟𝜉)+𝑔𝑘(⋅)‖𝐿𝛼(𝐵2𝑅)‖(𝜇2+|𝑋𝑢|2) 𝑝

2 ‖
𝐿

𝑄
𝑄−2𝛼 (𝐵2𝑅)

.

Moreover,

‖𝑔𝑘(⋅ + 𝑟𝜉) + 𝑔𝑘(⋅)‖𝐿𝛼(𝐵2𝑅) ≤ ‖𝑔𝑘‖𝐿𝛼(𝐵2𝑅+𝑟𝑘𝜉) + ‖𝑔𝑘‖𝐿𝛼(𝐵2𝑅) ≤ 2‖𝑔𝑘‖𝐿𝛼(𝐵̃𝑅)

for each 𝜉 ∈ 𝑆2𝑛−1 and 𝑟𝑘+1 ≤ 𝑟 ≤ 𝑟𝑘, where 𝐵𝑅 = 𝐵3𝑅. Therefore,

𝑃1 ≤ 𝐶‖(𝜇2 + |𝑋𝑢|2) 𝑝
2 ‖

𝐿
𝑄

𝑄−2𝛼 (𝐵2𝑅)
‖{𝑔𝑘}𝑘‖ℓ𝑞(𝐿𝛼(𝐵̃𝑅)) < ∞.

In the Heisenberg group, a direct calculation gives

∫
𝐵𝛿∩ℍ𝑛

|ℎ|(1−𝛼)𝑞−𝑄 𝑑𝑥 = 𝐶(𝛼, 𝑞, 𝑄) ∫
𝛿

0
𝜌(1−𝛼)𝑞−1 𝑑𝜌 < ∞,

provided (1 − 𝛼)𝑞 > 0, which holds by our assumptions.

Since 𝑢 ∈ 𝐻𝑊 1,𝑝(Ω), we deduce that

𝑃2 ≤ 𝐶 (∫
𝐵𝛿

|ℎ|(1−𝛼)𝑞−𝑄 𝑑ℎ)
1/𝑞

(∫
𝐵2𝑅+|ℎ|

(𝜇 + |𝑋𝑢|)𝑝 𝑑𝑥)
1/2

< ∞.

Finally, because |𝐹 |𝑝−2𝐹 ∈ 𝐵𝛼
2,𝑞(Ω), we have

𝑃3 = 𝐶 ∥|𝐹 |𝑝−2𝐹∥𝐿𝑞( 𝑑ℎ
|ℎ|𝑄 ;𝐿2(𝐵2𝑅)) < ∞.

Therefore, we complete the proof of Theorem 1.2.
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