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Abstract

This paper analyzes the major challenges currently facing Large Language Mod-
els (LLMs) and proposes concrete solutions. It identifies that the representation
and computation of probabilistic conceptual structure models is crucial, provides
a brief overview of the related technology—Deep Semantic Model (DSM), and
finally outlines key directions for future work.
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Abstract

This paper analyzes the fundamental problems of current Large Language Mod-
els (LLMs) and proposes specific solutions, identifying that the expression and
computation of conceptualized structural models combined with probability is
the key. It provides a brief explanation of the related technology—the Deep Se-
mantic Model (DSM)—and finally outlines directions for subsequent key work.
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1. Introduction

The development of Large Language Models has dramatically advanced the
technical capabilities of natural language processing, revealing AI’s immense
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potential and promising applications that will bring numerous positive impacts
to human society—a consensus that has already formed in the industry.

However, deepening research and applications have also exposed many critical
problems with LLM technology, creating obvious obstacles to further capability
improvements and the full realization of application value. Many in the indus-
try also believe that current LLMs do not represent the ultimate solution for
achieving Artificial General Intelligence (AGI). Taking ChatGPT as a typical
representative product, this paper provides an in-depth analysis of the main
problems affecting similar LLMs and proposes fundamental solutions and direc-
tions.

This paper also briefly introduces DSM deep semantic technology, elaborating
on key aspects of its basic theory, model architecture, implementation methods,
and current achievements. It analyzes how this technology addresses the afore-
mentioned problems and how it can collaborate with LLMs to achieve better
technical solutions and products, while pointing out directions for future key
work.

It should be noted that the connotations of conceptual terms are difficult to de-
fine precisely and constantly evolve. In this paper, LLM refers to the commonly
accepted definition in the current industry: a model employing deep neural
network architecture, trained through automated machine learning on large cor-
pora, forming a black-box structure containing numerous non-conceptualized
connections and parameters, and computing on natural language in an end-
to-end manner. While GPT is analyzed as an example, most issues identified
apply to other current LLMs, though a few may not be applicable to some other
models—this does not affect the overall conclusions.

2.1 Interpretability Issues: Representation and Computa-
tion of Conceptualized Structures

Interpretability can be defined as the ability to explain or present model be-
havior in human-understandable terms. Interpretability should not be merely
a metric for measuring a system but a fundamental goal of system implementa-
tion, equally important as functional effectiveness. Just as people study various
sciences to construct interpretable systems, AGI aims to replicate and enhance
human thinking capabilities, making interpretability a core objective of AGI.
Even from a results-only perspective, the ability to interpret a system deter-
mines one’s ability to decompose, adjust, and control it, thereby defining the
upper limit of the system’s ultimate functional effectiveness.

Current LLMs suffer from poor interpretability, which bottlenecks further ca-
pability improvements. Moreover, problems such as reliance on massive data,
extensive repetitive training, and catastrophic forgetting are essentially mani-
festations of this root problem.

The most effective solution to interpretability problems is conceptualization and
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structurization. Conceptualization involves defining human-understandable con-
cepts as basic elements that constitute the system. Taking GPT-3 as an exam-
ple, it uses 12,288-dimensional vectors to express basic information, which are
primarily learned automatically by machines and are not aligned with human-
understandable concepts. If these 12,288 vector dimensions could be equiva-
lently converted to another 12,288 human-understandable concepts, the goal
of conceptualization would be achieved to some extent. While achieving this
through bottom-up automated machine learning alone would be ideal, if this
proves impossible, combining it with top-down human design becomes neces-
sary.

Conceptualization is accompanied by structurization. In GPT, the connections
that compute vectors are also non-conceptualized, possessing only probabilistic
computational parameters without semantic information. Conceptualizing and
semantifying these connections is also crucial for forming a conceptual structure
that integrates description and computation.

Meanwhile, Transformer is fully connected, which is well-suited for initially dis-
covering all possible knowledge exhaustively. However, this fixed structure also
means that after effective knowledge is learned, a large amount of invalid knowl-
edge with probability parameters close to zero continues to occupy space and
computational resources. Conceptualization and structurization also involve
pruning, merging, and optimizing concepts and structures.

The statement “intelligence is compression” is correct. The essence of human
thinking is processing nearly infinite information with a finite brain capacity.
The key lies in specific methods, and combination and generalization are efficient
methods for compressing information. More thorough conceptualization and
structurization will increase the compression rate of effective knowledge to a
higher level, making interpretability and its related problems no longer an issue.

At this point, constructing a system of wide-area base concepts (including con-
ceptualized vectors) and structural systems is crucial. This can be used to
interpret LLMs and compensate for their lack of semantic structure, serving as
a foundation for developing more powerful Al systems.

2.2 Incomplete Algorithmic System: Designing Complete
Algorithmic Systems

An incomplete algorithmic system represents another prominent fundamental
theoretical flaw of GPT, to which many difficult problems and results can be
attributed. From the perspective of Dynamic Cognitive Networks (DCN) [],
the algorithms of understanding, querying, reasoning, generation, and learning
(Fig. 1) are important basic algorithms for achieving AGI. These algorithms
are not interchangeable with each other and must be combined to solve various
computational tasks completely.

GPT primarily employs the generalized generation algorithm, which calculates
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the next character (strictly speaking, Token) from a known sequence of charac-
ters. The basic principle can be summarized as: (1) The vector of the target
character is computed separately from the vector of each character in the known
sequence; (2) Each known character is superimposed on the target vector calcu-
lated for the target character; and (3) The superimposed vectors of the target
character are compared with a character dictionary, and the best match is taken
as the result.

This algorithm works well for generative tasks but lacks key capabilities such as
complete structured hierarchical computation and probabilistic collapse compu-
tation. It cannot equivalently replace other algorithms, and forced substitution
prevents the effects of various tasks from converging to an ideal state. The fun-
damental solution is to design a more complete algorithmic system that should
be built around the aforementioned conceptualized structure.

2.3 Hallucination Issues: Choosing the Right Algorithm

Generally speaking, LLM computations that produce results not meeting peo-
ple’s expectations and standards are collectively referred to as hallucinations,
but different hallucinations have different causes. Here we mainly discuss the
most essential type: generative hallucination, which can be summarized by
the technical principle of “probability loss caused by generation from the base
network to the derived network” and the problem of “treating probability as
necessity.”

First, the rules for comprehension, generation, and equivalence calculations are
different. In the DCN system, these algorithms rely on [belong to relation]
and [equivalence relation] for implementation. Assuming the system already
contains knowledge such as [Lin Daiyu belongs to person], [Jia Zheng belongs
to person], [Granny Liu belongs to person], and [people insulting people] (note:
the probability of [people insulting people] being factual is < 1, because while
an insulting event between any two people is possible, it is not factual), the
algorithms work as follows:

Comprehension: Understanding [Lin Daiyu insulting Jia Zheng] as [people
insulting people] involves bottom-up calculation without probability loss.

Equivalence: Copying equivalently from [Lin Daiyu insulting Jia Zheng] to
[Lin Daiyu insulting Jia Zheng] is completely equivalent.

Generation: Deriving [Lin Daiyu insulting Jia Zheng] from [people insulting
people] involves the base pattern and derived pattern, where corresponding con-
cepts have a [belong to] relation. The derived pattern first directly inherits
parameters including probabilities from the base pattern, meaning the factual
probability is < 1. Narrow generation is top-down computation on the set
dimension, and direct generation out of nothing also causes generative probabil-
ity loss unless more information is incorporated to influence and adjust the new
probabilities.
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Learning: When acquiring factual knowledge such as “Lin Daiyu insulting
Granny Liu,” the first step is comprehension, constructing the new knowledge
[Lin Daiyu insulting Granny Liu] and establishing a derivative relationship with
[people insulting people], then setting the factual probability reloading = 1 so
the new knowledge is deposited into the system. Obviously, knowledge learned
from reliable sources differs from information generated by the system itself,
particularly in terms of factual probability.

Overall, relations of belonging, derivation, and equivalence have distinctly dif-
ferent semantics. If expressed in terms of probability, it is also necessary to
distinguish the essential difference between projected probabilities that are <
1 versus = 1. GPT has only one-way probability calculation, and results are
determined solely by relative probability size, making it fundamentally difficult
for the underlying algorithm to achieve tasks requiring probability = 1.

Humans propose tasks for different purposes. Understanding, querying, and
generation are completely different task types with different criteria for deter-
mining result correctness, and these criteria are themselves completely clear.
The [generation] task follows the criterion of probabilistic possibility and does
not require probability = 1 factuality. It should use the [generation] algorithm.
For example, when asked to [fabricate a story about “insulting”], knowledge of
[people insulting people] can derive infinite outcomes such as [Zhang San insult-
ing Li Si], [Lin Daiyu insulting Zhang San], [Lin Daiyu insulting Jia Zheng], all
of which satisfy the task requirements.

GPT’s generalized generation algorithm is well-suited for this narrow genera-
tion task. Since generalized knowledge like [people insulting people] is obtained
through training, using vector computation to generate derivatives of this knowl-
edge can produce various results to satisfy the task.

The [query] task, however, follows probabilistic determinism, i.e., probability
= 1 factuality. Correct processing requires the [query] algorithm, which is the
pattern matching algorithm. For example, for the task of [querying a story
about “insulting”], the correct approach should use the question as a template
for pattern matching on factual knowledge. If successful, the factual knowledge
obtained (e.g., [Lin Daiyu insulting Granny Liu]) is copied and output equiv-
alently. If no match is found, the answer “no matching result found” should
be given. Results calculated this way are theoretically completely stable and
reliable, and problems can be accurately traced and corrected.

For GPT, the same generation algorithm is still used. If the sentence [Lin Daiyu
insulting Jia Zheng] is generated based on [people insulting people], the result
obtained through the generation task does not meet the query task requirements.
This is the root cause of this typical hallucination.

Through training, GPT adjusts the probability of selecting different knowledge
as the [base pattern] for generation based on task vocabulary such as [query] or
[fabricate], making knowledge like [Lin Daiyu insulting Granny Liu] more likely
to be selected than [people insulting people]. While this differentiates tasks to
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some extent, this probability adjustment lacks support from rigorous compu-
tational rules, and probability calculations and choices for different knowledge
lack reliability. This remains a source of various hallucination errors.

Moreover, query tasks require that every parameter in the multi-parameter ques-
tion pattern be matched by the knowledge pattern, involving [And] computa-
tions to ensure pattern integrity—something GPT’s sole generation algorithm
cannot satisfy. In real-world scenarios, a task contains multiple nested subtasks
of different types, not all with explicit task indicator keywords. For example, a
generation task may nest multiple parameters requiring factual queries. With-
out deep semantic analysis and separate processing with the correct algorithm,
hallucinations are difficult to avoid. Moreover, hallucination information may
be so hidden that users cannot detect it, potentially leading to more serious
consequences.

Therefore, the solution requires two approaches: (1) accurately differentiate task
and subtask types through deep semantic analysis, and (2) select the correct
basic algorithm for different task types.

2.4 Expression Computation Issues: Structured Hierarchi-
cal Expressions and Computations

Hierarchical representation and computation of knowledge is crucial. The hi-
erarchical structure of images is remarkable, and language semantics are en-
tirely hierarchical—though such hierarchies do not always correspond exactly
to language organization. ChatGPT lacks the ability to represent and compute
rigorously structured hierarchies.

Currently, ChatGPT’s algorithm cannot solve simple expression computations.
It may correctly answer “35+62=97,” but this is essentially complete matching
of the sentence “35+62=97” in a huge corpus, not real mathematical calculation.
Therefore, asking “23456789+9876543="" will likely not yield the correct result.

The fundamental problem is that GPT lacks true hierarchical information rep-
resentation. “23456789+49876543” should obviously be viewed as two levels:
two numbers as a whole at the lower level participating in addition at the
higher level. Instead, GPT always disassembles these characters into a flat
one-dimensional sequence where each character participates in probability cal-
culation for the next character, making correct results impossible.

This example shows GPT is also unreasonable for regular natural language com-
putation models. First, it wastes computational resources, consuming energy
and facing context length limitations. Under a hierarchical computation model,
each character in a 100,000-word article should not be computed against all
other characters but limited to a local range. Computational growth with con-
text should be nearly linear, not geometric, like the human brain.

Therefore, achieving true hierarchical expression and computation of knowledge
is significant—mnot only for solving local problems like expression computation
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or optimizing computational performance, but absolutely one of the important
basic indicators for realizing AGI.

This example also illustrates another problem: vectors are not suitable for exact
expression of numbers or deterministic concepts. From a hierarchical perspec-
tive, the root of a hierarchical structure can be represented by an identified
concept to precisely represent the entire structure—a capability vectors lack.
Therefore, everything cannot be represented with vectors alone; identified con-
cept representation is also necessary, and integrating the two is a valuable topic.

2.5 Knowledge Inconsistency Issues: Bidirectional Rela-
tionship Representation and Computation

GPT suffers from serious knowledge inconsistency problems. For example, re-
search has found a “reversal curse” in large models that prevents them from
reasoning that [B is A] even after learning that [A is B]. When taught that
[Washington was the first president of the United States], the model does not
automatically answer [Who was the first president of the United States?] unless
additionally taught that [The first president of the United States was Washing-
ton].

This problem arises simply because GPT is a unidirectional probabilistic expres-
sion and computation neural network that employs forward character projection.
[Washington was the first president of the United States] and [The first president
of the United States was Washington] are treated as two completely different
connections and computations rather than one holistic piece of knowledge.

This problem exposes the essential fact that no real structured knowledge is
learned this way in GPT. Adding more morphologically different but essentially
redundant information can mitigate the effect but does not improve overall
intelligence.

Obviously, humans have no problem with knowledge consistency. Knowledge of
a whole should be expressed and memorized as a whole and applied flexibly in
different forms.

Therefore, the correct solution is to model the human approach. Specifically,
replace unidirectional function computation with semantic relations having bidi-
rectional probabilities. Such relations can express complete semantic knowl-
edge and perform probabilistic computation, representing a more reasonable,
effective, and complete knowledge expression. Furthermore, the semantic struc-
ture of such relations can realize the “scene-fitting” expression and computation
mode expressed by DCN theory. This model may well be the key to solving
AGI.
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2.6 Weaknesses in Reasoning: Structured Reasoning Ex-
pression and Computation

According to DCN, roughly speaking: comprehension and generation mainly
refer to vertical computation of a tree network from bottom to top and top
to bottom, with relatively shallow and fixed computational depth, forming the
foundation of intelligence. Reasoning, however, mainly refers to horizontal trans-
formation between multiple tree networks, where computational depth can be
very deep and range expansive, determining the upper limit of intelligence.

Compared to the past situation of completely lacking reasoning ability in nat-
ural language form, GPT has achieved considerable reasoning ability—a great
progress. However, current reasoning levels remain relatively weak by higher in-
telligence standards. Continuously improving reasoning ability and intelligence
levels requires not just increasing corpora and training workload but solving
fundamental problems of technical principles and architecture.

GPT’s representation of reasoning knowledge, like other knowledge, is a black-
box structure lacking stability and reliability and is difficult to adjust precisely.
This problem becomes more pronounced as more reasoning knowledge is added.
Consistent with previous analysis, a more conceptualized and structured way
to express reasoning knowledge and perform reasoning computation is the truly
effective solution. Assuming that learning training in the form of chains of
thought has allowed the system to learn reasoning knowledge to a certain de-
gree of effectiveness, optimizing this knowledge into more essentially structured
representations and expanding important parameters (probabilities, etc.) will
inevitably lead to even better results. Of course, reasoning structures are more
complex than simple structures and represent a difficult problem that techniques
such as traditional knowledge graphs have not effectively solved, thus requiring
better structural design theory.

Non-hierarchical and holistic issues: As previously discussed, reasoning compu-
tations require stricter hierarchical and holistic requirements. A single atomic
reasoning computation should be a complete conversion from one pattern to
another, not reasoning character by character. The latter is not only computa-
tionally intensive but also prone to information inconsistency problems.

Bidirectional reasoning flaw: As previously discussed, GPT’s reasoning is unidi-
rectional and must be elevated to an overall structure of bidirectional reasoning
for expression and computation.

Multi-branch, multi-level complex reasoning: Real-world reasoning involves
multi-branch, multi-level reasoning across a wide domain of information. The
maximum probability branch selected at the first level may not produce optimal
results after multiple levels of reasoning. Without formalized expressions,
decomposable combinations, dynamic parametric reasoning structures, and
more flexible multi-way reasoning and retrospectively adjustable models,
obtaining desired results is difficult.
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2.7 Knowledge and Data Mixing Issues: Hierarchical Rep-
resentation of Knowledge and Data

GPT lacks hierarchical definition of knowledge and cannot effectively distinguish
between knowledge and data, managing them mixed together. Currently, when
using models like PROMPT combined with external information, both internal
and external information actually mix knowledge and data respectively, not
truly separating them but rather complicating the problem.

Due to difficulty isolating correct knowledge for effective sharing, the industry
performs different forms of iterative model training, generating many black-box
knowledge bases with large amounts of redundancy but no uniformity, continu-
ously wasting duplicated resources.

The solution is to express and manage knowledge and data hierarchically. Com-
putation can be seamlessly integrated, but management structures can be flexi-
bly decomposed. The importance and authority of each piece of knowledge can
also be precisely defined and managed. Higher-level deterministic knowledge
can be fully shared, while lower-level data can be stored flexibly, and different
versions of knowledge and data that cannot reach consensus can also be main-
tained. This constructs a more reasonable knowledge and data maintenance
system.

Hierarchical management of knowledge and data also facilitates assistance in re-
solving data copyright issues at the technical level. True higher-level knowledge
maintains a small scale, and this human consensus knowledge has no copyright
issues. Large amounts of lower-level knowledge (e.g., various news) should be
embodied as independently stored data, which can be refined to identify copy-
right for each piece of knowledge and even generate new business models adapted
to the age of intelligence.

2.8 Knowledge Learning Issues: Multi-Level Incremental
Learning Models

LLM is an overall black-box structure that cannot be broken down into individ-
ual pieces of knowledge for adjustment, nor can it effectively distinguish between
correct and incorrect knowledge, leading to problems such as catastrophic for-
getting when learning new knowledge that may undermine existing knowledge.

The solution is to realize real-time and incremental learning based on knowledge
hierarchy. Since each piece of knowledge can be split, it can form an efficient
pattern similar to human knowledge learning: first fix already explicit knowl-
edge, then incrementally learn only new knowledge, continuously accumulating
knowledge more stably and reliably.

Learning truly hierarchical knowledge will be more efficient. There is more
knowledge at shallow levels, and learning actions are more frequent, but only the
more peripheral knowledge base needs modification. If higher-level knowledge
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needs adjustment, it is passed on to modify the higher-level base knowledge
base. Typically, higher levels have less knowledge and lower-frequency learning
adjustments.

2.9 Alignment of Uncertain Information Issues: Conceptual
Representation of Certainty

Natural language has complex ambiguity, where the same word often corre-
sponds to multiple different semantics—a core problem in natural language pro-
cessing. The key to solving ambiguity is fully utilizing contextual information,
specifically projecting each word onto others, which is essentially what GPT
does: GPT internally disassembles vocabulary into Tokens, converts them into
vectors, lets vectors extrapolate each other to eliminate ambiguity, and finally
converts result vectors back to Tokens and vocabulary, indirectly inferring from
input and output representations. Natural language understanding accuracy is
excellent.

However, the hidden semantic concepts formed by GPT comprehension, espe-
cially the overall structure, are difficult to express. There is not even a complete
set of semantic standards to target, so GPT output remains natural language.
This causes problems in aligning semantic concepts and structures, making re-
liable information docking and sharing among multiple systems and models
difficult when relying only on natural language.

It is well known that information exchange between systems begins with en-
suring information standard consistency. Therefore, a global semantic concept
and structure is necessary even from an engineering perspective alone. Only
with deterministic semantic expressions can information be effectively shared
and transferred between systems, allowing any two systems to interface directly
without requiring GPT. Problems such as task decomposition and combina-
tion, multi-technology integration, and long-term memory access can be better
solved.

2.10 Bias and Jailbreaking Issues: Semantics-Based Control
of Absolute Information

Information control issues such as bias, jailbreaking, and security are also chal-
lenges faced by LLM technology. Nowadays, attempts to solve these problems
through constant training, fine-tuning, and prompting hardly guarantee sta-
ble and reliable results or eventual convergence. Information interacts with
each other—for example, assuming a prompt works, another peripherally spiked
prompt can also request the system to turn off the previous prompt’s effect. A
probabilistically optimal model cannot solve the problem of probabilistic abso-
lutes.

The solution involves two aspects: (1) define semantic concepts and structures,
accurately defining semantics for [bias], [sensitive information], etc., enabling
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precise semantic parsing and categorization of both input and output informa-
tion; and (2) based on precise semantics, insert reliable information control at
any point in the process, giving absolute control over specific processing rules
(probability set to = 1, no other computation allowed to override).

3. Introduction to the DSM Deep Semantic Model

DSM (Deep Semantic Model) is a specific implementation of DCN (Dynamic
Cognitive Network) theory for language semantic processing. Compared with
traditional knowledge graphs, DSM can realize important capabilities such as
deep semantic expression, complete semantic expression, hierarchical semantic
expression, algorithmic closed-loop system, probabilistic expression and com-
putation, and docking with natural language, forming a complete linguistic se-
mantic expression and computation system with the potential to become an
independent and complete intelligent system. Traditional knowledge graphs are
usually more suitable for constructing thematic databases to provide data for
intelligent systems but are difficult to use as autonomous intelligent systems.

DSM has extensive content, and this paper provides only a brief introduction
to its technical points.

3.1 Deep Semantic Structure

The foundation of the deep semantic model lies in its unique DSM structure
definition, which adopts the two-dimensional multi-level tree network structure
proposed in DCN theory and is optimized according to language characteristics.
The deep semantic structure is also a structure that integrates expression and
computation. The structure itself expresses conceptualized semantic knowledge
and also describes basic computation rules and parameters. Various computa-
tions are embodied in various creations, combinations, and transformations of
the structure relying on its own semantics and parameters.

3.2 Separation of Semantics and Language

DSM completely separates the semantic model from the language model. Seman-
tics is independent of natural language, and the two are interchanged through
comprehension and generation algorithms—*“using language for external expres-
sion and semantics for internal expression and computational thinking.” Seman-
tic and linguistic transformations are described and computed mainly through
two [owning] relations: (1) semantic concepts have linguistic morphology, and
(2) semantic roles have linguistic roles. Language understanding and semantic
generation share the same set of relational structures for reciprocal operations.

3.3 Hierarchical Semantic Knowledge and Data System

Following the basic principle that “human knowledge systems are hierarchical,”
DSM builds a multi-level semantic knowledge system. Higher-level knowledge
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is more basic and important, serving as the basis for understanding and ex-
pressing lower-level knowledge, while the amount of higher-level knowledge is
more limited. The interpretability and computability of a semantic model are
mainly represented by the topmost level of knowledge, which includes [concepts],
[entities|, [relationships], [roles], [existence]|, [measures|, [degrees], [sets|, [inter-
vals], [comparisons], [sequences], [space], [time], [things], [events], [event roles],
[expressions], [equations], etc.

The vast amount of knowledge at lower and middle levels is more extensive and
theoretically infinitely expandable, but it is all interpreted and computed using
higher-level knowledge. In principle, it is no longer necessary to implement
different algorithms for different knowledge. The idea of knowledge hierarchy
also applies to the division of knowledge and data, with data seen as lower-level
knowledge that is theoretically completely isomorphic and can be seamlessly
integrated.

In terms of storage management, “separation of knowledge and data” can be
realized. Since lower-level knowledge is unidirectionally dependent on higher-
level knowledge, different levels of knowledge and data can be stored separately.
For computational processing, higher-level knowledge must be loaded, while mid-
and lower-level knowledge and data can be loaded dynamically on demand and
designed in various specialized structures (e.g., relational databases) for optimal
expression, including natural language, which can be viewed as a compressed
form of deep semantics.

3.4 Inheritance, Overloading, and Aggregation

DSM uses the belong-to relation and inheritance mechanism to realize hierarchi-
cal knowledge representation. Lower-level knowledge first inherits the derived
network of higher-level knowledge by default, thus inheriting all information of
the base network. In response to changes in the derived network’s information
relative to the base network, an overloading definition is performed to modify
the changed information (including probability distribution parameters, etc.).
DSM uses the [belong to] relation as the basis for variable binding, pattern
matching, and other computations, unifying the two relations [derivation] and
[instantiation] from traditional object-oriented methods and unifying processing
such as [variable allocation binding] and [problem solving] in this way. The core
of DSM is the fusion of theories and methods such as [set], [probability], and
[object-oriented].

DSM adopts a system of multiple base classes, where multiple base classes can
be combined through multiple inheritance and aggregation. Combined with
mechanisms such as probability and overloading, it solves drawbacks existing
in many ontological approaches that try to build conceptual systems based on
single inheritance and absolutes. There is a very strong connection between
multiple base classes and vectors. Base classes are multilayered and more ex-
pressive, while vectors can be a multibase class with a flat hierarchy. Base
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classes can replace vectors, but not vice versa. Elementary perceptual intelli-
gence works very well with vectors, while advanced cognitive intelligence must
utilize a multi-hierarchical base class structure to achieve higher compression
rates. A base class can be equated to a set of more basic base classes and
vectors, eliminating the need to replicate tens of thousands of vectors for large
amounts of lower-level knowledge and data.

Therefore, the single-level multidimensional vector representation of LLM and
the multilevel multibase class derived representation of DSM both have their
own advantages, and effectively integrating the two is a topic of great signifi-
cance.

3.5 Bidirectional Relation and Tree Network Structure

Like other concepts, relations in DSM are derived from one level to the next,
with [belong to], [aggregate], [own], [reason], and [hierarchy] being the most
basic relations at the top level. The belong-to relation is a relation on the set
dimension, also called a derived relation, expressed as [A belongs to B] or [B
derives from A], where A is the derived concept and B is the base concept. The
equivalence relation is a particular case of belong-to relations. The aggregate
relation aggregates concepts from two different domains into a single overall
concept (called an aggregate), which has a derived relationship to the concepts
in these different domains. The owning relation is a relation on the domain
dimension that gives rise to various different owning relations. The reasoning
relation is a narrow reasoning relation also on the domain dimension, repre-
senting transformation between two patterns. The root relation is an implicit
relation expressing direct affiliation of individual concepts to the root concept
in a tree network structure.

These relationships can be combined to form a tree network structure on the
set and domain dimensions. The tree network has a root to which all elements
(including concepts, relations, and additional relations) of the following multi-
level hierarchy belong, as an inseparable part of the whole pattern. The root of
a tree network represents the entire tree network. The root has a projective re-
lationship to individual elements, and individual elements also have a projective
relationship to the root, just with different individual projective probabilities.

Since both concepts and relations can be derived, the entire tree network con-
sisting of concepts and relations can also be derived. Each node of the derived
network and the corresponding node of the base network has a derivation rela-
tion. All relationships have bidirectional semantic and probabilistic expressions.
The reason many traditional rule-based systems cannot solve practical problems
well is that, on one hand, there is a lack of hierarchical relationships between
knowledge and rules, and on the other hand, knowledge and rule definitions
tend to be binary logic, lacking the ability to express and compute ubiquitous
uncertain information in practical scenarios. Therefore, it is significant for DSM
to implant expression systems such as affiliation functions and probability in the
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basic structure.

Neither simple tree structures nor ordinary network structures can effectively
express cognitive information. Ordinary network structures lack hierarchical
information and make problem decomposition difficult, while simple tree struc-
tures lack the ability to completely express complex structures in real scenarios.
Tree network structure combines the hierarchical structure and problem decom-
position ability of trees with the comprehensive information expression ability
of networks, breaking down complex cognitive expressions into relatively simple
local problems to be solved independently, which is of great significance to Al
development. We believe that the human brain also heavily employs a logical
structure similar to the tree network.

3.6 Algorithm System

In DSM, several basic algorithms such as comprehension, generation, querying,
reasoning, and learning are defined to form a complete algorithmic closed-loop
system for language semantics. All algorithms are in fact omnidirectional net-
work growth algorithms, considered computations that “complete” unknown
parts according to different known parts around the same two-dimensional mul-
tilevel tree network structure. This is equivalent to unifying “encoder” and
“decoder,” as well as unifying the two computational models of “discriminative
model” and “generative model”—computation of the same structure in different
directions.

Compared with end-to-end black-box computing, DSM’s algorithmic system is
white-box, where all aspects can be seamlessly and automatically processed. It
can also be completely disassembled for customized processing when necessary,
reflecting full flexibility and enabling complex multi-service fusion computing
and continuous computing [|. The query algorithm, also known as the semantic
pattern matching algorithm, is a very basic algorithm in the whole system,
using the [belong to] and [aggregate] relations of multiple base classes as base
rules that can be combined with probabilistic calculations while guaranteeing
complete pattern matching.

3.7 Expression of Reasoning and Computation

Reasoning is one of the key algorithms of intelligent systems. In DSM, reasoning
computation is embodied as transformation of one tree network pattern to an-
other, where each atomic reasoning is expressed through a reasoning structure.
The root of the reasoning structure is a [reasoning] relation that connects the
two tree networks in which reasoning is performed to form a larger tree network.
The most basic reasoning relation can derive many more specific reasoning rela-
tions, all sharing the same basic structure.

For example, a reasoning tree network can describe the formula [Distance] =
[Speed] x [Time] for all [Movements]. When encountering application prob-
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lems with [Movement| as the base class—whether [Airplane flies from Beijing to
Shanghai], [Car runs from A to B], or [Xiao Ming walks from home to school],
and whether solving for [Speed], [Distance], or [Time]—all will match the same
pattern and activate the mathematical formula [Distance] = [Speed] x [Time],
enabling reasoning and calculations that form the basis for enumerating math-
ematical equations with understanding.

Solving equations is carried out by reasoning about interconversions between
equations. This bidirectional reasoning of equations for multiplication and divi-
sion can solve all such calculations (not limited to solving the [Movement| event).
The specific transformation calculation of the equation involves selecting each
reasoning transformation mode, finding the transformation path to transfer the
solution target variable to the right side, and finally completing the calculation.

Like other computations, specific reasoning computation is a network comple-
tion computation: pattern matching is performed first. Once a pattern success-
fully matches part of an inference pattern, it triggers creation of a reasoning
instance derived from this reasoning pattern as a base template and completes
the other part of the reasoning instance.

This semantically structured reasoning also has the following features: ab-
stract reasoning follows network derivation principles, where reasoning knowl-
edge should be defined based on the most abstract essential base class for most
efficient generalization; hierarchical reasoning decomposes large reasoning into
small multilevel reasoning that can be combined and stacked to realize complex
reasoning tasks; bidirectional reasoning structures enable the same structure to
realize bidirectional reasoning; branch reasoning provides a basis for calculation
choice in multi-branch reasoning; logical reasoning can be realized by combining
multiple atomic reasoning using [And][Or][Not]; and planning and action extend
around the same reasoning structure, where planning designs plan structures us-
ing reasoning structures and action executes those plans.

3.8 Probabilistic Expression and Calculation

Two points related to probability require explanation. First, probability col-
lapse, mentioned in DCN, is a theory and method that needs emphasis as an
effective way to solve some drawbacks of traditional probability calculations.
During computation, information with high probability and certainty can un-
dergo probability collapse (set probability = 1), making that information com-
pletely explicit and changing computation goals and directions. This not only
reduces ineffective computation for higher performance but more importantly
eliminates errors (uncertainty transfer and computation have cumulative errors,
and proper partial collapse actually facilitates eliminating such errors in inter-
mediate processes). Moreover, probabilistic collapses can be preset as needed
for more effective system control.

In some sense, one essential difference between symbolism and connectionism is
reflected in probability collapse: symbols are what all computation ultimately
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needs to achieve, representing a piece of definite information—a collapsed state.
But in early computation stages when information is uncertain, expressing it
in explicit symbols (collapsing prematurely) is inaccurate or wrong. GPT does
not separate from symbols but only expresses and calculates the superposition
state of multiple symbols using probability vectors first, performing probabil-
ity collapse only at the end to form deterministic symbols. Thus, symbols and
probability are not mutually exclusive systems but mutually transformable. The
conceptualized structure combining probability can express both probabilistic
superposition and collapse states, remaining interpretable in the superposition
state and allowing probabilistic intervention at any link. This can compensate
for shortcomings of traditional symbolic computation and black-box neural net-
works, demonstrating more flexible technical advantages.

Probability collapse is also a fundamental way of thinking in the human brain.
When observing and interpreting the world, humans constantly encounter un-
known and uncertain information and need to identify and even manipulate
information that can be prioritized and made explicit. Once some information
is clarified as known (necessarily requiring definable notation), it can shift at-
tention and computational reasoning flow to recalculate other unknowns based
on the known. This continuous conditioning and computation shift is neces-
sary for effective processing of the complex world. Without clarifying needed
information as soon as possible, nothing can be done in the face of increasingly
uncertain “chaotic” systems.

Probability collapse theory is also important for image recognition scenarios.
Images have strong local correlation. Once an object reaches probability col-
lapse, it drives probability collapse of surrounding objects, enabling rapid con-
vergence. Applying this method to image and video recognition would be even
more effective than language processing.

Second, simplified probability computation: although DCN is designed based
on set and probability theory, actual open system application scenarios cannot
provide strict probability definitions and precise values. What Al needs to
solve at this stage is actually the “probability of significance under open system
problems,” where the probability of correct results is much greater than other
results. For these problems, very high computational precision is not required,
and integer-type addition and subtraction operations can often solve problems
effectively. For problems where ambiguity remains, increasing computational
precision is not useful; what is needed is more information, such as obtaining
necessary information through multi-round dialogue communication.

Tasks requiring high-precision probabilistic computation (e.g., machine Go) usu-
ally belong to “non-significant probabilistic problems in closed systems” and
should be modeled and implemented independently as domain expertise, then
interfaced to the system.
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3.9 Technical Applications

DSM business applications can gradually expand as technology improves. At the
early stage, after constructing a certain scale of DSM model and knowledge base
and focusing on realizing the ability to understand natural language as DSM
structure, accurate, rich, and standard structured semantic information can
serve as a basis to support various business implementations in many aspects.

Moreover, DSM and LLM have their own specialized capabilities. Using DSM’s
unified semantic expression capability, the two can be tightly integrated to form
a more complete technical solution to enhance business application effectiveness.
Specifically, DSM can focus on: semantic parsing of natural language to form
unambiguous semantic structures; semantic integration of multi-round conver-
sations and history to form complete task semantic structures; precise task
distribution analysis for vertical models and systems; task management based
on semantic structures; semantic reasoning for various calculations and transfor-
mations; semantic generation of lower-level semantics or natural language from
higher-level semantics; semantic sharing and exchange for reliable information
transfer among DSM, LLM, and other systems; semantic retrieval with more
accurate matching than vector matching; and execution-type tasks requiring
structured expression of task information with configurable control rules.

In later stages, with model and knowledge base expansion and further algorithm
system improvement, intelligent processing capabilities will be comprehensively
enhanced across all task segments to realize more powerful intelligent business
applications.

3.10 Prototype Systems

We have open-sourced DSM 1.0, completed in 2016 (https://github.com/chenfeng-
china/DSM). This version’s basic theories, models, and algorithms have taken
shape, especially providing a model library containing thousands of the most
critical underlying concepts and structures, and demonstrating fundamentals
of deep semantic representation and computation with several examples for
analysis and research by relevant parties.

4. Further Work

DSM has been continuously developed and refined, currently iterated to the
third generation, with further R&D work to follow. Key objectives include:

4.1 Implementation of LLM Ability to Read and Write
DSM Structures

A very valuable recent work is training LLM to directly read and write DSM
structures—specifically, the ability to parse natural language into DSM struc-
tures and generate natural language from DSM structures—to facilitate more
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flexible integration of various technologies and systems for intelligent business
and products.

4.2 Building a Complete Deep Semantic Knowledge Base

Building a more complete DSM foundation knowledge base and domain knowl-
edge bases is important work requiring continuous accumulation and improve-
ment. Unlike some other knowledge base builds, DSM prioritizes “depth” over
“breadth.” Higher-level knowledge is more effective and important, requiring Al
experts to design and accumulate it. Previous R&D has solved many key model
structure problems and constructed a basically complete higher-level knowledge
system, laying a good foundation for subsequent work.

After the basic knowledge system is constructed, further derived and expanded
knowledge is more numerous but less difficult, allowing joint participation by
experts from various industrial fields. Moreover, LLM can accelerate DSM
knowledge base construction efficiency, including using LLM as an auxiliary
tool for knowledge discovery and processing, and directly converting LLM’s hid-
den knowledge to DSM structured knowledge. Lower-level knowledge and data
will be automatically learned and processed in complete real time. As the entire
model scale increases, system capabilities will also have an “emergent” effect.

Building this deep semantic knowledge base may have important social value.
Compared to black-box holistic models, each piece of knowledge can be shared
and used by industries and continuously optimized, serving as important public
infrastructure for realizing more powerful Al. To this end, building an open plat-
form to open up the knowledge model, knowledge base, and algorithmic capabil-
ities for industry-wide participation in improving the deep semantic knowledge
base should be considered.

4.3 Building a Stronger Overall Model

The longer-term goal is further deep integration of DSM and LLM to build an
integrated intelligence model combining the advantages of both. Main features
include: conceptualized, structured, and interpretable knowledge structures;
better DSM structures and semantic vector structures; convergence of vector
computation and conceptual system computation; more complete and efficient
basic algorithm systems; complete real-time knowledge learning capabilities; in-
cremental, active, and continuous learning; a unified platform for “knowledge
+ data” integration; stronger reasoning, planning, and execution capabilities;
deeper and more comprehensive intelligent agent systems; more efficient com-
puting and lower resource consumption.

Among these, continuous active learning is a core capability that powerful Al
must have. Super Al learning will not be one-time but can continuously and
actively seek information to learn knowledge, as well as introspect on the existing
knowledge system for complementation and optimization. In this system, the
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hierarchy of knowledge and data plays a decisive role as the basis for the system
to recognize information value, set learning goals, and control adjustment and
storage strategies for each learning task.

References

[| Chen Feng. AI Centered on Scene Fitting and Dynamic Cognitive Network.
[2020]. http://arxiv.org/abs/2010.04551

[| Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-
Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David
Raposo, Adam Santoro, Ryan Faulkner, Caglar Gulcehre, Francis Song,
Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey Allen,
Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra,
Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, Razvan Pascanu.
Relational inductive biases, deep learning, and graph networks. [2018].
https://arxiv.org/pdf/1806.01261.pdf

[| Gary Marcus. The Next Decade in Al: Four Steps Towards Robust Artificial
Intelligence. [2020]. https://arxiv.org/abs/2002.06177

[| Judea Pearl, Dana Mackenzie. The Book of Why. Allen Lane, 2018.

[| Gary Marcus. bengio v marcus and the past present and future of neural net-
work models of language. [2018]. https://medium.com/@QGaryMarcus/bengio-
v-marcus-and-the-past-present-and-future-of-neural-network-models-of-
language-b4f795f352b. https://arxiv.org/ftp/arxiv/papers/1801/1801.00631.pdf

[| Geoffrey E. Hinton, Alex Krizhevsky, Sida D. Transforming Auto-Encoders.
Artificial Neural Networks and Machine Learning, ICANN 2011, 21st: 44-51.

[] Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between
Capsules. [2017]. https://arxiv.org/abs/1710.09829

[| Gary Marcus, Ernest Davis. Rebooting AI: Building Artificial Intelligence We
Can Trust. Pantheon, 2019.

[] Nicola Kuczewski, Cristophe Porcher, Volkmar Lessmann, Igor Medina, Jean-
Luc Gaiarsa. Back-propagating action potential. Communicative & Integrative
Biology, 2008, 1:2: 153-155.

Note: The original version of this paper is written in Chinese, and there may
be deviations in the translation process. Therefore, the Chinese original version
is attached for reference. If there is any difference between the two versions, the
Chinese original version shall prevail.

chinarxiv.org/items/chinaxiv-202402.00203 Machine Translation


https://chinarxiv.org/items/chinaxiv-202402.00203

rny

—

|
lorepinephrine |

NS,
‘,,’/ Amygdéia \'l 5

, Enhancement .

r I d 4

e T | DecisionMaing | | Creathy |
- & - —_— - _
Hippocampus Prefrontal Cortex |1 Working Memory 1 | Attention |
Weakening Weakoning

Cognitive =1z s \
S ] g
/ 3 g E \
™ " w
Episodic Memory
\ g g § /
g3 ||z
» &

irn]| [ o]

Figure 1: Figure 1

2 S

B,

Memo_ry N Memory Memory
Encoding Consolidation Retrieval
(Research 1) What are the characteristics of
neural replay under stress? Consldaton
Research Hypothesis: Speed? Accuracy| Sequentiality|
(Research 2) How does neural replay under stress Consoidation

affect refrieval?

Hypothesis: Speed & Persistence; Accuracy & Specificity: Sequential & Flexible

Retrieval

(Research 3) How is neural replay under stress affected
by encoding?
Hypothesis: Encoding Efficiency? -> Online Consolidation? -> Stress Impact|

Encoding

Consolidation

(Research 4) How is neural replay under
stress regulated by neuroendocrine and
environment?

Hypothesis: Neuroendocrine (Amygdala) and Environment (Prefrontal
Cortex) strategies regulate neural replay by reducing stress response

Figure 2: Figure 2

chinarxiv.org/items/chinaxiv-202402.00203

Machine Translation


https://chinarxiv.org/items/chinaxiv-202402.00203

ChinaRxiv [f)]

Memory B Memory
A Encoding i Consolidation

Figure 3: Figure 3

Figures

Source: ChinaXiv — Machine translation. Verify with original.

chinarxiv.org/items/chinaxiv-202402.00203 Machine Translation


https://chinarxiv.org/items/chinaxiv-202402.00203

	LLM Problem Analysis and DSM Deep Semantic Model
	Abstract
	Full Text

	LLM Problem Analysis and the DSM Deep Semantic Model
	Abstract
	1. Introduction
	2.1 Interpretability Issues: Representation and Computation of Conceptualized Structures
	2.2 Incomplete Algorithmic System: Designing Complete Algorithmic Systems
	2.3 Hallucination Issues: Choosing the Right Algorithm
	2.4 Expression Computation Issues: Structured Hierarchical Expressions and Computations
	2.5 Knowledge Inconsistency Issues: Bidirectional Relationship Representation and Computation
	2.6 Weaknesses in Reasoning: Structured Reasoning Expression and Computation
	2.7 Knowledge and Data Mixing Issues: Hierarchical Representation of Knowledge and Data
	2.8 Knowledge Learning Issues: Multi-Level Incremental Learning Models
	2.9 Alignment of Uncertain Information Issues: Conceptual Representation of Certainty
	2.10 Bias and Jailbreaking Issues: Semantics-Based Control of Absolute Information
	3. Introduction to the DSM Deep Semantic Model
	3.1 Deep Semantic Structure
	3.2 Separation of Semantics and Language
	3.3 Hierarchical Semantic Knowledge and Data System
	3.4 Inheritance, Overloading, and Aggregation
	3.5 Bidirectional Relation and Tree Network Structure
	3.6 Algorithm System
	3.7 Expression of Reasoning and Computation
	3.8 Probabilistic Expression and Calculation
	3.9 Technical Applications
	3.10 Prototype Systems
	4. Further Work
	4.1 Implementation of LLM Ability to Read and Write DSM Structures
	4.2 Building a Complete Deep Semantic Knowledge Base
	4.3 Building a Stronger Overall Model
	References
	Figures


