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Abstract
[Objective] Analyze the definition and properties of information capacity based
on the information sextuple model, propose formulas relating information to
matter, energy, and time, and provide theoretical reference for information sci-
ence, particularly for applications in quantum information technology.

[Methods] Based on the information sextuple model proposed by objective infor-
mation theory, combined with quantum information theory, we studied infor-
mation capacity effects under various combinatorial conditions through rigorous
mathematical axiomatic methods, and derived the relationships between infor-
mation capacity and mass, energy, and time.

[Results] We proved that defining information capacity using information en-
tropy is merely a special case of the information capacity defined by objective
information theory, estimated the information capacity that a single quantum
carrier can bear, derived and presented formulas relating information to matter,
energy, and time, and calculated and analyzed the information capacity that
the universe could possibly carry to date.

[Limitations] The relevant theoretical methods need to be validated through
empirical physics research and applications in complex information systems sci-
ence.

[Conclusion] The connotation of information capacity in objective information
theory can profoundly and accurately reveal the interrelationships among the
three fundamental constituent elements of matter, energy, and information in
the objective world, and possesses good universal significance and application
prospects.
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Full Text
Preamble
An Investigation of the Essence and Capacity of Information

Jianfeng Xu
(Supreme People’s Court Information Center of China, Beijing, 100745, China)
E-mail: xjfcetc@163.com

Abstract: [Objective] This paper studies the relationship between information
capacity and mass, energy, and time through analyses of the definition and
properties of information capacity based on the information sextuple model, in
order to provide a theoretical reference for research and applications of informa-
tion science. [Methods] Based on four basic postulations regarding information,
we propose the information sextuple model; through an axiomatic approach, we
study the information capacity effect under a variety of combinatorial condi-
tions; in accordance with quantum information theories, we derive the relation-
ship between information and matter, energy, and time through mathematical
axiomatic methods. [Results] We prove that information capacity based on
information entropy is a special case of the definition of information capacity
in Objective Information Theory. Furthermore, we estimate the information
volume of a single quantum carrier, derive the relationship formula between in-
formation capacity and mass, energy, and time. Based on this, we estimate and
comparatively analyze the information volume existing in the universe. [Limita-
tions] These theoretical results are in need of validation with empirical physical
studies and applications of complex information systems science. [Conclusions]
The connotation of information capacity of Objective Information Theory can
profoundly and accurately, to a certain extent, reveal the relationship among
the three basic elements of the objective world—that is, matter, energy, and in-
formation—demonstrating good universal significance and application prospects.

Keywords: Information model; Information capacity; Information combina-
tion; Quantum information; Relationship formula of information, matter, en-
ergy, and time; Information volume in the universe

1 Introduction
Despite humanity’s entry into the information age, understandings of informa-
tion remain diverse and contested. Research into the essence and capacity of
information can help clarify and unify these perspectives, thereby advancing the
development of information science. Shannon’s foundational work [2] established
information entropy as the measure of information quantity, forming the basis
of modern information theory. It assumes discrete events occur with known
probabilities 𝑝1, 𝑝2, … , 𝑝𝑛, yielding the entropy formula 𝐻(𝑋) = − ∑ 𝑝𝑖 log 𝑝𝑖,
which he emphasized serves as a core measure of information, choice, and uncer-
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tainty in information theory. To date, the vast majority of information theory
research employs various types of information entropy as the fundamental for-
mula for calculating information quantity, which has indeed played a crucial
role in the development of information technology.

However, careful analysis reveals that information entropy as a definition of in-
formation measurement has significant limitations that make it ill-suited to the
increasingly broad demands of information system construction and application.
The main reasons are threefold: First, as indicated by its title“A Mathematical
Theory of Communication,”its conclusions primarily apply to typical commu-
nication scenarios. Modern information systems, however, involve far more
complex processes beyond communication, including information acquisition,
processing, storage, and application, whose patterns cannot be fully captured
by communication theory alone. Second, it assumes the occurrence probabilities
𝑝1, 𝑝2, … , 𝑝𝑛 of discrete events are known, which represents only a rare special
case even in practical communication applications. Third, using the informa-
tion entropy formula to describe information quantity implicitly embodies the
notion that “only change produces information.”Yet the most common files
transmitted, stored, and applied in today’s computers, internet, and databases
—regardless of whether they change—constitute objective realities that informa-
tion system developers must confront, and the information entropy formula is
virtually powerless to address them. Therefore, information measurement based
on information entropy is inadequate for the numerous problems modern infor-
mation systems must face and solve, highlighting deeper issues arising from the
lack of universal consensus on information in academia.

In response, reference [15] proposed the fundamental concepts of Objective In-
formation Theory, establishing definitions and models of information, analyz-
ing its basic properties, and defining nine categories of information measures.
Reference [16] examined the applicability and rationality of Objective Informa-
tion Theory using an air traffic control system as a case study. Reference [17]
introduced the condition of recoverable information, modifying and expand-
ing the definitions to eleven categories of measures including capacity, delay,
breadth, granularity, type, duration, sampling rate, aggregation, pervasiveness,
distortion, and mismatch. It further analyzed the potential efficacy of these
eleven measures in information systems, constructed the dynamic configuration
of information systems, and formed the basic framework of information system
dynamics, providing comprehensive metric guidance and model support for in-
formation system architecture design and integration. This framework has been
applied and validated in China’s Smart Court system-of-systems engineering
[18].

This paper builds upon the fundamental concepts of Objective Information The-
ory, uses simple examples to illustrate the concrete connotation of information,
proposes four basic postulates regarding the binary subjects of information, ex-
istence time, state expression, and enabling mapping. Based on these, it demon-
strates that the information sextuple model constitutes necessary and sufficient
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conditions for defining information, proves that information capacity defined
by Objective Information Theory can also express Shannon’s information en-
tropy principle, and shows that defining information capacity using information
entropy is merely a special case of the capacity definition in Objective Informa-
tion Theory. According to the combinational and decompositional properties
of information, it explains the capacity additivity of atomic information com-
binations, then based on the Margolus-Levitin theorem proves the information
capacity that a single quantum carrier can bear within a certain time period.
Using Einstein’s mass-energy conversion formula, it proves the relationship for-
mula between information capacity and mass, energy, and time, and uses this to
calculate and analyze the information capacity the universe may have borne to
date. This demonstrates that the formula accurately reveals the interrelation-
ships among information, matter, energy, and time, exhibits good universality,
and thereby highlights the scientific significance of Objective Information The-
ory.

2 Information Model and Capacity Analysis
Although understandings of information vary widely, the various data, text, au-
dio, video, and multimedia files collected, transmitted, processed, stored, and
applied in today’s computers and internet represent the most typical and uni-
versally significant forms of information. Wiener [19] proposed that information
is information, not matter nor energy, elevating information to the same level as
matter and energy. Reference [15] argues that matter is fundamental existence,
energy is the existence of motional capacity, and information is the objective
reflection of things and their states of motion in both objective and subjective
worlds, making matter, energy, and information the three fundamental elements
constituting the objective world. Through simple example analysis, general pat-
terns can be induced into concise postulates, and employing axiomatic methods
to study information models, definitions, and capacity constitutes a reasonable
and scientific research methodology.

2.1 Simple Example of Information Concept

To facilitate understanding of the information concept and develop intuitive
recognition of information models, we can analyze a penguin image file stored in
a laptop computer. Figure 1 illustrates the active scene information of penguins
stored in a laptop. The noumenon consists of the three penguins under the blue
sky and white clouds in the scene, perhaps including the penguins’unknown
subjective emotions. Assuming the image was captured at time 𝑡0 with a shutter
speed of 1/100 second, the noumenon’s state occurrence time is the interval
[𝑡0, 𝑡0 + 0.01 seconds]. The noumenon’s state set is the charming postures of
the penguins under the blue sky and white clouds during [𝑡0, 𝑡0 + 0.01 seconds]
as shown on the left side of Figure 1. The laptop computer on the right serves
as the information carrier. Assuming the storage time runs from 𝑡1 to 𝑡2, any
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moment within the time interval [𝑡1, 𝑡2] can serve as the carrier’s reflection time,
and the image format file stored in the laptop—a set of binary codes—constitutes
the carrier’s reflection set.

This simple example reveals that the penguins’activity states and even sub-
jective emotional information can be frozen and stored in the objective world
through the laptop computer, with its content being the binary image format
file that obeys objective scientific and technological laws. This represents the
universal property of all information carried by modern information systems—
existing independently of human subjective will—which is why we designate this
epistemology of information as Objective Information Theory.

On the other hand, through appropriate processing of the image format file,
the laptop can reproduce the image of three penguins under blue sky and white
clouds on its display screen. Mathematically, this can be understood as perform-
ing an inverse mapping of the carrier’s reflection set to restore the noumenon’
s state set. Thus, the most important property of information—recoverability—
is concretely manifested. Assuming this image format file occupies 1M bits of
storage space in the laptop, its information capacity is universally recognized
as 1M bits, requiring neither probability estimation nor entropy formula calcu-
lation to determine its information capacity, and this capacity does not change
because people are already familiar with the image.

People often regard only the binary image format file in the laptop as informa-
tion, that is, treating only the carrier’s reflection set as information. Generally,
this does not cause serious problems because in fact, people already implicitly
possess knowledge of its noumenon when referring to the “information”in the
carrier. However, in strict scientific terms, treating only the carrier’s reflection
set as information severely limits our thorough investigation of information. In
the above example, if we consider only the image format file in the laptop as an
independent object, we cannot study critical issues such as authenticity, delay,
and accuracy that are decisive for information. Therefore, only by incorporat-
ing the noumenon and carrier along with their existence times and states into
a complete information model for comprehensive study can we fully reflect the
various characteristics of information and provide adequate theoretical tools
for solving many profound problems facing information science and technology
development.

2.2 Information Model and Definition

Based on the fundamental understanding that information stands alongside mat-
ter and energy, and combined with the above example, to achieve the broadest
possible consensus on information and establish a formal information model, we
first propose four postulates regarding the information concept:

Postulate 1 (Binary Subjects Postulate): Information has two subjects
—the noumenon and the carrier—where the noumenon possesses the essential
connotation of information, and the carrier presents its objective form.
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The important distinction between information and matter or energy is that
matter can exist independently, energy can exist independently, but behind
information’s appearance always exists another“shadow.”Hence, people often ask
“Is this information true or false?”or“How accurate is this information?”—these
questions essentially compare information’s “appearance”with its underlying
“shadow.”The fundamental significance of using information lies in its ability
to restore or apply the truth behind its surface form. Here we particularly
emphasize “objective form,”requiring that information’s surface appearance
should be independent of human subjective will, which demands that the carrier
must be an entity in the objective world. In the example of Section 2.1, people
appreciate the living states of the three penguin noumena precisely through the
objective carrier of the laptop computer. This constitutes the basis for Postulate
1.

Postulate 2 (Existence Time Postulate): Both the connotation and form
of information have their respective existence times.

Like matter and energy, information possesses temporality, manifested in that
both the essential connotation of the information noumenon and the objective
form of the carrier can emerge at certain times and disappear at others. Simulta-
neously, the existence times of noumenon and carrier have profound significance
for the entire information. For instance, information delay depends on the rela-
tionship between the noumenon’s and carrier’s existence times. In the example
of Section 2.1, for any moment 𝑡 within the time interval [𝑡1, 𝑡2], 𝑡 − (𝑡0 + 0.01)
represents the delay of the image information in the laptop. Information delay
has almost decisive impact in many information applications such as disaster
forecasting, military intelligence, and document circulation. This constitutes
the basis for Postulate 2.

Postulate 3 (State Expression Postulate): Both the information noumenon
and carrier have their respective state expressions.

Another important distinction from matter and energy is that the essence of
matter content remains matter, the essence of energy content remains energy,
while the essence of information content is the state of things. Moreover, due
to the binary nature of information subjects, neither the noumenon state nor
the carrier state can be neglected. In the example of Section 2.1, the charming
postures of penguins under blue sky and white clouds constitute the noumenon
state, while the binary image file in the laptop constitutes the carrier state. An-
alyzing information authenticity and accuracy requires studying and comparing
the relationship between noumenon state and carrier state. This constitutes the
basis for Postulate 3.

Postulate 4 (Enabling Mapping Postulate): The information noumenon
state can be enabling-mapped to the carrier state. The meaning of enabling
mapping requires both establishing a surjective mapping from noumenon state
to carrier state mathematically, and that the carrier state becomes objective
reality because of the noumenon state.
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If noumenon state and carrier state have no connection whatsoever, no infor-
mation can be formed. Only when the noumenon state not only establishes a
surjective mapping relationship with the carrier state mathematically but also
forms a causal enabling relationship physically can it become information. In the
example of Section 2.1, the penguin image information represents the mapping
relationship established by information creators from the penguins’noumenon
state to the laptop’s image file, and precisely because the penguins’noumenon
state exists, the objective reality of the image file in the carrier emerges. This
constitutes the basis for Postulate 4.

Postulates 1–4 employ axiomatic methods to induce the essential elements of
information and their relationships, from which the information sextuple model
can be derived.

Lemma 1: The necessary and sufficient condition for satisfying Postulates 1–4 is
the existence of a non-empty information noumenon set 𝑜, noumenon occurrence
time set 𝑇ℎ, noumenon state set 𝑓(𝑜, 𝑇ℎ), objective carrier set 𝑐, carrier reflection
time set 𝑇𝑚, and carrier reflection set 𝑔(𝑐, 𝑇𝑚), such that 𝑓(𝑜, 𝑇ℎ) enabling-maps
to 𝑔(𝑐, 𝑇𝑚). Denoting this mapping as 𝐼 , we write 𝐼 = ⟨𝑜, 𝑇ℎ, 𝑓, 𝑐, 𝑇𝑚, 𝑔⟩, called
the information sextuple model.

Proof: When Postulates 1–4 are satisfied, according to Postulate 1 there exist
non-empty information noumenon set 𝑜 and objective carrier set 𝑐; according
to Postulate 2 there exist non-empty noumenon occurrence time set 𝑇ℎ and
carrier reflection time set 𝑇𝑚; according to Postulate 3 there exists a noumenon
state set depending on both 𝑜 and 𝑇ℎ, denoted as 𝑓(𝑜, 𝑇ℎ), and simultaneously a
carrier state set depending on both 𝑐 and 𝑇𝑚, denoted as 𝑔(𝑐, 𝑇𝑚); according to
Postulate 4, 𝑓(𝑜, 𝑇ℎ) enabling-maps to 𝑔(𝑐, 𝑇𝑚). When this mapping is denoted
as 𝐼 , we obtain the sextuple model 𝐼 = ⟨𝑜, 𝑇ℎ, 𝑓, 𝑐, 𝑇𝑚, 𝑔⟩. The necessity of the
lemma is proved.

Conversely, if there exist non-empty information noumenon set 𝑜, noumenon
occurrence time set 𝑇ℎ, noumenon state set 𝑓(𝑜, 𝑇ℎ), objective carrier set 𝑐,
carrier reflection time set 𝑇𝑚, and carrier reflection set 𝑔(𝑐, 𝑇𝑚), and 𝑓(𝑜, 𝑇ℎ)
enabling-maps to 𝑔(𝑐, 𝑇𝑚), then the sextuple model 𝐼 = ⟨𝑜, 𝑇ℎ, 𝑓, 𝑐, 𝑇𝑚, 𝑔⟩ can
satisfy Postulates 1–4. The sufficiency of the lemma is proved.

Based on Postulates 1–4 and Lemma 1, we can provide the general mathematical
definition of information in Objective Information Theory:

Definition 1 (Mathematical Definition of Information): Let 𝑂 denote
the objective world set, 𝑆 the subjective world set, and 𝑇 the time set. Elements
in 𝑂, 𝑆, and 𝑇 can be appropriately partitioned according to the specific require-
ments of the domain. The noumenon 𝑜 ∈ 2𝑂∪𝑆, occurrence time 𝑇ℎ ∈ 2𝑇 , state
set of 𝑜 on 𝑇ℎ denoted as 𝑓(𝑜, 𝑇ℎ), carrier 𝑐 ∈ 2𝑂, reflection time 𝑇𝑚 ∈ 2𝑇 , and
reflection set of 𝑐 on 𝑇𝑚 denoted as 𝑔(𝑐, 𝑇𝑚) are all non-empty sets. Information
𝐼 is the enabling mapping from 𝑓(𝑜, 𝑇ℎ) to 𝑔(𝑐, 𝑇𝑚), i.e., 𝐼 ∶ 𝑓(𝑜, 𝑇ℎ) → 𝑔(𝑐, 𝑇𝑚),
or 𝐼(𝑓(𝑜, 𝑇ℎ)) = 𝑔(𝑐, 𝑇𝑚). The set of all information 𝐼 is called the information
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space, denoted as 𝔗, which constitutes one of the three fundamental elements
of the objective world.

Special attention must be paid to the fact that 𝐼 must strictly satisfy all math-
ematical properties of a surjective mapping from 𝑓(𝑜, 𝑇ℎ) to 𝑔(𝑐, 𝑇𝑚). However,
only when 𝑓(𝑜, 𝑇ℎ) itself stimulates or through external forces generates the cor-
responding 𝑔(𝑐, 𝑇𝑚) in the objective world can 𝐼 be called information. This is
the fundamental reason why Definition 1 introduces the concept of “enabling
mapping.”That is, even if a surjective mapping from 𝑓(𝑜, 𝑇ℎ) to 𝑔(𝑐, 𝑇𝑚) exists
mathematically, if the emergence of 𝑔(𝑐, 𝑇𝑚) has no physical connection what-
soever with 𝑓(𝑜, 𝑇ℎ), such a mapping cannot constitute information. In short,
surjective mapping is a necessary but not sufficient condition for information.
Ultimately, information is both mathematical and physical [20], which is the
essence of information.

Definition 2 (Recoverable Information): Let information 𝐼 =
⟨𝑜, 𝑇ℎ, 𝑓, 𝑐, 𝑇𝑚, 𝑔⟩ also be an injection from 𝑓(𝑜, 𝑇ℎ) to 𝑔(𝑐, 𝑇𝑚), meaning
that for any 𝑜𝜆, 𝑜𝜇 ∈ 𝑜, 𝑇ℎ𝜆, 𝑇ℎ𝜇 ∈ 𝑇ℎ, 𝑓𝜆, 𝑓𝜇 ∈ 𝑓 , if 𝑓𝜆(𝑜𝜆, 𝑇ℎ𝜆) ≠ 𝑓𝜇(𝑜𝜇, 𝑇ℎ𝜇),
then necessarily 𝐼(𝑓𝜆(𝑜𝜆, 𝑇ℎ𝜆)) ≠ 𝐼(𝑓𝜇(𝑜𝜇, 𝑇ℎ𝜇)). In this case 𝐼 is an invertible
mapping, i.e., there exists an inverse mapping 𝐼−1 such that for any set of
𝑐𝜆 ∈ 𝑐, 𝑇𝑚𝜆 ∈ 𝑇𝑚, 𝑔𝜆 ∈ 𝑔, there exists a unique set of 𝑜𝜆 ∈ 𝑜, 𝑇ℎ𝜆 ∈ 𝑇ℎ,
𝑓𝜆 ∈ 𝑓 satisfying 𝐼−1(𝑔𝜆(𝑐𝜆, 𝑇𝑚𝜆)) = 𝑓𝜆(𝑜𝜆, 𝑇ℎ𝜆), from which we obtain
𝐼−1(𝑔(𝑐, 𝑇𝑚)) = 𝑓(𝑜, 𝑇ℎ). We then say information 𝐼 is recoverable, and also
call 𝑓(𝑜, 𝑇ℎ) the recovered state of information 𝐼 .

Evidently, based on 𝑔(𝑐, 𝑇𝑚) and 𝐼−1 we can recover the state 𝑓(𝑜, 𝑇ℎ) of 𝑜 on 𝑇ℎ,
which is the recoverability of information. In the real world, people’s search for
the recovered state through information represents the most important property
and significance of information.

2.3 Definition and Corollaries of Information Capacity

Enriching and perfecting the information measurement system to support the
analysis of information system efficacy is the original intention of Objective
Information Theory. Information capacity is the most concerned measure among
them.

Definition 3: Let 𝐼 = ⟨𝑜, 𝑇ℎ, 𝑓, 𝑐, 𝑇𝑚, 𝑔⟩ be recoverable information, 𝑂 the
objective world set, 𝑇 the time set, 𝑔(𝑂×𝑇 ) the state set on the objective world
and time domain containing 𝑔(𝑐, 𝑇𝑚), and (𝑔(𝑂 × 𝑇 ), 2𝑔(𝑂×𝑇 ), 𝜎) constitute a
measure space. Then the capacity of information 𝐼 with respect to measure 𝜎,
denoted volume𝜎(𝐼), is the measure 𝜎(𝑔(𝑐, 𝑇𝑚)) of 𝑔(𝑐, 𝑇𝑚), i.e.,

volume𝜎(𝐼) = 𝜎(𝑔(𝑐, 𝑇𝑚)). (1)

To maximize universality, information capacity is expressed using measure, en-
compassing both summation forms under finite-element conditions and integral
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forms under continuous integrable function conditions. Similarly, for the same
object set, mathematics can define multiple different measures based on different
concerns, such as Lebesgue measure, Borel measure, etc. [21]. Therefore, the
information capacity defined here is not unique but can be defined differently
according to various application contexts. In information systems, information
capacity is typically measured in bits, the most comprehensible information
measure for people.

Corollary 1 (Minimum Recoverable Capacity of Random Event In-
formation): Let event 𝑋 take values from the set {𝑥𝑖} (𝑖 = 1, … , 𝑛) randomly,
with probability 𝑝𝑖 (𝑖 = 1, … , 𝑛) for value 𝑥𝑖, where different values are inde-
pendent and ∑𝑛

𝑖=1 𝑝𝑖 = 1. Let information 𝐼 = ⟨𝑜, 𝑇ℎ, 𝑓, 𝑐, 𝑇𝑚, 𝑔⟩ represent the
encoding for transmitting the value of 𝑋 via a channel, in which case we call 𝐼
random event information. Here, the noumenon 𝑜 is the random event 𝑋, the
occurrence time 𝑇ℎ is the time when event 𝑋 occurs, the state set 𝑓(𝑜, 𝑇ℎ) is
the values 𝑥𝑖 (𝑖 = 1, … , 𝑛) of event 𝑋, the carrier 𝑐 is the channel transmitting
𝑋’s values, the reflection time 𝑇𝑚 is the time when channel 𝑐 transmits 𝑋’s
values, and the reflection set 𝑔(𝑐, 𝑇𝑚) is the specific encoding by which channel
𝑐 transmits 𝑋’s values. If measure 𝜎 represents the number of bits of 𝑔(𝑐, 𝑇𝑚),
then the minimum capacity of 𝐼 as recoverable information is

volume𝜎(𝐼) = − ∑ 𝑝𝑖 log2 𝑝𝑖.

Proof: Reference [2] establishes that communication semantics are irrelevant
to engineering problems. Therefore, to minimize required channel bandwidth,
the communication process transmitting 𝑋’s values does not need to directly
transmit specific values 𝑥𝑖; it only needs to use different binary encodings to
represent the event of 𝑋 taking value 𝑥𝑖 and transmit the corresponding en-
coding (𝑖 = 1, … , 𝑛). That is, by selecting an appropriate encoding method for
𝑔(𝑐, 𝑇𝑚), the required channel bandwidth can be reduced.

Using proof by contradiction, suppose there exists some encoding method for
𝑔(𝑐, 𝑇𝑚) such that 𝐻′ = 𝜎(𝑔(𝑐, 𝑇𝑚)) < − ∑ 𝑝𝑖 log2 𝑝𝑖 = 𝐻 while still maintain-
ing 𝐼 as recoverable information (meaning the channel can completely transmit
the source information), where 𝐻 is the information entropy of event 𝑋. As-
sume channel 𝑐 has bandwidth 𝑊 . Then we have 𝑊/𝐻′ > 𝑊/𝐻, meaning
channel 𝑐 can completely transmit source information at a rate greater than
𝑊/𝐻. This contradicts the conclusion of Theorem 9 in [2] that the channel
transmission rate 𝑊/𝐻 cannot be exceeded.

Therefore, no encoding method can make 𝜎(𝑔(𝑐, 𝑇𝑚)) < − ∑ 𝑝𝑖 log2 𝑝𝑖 while
keeping 𝐼 recoverable. Thus, volume𝜎(𝐼) = − ∑ 𝑝𝑖 log2 𝑝𝑖 is the minimum re-
coverable information capacity. The corollary is proved.

Corollary 1 shows that the information capacity defined in (1) can also express
Shannon’s information entropy principle, and that defining information capacity
using information entropy is merely a special case of (1). Since the information
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capacity defined in (1) only requires 𝐼 to be a bijective surjection from 𝑓(𝑜, 𝑇ℎ)
to 𝑔(𝑐, 𝑇𝑚) and 𝑔(𝑐, 𝑇𝑚) to be a measurable set with respect to measure 𝜎, it has
more general mathematical constraints than information entropy and therefore
must have more universal application scenarios.

Based on Definition 1, we can also mathematically define the other ten categories
of information measures including delay, breadth, granularity, type, duration,
sampling rate, aggregation, pervasiveness, distortion, and mismatch. Moreover,
like Corollary 1, each category can derive important mathematical corollaries
consistent with classical information principles or possessing practical signifi-
cance (Table 1) [17].

Table 1: Corollaries of the Information Measurement System

Classical and Common
Principles Corollaries of Objective Information Theory
Shannon Information Entropy The minimum recoverable capacity of

random event information is its information
entropy.

Serial Information
Transmission Delay

The overall delay of serial information
transmission equals the sum of delays at
each stage.

Rayleigh Criterion for Optical
Imaging

The granularity of optical imaging
information is proportional to light
wavelength and inversely proportional to
photosensitive element width.

Recoverable Information Type
Invariance Principle

Recoverable information can maintain
information type unchanged.

Average Duration of
Continuous Monitoring
Information

The average duration of continuous
monitoring information equals the mean
time between failures of information
acquisition equipment.

Nyquist Sampling Theorem The minimum recoverable sampling rate for
periodic information equals the highest
frequency of noumenon state.

Recoverable Information
Aggregation Invariance
Principle

Recoverable information can maintain
information aggregation unchanged.

Metcalfe’s Law The value of a network system equals the
product of its maximum information
breadth and maximum pervasiveness.

Kalman Filtering Principle Kalman filtering is the minimum distortion
estimation method for discrete linear
random systems.
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Classical and Common
Principles Corollaries of Objective Information Theory
Average Search Length of
Search Algorithms

The average search length for information
with minimum mismatch in a finite
information set is the average search length
of the algorithm.

3 Capacity Effects of Information Combination and Decom-
position
The sextuple model expression 𝐼 = ⟨𝑜, 𝑇ℎ, 𝑓, 𝑐, 𝑇𝑚, 𝑔⟩ does not emphasize the set
properties of information. However, simple analysis reveals the set properties
of information, namely 𝐼 = ⋃⟨𝑜𝜆, 𝑇ℎ𝜆, 𝑓𝜆, 𝑐𝜆, 𝑇𝑚𝜆, 𝑔𝜆⟩, where 𝑜𝜆 ∈ 𝑜, 𝑇ℎ𝜆 ∈ 𝑇ℎ,
𝑓𝜆(𝑜𝜆, 𝑇ℎ𝜆) ∈ 𝑓(𝑜, 𝑇ℎ), 𝑐𝜆 ∈ 𝑐, 𝑇𝑚𝜆 ∈ 𝑇𝑚, 𝑔𝜆(𝑐𝜆, 𝑇𝑚𝜆) ∈ 𝑔(𝑐, 𝑇𝑚), with 𝜆 ∈ Λ
as an index set. Thus, information 𝐼 is actually a set composed of a series of
sextuple elements. Information possesses set properties. Multiple sets can be
combined into larger sets through“union operations,”and a set can be expressed
as the union of several sets and decomposed into smaller sets. Set combination
or decomposition determines that information has fundamental combinational
and decompositional properties. Undoubtedly, information combination and
decomposition directly affect relevant information measures including capacity.
Therefore, studying the specific concepts and forms of information combination
and decomposition is significant for more profoundly understanding and apply-
ing information capacity measures.

3.1 Mathematical Definitions of Information Combination and De-
composition

Information combination and decomposition originate from the basic concept of
sub-information.

Definition 4: For information 𝐼′ = ⟨𝑜′, 𝑇 ′
ℎ, 𝑓 ′, 𝑐′, 𝑇 ′

𝑚, 𝑔′⟩ and 𝐼 =
⟨𝑜, 𝑇ℎ, 𝑓, 𝑐, 𝑇𝑚, 𝑔⟩, if set 𝐼′ ⊆ 𝐼 and 𝐼′(𝑓 ′(𝑜′, 𝑇 ′

ℎ)) = 𝐼(𝑓 ′(𝑜′, 𝑇 ′
ℎ)), then

we call 𝐼′ sub-information of 𝐼 , denoted 𝐼′ ⊆ 𝐼 , read as “𝐼′ is contained in
𝐼 .”When 𝐼′ is a proper subset of 𝐼 , we call 𝐼′ proper sub-information of 𝐼 ,
denoted 𝐼′ ⊂ 𝐼 , read as “𝐼′ is properly contained in 𝐼 .”

Figure 2 intuitively illustrates the relationship between information 𝐼 and its
sub-information 𝐼′. All information measure definitions in [17] target recover-
able information. Therefore, when studying the measure effects of information
combination and decomposition, the condition of information recoverability is
crucial.

Corollary 2 (Recoverability of Sub-information): Let information 𝐼′ =
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⟨𝑜′, 𝑇 ′
ℎ, 𝑓 ′, 𝑐′, 𝑇 ′

𝑚, 𝑔′⟩ be sub-information of 𝐼 = ⟨𝑜, 𝑇ℎ, 𝑓, 𝑐, 𝑇𝑚, 𝑔⟩. If 𝐼 is recov-
erable information, then 𝐼′ is also recoverable information.

Proof: To prove 𝐼′ = ⟨𝑜′, 𝑇 ′
ℎ, 𝑓 ′, 𝑐′, 𝑇 ′

𝑚, 𝑔′⟩ is recoverable, we need only prove
𝐼′ is a one-to-one mapping from 𝑓 ′(𝑜′, 𝑇 ′

ℎ) to 𝑔′(𝑐′, 𝑇 ′
𝑚). In fact, if 𝐼′ were

not one-to-one, there would exist two different sets 𝑜′
1, 𝑜′

2 ∈ 𝑜′, 𝑇 ′
ℎ1, 𝑇 ′

ℎ2 ∈ 𝑇 ′
ℎ,

𝑓 ′
1, 𝑓 ′

2 ∈ 𝑓 ′ and one set 𝑐′
1 ∈ 𝑐′, 𝑇 ′

𝑚1 ∈ 𝑇 ′
𝑚, 𝑔′

1 ∈ 𝑔′ such that 𝐼′(𝑓 ′
1(𝑜′

1, 𝑇 ′
ℎ1)) =

𝐼′(𝑓 ′
2(𝑜′

2, 𝑇 ′
ℎ2)) = 𝑔′

1. However, by the definition of sub-information, at this time
𝐼(𝑓 ′

1(𝑜′
1, 𝑇 ′

ℎ1)) = 𝐼(𝑓 ′
2(𝑜′

2, 𝑇 ′
ℎ2)) = 𝑔′

1. This contradicts the recoverability of 𝐼 .
Therefore, 𝐼′ must be recoverable information. The corollary is proved.

Based on the sub-information concept, we can introduce the concepts of infor-
mation combination and decomposition.

Definition 5 (Information Combination and Decomposition): For
information 𝐼 = ⟨𝑜, 𝑇ℎ, 𝑓, 𝑐, 𝑇𝑚, 𝑔⟩ and its two proper sub-information sets
𝐼′ = ⟨𝑜′, 𝑇 ′

ℎ, 𝑓 ′, 𝑐′, 𝑇 ′
𝑚, 𝑔′⟩ and 𝐼″ = ⟨𝑜″, 𝑇 ″

ℎ , 𝑓″, 𝑐″, 𝑇 ″
𝑚, 𝑔″⟩, if set 𝐼 = 𝐼 ′ ∪ 𝐼″

and for any 𝑜𝜆 ∈ 𝑜, 𝑇ℎ𝜆 ∈ 𝑇ℎ, we have 𝐼(𝑓(𝑜𝜆, 𝑇ℎ𝜆)) = 𝐼 ′(𝑓 ′(𝑜𝜆, 𝑇ℎ𝜆)) or
𝐼″(𝑓″(𝑜𝜆, 𝑇ℎ𝜆)), then we call 𝐼 the combination of 𝐼′ and 𝐼″, and also call 𝐼′

and 𝐼″ the decomposition of 𝐼 , denoted 𝐼 = 𝐼 ′ ∪ 𝐼″.

Evidently, combination and decomposition are inverse relationships. Figure 3
intuitively illustrates the relationship between information 𝐼 and its two decom-
posed sub-information sets. When 𝐼 is recoverable information, according to
Corollary 2, both 𝐼′ and 𝐼″ are recoverable information, making all measure
definitions applicable to the three information sets 𝐼 , 𝐼′, and 𝐼″. Therefore, we
can study the capacity effects of information combination and decomposition
without any obstacles.

Definition 6 (Overlapping Information): Let 𝐼′ = ⟨𝑜′, 𝑇 ′
ℎ, 𝑓 ′, 𝑐′, 𝑇 ′

𝑚, 𝑔′⟩
and 𝐼″ = ⟨𝑜″, 𝑇 ″

ℎ , 𝑓″, 𝑐″, 𝑇 ″
𝑚, 𝑔″⟩ be two information sets. If set 𝐼′ ∩ 𝐼″ is non-

empty and for any 𝑜𝜆 ∈ 𝑜, 𝑇ℎ𝜆 ∈ 𝑇ℎ, we have 𝐼′(𝑓 ′(𝑜𝜆, 𝑇ℎ𝜆)) = 𝐼″(𝑓″(𝑜𝜆, 𝑇ℎ𝜆)),
i.e., there exist 𝑐𝜆 ∈ 𝑐 = 𝑐′ ∩ 𝑐″, 𝑇𝑚𝜆 ∈ 𝑇𝑚 = 𝑇 ′

𝑚 ∩ 𝑇 ″
𝑚 such that

𝐼′(𝑓 ′(𝑜𝜆, 𝑇ℎ𝜆)) = 𝑔′(𝑐𝜆, 𝑇𝑚𝜆) = 𝑔″(𝑐𝜆, 𝑇𝑚𝜆) = 𝐼″(𝑓″(𝑜𝜆, 𝑇ℎ𝜆)), define
𝑔(𝑐𝜆, 𝑇𝑚𝜆) = 𝐼(𝑓(𝑜𝜆, 𝑇ℎ𝜆)) = 𝐼′(𝑓 ′(𝑜𝜆, 𝑇ℎ𝜆)) = 𝐼″(𝑓″(𝑜𝜆, 𝑇ℎ𝜆)), then
𝐼 = ⟨𝑜, 𝑇ℎ, 𝑓, 𝑐, 𝑇𝑚, 𝑔⟩ is also information and is sub-information of both 𝐼′ and
𝐼″. We call it the overlapping information of 𝐼′ and 𝐼″, denoted 𝐼 = 𝐼 ′ ∩ 𝐼″. In
particular, if set 𝐼′ ∩ 𝐼″ = ∅, we say information 𝐼′ and 𝐼″ have no overlapping
information.

Figure 4 intuitively illustrates the concept of information 𝐼 being overlapping
information of two information sets 𝐼′ and 𝐼″. Based on the sub-information
definition, Corollary 2 yields the following corollary regarding the recoverability
of overlapping information.

Corollary 3 (Recoverability of Overlapping Information): Let 𝐼′ and
𝐼″ both be recoverable information, and 𝐼 = 𝐼 ′ ∩ 𝐼″ be overlapping information.
Then 𝐼 is also recoverable.
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3.2 Capacity Additivity of Information Combination

Definition 7 (Non-overlapping Information Combination and Decom-
position): For information 𝐼 , 𝐼′, and 𝐼″, if 𝐼 is the combination of 𝐼′ and 𝐼″

and 𝐼′ ∩ 𝐼″ = ∅, then we call 𝐼 the non-overlapping combination of 𝐼′ and 𝐼″,
and also call 𝐼′ and 𝐼″ the non-overlapping decomposition of 𝐼 . In this case, we
also call 𝐼′ and 𝐼″ complementary information of 𝐼 with respect to each other,
denoted 𝐼′ = 𝐼/𝐼″ and 𝐼″ = 𝐼/𝐼 ′.

Figure 5 intuitively illustrates the concept of non-overlapping information combi-
nation and decomposition. Non-overlapping combination and decomposition are
special cases of information combination and decomposition, but when studying
capacity effects, focusing on them can greatly simplify problems while not affect-
ing the discovery of relevant patterns for cases with overlapping sub-information.

Corollary 4 (Capacity Additivity of Non-overlapping Combined In-
formation): For information 𝐼 = ⟨𝑜, 𝑇ℎ, 𝑓, 𝑐, 𝑇𝑚, 𝑔⟩, 𝐼′ = ⟨𝑜′, 𝑇 ′

ℎ, 𝑓 ′, 𝑐′, 𝑇 ′
𝑚, 𝑔′⟩,

and 𝐼″ = ⟨𝑜″, 𝑇 ″
ℎ , 𝑓″, 𝑐″, 𝑇 ″

𝑚, 𝑔″⟩, if 𝐼 is the non-overlapping combination of 𝐼′

and 𝐼″, and 𝑔′(𝑐′, 𝑇 ′
𝑚) and 𝑔″(𝑐″, 𝑇 ″

𝑚) are both measurable sets with respect to
measure 𝜎, then 𝑔(𝑐, 𝑇𝑚) is also measurable with respect to 𝜎, and the capacity
of information 𝐼 with respect to measure 𝜎 equals the sum of the capacities of
𝐼′ and 𝐼″ with respect to 𝜎, i.e.,

volume𝜎(𝐼) = volume𝜎(𝐼′) + volume𝜎(𝐼″). (2)

Proof: Since 𝐼 = 𝐼 ′ ∪𝐼″, we have 𝑔(𝑐, 𝑇𝑚) = 𝑔′(𝑐′, 𝑇 ′
𝑚)∪𝑔″(𝑐″, 𝑇 ″

𝑚). And from
the measurability of 𝑔′(𝑐′, 𝑇 ′

𝑚) and 𝑔″(𝑐″, 𝑇 ″
𝑚) with respect to 𝜎, we can deduce

that 𝑔(𝑐, 𝑇𝑚) is also measurable with respect to 𝜎 [21].

We now prove 𝑔′ ∩ 𝑔″ = ∅ by contradiction. If not, there would exist 𝑐𝜆 ∈
𝑐′ ∩ 𝑐″, 𝑇𝑚𝜆 ∈ 𝑇 ′

𝑚 ∩ 𝑇 ″
𝑚 such that 𝑔(𝑐𝜆, 𝑇𝑚𝜆) = 𝑔′(𝑐𝜆, 𝑇𝑚𝜆) = 𝑔″(𝑐𝜆, 𝑇𝑚𝜆) ∈

𝑔′ ∩ 𝑔″. Since 𝐼 is recoverable information, there must exist a unique set 𝑜𝜆 ∈ 𝑜,
𝑇ℎ𝜆 ∈ 𝑇ℎ such that 𝐼(𝑓(𝑜𝜆, 𝑇ℎ𝜆)) = 𝑔(𝑐𝜆, 𝑇𝑚𝜆). Similarly, since 𝐼′ and 𝐼″ are
also recoverable information and 𝐼 is the combination of 𝐼′ and 𝐼″, we have
𝐼(𝑓(𝑜𝜆, 𝑇ℎ𝜆)) = 𝐼′(𝑓 ′(𝑜𝜆, 𝑇ℎ𝜆)) = 𝐼″(𝑓″(𝑜𝜆, 𝑇ℎ𝜆)). Thus 𝑜𝜆 ∈ 𝑜 = 𝑜′ ∩ 𝑜″,
𝑇ℎ𝜆 ∈ 𝑇ℎ = 𝑇 ′

ℎ ∩ 𝑇 ″
ℎ , and 𝑓(𝑜𝜆, 𝑇ℎ𝜆) ∈ 𝑓 = 𝑓 ′ ∩ 𝑓″, making 𝑜′ ∩ 𝑜″, 𝑇 ′

ℎ ∩ 𝑇 ″
ℎ ,

and 𝑓 ′ ∩𝑓″ all non-empty sets, which contradicts the assumption that 𝐼′ and 𝐼″

have no overlap. Therefore, by the additivity property of measure, volume𝜎(𝐼) =
𝜎(𝑔(𝑐, 𝑇𝑚)) = 𝜎(𝑔′(𝑐′, 𝑇 ′

𝑚)) + 𝜎(𝑔″(𝑐″, 𝑇 ″
𝑚)) = volume𝜎(𝐼′) + volume𝜎(𝐼″). The

corollary is proved.

Equation (2) shows that information capacity, like set measure, possesses addi-
tivity. This both aligns with common understanding and provides an important
foundation for deeply studying the capacity effects of information combination
and decomposition. Using set and measure properties, we can obtain the fol-
lowing corollary regarding the capacity composition of overlapping combined
information.
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Corollary 5 (Capacity Composition of Overlapping Combined Infor-
mation): For information 𝐼 = ⟨𝑜, 𝑇ℎ, 𝑓, 𝑐, 𝑇𝑚, 𝑔⟩, 𝐼′ = ⟨𝑜′, 𝑇 ′

ℎ, 𝑓 ′, 𝑐′, 𝑇 ′
𝑚, 𝑔′⟩,

and 𝐼″ = ⟨𝑜″, 𝑇 ″
ℎ , 𝑓″, 𝑐″, 𝑇 ″

𝑚, 𝑔″⟩, if 𝐼 is the combination of 𝐼′ and 𝐼″, and
𝑔′(𝑐′, 𝑇 ′

𝑚) and 𝑔″(𝑐″, 𝑇 ″
𝑚) are both measurable sets with respect to measure 𝜎,

then 𝑔′(𝑐′, 𝑇 ′
𝑚) ∩ 𝑔″(𝑐″, 𝑇 ″

𝑚) is also measurable with respect to 𝜎, and

volume𝜎(𝐼) = volume𝜎(𝐼′) + volume𝜎(𝐼″) − volume𝜎(𝐼′ ∩ 𝐼″). (3)

Corollary 6 (Capacity Additivity of Countable Non-overlapping In-
formation Combination): Let recoverable information 𝐼 = ⟨𝑜, 𝑇ℎ, 𝑓, 𝑐, 𝑇𝑚, 𝑔⟩
be the non-overlapping combination of a countable information set
{𝐼𝑖 = ⟨𝑜𝑖, 𝑇ℎ𝑖, 𝑓𝑖, 𝑐𝑖, 𝑇𝑚𝑖, 𝑔𝑖⟩ ∣ 𝑖 = 1, 2, …}. Then the capacity of informa-
tion 𝐼 with respect to measure 𝜎 equals the sum of the capacities of all 𝐼𝑖 with
respect to 𝜎, i.e.,

volume𝜎(𝐼) = ∑ volume𝜎(𝐼𝑖). (4)

Proof: Since recoverable information 𝐼 is the non-overlapping combination of
the countable information set {𝐼𝑖 ∣ 𝑖 = 1, 2, …}, i.e., 𝐼 = ⋃∞

𝑖=1 𝐼𝑖, and for any
𝑖 ≠ 𝑗, 𝐼𝑖 ∩ 𝐼𝑗 = ∅, from the proof of Corollary 4 we know that for any 𝑖 ≠ 𝑗,
𝑔𝑖(𝑐𝑖, 𝑇𝑚𝑖) ∩ 𝑔𝑗(𝑐𝑗, 𝑇𝑚𝑗) = ∅. Moreover, since 𝑔(𝑐, 𝑇𝑚) = ⋃∞

𝑖=1 𝑔𝑖(𝑐𝑖, 𝑇𝑚𝑖), by the
countable additivity property of measure we have volume𝜎(𝐼) = 𝜎(𝑔(𝑐, 𝑇𝑚)) =
∑∞

𝑖=1 𝜎(𝑔𝑖(𝑐𝑖, 𝑇𝑚𝑖)) = ∑∞
𝑖=1 volume𝜎(𝐼𝑖). The corollary is proved.

Equation (4) also applies when the upper limit of 𝑖 is finite, which is impor-
tant for practical applications because all information in information systems
composed of networks and computers is actually finite and can be analyzed for
capacity using (4).

3.3 Capacity Calculation of Atomic Information and Its Combinations

Like matter can be decomposed into indivisible elementary particles and energy
can be decomposed into indivisible quanta, any information can also be decom-
posed to its most fundamental, indivisible level. This introduces the concept of
atomic information.

Definition 8 (Atomic Information): For recoverable information 𝐼 and
𝐼′, if 𝐼′ is proper sub-information of 𝐼 and there exists no other proper sub-
information 𝐼″ of 𝐼 such that 𝐼″ ⊂ 𝐼′, then we call 𝐼′ atomic information of
𝐼 .

Figure 6 intuitively illustrates the concept of atomic information. Atomic infor-
mation does not specifically refer to information with atoms as noumenon or
carrier. Just as elementary particles are the most minute and fundamental com-
ponents constituting the entire material world, atomic information is the most
minute and fundamental component constituting the entire information space,
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thus playing a crucial role in studying information composition and properties.
All information can be viewed as the combination of all its atomic information,
and atomic information sets have no overlap. Therefore, from Corollary 6 we
obtain:

Corollary 7 (Capacity of Atomic Information and Its Combinations):
For recoverable information 𝐼 = ⟨𝑜, 𝑇ℎ, 𝑓, 𝑐, 𝑇𝑚, 𝑔⟩, if all atomic information
𝐼𝜆 = ⟨𝑜𝜆, 𝑇ℎ𝜆, 𝑓𝜆, 𝑐𝜆, 𝑇𝑚𝜆, 𝑔𝜆⟩ have 𝑔𝜆(𝑐𝜆, 𝑇𝑚𝜆) measurable with respect to mea-
sure 𝜎 (𝜆 ∈ Λ, where Λ is an index set). Then when Λ is a countable set,

volume𝜎(𝐼) = ∑ volume𝜎(𝐼𝜆). (5)

When Λ is a finite set, we need only change the upper limit of summation in
(5) to the cardinality of Λ. However, if Λ is an uncountable set, (5) cannot
be simply changed to an integral formula because measure generally does not
possess additivity for uncountable sets.

Therefore, to simplify problems, research on atomic information should avoid
extending to uncountable continuous sets as much as possible. Specifically, the
number of atomic information in 𝐼 depends on the composition and character-
istics of reflection set 𝑔(𝑐, 𝑇𝑚), which in turn depends on the composition and
characteristics of carrier 𝑐 and reflection time 𝑇𝑚. Thus, if we can simplify sets 𝑐,
𝑇𝑚, and 𝑔 to finite or countable sets as much as possible, capacity calculation for
information 𝐼 can be greatly facilitated. Fortunately, despite the vastness of the
universe, the number of its elementary particles is considered finite. Therefore,
for any information 𝐼 , we can consider carrier 𝑐 to be composed of a finite set of
elementary particles. However, time is a continuous variable, so 𝑇𝑚 may be an
uncountable continuous set. Therefore, appropriate discretization in research
will provide sufficient convenience for calculating information capacity. The
following study on the relationship between information capacity and matter
and energy will prove that information carriers, limited by physical properties,
can only bear different information on discrete time sets, thereby practically
achieving the unification of mathematical requirements and physical rules.

4 Relationship Between Information Capacity and Mass,
Energy, and Time
Information capacity is determined by the measure of the state of its carrier
in the objective world during the reflection time. Any carrier in the objective
world exists in the form of matter or energy, so the states of matter and energy
determine the state of the information reflection set. Changes in matter and
energy states all require energy support [22], so information capacity must be
closely related to its carrier’s state and the energy it contains or is subjected to,
as well as to the carrier’s reflection time—issues that have attracted attention
for decades.
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4.1 Information Capacity of a Single Quantum Carrier

Quantum information theory represents an important frontier achievement in
contemporary information science and technology. It is generally believed that
no radiation exists with energy lower than a single photon [23]. Individual
quanta such as quarks, leptons and other fermions, and gluons, W bosons, pho-
tons, gravitons and other bosons [24] are fundamental elements indivisible in
energy, and thus are also the most efficient carriers for bearing atomic informa-
tion.

Corollary 8 (Information Capacity of a Single Quantum Carrier): For
recoverable information 𝐼 = ⟨𝑜, 𝑇ℎ, 𝑓, 𝑐, 𝑇𝑚, 𝑔⟩, let carrier 𝑐 be a single quantum,
and call 𝐼 single quantum carrier information. Define measure 𝜎 as the number
of distinguishable states of 𝑐, and 𝑡 = sup 𝑇𝑚 − inf 𝑇𝑚 as the reflection duration
of information 𝐼 . Then the upper bound estimate of the capacity of information
𝐼 with respect to measure 𝜎 is

volume𝜎(𝐼) = {4Δ𝐸𝑡/ℎ, when 𝑡 is sufficiently large
1, when 𝑡 equals or approaches 0 (6)

where volume𝜎(𝐼) is in quantum bits (qubits), Δ𝐸 is the average energy of
quantum 𝑐, and ℎ ≈ 6.6262 × 10−34 J・s is Planck’s constant.

Proof: According to the definition of information capacity, volume𝜎(𝐼) is the
number of distinguishable states experienced by single quantum carrier 𝑐 dur-
ing reflection time 𝑇𝑚. A quantum’s state can be composed of its two mutu-
ally orthogonal basis states |0⟩ and |1⟩ and their coherent superposition states
𝑎|0⟩ + 𝑏|1⟩, where 𝑎 and 𝑏 are complex numbers satisfying |𝑎|2 + |𝑏|2 = 1 [25].
Distinguishable states of a quantum must be mutually orthogonal [22]. By the
Margolus-Levitin theorem [26], the minimum time delay for transitioning from
one state to another orthogonal state depends on its average energy Δ𝐸; the
transition time cannot be shorter than Δ𝑡 = ℎ/4Δ𝐸. Since each distinguish-
able state of a single quantum exactly carries one qubit of information [27], for
carrier 𝑐 with average energy Δ𝐸 and reflection duration 𝑡, if 𝑡 < Δ𝑡, 𝑐 can
only present one state distinguishable from others, and volume𝜎(𝐼) = 1 qubit,
meaning 𝑐 carries only one qubit of information. This proves the lower part of
the equation.

More generally, for longer reflection duration 𝑡, we have

volume𝜎(𝐼) = ⌊𝑡/Δ𝑡⌋ + 1 = ⌊4Δ𝐸𝑡/ℎ⌋ + 1.

Since ℎ ≈ 6.6262 × 10−34, in the above formula, as long as 𝑡 is sufficiently large
—for example, when Δ𝐸𝑡 ≥ 10−30—the difference between ⌊4Δ𝐸𝑡/ℎ⌋ + 1 and
4Δ𝐸𝑡/ℎ will be less than the 10−4 order of magnitude and can be neglected,
giving volume𝜎(𝐼) ≈ 4Δ𝐸𝑡/ℎ qubits.
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The corollary is proved.

Corollary 8 shows that quantum carriers, limited by the energy they contain
or are subjected to, can only bear a finite number of different information sets
during any time period. Moreover, because the number of quanta in the universe
is always finite and quantum carrier information already constitutes the most
fundamental component of information, even considering the infinite extension
of time into the future, we can mathematically confirm that any information
can at most be composed of a countable set of different atomic information, and
the capacity additivity of information combinations can always be guaranteed
under any circumstances.

A single quantum possesses indivisibility, so its state at any moment as a carrier
is the reflection set of an atomic information. The most direct case is 𝐼 = ⋃{𝐼𝑖 =
⟨𝑐, 𝑇𝑚𝑖, 𝑔, 𝑐, 𝑇𝑚𝑖, 𝑔⟩ ∣ 𝑖 = 1, 2, … , 𝑛}, where 𝑛 is the number of orthogonal states
experienced by single quantum 𝑐 in the time sequence 𝑇𝑚𝑖 (𝑖 = 1, 2, … , 𝑛),
and 𝑔(𝑐, 𝑇𝑚𝑖) is the state of 𝑐 at moment 𝑇𝑚𝑖. Each 𝐼𝑖 is atomic information
and a self-mapping from 𝑓(𝑜, 𝑇ℎ𝑖) to 𝑔(𝑐, 𝑇𝑚𝑖) = 𝑓(𝑜, 𝑇ℎ𝑖). Figure 7 shows that
information 𝐼 actually reflects the state transformation of single quantum 𝑐 itself
in the objective world, where |0⟩ and |1⟩ are the two basis states of quantum
𝑐. According to (5), volume𝜎(𝐼) = ∑ volume𝜎(𝐼𝑖) = 𝑛 qubits, with the upper
bound of 𝑛 given by (6).

A more general case is 𝐼 = ⋃{𝐼𝑖 = ⟨𝑜, 𝑇ℎ𝑖, 𝑓, 𝑐, 𝑇𝑚𝑖, 𝑔⟩ ∣ 𝑖 = 1, 2, … , 𝑛}, where 𝑛,
𝑐, 𝑇𝑚𝑖, 𝑔(𝑐, 𝑇𝑚𝑖), and 𝑖 are defined as in the previous example, while 𝑓(𝑜, 𝑇ℎ𝑖)
(𝑖 = 1, 2, … , 𝑛) is the state set experienced by noumenon 𝑜 in the subjective or
objective world during the occurrence time sequence 𝑇ℎ𝑖. Each 𝐼𝑖 is also atomic
information, and their combined information 𝐼 maps the states of other noumena
onto the states of single quantum 𝑐 (Figure 8), enabling people to efficiently
process various things and phenomena in the subjective or objective world using
quantum information technology. Here also volume𝜎(𝐼) = ∑ volume𝜎(𝐼𝑖) = 𝑛
qubits, with its upper bound also given by (6).

4.2 Information Capacity of General Carriers

Reference [28] proposed that all energy in the universe exists in the forms of
radiation and matter. Any matter and radiation in the objective world can be-
come information carriers, and the information capacity they can bear depends
on the carrier’s physical characteristics and technological level [29]. Currently,
the most commonly used carrier with the largest information capacity in infor-
mation systems is silicon chips. According to the most advanced manufacturing
technology, a silicon chip with mass approximately 1.6 grams can achieve a stor-
age capacity of 1012 bits, showing that 1 kilogram of silicon chips can bear an
information capacity of 6.25 × 1014 bits.

Reference [30], based on thermodynamic principles and the mass-energy conver-
sion formula, calculated that the minimum mass of matter required to store one
bit is 𝑚bit = 𝑘𝑏𝑇 ln(2)/𝐶2, where 𝑘𝑏 ≈ 1.38×10−23 J/K is Boltzmann’s constant,

chinarxiv.org/items/chinaxiv-202205.00179 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00179


𝑇 is the absolute temperature of the information carrier, and 𝐶 ≈ 2.9979 × 108

m/s is the speed of light in vacuum. Thus, if the carrier of information 𝐼 is 1
kilogram of matter, its information capacity without energy dissipation is always
volume𝜎(𝐼) = 1/𝑚bit = 𝐶2/(𝑘𝑏𝑇 ln(2)) bits, where measure 𝜎 is bits. At room
temperature of about 300 Kelvin, volume𝜎(𝐼) is on the order of 1038 bits. Since
this formula derives from classical thermodynamic principles, it only applies to
equilibrium states of classical digital memory and cannot apply to quantum
carriers such as electrons and photons.

For information with quanta as carriers, (6) gives the information capacity that
a single quantum carrier can bear within a specific time period. Since quan-
tum carrier information sets do not overlap, the capacity additivity of atomic
information combinations expressed in (5) can help us estimate the information
capacity that quantum carriers can bear.

Theorem 1 (Information Capacity of Quantum Carriers): Let recover-
able information 𝐼 = ⟨𝑜, 𝑇ℎ, 𝑓, 𝑐, 𝑇𝑚, 𝑔⟩ have carrier 𝑐 composed of 𝑁 quanta.
Carrier 𝑐 exists partly in matter form and partly in radiation form, with mass
𝑚 and energy 𝐸𝑟 respectively, and total energy 𝐸. Let measure 𝜎 be the num-
ber of states of 𝑐 during reflection time 𝑇𝑚, and 𝑡 the reflection duration of
information 𝐼 . Then when 𝑡 is sufficiently large,

volume𝜎(𝐼) = 4𝐸𝑡/ℎ = 4(𝑚𝐶2 + 𝐸𝑟)𝑡/ℎ (qubits),

and when 𝑡 equals or approaches 0, volume𝜎(𝐼) = 𝑁 . For simplified expres-
sion, letting 𝐼 directly represent its own information capacity yields the concise
information capacity calculation formula

𝐼 = {4𝐸𝑡/ℎ = 4(𝑚𝐶2 + 𝐸𝑟)𝑡/ℎ, when 𝑡 is sufficiently large
𝑁, when 𝑡 equals or approaches 0 (7)

where 𝐼 is in qubits, 𝐶 is the speed of light, and ℎ is Planck’s constant.

Proof: For recoverable information 𝐼 = ⟨𝑜, 𝑇ℎ, 𝑓, 𝑐, 𝑇𝑚, 𝑔⟩, 𝐸 is the total energy
of its carrier 𝑐. According to the principle of energy conservation [24], the total
energy of 𝑐 at any moment during reflection time 𝑇𝑚 should be 𝐸. Moreover,
carrier 𝑐 consists of 𝑁 quanta. If the average energy of a single quantum in
𝑐 is Δ𝐸, then the number of quanta contained in 𝑐 during reflection time 𝑇𝑚
is always 𝑁 = 𝐸/Δ𝐸. Without loss of generality, we can set 𝑐 = ⋃𝑁

𝑖=1 𝑐𝑖,
where 𝑐𝑖 (𝑖 = 1, … , 𝑁) are individual quanta that exist throughout reflection
time 𝑇𝑚 and serve as information carriers. Let 𝐼𝑖 denote the sub-information
of 𝐼 with carrier 𝑐𝑖. Then each 𝐼𝑖 is single quantum carrier information, and
𝑡 is both the reflection duration of information 𝐼 and the reflection duration
of each sub-information 𝐼𝑖. According to (6), we have volume𝜎(𝐼𝑖) = 4Δ𝐸𝑡/ℎ
(when 𝑡 is sufficiently large) or volume𝜎(𝐼𝑖) = 1 (when 𝑡 equals or approaches
0), for (𝑖 = 1, … , 𝑁). Since each 𝑐𝑖 is a different quantum, the sub-information
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𝐼𝑖 of information 𝐼 do not overlap, and each 𝐼𝑖 consists of ⌊4Δ𝐸𝑡/ℎ⌋ + 1 atomic
information. According to (4) and (5),

volume𝜎(𝐼) = ∑ volume𝜎(𝐼𝑖) = ∑ 1 = 𝑁 (qubits) when 𝑡 equals or approaches 0,

or

volume𝜎(𝐼) = ∑ volume𝜎(𝐼𝑖) = ∑ 4Δ𝐸𝑡/ℎ = 4𝐸𝑡/ℎ (qubits) when 𝑡 is sufficiently large.

Furthermore, the total energy 𝐸 of 𝑐 should be the sum of the energies of its
matter and radiation forms. According to the mass-energy conversion formula
[31, 32], the energy of the matter form is 𝑚𝐶2, where 𝐶 is the speed of light.
Thus 𝐸 = 𝑚𝐶2 + 𝐸𝑟, giving volume𝜎(𝐼) = 4(𝑚𝐶2 + 𝐸𝑟)𝑡/ℎ qubits when 𝑡 is
sufficiently large.

The theorem is proved.

Since (7) concisely encompasses the basic measures of information, matter, en-
ergy, and time, we refer to it as the relationship formula of information, matter,
energy, and time. Imagining that an information carrier can be decomposed
into pure quanta listed in [24], when its contained energy corresponds to matter
with mass 1 kilogram, (7) shows that its information capacity in 1 second is
4𝐶2/ℎ ≈ 5.3853 × 1050 qubits. At a particular moment, its information capac-
ity is simply the number of quanta it contains. Assuming this carrier consists
entirely of electrons, since a single electron’s mass is about 9.1×10−31 kg, mean-
ing 1 kilogram of carrier contains about 1030 electrons, its information capacity
at that moment is about 1030 qubits.

4.3 Information Capacity the Universe May Have Borne to Date

The vast universe is filled with various information and is also considered an
enormous quantum computer. For decades, many have studied how much in-
formation the entire universe may have borne to date [33-37]. According to
Theorem 1’s relationship formula of information, matter, energy, and time and
the principle of energy conservation [24], this question can be easily answered.

Standard inflation theory predicts the spatial flatness of the universe. Einstein’
s general relativity determines that such a universe has a total energy density
equal to the critical density 𝜌𝑐 = 3𝐻2

0 /8𝜋𝐺 [38], where 𝐻0 ≈ 2.1 × 10−18/s
is the current value of the Hubble parameter and 𝐺 ≈ 6.7 × 10−11 m3kg−1s−2

is the gravitational constant, giving 𝜌𝑐 ≈ 7.9 × 10−27 kg/m3. On the other
hand, the radius of the observable universe is approximately 𝐿 = 4.56 × 1010

light-years [39], from which we can estimate the universe’s total volume as
𝑉 ≈ (4/3)𝜋𝐿3 ≈ 3.35 × 1080 m3, and estimate the universe’s total mass as
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𝑚 = 𝜌𝑐𝑉 ≈ 2.6 × 1054 kg. According to common understanding, the universe’s
age is about 13.7 billion years [40], meaning the information reflection duration
𝑡 ≈ 4.3×1017 seconds. Using (7), we obtain the universe’s information capacity
to date as

𝐼 = 4𝑚𝐶2𝑡/ℎ ≈ 4×2.6×1054×(3.0×108)2×4.3×1017/(6.6×10−34) ≈ 6.1×10122 qubits.

This estimate is nearly consistent with [34]’s estimation of 10123 logical oper-
ations in the universe. From the perspective of Objective Information Theory,
any logical operation in the universe must produce specific states, and these
states must contain objectively existing information. Therefore, we can con-
sider the number of logical operations of the universe at a specific time as the
total number of its states. On the other hand, this estimate differs from [34]’
s estimation of 1090 bits for the universe’s information capacity, because the
latter defines information capacity using entropy [41], which differs greatly from
Theorem 1’s definition of information capacity. By comparison, the authors
believe that defining information capacity using“the measure of all states of the
carrier during reflection time”is more universal. More importantly, Theorem 1
establishes a general relationship among the three fundamental elements of the
objective world—matter, energy, and information—and time. For any informa-
tion carrier, given mass, energy, and time, we can substitute them into (7) to
obtain the upper bound of information capacity.

5 Conclusion
This paper builds upon the fundamental concepts of Objective Information
Theory, proposes four postulates regarding information, and proves that the
information sextuple model satisfies the necessary and sufficient conditions for
defining information. It demonstrates that defining information capacity using
information entropy is merely a special case of the capacity definition in Objec-
tive Information Theory, proves the upper bound of information capacity that a
single quantum carrier can bear during reflection time, and establishes the rela-
tionship formula of information, matter, energy, and time. This profoundly and
accurately reveals the interrelationships among the constituent elements of the
objective world, showing that the theoretical system of Objective Information
Theory has good universal significance and application prospects.

Objective Information Theory not only defines the capacity measure of infor-
mation but also analyzes five basic properties of information—objectivity, re-
coverability, combinability, transmissibility, and associativity—and constructs
ten other measures including delay, breadth, and granularity. This paper only
conducts preliminary research on the essence of information and its capacity
characteristics. Future work can further investigate the characteristics of other

chinarxiv.org/items/chinaxiv-202205.00179 Machine Translation

https://chinarxiv.org/items/chinaxiv-202205.00179


basic properties and measures of information and their interrelationships, while
examining compatibility with existing information science principles and techni-
cal tools, to promote the establishment of a universally applicable and complete
information science theory and a comprehensive information system dynamics
system, providing more powerful theoretical tools for the development and ap-
plication of information technology.
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